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Abstract 

During my three years of PhD I had the opportunity to work with different biological samples 

analyzing the content and type of proteins through the proteomic approach.  

In the thesis I describe how a proteomic approach could be useful to analyze different aspect 

connected to central nervous system. Indeed,  the present work is divided in three different parts but 

the fil rouge is represented by the same analysis technique, a shotgun label-free proteomic approach, 

for the identification and quantification of expressed proteins, applied to different neuronal cells and 

tissues: 1) PC12 cells, a well-studied neuronal cell model due to the ability to easily differentiate into 

neuron-like cells, 2) Neuro2a cells, another neuronal cellular model very well studied, and 3) the 

brain of Zebrafish. It is a poikilotherm and eurytherm and therefore it has a wide thermal tolerance, 

from 6°C to 38°C, temperatures between 24 and 30°C are more suitable for its development, growth 

and reproduction. Moreover, Danio rerio represents a good animal model for different type of 

research because it has a generation time of 3-4 months, its maintenance is cheaper than that for rats 

and mice and required little space.  

Starting with the first project the proteomic approach is used to dissect at the proteome level 

similarities and differences between the biochemically and mechanotransductively promoted 

neuronal differentiation of PC12 cells growth on cluster-assembled zirconia surface with 15nm of 

roughness, polylysine coated glass in the presence (NGF) or absence (PLL) of NGF.  

This work lays a substantial cell biological foundation for the intelligent design of substrates 

for cell culturing based on nanostructured surfaces produced by cluster assembling that mimic more 

closely physiological 3D extracellular microenvironmental features. Our data suggest that the 

nanoscale information provided by these surfaces could have a strong potential in favoring 

neurogenic processes by mechano-transductive processes.  
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The results obtained on zirconia nanostructure can be the fundamental starting point to further 

characterize the neuronal differentiation process in adequate primary and stem cell systems for 

regenerative medicine approach.  

The second part of this work has the aim to understand how the activation of the TrkA pathway 

is able to trigger biochemical signaling, like ERK1/2, leading to cell differentiation when GM1 

oligosaccharide, II3Neu5Ac-Gg4 (OligoGM1), which interacts with NGF receptor TrkA, is 

administered to cultured murine Neuro2a neuroblastoma cells. 

The results of our work confirm and reinforce the idea that the molecular mechanisms 

underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, 

suggesting the activation of a positive signaling starting at plasma membrane level. 

The third part of this thesis regards the determination of the effect of ambient temperature on 

the molecular mechanism and the behavioural responses in Danio rerio. This project can be framed 

in a quite interesting area of research, important because global warming occurring in our planet is, 

especially nowadays, an urgent problem amplified by the anthropic action, the release of CO2 and 

other greenhouse gases. The huge temperature increase causes climate changes that can deeply alter 

the habitat of the species, leading to substantial environmental changes possibly impairing the 

prosecution of the species. We applied for the first time a shotgun proteomic approach to analyze the 

effect of acclimatization on zebrafish brain proteome and to correlate the results at the protein level 

with the behavioural tests.  

As stated above, the shotgun proteomic approach adopted is a powerful analytical method for 

characterizing the complex proteomes of various types of biological specimens. 

To characterize the protein component of our sample, we have adopted a quantitative label 

free shotgun proteomic approach. In recent years, non-gel-based, shotgun proteomic technique has 

emerged as powerful tool for studying large scale differential protein expression [1]. This method 
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allows to examine the impact of different conditions by achieving the simultaneous identification of 

thousands of proteins and their quantification in each sample. It does not require a previous 

purification of the sample, but identifies proteins from tandem mass spectra (MS/MS) of their 

proteolytic peptides, which are separated by liquid chromatography (LC) [2].  

In particular, the identification of the proteins from the MS/MS data was achieved using a 

database search by MaxQuant which compares acquired mass spectra to a database of known 

sequences to identify the proteins. 
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BACKGROUND 

1. Nervous system 

1.1 General organization of nervous system 

Nervous system is divided in two parts central nervous system, composed by brain and spinal 

cord and peripheral nervous system, made up of nerves which branch off from the spinal cord and 

extend all over the body. The nervous system controls movement, breathing, seeing, thinking and 

more, through signals transmitted between the brain and the rest of the body. The basic unit of the 

nervous system is neuron, which are 100 billion in human brain. Neurons have a cell body, which 

includes the cell nucleus, and two types of extension axons and dendrites. The latter allow neurons to 

communicate, even across long distances. Different types of stimuli are driven by different types of 

neurons, for example, motor neurons transmit messages from the brain to the muscles to generate 

movement, sensory neurons detect light, sound, odor, taste, pressure and heat and send messages 

about those things to the brain. The remaining parts of the nervous system control involuntary 

processes.  

The messages between neurons are electrical signals that changes, at the end of the axon, to 

chemical signals. The axon then releases chemical messengers called neurotransmitters into the 

synapse, the space between the end of an axon and a dendrite from another neuron, allowing signal 

transmission.  

The nervous system also includes other cells called glia, which have important functions that 

keep the nervous system working properly. They: 

• help, support and hold neurons in place; 

• protect neurons; 
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• create myelin; 

• remove dead neurons; 

• regulate neurotransmitters. 

In the next chapters Central Nervous System characteristic will be elucidated with more 

details.  

1.2 The formation of brain structure 

Fertilization is the starting point of development of the nervous system, so an ovary’s oocyte 

is sent to the uterine tube to be fertilized. A fertilized ovum is subjected to repeated cell cleavage, the 

first division results in two blastomeres, and successive produce a spherical ball of cells. The 

rearrangements of blastomeres give rise to a fluid-filled cavity, the blastocoel. Inside the blastocyst 

appears a cluster of cells called inner cell mass whose cavity is the embryonic disc.  

The three germ layers, endoderm, mesoderm and ectoderm derive from the embryonic disc 

and form all the tissue and organs of the embryo.  

The dorsomedial area of the ectoderm differentiates into neural ectoderm [3], a flat area made 

of a single cell layer. The tubular primordium of the central nervous system is form through three 

developmental stages: neural plate, neural fold and neural tube. The neural ectoderm thickens to 

become the neural plate, which folds into a neural groove and contains the neural progenitors. The 

latter becomes narrower and the dorsal edges of the fold fuse so the neural fold becomes the neural 

tube, first well-defined neural structure. Brain originates from the rostral end and the remaining part 

of the neural tube develops into the spinal cord. While deepening the neural groove, a cluster of cells 

forms the neural crest which detaches from the ectoderm to become ganglia of the cranial and the 

spinal nerves. 
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The neural tube results from fusion of the dorsal edges of the neural fold, its closure starts 

from the middle of the embryo and proceeds toward the two ends. As a result, three stages of neural 

development coexist simultaneously in different regions of the embryo.  

1.3 Development of brain and nervous system 

The brain is the principal organ of nervous system in all vertebrate and most invertebrate 

animals. The development of it and more in general of all the nervous system is a process that involves 

molecular events of gene expression and environmental input, both essential for normal brain growth, 

whose disruption can alter neural outcomes. In humans this process starts at the third gestational week 

and extends at least through late adolescence [4] but the neurons production begins on embryonic day 

42 till midgestation [5, 6]. Once produced neurons migrate to different brain areas where they make 

connections with other neurons to create rudimentary neural networks.  

1.3.1 Neurons 

The mature brain is composed of more than 100 billion neurons [7] which are the cell delegated 

to information processing in the brain. 

 

Figure 1: Schematic drawing of a neuron. Each neuron a single large axon. At the distal tip of the axon is a 
growth cone that serves to guide the axon to targeted brain regions. Once the axon reaches the target site, synapses, or 
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points of connection, form between the axon and the target neuron. The synapse allows electrochemical signals to be 
transmitted to the target neuron. Each neuron also has a complex arbor of dendrites that receive information from other 
neurons. Original image from Nicolas Rougier [4]. 

They differ according to the shape, size and function and they form, through connections with 

others neurons, the information processing networks being responsible for all our thought, sensation, 

feelings and actions. According to their function they are divided into three classes: sensory neurons, 

motor neurons and interneurons, that connect neurons to other neurons within the same region of the 

brain or spinal cord.  

They are composed by a cell body, soma, dendrites and a single axon. The soma contains the 

nucleus where occurs protein synthesis. Dendrites are sets of short fibers that resemble the branches 

of a tree, making the dendritic arbors; they extend only a short distance away from the neuron cell 

body. They are deputies to the reception of the electrochemical input signals from other neurons. 

Axons, instead, are long connecting fibers that, creating connections with other neurons, are extended 

over long distances sending electrochemical signals. Another important part is the axon terminal 

which contains synapses, the space where neurotransmitter chemicals are released to communicate 

with target neurons. Synapses can be excitatory or inhibitory, which increase or decrease activity in 

target neuron. When an action potential reaches the axon terminal, voltage-gated calcium channels is 

open and calcium ions enter in the terminal. Calcium causes the fusion between synaptic vesicles 

with membrane releasing their contents into the synaptic cleft, here neurotransmitters diffuse and 

activate receptors on the postsynaptic neuron. The high calcium concentration in the axon terminal 

activates mitochondrial calcium uptake, leading mitochondrial energy metabolism to produce ATP 

to guarantee continuous neurotransmission.  

Axons are enveloped in myelin, a fatty substance that makes efficient the transmission of 

electrochemical signals. Myelin has the 40% of water and its dry mass is composed by high proportion 

of lipid (70 to 85%) and low proportion of protein (15-30%). The most typical lipid of myelin is 

cerebroside, also known as galactosylceramide, which concentration increase in relation to the 
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amount of myelin and it has insulating and stability roles. In addition to cerebroside, the major lipids 

of myelin are cholesterol and ethanolamine-containing plasmalogens. Lecithin is also a major myelin 

constituent, and sphingomyelin is a relatively minor one [8]. Minor components of myelin are 

represented by three fatty acid esters of cerebroside and two glycerol-based lipids, collectively called 

galactosyldiglyceride. Myelin from mammals contains 0.1 to 0.3% gangliosides, which are complex 

sialic acid-containing glycosphingolipids [8]. It is mainly composed by monosialoganglioside GM1, 

instead of other brain membranes, enriched in the polysialo species.  

The protein composition of CNS myelin is mainly characterized by proteolipid proteins and 

basic proteins and, to a lesser extent, other proteins and glycoproteins. They aren’t easily extractable, 

since unsoluble in aqueous media, but they could be solubilized in sodium dodecylsulfate (SDS) and, 

in this condition, separated readily by electrophoresis in polyacrylamide gels. Through this technique 

two major proteins, myelin basic protein and proteolipid protein, were characterized in human CNS 

myelin. These proteins are mainly present in all mammalian CNS myelin, and similar proteins are 

present in myelin of many lower species [4].  

The site of most neuron production is the wall of the ventricles which are a series of 

interconnected cavities filled with cerebral spinal fluid, completely recycled several times per day. It 

deadens and protect the brain removing waste material and transporting hormones and other 

substances [4]. 

1.4 Differentiation of the neural progenitor cells 

At embryonic day 13 the embryo is an oval-shaped, simple, two-layered structure. These two 

layers contain a different, very primitive cell type: epiblast cells, in the upper layer, and in the lower 

one hypoblast cells. Gastrulation, which set the stage for all subsequent developments, transforms the 

embryo into a three-layered structure. The epiblast cells will differentiate into primary stem cell lines 

that will eventually give rise to all of the structures in the developing embryo, while the hypoblast 



 15 

cells will give rise to the extraembryonic tissues, like the fetal component of the placenta and the 

connecting stalk. Among the stem cell lines there are the neural stem cells, which are able to produce 

all the different cells that built the brain and the central nervous system, for this reason they are called 

neural progenitor cells.  

The first step in gastrulation is the formation of the primitive streak, an opening in the upper 

layer of the embryo; epiblast cells pass, firstly, in this structure, then they migrate toward another 

structure called primitive node, located at the rostral end of the primitive steak. The primitive node is 

a molecular signaling center [4] whose cells send a molecular signal to the subset of cells that migrate 

along the rostral-caudal midline of the embryo and that signal, in turn, triggers gene expression in the 

migrating cells. In the space between the migrating cells and the cells of the midline region of the 

upper epiblast layer is secreted a protein which binds to receptors on the surface of the cells in the 

upper layer of the embryo, inducing the differentiation of the epiblast cells into neural progenitor 

cells.  

                                   A                                B                                     C                    D  

 

Figure 2: the major events of gastrulation. A The first step is the formation of the primitive streak and the 
primitive node, which is a critical molecular signaling center. Cells from the epiblast layer begin to migrate toward the 
primitive node and streak (blue arrows). B The migrating cells change direction and move down, under the upper layer 
(blue arrows). C The cells begin migrating rostrally. D Cells that migrate along the axial midline send molecular signals 
that induce cells in the overlying epiblast layer to differentiate into neuroectodermal cells (red band) which are the neural 
progenitor cells [4]. 

The differentiation of stem cells into neural progenitors requires a complex molecular 

signaling, that involves multiple gene products, among at least three cell populations: the cells of the 

node, the migrating cells and the cells that will become the neural progenitors. 
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Pax6 and Emx2, transcription factor proteins, are two signaling molecules responsible for the 

production of neuron from progenitors. They are present in different concentration in the neocortical 

proliferative zone. The concentration of Emx2 is highest in posterior and medial regions, and lowest 

in anterior lateral regions; Pax6 has the opposite expression pattern [4]. Two gradients induce 

progenitors to produce neurons of different species, motor neurons thanks to high concentration of 

Pax6 combined with low concentration of Emx2, and neurons for visual cortex with the opposite 

concentration.  

1.5 Neuron production 

The changes that occur in the gross anatomy of the fetal brain reflect dramatic changes 

occurring at the cellular level [4]. Neuron production starts at the embryonic period and extends 

through midgestation. The pool of neural progenitor cells is too small for neuron production, so it has 

to increase in size, through symmetrical division, before starting this process. Neural progenitors are 

mitotic population of cells, so they can divide forming new cells. Neurons are post-mitotic cells, once 

formed they are no longer able of dividing and producing new cells. There are three types of 

neurogenic progenitors within the developing neocortex: neuroepithelial cells, radial glia and 

intermediate progenitors. Firstly, a single sheet of pseudostratified neuroepithelial cells undergoes to 

symmetric cell division, which later begins to shift to asymmetrical one producing two different types 

of cells, one neural progenitor and one neuron. The first one remains in the proliferative zone and 

continues to divide, while neuron migrates away from the proliferative regions of the ventricular 

zone. Once placed in cortex neurons start to differentiate producing neurotransmitters and 

neurotrophic factors, and extending the dendritic and the axonal processes that form the fiber 

pathways of the brain neural networks.  
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1.6 Neuron differentiation 

The different layers of cortex contain different types of neurons. Early neural progenitor cells 

are capable of producing any neuron type, but then with development they become more and more 

restricted in the types of neurons they can produce. The progenitor cells can receive signals to produce 

any neural cell line, but with development these cells become useless and so the progenitor loses the 

ability to produce those cells, exhibiting fate restriction. Shifts in the progenitor population are 

induced by a particular signaling pathways which is still poorly defined [9]. Once they have reached 

their target region of the cortex, the newly neurons need to become part of information processing 

network, and so they need to develop axon and dendrites that allow them to communicate with other 

neurons. At the tip of each axon is a structure called a growth cone, the site of axon elongation and 

extension [10]. As the axon extended some guidance cues, attractive or repulsive, direct them toward 

their targets where they make connections called synapses.  
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2. Label-free shotgun mass spectrometry 

2.1 Neural plasticity 

Neural plasticity can be defined as the ability of the central nervous system (CNS) to adapt in 

response to changes in the environment or lesions [11]. Through modifications the CNS try to cope 

in the best way with new challenges, it recruits new or different neural networks, or changes in 

strength of such connections or specific brain areas in charge of carrying out a particular task [12]. 

At the cellular level many studies have demonstrated membrane excitability, synaptic plasticity and 

structural changes in dendritic and axonal anatomy both in human and animals [13, 14]. CNS consists 

in neuronal circuit formed by synaptic connections between axons and dendrites that, extending over 

the brain, has the potential for a large number of possible interacting combinations allowing for great 

flexibility. Modification of sensory input may induce rapid changes in cortical representations 

through various mechanisms including unmasking of connections that are silent in the native state 

[15]. Synaptic plasticity is the base for learning and memory and cell require de novo protein synthesis 

to maintain it. Although the requirement for protein synthesis in long-term plasticity is widely 

recognized, the identities of proteins that are differentially synthesized in response to experience and 

their functions in neuronal and behavioral plasticity are still largely unknown [16]. In these studies, 

we performed a shotgun label-free proteomic approach to identify candidates which changed in 

abundance in response to different stimuli against which CNS has to adapt. In particular in all the 

three studies presented in this thesis we performed a shotgun proteomic analysis, in order to: 

• characterize the effect of the extracellular ambient on neuronal differentiation 

by comparing the proteome of PC12 cells grown on neuritogenesis-inducing ns-Zr15 

substrates with the one of cells grown on PLL in the presence and in absence of NGF (after 

24 h cell/substrate interaction) [18]; 
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• understand how the activation of the TrkA pathway is able to trigger key 

biochemical signaling, in Neuro2a cells treated with 50 µM OligoGM1 for 24 h [19]. 

• determine the effects of environmental temperature changes on the proteome 

of zebrafish brain [17]; 

2.2 Shotgun approach 

For many years 2D-PAGE/MS, which is an overall, comparative, quantitative proteomic 

technique, was the gold standard for analysis of protein expression and biomarker discovery. 

However, there are several disadvantages associated with gel-based proteomic techniques. For 

example, any 2D approach is subjected to the restrictions imposed by the gel method, which include 

limited dynamic range, difficulty in handling hydrophobic proteins, and difficulty in detecting 

proteins with extreme molecular weights and pI values. Another negative aspect is that spots on a 2D 

gel often contain more than one protein, making quantification ambiguous. [1]. Moreover, low-

abundance proteins may be masked in the gel by high-abundance housekeeping proteins. Therefore, 

in more recent years, there has been a move towards gel-free MS methods for proteome analysis. The 

gel-free methods are based on the high-throughput “shotgun” analysis of peptides from a digested 

complex protein sample using an on-line high-performance liquid chromatography (HPLC) method, 

prior to identification using MS/MS [20].  

In this study we applied a shotgun proteomic protocol, that is a non-gel-based technique, 

without any previous separation of the proteins before MS/MS analysis [21] and label free for 

quantitation.  

Shotgun proteomics consists of distinct steps. The first step, and perhaps one of the most 

critical, is the preparation of the sample. The second step is the separation of peptides by HPLC 

followed by the analysis by mass spectrometry. The final step is the bioinformatic analysis to assess 

the results.  
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Shotgun proteomic has provided powerful tools for studying large scale protein expression 

and characterization in complex biological systems [22, 23]. This proteomic strategy converts a 

complex protein mixture to an even more complicated peptide mixture. For this reason, to resolve 

complex peptide mixtures, high-resolution HPLC separations are necessary to maximize peptide 

separation for acquisition of tandem mass spectra.  
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2.2.1 Label-free protein quantification 

There are two different approaches used for quantitate protein changes in complex samples: 

labeling-based and label-free quantitative approaches.  

In protein-labeling approaches, different protein samples are combined together once labeling 

is finished and the pooled mixtures are then taken through the sample preparation step before being 

analyzed by a single LC-MS/MS or LC/LC-MS/MS experiment.  

In contrast, with label-free quantification methods, each sample is separately prepared then 

subjected to individual LC-MS/MS or LC/LC-MS/MS runs [1].  

Most labeling-based quantification approaches have potential limitations. These include 

increased time and complexity of sample preparation, requirement for higher sample concentration, 

high cost of the reagents, incomplete labeling and the requirement for specific quantification 

software. In particular, the labeling efficiency of amino acids or proteins varies depending on the rate 

of protein turnover in cells; MS-based quantification requires detection of chromatographic peaks for 

both light and heavy peptides. Moreover, substantial changes in protein expression often result in a 

poor peak correlation between the light and heavy peptides and reduce the number of quantifiable 

peptide measurements. The implementation of the stable isotopic labeling strategy is further 

hampered by the cost of stable isotope-labeled amino acids as well as the limited availability of 

isotope/metabolic labeling media.  

Compared with isotope-labeling methods, label-free experiments need to be more carefully 

controlled, due to possible error caused by run-to-run variations, LC separation and MS analysis. 

However, the development of highly reproducible nano-HPLC separation, high resolution mass 

spectrometer, and dedicate computational tools have greatly improved the reliability and accuracy of 

label-free methods.  
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Regardless of which label-free quantitative proteomics methods is used, they all include the 

following fundamental steps: i) sample preparation including protein extraction, reduction, alkylation 

and digestion; ii) sample separation by liquid chromatography and analysis by MS/MS; iii) data 

analysis including peptide/protein identification, quantification, and statistical analysis [1].  

Protein quantification is generally based on two type of measurements. First the measurement 

of ion intensity changes such as peptide peak areas or peak heights in chromatography. The second 

is based on the spectral counting of identified proteins after MS/MS analysis. Peptide peak intensity 

or spectral count are measured for individual LC-MS/MS or LC/LC-MS/MS runs and changes in 

protein abundance are calculated via direct comparison between different analyses.  

In the spectral counting approach, relative protein quantification is obtained by comparing the 

number of identified MS/MS spectra from the same protein in each of the multiple LC-MS/MS or 

LC/LC-MS/MS datasets. This is operable because an increase in protein abundance typically results 

in an increase in the number of its proteolytic peptides, and vice versa. This increased number of 

digests then usually results in an increase in protein sequence coverage, the number of identified 

unique peptides, and the number of identified total MS/MS spectra (spectral count) for each protein 

[24].  

In this study a label-free quantitative proteomic protocol based on peak intensity measurement 

is applied. In LC-MS, an ion with a particular m/z is detected and recorded with a particular intensity, 

at a particular time. It has been observed that signal intensity from electrospray ionization correlates 

with ion concentration [25]. Infact, when chromatographic peak areas were calculated, the peak areas 

were found to increase with increased concentration of injected peptides and to correlate linearly to 

the concentration of protein.  

Thus, relative quantification of the peptides could be achieved via direct comparison of peak 

intensity of each peptide ion in multiple LC-MS datasets.  
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Several similar steps in data processing were carried out in these label-free quantifications. 

Peptide peaks were first distinguished from background noise and from neighboring peaks (peak 

detection). LC-MS retention times were carefully adjusted in order to correctly match the 

corresponding mass peaks between multiple LC-MS runs (peak matching). Chromatographic peak 

intensity, either peak area or peak height, was calculated and normalized to enable a more accurate 

matching and quantification. Finally, statistical analysis was performed to determine the significance 

of changes between multiple samples [26, 27]. 
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Proteomic analysis of neuron-like PC12 cells growth on supports 

with diverse nanotopographies, and their phosphoproteomic profiles 

in these settings 
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1. INTRODUCTION 

1.1 Rat pheochromocytoma cell line (PC12) 

PC12 is a cell line derived from a pheochromocytoma of the rat adrenal medulla, that has an 

embryonic origin from the neural crest, a mixture of neuroblastic cells and eosinophilic cells. This 

cell line was first cultured by Greene and Tischler in 1976. It was developed in parallel to the adrenal 

chromaffin cell model because of its extreme versatility for pharmacological manipulation, easiness 

of culture, and the large amount of information available on their proliferation and differentiation. 

The embryological origin from neuroblastic cells implies that they can easily differentiate into 

neuron-like cells even though they are not considered adult neurons. Neuron-like means they share 

properties similar to neurons, in this case it is referring to releasing neurotransmitter by vesicles. 

PC12 cells stop dividing and terminally differentiate when treated with nerve growth factor (NGF) 

or dexamethasone. For this reason, this cell line has been widely used as a neuronal model system to 

study neuronal differentiation and specific growth factor signalling mechanisms [28]. 

Treatment of PC12 cells with dexamethasone differentiates them into chromaffin-like cells, 

instead using nerve growth factor these cells assume many of the features of sympathetic neurons 

including cell cycle arrest, survival in serum-free medium, and neurite extension [29-34]. It has been 

demonstrated that NGF induces NO production by the induction of all three nitric oxide synthases 

(NOS) isoforms [35] and that, in the absence of NGF, NO itself has the ability to produce neurite 

outgrowth by extracellular signal-regulated kinase (ERK) activation through NO-cGMP-PKG 

pathway [36].  

Beside NGF, which is the classical inducer of differentiation, there are other factor that 

promote growth arrest and neuritogenesis, such as cAMP-elevating agents.  
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In PC12 cells, the extension of neurite is one hallmark of the neuronal phenotype, along with 

cessation of proliferation and production of specific neurotransmitters such as nitric oxide (NO) [37].  

1.2 The Extracellular Matrix 

Cellular behaviour in vivo and in vitro is heavily influenced by the mechanical, biochemical 

and topographical properties of the extracellular environment where cells grow [38-40]. In the last 

two decades a rapidly increasing amount of data suggested that the modulation of topographical and 

chemical cues at the nanoscale plays a relevant role in determining cell adhesion, proliferation and 

differentiation [41]. Cells in their natural environment interact with extracellular matrix (ECM) 

components structured at the nanometer scale [42] and they respond to nanoscale features when 

grown on synthetic substrates [43-47].  

ECM (Extracellular Matrix) is a complex mixture of proteins and proteoglycans that cells 

secrete and organise [48].  

It is composed of three major classes of biomolecules (Figure 3): 

1. Structural proteins: collagen, fibrillin, and elastin; 

2. Specialized proteins: fibronectin, laminins, and integrins; 

3. Proteoglycans: these are composed of a protein core to which long chains of repeating 

disaccharide units termed of glycosaminoglycans (GAGs) are attached forming 

extremely complex high molecular weight components of the ECM; 
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Figure 3: Components of the ECM [from 538] 

These components are secreted locally and assembled into the organized meshwork that is the 

ECM. Connective tissue refers to the matrix composed of the ECM, cells (primarily fibroblasts), and 

ground substance that is tasked with holding other tissues and cells together forming the organs. 

Ground substance is a complex mixture of GAGs, proteoglycans, and glycoproteins (primarily 

laminin and fibronectin) but generally does not include the collagens. In most connective tissues, the 

matrix constituents are secreted principally by fibroblasts but in certain specialized types of 

connective tissues, such as cartilage and bone, these components are secreted by chondroblasts and 

osteoblasts, respectively. The ECM is not only critical for connecting cells together to form the 

tissues, but is also a substrate upon which cell migration is guided during the process of embryonic 

development and importantly, during wound healing. In addition, the ECM is responsible for the relay 

of environmental signals to the surfaces of individual cells.  

1.2.1 Extracellular Matrix of the Brain 

The low elastic modulus of the adult brain and spinal cord coincides with the near absence of 

the kind of ECM that forms scaffolds in most other soft tissues [49, 50]. Neurons and astrocytes are 

well gifted with integrins and other transmembrane proteins typically associated with the adhesion of 

cells to a fibrous ECM or basement membrane, but normal brain is conspicuously unprovided of 

fibrillar collagens or fibronectin fibrils except in the meninges, the vasculature, and the blood-brain 
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barrier [51]. Rather than a 3D protein scaffold consisting of a mesh-like basement membrane and 

long stiff fibrils that permeate the space of most tissues, even some such as adipose that also have 

very low elastic moduli [52], the ECM of the adult brain consists largely of much softer elements, 

such as the anionic carbohydrate polymers hyaluronan (HA) and other glycosaminoglycans, the 

integrin ligand tenascin C, and a large set of proteoglycans, many of which bind to HA and other 

elements of the ECM [50, 53]. In the brain, the ECM appears to be less a structural support providing 

elasticity to the tissue than a trophic and topographical guidance cue during development and 

remodelling [49].  

Despite containing relatively scarce amounts of ECM proteins common in other tissues, most 

CNS cells express integrins and possibly other receptors that allow them to adhere to collagen-, fibrin-

, fibronectin-, and laminin-coated surfaces and to exhibit mechanosensing properties in these 

materials [54, 55, 56-59]. In vivo, however, their function might be more strongly regulated by 

glycosaminoglycans [60] and proteoglycans, which generally are much more flexible than gels made 

from stiffer biopolymers such as collagen or fibrin. In vitro networks of such polymers can be 

formulated to have low elastic moduli similar to those of normal brain, and biomaterials formed from 

collagen, fibrin, HA, alginate, and other synthetic soft hydrogels have been extensively studied as 

carriers of stem cells, neurotrophic factors, or other active agents or as neutral scaffolds to facilitate 

wound healing. Decellularized brain scaffolds have also been prepared and have potential as soft 

scaffolds that most nearly mimic the native biochemical and topographical cues encountered by 

neurons in vivo [61].  
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1.3 Cells culture substrates 

It’s very important to evaluate a cell in the context of the ECM and not as a solitary entity 

defined by its genome; in order to do this, different substrates for cell growth, that mimic the 

extracellular matrix, have been developed.  

1.3.1 The first and the second generation of substrates: from 2D to 3D 

It’s possible to divide the process of development of these substrates into three generation; the 

first generation is represented by two-dimensional (2D) substrates, such as tissue culture polystyrene 

(TCPS) or the surface of tissue analogues. 

Polystyrene was chosen because it has excellent optical clarity, it is easy to mold and can be 

sterilized by irradiation. However, it also has one significant drawback, it is a very hydrophobic (non 

wettable) polymer to which cells have difficulty attaching. For good cell attachment the hydrophobic 

polystyrene surface must be modified to a more hydrophilic surface, process showed in figure 4. This 

allows cell attachment proteins (vitronectin and fibronectin) found in the serum containing culture 

medium to adhere and spread on the vessel bottom providing a better surface for cells to attach. 

 

Figure 4: polystyrene can be surface modified by the addition of a variety of different chemical groups, breaking the 
carbon chain backbone or opening the benzene ring. These processes both generate highly energetic oxygen ions which 
oxidize and graft onto the surface polystyrene chains so that the surface becomes hydrophilic and negatively charged once 
medium is added. [Figure from 62] 

By the end of the 1970s researchers were finding that polystyrene had its limitations, especially 

for growing cells in serum-free media and for maintaining differentiated cell functions in primary 



 30 

cultures and cell lines. At the same time researchers were experimenting with basement membrane 

extracts and purified attachment proteins to better understand their roles in cell attachment, migration 

and function. As a result of this work, some cell researchers began coating culture vessel surfaces to 

improve both cell attachment and performance. They used a variety of biological materials including 

extracellular matrix, attachment and adhesion proteins, such as collagen, laminin and fibronectin, and 

mucopolysaccharides, such as heparin sulphate, hyaluronidase and chondroitin sulphate, both 

individually and as mixtures. Use of basic synthetic polymers, such as poly-D-lysine (PDL), as 

coatings have also been used to create a positive charge on polystyrene which, for some cell types, 

can enhance cell attachment, growth and differentiation, especially in serum-free and low serum 

conditions. PDL coatings often improve attachment and growth of primary neurons, glial cells, 

neuroblastomas, and a variety of transfected cell lines.  

Experiments with these 2D cell constructs have provided the base for our nascent interpretation 

of complex biological phenomena, including molecular biology, stem cell differentiation [63], and 

tissue morphogenesis [64]. Furthermore, 2D experiments have given rise to seminal findings in the 

dynamic relationship between cell function and interactions with the cellular microenvironment. 

Discher and co-workers demonstrated that the differentiation of human mesenchymal stem cells 

(hMSCs) is dependent on the mechanical stiffness of the 2D culture platform [65]. Further, Ingber 

and co-workers have shown that the degree to which a cell is mechanically distended on a 2D scaffold 

dictates relative growth and apoptotic rates [66].  

The 2D studies have provided many important information. However, the cells growing in 2D 

are not in physiological condition. They are too far from the real growth condition in animals’ tissues. 

For instance, 2D culture polarizes cells such that only a segment of the cell’s membrane can interact 

with the ECM and neighbouring cells, while the rest of the cell is exposed to the bulk culture media 

[67]. This leads to unnatural, polarized integrin binding and mechanotransduction, which both affect 

intracellular signalling and phenotypic fate [68]. The inherent polarity also leads to unnatural 
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interactions with soluble factors. In 2D culture, cells experience the homogenous concentration of 

nutrients, growth factors, and cytokines present in the bulk media with the section of the membrane 

that contacts the surrounding media. In contrast, the concentrations of soluble factors that influence 

cell migration, cell–cell communication, and differentiation possess dynamic spatial gradients in vivo 

[69]. Morphology alone has been shown to influence subtle cellular processes such as global histone 

acetylation [70] as well as proliferation, apoptosis [66], differentiation, and gene expression [71]. 2D 

culture confines cells to a planar environment and restricts the more complex morphologies observed 

in vivo. Furthermore, differences in migration exist between a 2D surface and a 3D environment. Not 

only is a cell confined to a plane in 2D, but also encounters little to no resistance to migration from a 

surrounding ECM.  

Thus, to properly study cell physiology, mechanotransduction, and tissue morphogenesis in 

vitro, cells should be cultured in 3D model microenvironments, which represent the second 

generation of substrates. Indeed, many physiological and pathological (e.g., in tumour growth) 

cellular processes have been demonstrated to occur exclusively when cells are organized in a 3-D 

fashion. These range from multicomponent matrices derived from cells or tissues (e.g., Matrigel, 

commercially available from BD Biosciences (San Jose, CA, USA), which is solubilized basement 

membrane preparations extracted from mouse tumours that contains several components of basement 

membranes enriched with laminin), to matrices composed of individual purified or recombinantly 

produced ECM proteins, and modified versions of these ECM components, as well as proteolytic or 

recombinant fragments [40]. 

Natural ECM-derived biomaterials can be used as carriers for transplanted cells that are 

subsequently grafted into tissue defects [72, 73], and also as cell infiltration matrices to induce 

regeneration and remodelling in vivo [74, 75]; they represent valuable models from which one can 

derive engineering principles to create artificial materials with similar biological function [76, 77].  
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Figure 5: design strategies for the creation of synthetic biomolecular materials that mimic the complexity of 
natural ECMs. Bioactive domains of naturally occurring proteins are identified as building blocks (top) and synthesized 
by either chemical strategies or by protein engineering (recombinant technology). The most important components 
include cell-adhesive ligands (such as integrin-binding peptides of the prototypical RGD family), binding sites for growth 
factor (GF) proteins, domains with susceptibility to degradation by cell-secreted or cell-activated proteases to facilitate 
bidirectional cell-matrix interactions, but also domains with structural function (such as the elastin-derived peptide 
sequence VPGVG). Synthetic networks can then be obtained by crosslinking of these biofunctional components (from an 
entire array of building blocks) by distinct crosslinking schemes, involving physical (self-assembly to produce 
nanofibrillar gels) or chemical mechanisms. The use of such synthetic approaches in ECM design may allow matrices to 
be tailor-made for a specific cell or tissue. [Figure from 77] 
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These artificial materials are: 

• Natural ECMs: gels composed of various protein fibrils and fibers interwoven within 

a hydrated network of glycosaminoglycan chains.  

• Micro- and nanofibrillar synthetic biomaterials: the intricate fibrillar architecture of 

natural ECM components has inspired several researchers to produce materials with similar structure. 

Under appropriate culture conditions, these matrices have been demonstrated to maintain the 

functions of differentiated neural cells [78] and chondrocytes [79], and to promote the differentiation 

of liver progenitor cells [80]. Although not equipped with any specific biofunctional ligands, these 

gels are scaffolds that biomechanically organize cells in a 3-D fashion. 

• Nonfibrillar synthetic polymer hydrogels: several distinctive features make synthetic 

hydrogels excellent physicochemical mimetics of natural ECMs. The molecular architecture of 

crosslinked, hydrophilic polymers can result in tissue-like viscoelastic, diffusive transport, and 

interstitial flow characteristics. They could be natural or non-natural. Natural gels for cell culture are 

typically formed of proteins and ECM components such as collagen [81], fibrin [82], hyaluronic acid 

[83], or Matrigel, as well as materials derived from other biological sources such as chitosan [84], 

alginate [85], or silk fibrils. Since they are derived from natural sources, these gels are inherently 

biocompatible and bioactive [86]. They also promote many cellular functions due to the myriad of 

endogenous factors present, which can be advantageous for the viability, proliferation, and 

development of many cell types. However, such scaffolds are complex and often ill-defined, making 

it difficult to determine exactly which signals are promoting cellular function [87]. Furthermore, 

tuning their material properties such as mechanics and biochemical presentation can be difficult, there 

is risk of contamination, they can be degraded or contracted too quickly, and possess an inherent 

batch-to-batch variability that confounds the effect of the scaffold on cell proliferation, 

differentiation, and migration. On the other hand, hydrogels can be formed of purely non-natural 

molecules such as poly(ethylene glycol) (PEG); [88], poly(vinyl alcohol) [89], and poly(2-hydroxy 
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ethyl methacrylate) [90]. PEG hydrogels have been shown to maintain the viability of encapsulated 

cells and allow for ECM deposition as they degrade [91], demonstrating that synthetic gels can 

function as 3D cell culture platforms even without integrin-binding ligands. Such inert gels are highly 

reproducible, allow for facile tuning of mechanical properties, and are simply processed and 

manufactured. However, they lack the endogenous factors that promote cell behaviour and act mainly 

as a template to permit cell function [87].  

• Materials that present insoluble ligands: The creation of such highly defined synthetic 

ECM analogues, in which ligand type, concentration and spatial distribution can be modulated upon 

a passive background, may help in deciphering the complexity of signalling in cell-ECM interactions. 

Relevant studies include work on the quantitative information on the ligand density required for a 

particular cellular response [92]; the influence of adhesion ligand density on cell migration (that is, 

the discovery of intermediate adhesion strength for optimal cell migration) in 2-D [93] and also in 3-

D, in modified biopolymer matrices [94-96] and synthetic gels [97, 99]; the finding that cells respond 

to the nanoscale spatial organization of adhesion ligands [98, 99]; the relevance of ligand gradients 

[100] and finally studies on the coregulation of signals [101, 102]. 

• Materials that enable binding and release of soluble effectors: a growth factor is bound 

to the matrix and released upon cellular demand through cell-mediated localized proteolytic cleavage 

from the matrix [103, 104]; this approach substantially mimics the mechanism by which these factors 

are released in vivo from stores in the natural ECM by invading cells in tissue repair. 

• Stimulus-sensitive materials: the macromolecular components of natural ECMs are 

degraded by cell-secreted and cell-activated proteases, mainly by matrix metalloproteinases (MMP) 

and serine proteases. This creates a dynamic reciprocal response, with the ECM stimulating the cells 

within it and cellular proteases remodelling the ECM and releasing bioactive components from it. 
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Figure 6: examples of complex synthetic ECM mimetics proposed in Figure 3. (a) Nanofibrillar hydrogels formed 
under physiological conditions from ionic self-assembling peptides (top). These networks support neuronal cell 
differentiation and extensive neurite outgrowth (bottom). Scale bar, 10 µM. Adapted and reprinted with permission from 
T.C. Holmes et al31. © 2003 National Academy of Sciences, USA. (b) Hybrid gels formed from cysteine-bearing cell-
adhesive and proteolytically degradable peptide building blocks and vinylsulfone-functionalized PEG macromers (top). 
These gels enable extensive 3-D migration of primary fibroblasts by matrix metalloproteinase- and integrin-dependent 
mechanisms and, because of localized matrix proteolysis, the morphogenesis of single cells into multicellular structures 
(bottom). Scale bar, 40 µM. Adapted and reprinted with permission from M.P. Lutolf et al80. © 2004 Wiley-VCH. (c) 
Creation of synthetic ECMs from artificial protein polymers (aECMs, represented here by one example of a broader 
family) containing bioactive domains derived from elastin and fibronectin (top). Sequence-specific adhesion of human 
umbilical vein endothelial cells to bioactive proteins can be achieved by this approach. A similar adhesion behavior of 
the aECM compared to fibronectin can be observed (bottom). Responses to an artificial ECM (aECM, upper panels) are 
remarkably similar to responses to a natural extracellular matrix molecule, fibronectin (lower panels). This is true at both 
the level of the cytoskeleton (left panels) and at the level of the adhesion receptors (right panels). Scale bar, 25 µM. 
Adapted and reprinted with permission from Liu J.C. et al85. © 2004 American Chemical Society.  

Mimicking natural ECMs that regulate complex morphogenetic processes in tissue formation 

and regeneration necessitates novel design strategies for synthetic biomaterials (Figure 5). These 

synthetic materials should be biologically multifunctional hydrogel networks, synthesized under 

physiological conditions, that both biochemically and biophysically mimic natural ECMs. Their 

functionality should be adjustable to a particular biological environment to obtain cell- and tissue-

specificity. Ideally, one would create them from an array of biologically functional building blocks, 

in some form of a modular design.  

The precursor building blocks could be crosslinked into solid networks by several means (Figure 

5 and Figure 6):  

• Small organic gel-formers, such as peptides or peptide-amphiphiles, containing binding sites 

for biologically functional ligands [40], can be designed to self-assemble into supramolecular 
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structures, allowing the creation of heterogeneous nanofibrillar ECM mimetics [105] (Figure 

5, bottom left; Figure 6, left).  

• Hybrid gels can be formed from bioactive building blocks bearing chemically reactive 

functional groups (such as amines or thiols) [106] or physically interactive groups and end-

functionalized hydrophilic polymers such as N-(2-hydroxypropyl)- methacrylamide (HPMA) 

or PEG that act as chemical or physical crosslinkers (Figure 5, bottom middle; Figure 6, 

middle).  

• Recombinant DNA technology can be used to create artificial protein polymers with desired 

bioactive domains de novo [107-110] (Figure 5, bottom right; Figure 6, right). Genes 

corresponding to structural and functional elements found in natural ECMs can be 

synthesized, cloned and expressed in a convenient production host. Such protein polymers 

can be covalently crosslinked into a network, for example, by reaction with functionalized 

hydrophilic polymers [111] or other chemical crosslinkers [112] targeting amines or thiols on 

the protein polymer, by radiation crosslinking [113] or through self-assembly by protein-

protein interactions [114].  
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In conclusion, a comparison of 2D and 3D substrates shows that: 

Table 1. Comparison of 2D and 3D substrates, advantages and disadvantages. 

2D 3D 

ADVANTAGES ADVANTAGES 

• Simple  

• Economic  

• Help to preserve a good survival rate of cultured cells 

• Assume a real cell architecture  

• Have a gene expression profile that reflects a 
differentiation phenotype  

• Morphology and signalling more physiological cell 

• Allow a more rapid evaluation of a hypothesis to be 
tested 

• The images in microscopy are obtained more easily 
than from animal tissue 

• Keep of polarity in epithelial cells in 3D systems  

DISADVANTAGES DISADVANTAGES 

• Not able to reconstruct the tissue microenvironment, 
due to the lack of the stroma that provides structural 
support to the architecture cell 

• Loss of specific cell characteristics, such as the 
polarity, because it is directly influenced by the 
chemical and physical properties of the media. 

• The ability to mimic the conditions for growth of 
tissue vary according to cell line and the chosen media 

• Usable for short-term experiments 

• Transport systems are compromised (vascularity) 

• Possible alteration of cell motility 

 

1.4 The third generation of substrates: nanomaterials 

Nanomaterials can be generally defined as materials with at least one dimension in the size 

range of 1-100 nm. Operating at a length scale of one-billionth of a meter, the properties of 

nanomaterials are significantly different from the bulk due to the high surface-to-volume ratio [115]. 

Over the last fifteen years, efforts have focused on the use of nanotechnology to develop 

nanostructured materials (e.g. graphene and ZnO nanowires, mesoporous silica-based materials, 

nanotubes, nanowalls and nanorods, nanoparticles) as biomolecule immobilizing matrices/supports 

to improve biosensing performance [116, 117]. 



 38 

1.4.1 Nanoparticles and nanotubes 

Nanoparticle-based biosensors are particularly attractive because they can be easily 

synthesized in bulk using standard chemical techniques, and do not require advanced fabrication 

approaches [118]. They also offer particularly high surface areas due to their extremely small size 

and are typically used as suspensions in solutions (during the time when they interact with the 

analyse). Most biological molecules can be labelled with metal nanoparticles without compromising 

their biological activities [119]. One example is the use of gold nanoparticles [120] due to their 

biocompatibility, their optical and electronic properties, and their relatively simple production and 

modification [121]. In fact these metal nanoparticles are extensively used in surface plasmon 

resonance biosensor (SPR): this method is usually based on the change of the dielectric constant of 

propagating surface plasmons’ environment of gold films where the detection of the analyte can be 

recorded in different ways like the changes of the angle, intensity, or phase of the reflected light [122, 

123]. This phenomenon is strongly dependent on the size, shape of the nanoparticle and the dielectric 

constant of its environment [124]. The environmental dependency represents a great advantage for 

(bio)-analytics since the recognition event can result in a change of the oscillation frequency and 

therefore to a colour change of the gold nanoparticles observable with the naked eye. Taking 

advantage of these properties a wide series of efficient colorimetric biosensors were developed for 

DNA or oligonucleotide detection, or immunosensors [125-128]. 

Magnetic nanoparticles are frequently used as alternatives to fluorescent labels in biosensor 

devices. A relevant advantage of using magnetic nanoparticles is the possibility to concentrate the 

analyte before the detection event. Magnetic nanoparticles functionalized with a bioreceptor can 

simply be mixed with the analyte solution and interacts specifically with the target. After applying an 

external magnetic field, the nanoparticles agglomerate and can be separated from the solution. 

Efficient isolation of DNA strands in complex media was achieved in a fast and efficient manner 

using silica or gold coated core/shell nanoparticles [129-131]. The use of magnetic nanoparticles for 
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labelling is particular interesting for biosensing applications since biological entities do not show any 

magnetic behaviour or susceptibility and, therefore, no interferences or noise is to be expected during 

signal capturing [132]. An ultra-high sensitive magnetoresistant biosensor was developed for 

Escherichia coli [133] detection or Salmonella identified in skimmed-milk samples with a limit of 

detection (LOD) of 1 colony forming-unit (cfu)/mL using a magneto-genosensing setup [134]. 

Another example of nanomaterials devoted to biosensing are carbon nanotubes (CNTs). In 

particular, carbon nanotubes possess the outstanding combination of nanowire morphology, 

biocompatibility and electronic properties [135]. Therefore, carbon nanotube interfaces present 

enhanced capacities, e.g. to approach the active sites of a redox enzyme and to wire it to the bulk 

electrode. Furthermore, their ease and well documented organic functionalization [136] brings new 

properties to nanostructured electrodes such as specific docking sites for biomolecules or redox 

mediation of bioelectrochemical reactions. Moreover, CNT films exhibit high electroactive surface 

areas due to the natural formation of highly porous three-dimensional networks, suitable for the 

anchoring of a large amount of bioreceptor units, leading consequently to high sensitivities [137, 

138]. 

1.4.2 Nanostructured metal oxides (NMOs) 

Among the various types of nanomaterials that have been developed (polymers, metal 

nanoparticles, self-assembled monolayers (SAMs)) for biological applications, nanostructured metal 

oxides (NMOs) have recently aroused much interest as immobilizing matrices for biosensor 

development [139-142]. Nanostructured oxides of metals such as zinc, iron, cerium, tin, zirconium 

and titanium have been found to exhibit interesting nanomorphological, functional biocompatible and 

non-toxic properties. These materials exhibit enhanced electron-transfer kinetics and strong 

adsorption capability, providing suitable microenvironments for the immobilization of biomolecules 

[143].  
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1.4.3 Nanostructured titanium substrates 

Pure titanium and titanium alloys are frequently used as dental and orthopaedic implants 

because of their excellent mechanical strength, chemical stability, and biocompatibility [144, 145], 

which ultimately arise from the thin oxide layer that spontaneously forms on the titanium surfaces 

[146]. The fabrication strategies employed to create synthetic substrates with tailored topography at 

the nano- and microscale are essentially top-down and in particular based on hard and soft lithography 

for the fabrication of ordered structures [147, 148]. These approaches, when not based on natural 

matrix-related proteins, despite the great improvements in miniaturization and accuracy, are not able 

to reproduce the morphology and the hierarchical organization typical of the ECMs [149]. 

1.4.4 Nanostructured zirconia substrates 

As titanium, also zirconia is a biocompatible material used in various clinical applications (i.e. 

for dental and orthopaedic prostheses), especially due to its favourable chemical and structural 

properties [150].  

In this work the approach for the production of nanostructured ZrO2 substrates is based on the 

assembling of zirconia nanoparticles, produced in the gas phase and accelerated in a supersonic 

expansion, on a flat substrate (Supersonic Cluster Beam Deposition, SCBD) [151]. This procedure 

allows to obtain a disordered yet controlled topographical features more similar to the ECM, if 

compared to the ordered structures normally obtained with other methods.  

The fundamental tool for the synthesis of thin films with controlled nanoscale morphology by 

cluster-assembling is an SCBD apparatus equipped with a Pulsed Micro-plasma Cluster Source 

(PMCS) [153, 152]. The SCBD apparatus is shown schematically in Figure 7.  
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Figure 7: the SCBD apparatus. The mixture of gas and clusters is accelerated by a difference of pressure between 
the interior of the cluster source (higher pressure) and the expansion chamber (lower pressure, high vacuum), and 
collimated through the aerodynamic focuser. A skimmer selects the central portion of the beam. Eventually, nanoparticles 
enter the deposition chamber and are deposited on a substrate to form a film with thickness in the 1-1000 nm range. The 
details of the PMCS are shown in the inset: the pulsed valve (1) injects the carrier gas into the ceramic body (2) of the 
source, hosting the Zr rod (3); the focuser (4) containing the aerodynamic lenses concentrates the nanoparticles along the 
beam axis. [Figure from 154] 

 

The apparatus consists of three differentially pumped vacuum chambers. The first stage is an 

expansion chamber where the supersonic molecular beam is formed; it can be connected to a second 

chamber by an electroformed skimmer. The cluster deposition takes place in a third chamber 

connected to the rest of the apparatus through a gate valve. A PMCS is mounted outside the expansion 

chamber on the axis of the apparatus. A remotely controlled manipulator allows for rastering of the 

sample to guarantee a uniform deposition over a large area. The structure of a PMCS is shown in the 

inset of Figure 7: it schematically consists of a ceramic body [155] with a channel drilled to 

perpendicularly intersect a larger cylindrical cavity. The channel hosts a zirconium target rod [48] 

acting as a cathode in order to produce the cluster precursors. A solenoid pulsed valve [156] faces 

one side of the cavity and a removable nozzle closes the other side of it. The valve, backed with a 

high inert gas pressure (20-50 bars), injects in the source cavity pulses with duration of few hundreds 

of microseconds at a repetition rate of 3-10 Hz. The nozzle is connected with a series of aerodynamic 

lenses [157] used to focus neutral nanoparticles on the beam axis. The pulsed injection of the inert 

carrier gas in the cavity of the PMCS causes the formation of a supersonic jet directed against the 
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target rod. Synchronous with the gas injection, a pulsed voltage (50-100 µs of duration, 700-1000 V) 

is applied to the target cathode and the grounded anode (pulsed valve front) in order to ionize the gas 

and sputter the target. Due to the plasma confinement obtained by the aerodynamic effects of 

supersonic expansions, the sputtering process is very efficient and reproducible [158]. The species 

ablated from the target thermalize with the inert gas and condense to form clusters. The carrier gas-

cluster mixture expands out of the nozzle forming a seeded supersonic expansion, [159] which 

impinges on the substrate holder in the deposition chamber. Clusters are not monodispersed in size; 

instead, they possess a rather broad size distribution when they exit from the PMCS, which depends 

on the carrier gas and on the operational parameters of the source [152]. Aerodynamic focusing based 

on inertial effects of clusters, obtained by using special nozzle configurations, filters off the largest 

clusters and aggregates, and concentrate particles along the beam axis. By controlling the working 

parameters of the PMCS, the aerodynamic filters, and the portion of the beam intercepting the 

substrate, the nanoparticles distribution can be precisely tuned and reproduced. Consequently, once 

the SCBD parameters are set, the deposition time controls the surface morphology of the films, which 

evolves regularly according to simple and reproducible scaling laws. Ns-ZrOx clusters have been 

produced in the PMCS using Ar or He as carrier gas, then deposited on suitable substrates intercepting 

the beam in the deposition chamber. This bottom-up assembling technique produces nanostructured 

films obtained by randomly distributed clusters, thus creating a nanoscale topography whose 

roughness can be accurately controlled and varied in a reproducible manner [160]. This very precise 

and reproducible control over nanoscale topography can be easily obtained over macroscopic areas 

which is a necessary requirement for the large number of experiments performed in this study.  
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Figure 8: AFM morphological analysis of control and nanostructured surfaces produced by SCBD. The images 
show representative (a) top views and (b) 3-dimensional views of the surfaces morphology of glass coated with poly-l-
lysine (PLL), flat zirconia (flat-Zr) produced by e-beam evaporation, and nanostructured zirconia (ns-Zr) produced by 
SCBD with roughness Rq = 15 (ns-Zr15), or 25 nm (ns-Zr25), respectively. [Figure from 153] 
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1.5 Principles of mechanotransduction 

Cells are capable of sensing, in a surprisingly precise manner, nanoscale topographical features 

and mechanical characteristics of the microenvironment they interact with, mainly via integrin-

mediated adhesion sites which serve as mechanoreceptors [155-157]. The conversion of these 

physical signals (structural and mechanical cues) into a modulation of the cellular (biochemical) 

responses is defined as mechanotransduction [154, 161]. In general, mechanosensitivity requires the 

conversion of mechanical forces applied to cells from the outside or of an active measurement of 

stiffness of the surroundings by the cells themselves into intracellular biochemical signals [162]. 

When the mechanical cue has been received, the signal is amplified and propagated through a series 

of force-dependent biochemical reactions, whereby intracellular signalling pathways become 

sequentially activated through mechanotransduction [163]. For example, in response to elevated 

tension within focal contacts, increases in integrin clustering and in the phosphorylation of focal 

adhesion kinase (FAK) ensue, and these molecular changes initiate a cascade of signalling events. 

This cascade includes the activation of Rho-family GTPases, such as RhoA, which stimulates actin 

remodelling, induces protein phosphorylation to promote cell survival, and alters the levels and 

activity of transcription factors to regulate gene expression. 

Another integrin-dependent signalling pathway that is activated in response to mechanical 

force is the mitogen-activated protein kinase–extracellular signal-regulated kinase (MAPK–ERK) 

pathway, which has been implicated in a number of cancers and regulates cell proliferation and 

differentiation to influence tissue development [164]. 
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All the machanotransduction machinery is summarized in figure 9.  

 

Figure 9: The mechanical network. (a)Tissues are mechanically integrated structures, the physical behaviour 
of which is defined by interconnected networks of cell–cell junctions, cell–matrix adhesions, intracellular filament 
networks (of actin, microtubules and intermediate filaments) and the extracellular matrix (ECM). Embedded throughout 
the network are mechanotransducing machines that convert mechanical stimuli into biochemical signals. This process, 
termed mechanotransduction, enables cells and tissues to sense and respond to their physical surroundings. The ECM 
controls network connectivity and tension on the network, thereby regulating sites of mechanotransduction. (b) Cell–
matrix adhesion complexes containing integrins can also directly sense the physical properties of the ECM. These 
complexes contain specialized protein sensors, including talin, p130Cas (also known as BCAR1), and integrins 
themselves, that undergo force-dependent conformational changes to elicit downstream signalling responses. The 
physical properties of the ECM are determined by its composition, the organization of its components, and their degree 
of intramolecular and intermolecular crosslinking. Interactions between the cell and ECM are dynamic, interwoven and 
reciprocal. Transcellular tension transmitted across adherent junctions affects ECM remodeling, which in turn regulates 
cell–matrix and cell–cell adhesions. Increased ECM stiffness owing to remodeling can result in changes in cell and nuclear 
shape, chromatin organization, assembly of cell–matrix adhesions (called focal adhesions), formation of actin stress 
fibers, destabilization of cell–cell adhesions, and changes in microtubule dynamics. FAK, focal adhesion kinase [Figure 
from 165] 

Classical experimental approaches do not permit spatially- or temporally-resolved analyses of 

adhesion receptor function, or the systematic global analysis of adhesion signalling networks. Thanks 

to recent technological innovation, based on proteomics and advanced imaging techniques, it’s 

possible to reveal the complexity, structure, and dynamics of adhesion complexes, leading to a more 

comprehensive understanding of adhesion function. These analyses have identified a previously 

unanticipated level of complexity and regulation (Figure 10). 

The core functional adhesion complex has been defined using complementary information 

from unbiased global proteomic and targeted microscopy approaches. Analysis by mass spectrometry 
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revealed tension-dependent and integrin heterodimer/extracellular matrix (ECM)-dependent 

components of adhesions. Proteomic analyses also suggest the existence of a large number of non-

canonical adhesome components. By contrast, candidate-based microscopy studies have focused on 

the architecture, interactions, and dynamics of adhesion complex assembly and disassembly. 

Together these studies have contributed to our understanding of integrin signalling, force generation, 

and actin regulation and their impact on numerous downstream cellular processes. 

 

Figure 10: the adhesome complex landscape: integrating recent advances from proteomics and imaging studies. [Figure 

from 48]  
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1.5.1 Components of mechanotransduction 

Mechanotransduction involves different molecules and/or cellular components, i.e. the ECM, 

channels, focal complexes/ adhesions (FC or FA), the actomyosin network, transcription factors and 

the nucleus. 

1.5.1.1 Extracellular Matrix: role in mechanotransduction 

The extracellular matrix has already been discussed in a previous chapter from the structural 

point of view; in the present chapter we focus on its role in mechanotransduction.  

As a structural material, the ECM controls spatial organization in the tissue across broad length 

scales, ranging from the nanoscale to the microscale and larger. On the nanoscale level, the ECM 

affects the organization of receptors on the cell surface and the sequestering of soluble factors. The 

nanoscale organization of the ECM can affect how growth factors are presented to their receptors 

(some can be tethered to the matrix) and how morphogens diffuse through tissue. On a more specific 

level, the spatial presentation of ECM ligands, such as fibronectin, vitronectin, laminin and collagen, 

and the nanotopography of the ECM, control integrin organization, adhesion assembly, and signal 

transduction to direct cell behaviour [166-168]. As shown through the use of functionalized gold dots 

on nanopatterned surfaces, differences in average ligand spacing of as little as ~10 nm seem to be 

capable of dictating whether integrins are able to assemble into focal adhesions [43]. This indicates 

that there is a critical threshold of ligand density that is required for integrin clustering and focal 

adhesion assembly. Cells are also capable of sensing and responding to gradual changes in the spacing 

of ECM ligands of as little as 1nm over the entire length of a cell body. Additionally, such relatively 

small gradients are able to direct migration and the alignment of cells and their cytoskeleton [169]. 

Because the cellular response to the spatial organization of matrix components also depends on the 

material properties of the matrix, this raises the important distinction that chemistry is not 

independent of mechanics. Matrix stiffness ultimately controls the cellular response to ligand 
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presentation and matrix organization. Thus, when cells are cultured on ECM substrates of varying 

stiffness, focal adhesions fail to assemble below a critical stiffness even when matrix ligands are 

presented to the cell at saturated levels [170]. At the microscale level and larger, the ECM controls 

cell shape and tissue boundaries. Matrix dimensionality is a dramatic example of how cell behaviour 

can be controlled at the microscale [171]. For instance, cells cultured in 2D and 3D show pronounced 

differences in their motility [172, 173], morphology and cytoskeletal organization [174, 175], as well 

as in the composition and function of their adhesions, their viability, and their response to soluble 

factors [176, 177]. In summary, nanotopological features and larger-scale organization of the ECM 

control the motility and positioning of cells, their geometry, and their mechanical connectivity within 

the surrounding cellular and non-cellular microenvironment. Such physical rearrangements would be 

expected to occur on the order of hours and days, and are likely to persist at steady-states dictated by 

the ECM for considerably longer time durations of months and perhaps years. Such ECM topological 

reorganizing thereby provides for long-term patterning within the tissue that could elicit profound 

physiological changes through modifications of tissue-level mechanical forces and cellular 

mechanotransduction.  

1.5.1.2 Stress-sensitive ion channel 

Probably the best-studied potential transducer of force into biochemistry is the stress-sensitive 

ion channel [178]. Tension in the membrane alters the probability of channel opening and leads to an 

immediate influx of ions, often calcium [179-181]. This influx can then lead to the regulation of cell 

movement [182] or growth cone retraction [180] and is involved in axon pathfinding [183] and even 

in signalling cascades [181]. Also related to tension in the membrane is the clustering of membrane 

receptors and cytoskeletal elements, which can serve as biochemical signalling events [184]. 
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1.5.1.3 Adhesion receptor 

Other important components involved in mechanotransduction are adhesion receptors, 

including integrins and syndecans. Integrins are transmembrane proteins, they are α/β heterodimers 

that mediate cell adhesion to the extracellular matrix (ECM) and to receptors on other cells [185], 

thereby regulating numerous biological processes that are essential for development, postnatal 

homeostasis and pathology [185-188]. The mammalian genome encodes 18 α and 8 β integrin genes, 

which form 24 heterodimers. Mammalian cells usually co-express several integrins, which recognize 

ECM components by binding specific amino-acid stretches such as the Arg-Gly-Asp (RGD) motif 

[185, 189]. RGD motifs are found in many matrix proteins including fibronectin, in which RGD 

mediates binding to α5β1 and all αv-class integrins. In vivo and in vitro studies indicated that α5β1 and 

αv-class integrins (for example, αvβ3) exert both specific and redundant functions [190-198]; however, 

how these distinct integrins accomplish their individual functions and whether these cooperate 

remains unclear. The signaling properties and functions of integrins are executed by specialized 

adhesive structures with distinct morphology, subcellular localization, lifespan and molecular 

composition. Nascent adhesions are short-lived adhesive structures in membrane protrusions [199] 

that promote the activity of Rho_GTPases such as Rac1. Some nascent adhesions develop into large 

focal adhesions (FAs) that initiate multiple signalling pathways, which activate effectors including 

myosin II.  

Myosin II exerts contractile forces resulting in adhesion reinforcement and recruitment of 

more proteins to focal adhesions, which induces a further increase in myosin II activity [157]. This 

feedback signaling to myosin II critically depends on biophysical parameters such as ECM stiffness. 

The identity of mechanosensor(s) in focal adhesions, whether it is an integrin, a focal adhesion protein 

or a combination of both, is unknown [200]. Receptor trafficking and cell adhesion are shown in 

figure 11.  

 



 50 

 

Figure 11: receptor trafficking and cell adhesion. Following internalization, integrins follow multiple 
trafficking routes (blue arrows) whereby they are recycled back to the cell surface or targeted for degradation in 
lysosomes. Upon fibronectin binding, integrins can be ubiquitinated and undergo ESCRT (endosomal sorting complexes 
required for transport)-dependent trafficking to the multivesicular body/late endosome prior to degradation [207, 208]. 
Conversely, sorting nexin 17 (SNX17) can be recruited to the kindlin binding site of b-integrins and promotes integrin 
recycling back to the cell surface [209, 210]. Co-receptors of integrins can also coordinate trafficking and therefore cell 
migration [211, 212]. Src-mediated phosphorylation of syndecan-4 suppresses the activity of the adhesome component 
Arf6, leading to increased recycling of αVβ3 integrin to the cell surface, suppressed α5β1 integrin recycling, and 
stabilization of adhesion complexes [211]. Dynamic regulation of integrin availability at the cell surface through receptor 
trafficking pathways is essential for microenvironmental sensing during cell migration and invasion, differentiation, and 
progression through the cell cycle. [Figure from 48] 

These receptors have evolved to control information flow across the plasma membrane and 

integrate the ECM with the contractile machinery of the cell bi-directionally [207, 208]. Ligand 

binding to the extracellular domain of integrins stabilises activated conformations and leads to 

recruitment of adaptor and catalytic proteins to the integrin cytoplasmic domains. Conversely, 

recruitment of specific cytoplasmic proteins to the intracellular face of integrins induces receptor 

priming and drives ligand engagement [209-211]. Stable association of ligands and effectors with 

integrins can therefore be regulated from both sides of the plasma membrane. Proteins recruited to 

integrin-mediated adhesion complexes perform both membrane-proximal and membrane-distal 

signalling functions that coordinate processes including migration, proliferation, differentiation, and 

ECM remodelling [207, 222, 213]. Adhesion complex has an emerging role in mechanotransduction 

and modulation by receptor trafficking; indeed, integrins and adhesion complex components work as 

mechanotransductive signalling effectors and sensor of environmental stiffness and cell generated 
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force [213, 214]. Cell–matrix adhesion complexes are dynamic structures that form at the periphery 

of cells as nascent adhesions and undergo myosin II-dependent maturation into focal adhesions 

anchored to load-bearing bundled actin stress fibres [215].  

Focal adhesion assembly 

After binding to matrix-coated surfaces, clusters of activated integrins are formed at the cell 

edge. Integrin cluster formation leads to the recruitment of talin as well as the activation of SRC 

family kinases (SFKs) (see the figure 12, part a), which then recruit the formin family protein FH1/ 

FH2 domain-containing protein 1 (FHOD1) to integrin clusters, leading to actin assembly (see the 

figure 12, part b; indicated by the dashed arrow). The resulting actin polymerization enables clusters 

to be pulled together by myosin (see the figure 12, part c).  

 

Figure 12: focal adhesion assembly (a, b, c). [Figure from 162] 

When nanofabricated barriers (not shown) in the membrane bilayers limit lateral movements, 

forces are developed on the clusters at the barriers that trigger rapid cell spreading. This presumably 

involves focal adhesion kinase (FAK), which enhances the activation of the small GTPase RAC1 and 

targets it to focal adhesions. RAC1 activates actin assembly through actin-related protein 2/3 

(ARP2/3), or formins (see the figure 13, parts d and e). Without barriers, cells will round up and often 

undergo apoptosis. Analysis of membrane dynamics during cell spreading has indicated that rapid 

isotropic spreading flattens the initially round cell, drawing membrane from the reservoir of folded 

surface membrane. Upon the depletion of the folded membrane, tension increases momentarily and 
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signals the activation of exocytosis to increase the membrane surface area by 40% (see the figure 13, 

part f). 

 

Figure 13: focal adhesion assembly (d, e, f). [Figure from 162] 

Then it activates periodic contractions to test substrate rigidity through the local contraction 

units (see the figure 14, part g). Rigidity signalling recruits additional proteins (such as vinculin) and 

causes adhesion complex reinforcement (see the figure 14, part h) or disassembly (if the matrix is too 

soft; not shown), followed by adhesion maturation (see the figure 14, part i). Following adhesion 

maturation, stress fibres grow from adhesions and will contract to sense matrix rigidity at the whole-

cell level.  

 

Figure 14: focal adhesion assembly (g, h, i). [Figure from 162] 

1.5.1.4 Transcription factors 

While these mechanisms can impact cell response rather immediately (on a timescale of 

seconds to minutes), there is a distinct group of mechanisms that work via transcriptional regulation 

and on much longer timescales [216]. One class of mechanisms act through transcription factors such 

as armadillo/β-catenin, serum response factor (SRF), yes-associated protein (YAP), and nuclear 

factor kappa B (NF-κB). SRF, for example, is a major transcription factor that regulates activity-
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driven gene expression in neurons. Activation of SRF-driven transcription occurs through the factor’s 

interaction with cofactors, which in turn are controlled by the amount of G-actin available in the 

cytoplasm [217]. When the cell interacts with a stiff substrate, it generally has more actin filaments 

and less G-actin, which frees the cofactors to redistribute from the cytoplasm to the nucleus and 

activate SRF-dependent transcription, for example in the mouse brain [218]. Inactivation of these 

cofactors can cause ineffective neuronal migration, aberrant neurite outgrowth during development, 

and a decreased number of dendritic processes and dendritic length. Overall, the cofactors appear to 

regulate plasticity-related structural changes in neurons [218]. Other transcriptional coactivators such 

as YAP and TAZ localize in the nucleus and are transcriptionally active in cells cultured on a stiff 

ECM; by contrast, YAP and TAZ are excluded from the nucleus and functionally inhibited in cells 

cultured on a soft ECM [219].  
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1.5.1.5 Nucleus 

Even the nucleus itself could serve as a mechanosensor. The nucleus is mechanically 

continuously connected to the plasma membrane of cells via the cytoskeleton. As reported in figure 

14 cytoskeletal filaments bridge the nucleus to the plasma membrane, which in turn is anchored at 

sub-cellular sites to extracellular substrates via a plethora of proteins that form focal adhesions. FAs 

are points of cross-talk between transmembrane integrin receptors and the cytoplasmic filaments and 

thus are key sites for both biochemical and mechanotransduction pathways. Linkage can be direct or 

via various adaptor proteins, providing structural support to both cellular and nuclear structures.  

Actin filaments and microtubules constantly undergo remodelling by a contractile mechanism 

and dynamic instability respectively, while domain proteins and the microtubule associated motor 

protein, dynein, provide structural integrity to the nucleus. From inside, the nuclear lamins and 

chromatin are anchored to the inner nuclear membrane through adaptor transmembrane SUN (Sad1p, 

UNC-84) proteins, which in turn are connected to KASH proteins. Hence, though physically 

separated by the nuclear membrane, the cytoplasm and nucleoplasm are linked by these evolutionarily 

conserved proteins, that mediate force transmission. Together these proteins are known as the Linker 

of Nucleoskeleton and Cytoskeleton (LINC) complex. The localization of KASH domain proteins 

like nesprin at outer nuclear envelope is affected by depletion of SUNs, which in turn depend on 

nuclear lamins. These links are emerging to be pivotal in various physiological processes including 

cell migration and cytoskeletal integrity. Together, this network, reported in figure 15, helps the cell 

cope with mechanical stress.  
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Figure 15: nuclear connectivity and mechanotransduction: Force experienced by integrins at the cell surface 
via mechanosensing structures like focal adhesions (integrin cluster linked to actin network), hemidesmosomes (blue 
rectangle) or cell-cell contact (not shown) is accumulated, channeled through SUN1/SUN2 form the LINC (linker of 
nucleoskeleton and cytoskeleton) complexes connecting further to the nuclear lamina (red and white lamin network) and 
hence the attached nuclear scaffold proteins (actin and myosin). Chromatin attaches directly to the lamina and to other 
scaffolding proteins through the matrix attachment regions (MARs). Upon sensing the force, the nuclear scaffold help 
repositioning the chromatin thus affecting nuclear prestress and activating genes within milliseconds. Spatial segregation 
of chromosomes with defined territories is represented as colored compartments inside the nucleus. The dotted circle 
highlights looping of genes from different chromosomes to form a cluster in 3D space and share transcription apparatus 
(navy ovals). On the contrary, chemical signaling mediated by motor-based translocation along cytoskeletal filaments or 
diffusion of activated regulatory factors takes few seconds. [Figure from 540] 

Work by Mazumder et al. ascertained the active involvement of cytoskeletal forces in 

determining nuclear morphology. Change in nuclear size upon perturbation of actomyosin and 

microtubules affirmed their roles in exerting tensile and compressive forces respectively on the 

nucleus, correlating with their functions in the cellular context.  

Furthermore, the 'perinuclear cap', which is composed of contractile actin bundles that bridge 

focal adhesions on either side of the nucleus, has been shown to tightly regulate the nuclear geometry. 

These bundles pass apically to form a dome covering the top of nucleus and are connected to the 

nucleus through the LINC complexes. They are completely absent in pluripotent cells whereas during 

differentiation, their formation accompanies expression and assembly of lamin A/C as well as the 

LINC complexes on the nuclear envelope. As a result, the nuclear height and shape are under their 

control, suggesting a role in mediating mechanosensitive processes such as motility and polarization. 
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Besides nuclear morphology, cytoplasmic forces also govern nuclear positioning in the cell by 

regulating the translational and rotational dynamics. Positioning is accomplished by the physical 

connection by nuclear envelope proteins SUN-KASH-lma1 between centromeric heterochromatin 

regions and the microtubule network. With the centromere providing tensional force on the 

microtubules that undergo dynamic instability, dynein motors mediate the rotation. Actin links via 

SUN-nesprin are implicated in force transduction for nuclear movement during cell migration. 

Regulation of nuclear position and orientation is critical in many cellular processes such as migration, 

cell division, polarization, fertilization and differentiation. Microtubules with their large persistence 

length and ability to bear considerable compressive loads can put the nucleus under pressure, and 

actin in concert with myosin can exert forces on the nuclear membrane (lamins) and the internal 

nuclear scaffolding. These opposite forces, together with the condensation forces of the chromatin 

inside the nucleus, are generally balanced and overall put the nucleus under tension. Any 

deformations of the outer cell surface will thus also be transmitted directly to the nucleus and lead to 

local or even global nuclear shape changes. 

How are these nuclear shape changes then turned into altered cellular function? Although the 

one dimensional (1D) location of genes and their promoters along DNA has been determined, their 

resulting 3D position when folded into chromatin inside the nucleus is not (yet) known. However, 

there is emerging evidence that this positioning is non-random and that changing spatial organization 

has an impact on nuclear function and gene transcriptional regulation. Relative proximity of gene 

loci, for example encoding for a gene and that of its controlling transcription factor, or the distance 

to the transcription machinery could be altered by a deformation of the 3D chromatin distribution 

inside the nucleus. In that sense, the nucleus could be a mechanosensor influencing gene expression 

regulation.  
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1.5 Aim of the project  

The aim of this project is to challenge mechanosensing/-transduction and differentiative 

behaviour of neuron-like PC12 cells with diverse nanotopographies and/or changes of their 

biomechanical status, and analyse their phosphoproteomic profiles in these settings.  

Our previous work [153] revealed that in the latter condition, complex mechanotransductive 

events were at the basis of cellular processes that lead to the onset of neuritogenesis and neuronal 

differentiation. However, at the proteome level we only compared the nanostructured surface with a 

roughness parameter Rq of 15 nm root mean square (RMS) against a flat zirconia surface. Besides 

these two conditions (ns-Zr15 and flat-Zr), the proteomic analyses in this study comprise instead 

PC12 in more versatile experimental conditions including a surface nanotopography with higher 

roughness, the biochemically NGF induced canonical neuronal differentiation and manipulations that 

affect the biomechanical status of the PC12 cell. This approach allowed us to obtain a deeper 

understanding of cellular nanotopography sensing and mechanotransductive signal integration. 
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2. MATERIALS AND METHODS 

2.1 Substrate fabrication 

As a basis for all substrates standard microscope glass slides with the dimensions of 76×26 

mm (surface area∼20 cm2) were used. On this carrier, the cluster-assembled nanostructured film is 

produced by supersonic cluster beam deposition (SCBD) of zirconia clusters obtained through a 

pulsed microplasma cluster source by our collaborators at the CIMAINA Institute-Milano University. 

In the PMCS an argon plasma jet ignited by a pulsed electric discharge ablates a zirconium rod. Zr 

atoms and ions sputtered from the target thermalize with the argon and traces of oxygen present in 

the condensation chamber and aggregate to form ZrOx clusters. The mixture of clusters and inert gas 

then expands into a vacuum, through a nozzle, to form a seeded supersonic beam. The clusters carried 

by the seeded supersonic beam are collected on a substrate intersecting the beam trajectory 

(deposition rate of about 0.5–2.5 nm/min) and placed in a second vacuum chamber, thus forming a 

cluster-assembled film. Further oxidation of ZrOx clusters takes place upon exposure to ambient 

atmosphere thus forming a ZrO2 film. These cluster-assembled zirconia surfaces are given the 

abbreviation ns-Zr throughout the thesis. The number after Zr indicates the roughness parameter Rq. 

Two different batches of cluster-assembled ZrO2 films (called ns-Zr, hereafter) with roughness Rq of 

15 nm (ns- Zr15) and 25 nm (ns-Zr25) were produced on round glass coverslips (Ø13 mm), 

microscope glass slides (76 × 26 mm area), glass-bottomed cell culture dishes (Ø40 mm) or Aclar® 

films.  

The roughness and the morphological parameters have been systematically characterized by 

atomic force microscopy (AFM) [154, 220]. The capacity of SCBD to reliably cover large 

macroscopic areas with nanostructured films of a predefined roughness allowed us to perform the 

experiments on microscope glass slides with the dimensions of 76 × 26mm (∼20 cm2 surface area). 
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This allowed obtaining a cellular material sufficient for all the proteomic analysis including the 

phosphorylation status of the proteins. 

The flat zirconia surfaces (flat-Zr) with a roughness of ∼0.4 nm RMS were obtained with 

electron beam evaporation. For the canonical reference, the microscope glass slides were coated with 

poly-L-lysine (PLL) (Sigma-Aldrich, St. Louis, USA, Missouri) for 30 min at room temperature (RT), 

after cleaning with 70% ethanol and washing twice with PBS. This coating was done directly before 

plating the cells. 

All substrates were sterilized with UV light for 10 minutes before seeding the cells. 

2.2 Cell culture and analysis 

2.2.1 Cell culture 

PC12 (PC-12 Adh ATCC Catalog no.CRL-1721.1TM) were cultured in RPMI-1640 Medium 

(Sigma-Aldrich) supplemented with 10 % horse serum (HS; Sigma- Aldrich), 5 % fetal bovine serum 

(FBS; Sigma-Aldrich), 2 mM L-glutamine, 100 units/ml penicillin, 100 µg/ml streptomycin, 1 mM 

pyruvic acid (sodium salt) and 10 mM HEPES. The culture conditions in the incubator (Galaxy S, 

RS Biotech, Irvine, UK) were 37◦C and 5% CO2 (98% air-humified). For subculturing (routinely 

performed every 2nd–3rd day) the cells were detached from culture dishes using a 1 mM EDTA 

solution in HBSS (Sigma-Aldrich) or a trypsin solution (Sigma- Aldrich), centrifuged at 1000×g for 

5 min, and re-suspended in culture medium. 

For the experiments the PC12 cells were detached with 1 mM EDTA in HBSS and centrifuged 

at 1,000× g (5min), washed with low serum medium (RPMI-1640 with all the supplements, but only 

1% HS and without FBS), and centrifuged again at 1,000× g (5 min). Before plating the cells on the 

different substrate conditions, the cells were counted with an improved Neubauer chamber and then 

seeded with the concentration of ∼4,000 cells/cm2 (after resuspension in RPMI low serum medium) 
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onto the microscope slides that were placed into non-treated 4 well dishes with the dimensions 127.8 

× 85.5 mm (Thermo Fisher). 

For the NGF condition, the NGF stimulus (human NGF-b, Sigma-Aldrich) was added to the 

medium right after plating the cells making a final concentration of 50 ng/ml. For the ns-Zr15 hypo 

condition, the cells were re-suspended in RPMI low serum medium diluted 7.5/2.5 with deionised 

water (supplements were kept at the aforementioned concentrations) and pre-incubated in the 

hypoosmotic medium for 15 min before plating the cells eventually into the well, always in the 

hypoosmotic medium. For the PLL hyper condition, after the adhesion of the cells (1 h after plating) 

a hyperosmotic shock was applied to the cells (150 mM sucrose final concentration in the RPMI low 

serum medium) for 15min, and washed once with RPMI low serum medium. The cells were left in 

RPMI low serum medium for the rest of the experiment. The cells were left in the incubator for 24 h 

in all conditions. After washing twice with PBS, the cellular material was yielded for the proteomic 

analysis by scratching the cells from the microscope slides with cell scrapers (TPP, Trasadingen, 

Switzerland) in the presence of icecold PBS supplemented with protease (Roche, Basel, Switzerland) 

and phosphatase inhibitors (phosphatase inhibitor cocktail (Cell Signalling Technology), calyculine 

A (serine/threonine phosphatase inhibitor) 10 nM (Cell Signalling Technology), microcystin-LR 10 

nM (Enzo Life Sciences). 

For the inhibition experiments with SKF96365 (Sigma-Aldrich) and GsMTx4 (Alomone Labs, 

Israel), the resuspended cells were preincubated with the inhibitors (SKF96365 15µM; GsMTx4 

10µM) in RPMI low serum medium (supplemented with 50 ng/ml NGF in the PLL +NGF condition) 

for 15 min in suspension before plating. The inhibitor treatment was maintained for 1 h, and then the 

medium was discarded and exchanged with new RPMI low serum medium (plus 50 ng/ml NGF in 

the PLL +NGF condition). For the rapamycin inhibition (Sigma-Aldrich), the cells were treated with 

the indicated rapamycin concentrations for the whole duration of the experiment. After 24 h, 

respectively 48 h for the rapamycin experiments, the morphology of the PC12 cells was recorded 
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with an inverted Axiovert 40 CFL microscope (Zeiss, Oberkochen, Germany) equipped with LD A-

Plan 20x/0.3 Ph1 or CP-ACHROMAT 10x/0.25 Ph1 objectives (both Zeiss) and the analysis was 

performed with ImageJ (NIH, New York, USA). The neurite length and differentiation rate were 

evaluated according to the following definition: the length was the straight-line distance from the tip 

of the neurite to the junction between the cell body and neurite base. In the case of branched neurites, 

the length of the longest branch was measured. For each cover glass, 20 and 40× images were acquired 

randomly by scanning the wells, measuring in each image: N, as total number of cells; n, as number 

of cells with the neurite longer than 20 µM (cells considered positive for neurite extension); l, as 

neurite length in µM; R, as differentiation rate determined by the equation R = 100 * n / N. Cells with 

neurites >10µm were counted as differentiated and only neurites with a length >10µm were 

considered for neurite length quantification. If cells have multiple neurites only the longest two were 

taken into the quantification, and in case of neurite branching the longest branch was measured. The 

neurite morphology was comparable between the canonical biochemically (NGF-)induced and the 

nanotopography-triggered neuritogenesis with 1.82 ± 0.42 neurites per cell for the first and 1.66 ± 

0.21 for the latter (in total 160 differentiated cells for each condition were quantified from 8 

independent experiments) (Figure 16). In both cases the median was 2 neurites per cell and the vast 

majority of cells bore 1 or 2 neurites (together 82%, respectively 90%). 

All the inhibition experiments were performed on coverslips with a diameter of 13 mm. The 

substrate preparation itself was the same as in the precedent section. 



 62 

 

Figure 16: comparison of the neurite morphology of PC12 cells in the between NGF and ns-Zr15 condition. 
The graph shows on the left the average number neurites per differentiated PC12 cell grown on PLL and stimulated with 
NGF (white bar) or interacting with ns-Zr15 (gray bar). The bars are flanked by the standard deviation (s.d.). On the right, 
the bars demonstrate the frequency of the different categories indicating the number of neurites per differentiated cells in 
the two conditions. In total 160 cells from 8 independent experiments were quantified. 

2.3 Bradford assay 

The concentration of each sample was determined using the Bradford method. The Bradford 

assay is based on Coomassie Brilliant Blue G-250 (CBBG) that specifically binds to protein at 

arginine, tryptophan, tyrosine, histidine and phenylalanine residues. CBBG binds to these residues in 

the anionic form, which has an absorbance maximum at 595 nm. The assay is monitored at 595 nm 

in a Du® 730 Life Science Uv/vis Spectrophotometer (Beckman Coulter), and determines the CBBG-

protein complex. Bovine plasma immunoglobulin was used as standard protein. 

2.4 Protein identification by mass spectrometry 

Prior to proteolysis, proteins were subjected to reduction with 1 mM DTE (30 min at 55°C) 

and alkylation with 20 mM iodoacetamide (IAA; 30 min. at RT). Peptide digestion was conducted 

using sequence-grade trypsin (Roche) for 16 hours at 37°C using a protein:tripsin ratio of 1:20. The 

reaction was stopped by acidification with 98% formic acid (FA) at 37°C for 30 minutes. The pellet 

was desalted using Zip-Tip C18 (Millipore) before mass spectrometric (MS) analysis. 
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2.4.1 Zip-Tip C18 

Each sample was desalted (Zip-Tip C18, Millipore) before mass spectrometric (MS) analysis. 

The following protocol was applied: 

• Equilibrate the Zip Tip for Sample Binding: 1) pre-wet the tips with 50% CH3CN 3 

times (3 x 100 µl); 2) wash the tips with TFA 0.1% 3 times (3 x 100 µl). 

• Bind and Wash the Peptides: 1) bind the sample to Zip Tip pipette tip. Aspirate and 

dispense the material 10-13 cycles for maximum binding of complex mixtures; 2) wash the tips with 

5% CH3CN 0.1% TFA at least once. 

• Elute the Peptides: elute the sample with 50% CH3CN in HCOOH 1%, 3 times (3 x 

100 µl), into a clean vial, for mass spectrometry analysis. 

2.5 Mass Spectrometry 

Mass spectrometry is an analytical tool useful for measuring the mass-to-charge ratio (m/z) of 

one or more molecules present in a sample. These measurements can often be used to calculate the 

exact molecular weight of the sample components. Typically, mass spectrometers can be exploited 

to identify unknown compounds via molecular weight determination, to quantify known compounds, 

and to determine structure and chemical properties of molecules. Basically, a mass spectrometer is 

composed of an ion source, of a system to separate the ions according to their m/z, and of an ion 

detector. The sample has to be introduced into the ionization source of the instrument. Once inside 

the ionization source, the sample molecules are ionized, because ions are easier to manipulate than 

neutral molecules. These ions are extracted into the analyzer region of the mass spectrometer where 

they are separated according to their mass (m) to-charge (z) ratios (m/z). The separated ions are 

detected and this signal sent to a data system where the m/z ratios are stored together with their 

relative abundance for presentation in the format of a m/z spectrum. The analyzer and detector of the 
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mass spectrometer, and often the ionization source too, are maintained under high vacuum to give the 

ions a reasonable chance of travelling from one end of the instrument to the other without any 

hindrance from air molecules. The entire operation of the mass spectrometer, and often the sample 

introduction process also, is under complete data system control on modern mass spectrometers. 

2.5.1 Ionization tecniques 

Ionization techniques are also known as interfaces because they allow the passage of the 

analytes from samples to the mass analyzer. These techniques are crucial to determine what types of 

samples can be analyzed by MS (liquid, solid, etc.) and to know which kind of ionizing charged will 

have the molecules measured. Two techniques often used with liquid and solid biological samples: 

matrix-assisted laser desorption/ionization (MALDI) [221, 222] and electrospray ionization (ESI) 

[223]. 

Electrospray ionization 

Electrospray ionization (ESI) produces gaseous ionized molecules directly from a liquid 

solution creating a fine spray of highly charged droplets in the presence of an electric field. The 

sample solution is sprayed from a region of the strong electric field at the tip of a metal nozzle 

maintained at a potential of anywhere from 700 V to 5000 V. The needle to which the potential is 

applied serves to disperse the solution into a fine spray of charged droplets. Either dry gas, heat, or 

both are applied to the droplets at atmospheric pressure thus causing the solvent to evaporate from 

each droplet. As the size of the charged droplet decreases, the charge density on its surface increases. 

The mutual Coulombic repulsion between like charges on this surface becomes so great that it exceeds 

the forces of surface tension, and ions are ejected from the droplet through a “Taylor cone”. Another 

possibility is that the droplet explodes releasing the ions. In either case the emerging ions are directed 

into an orifice through electrostatic lenses leading to the vacuum of the mass analyzer. These charged 
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analyte molecules can be singly or multiply charged. This is a very soft method of ionization as very 

little residual energy is retained by the analyte upon ionization. 

Several variations on the electrospray process have been developed such as nanospray 

ionization. Nanospray is a form of ESI that employs low flow rate from 10 to 1000 nL/min. As the 

flow rate is lowered, a lower volume of mobile phase passes through the emitter producing smaller 

aerosol droplets. This makes nanospray ionization more effective than conventional ESI at 

concentrating the analyte at the emitter tip, producing significant increases in sensitivity demonstrated 

by the signal response of the mass spectrometry. 
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2.5.2 Liquid chromatography electrospray-tandem MS/MS analysis 

An important enhancement to the mass resolving and mass determining capabilities of MS is 

obtained by coupling it with chromatographic separation techniques. Common combinations are gas 

chromatography-mass spectrometry (GC/MS) or liquid chromatography-mass spectrometry 

(LC/MS). 

In this work, samples were separated by liquid chromatography using an UltiMate 3000 HPLC 

(Dionex, now Thermo Fisher Scientific). Buffer A was 0.1% v/v HCOOH, 2% CH3CN; buffer B was 

0.1% HCOOH in CH3CN. 

Chromatography was performed with a PicoFrit ProteoPrep C18 column (200 mm, internal 

diameter of 75 µM, Dionex). The gradient was as follows: 1% CH3CN in 0.1% HCOOH for 10 min, 

1-4% CH3CN in 0.1% HCOOH for 6 min, 4-30% CH3CN in 0.1% HCCOH for 147 min and 30-50% 

CH3CN in 0.1% HCOOH for 3 min at a flow rate of 0.3 µl/min. 

Mass spectrometry was performed using an LTQ-Orbitrap Velos (Thermo Fisher Scientific) 

equipped with a nanospray source (Proxeon Biosystems, now Thermo Fisher Scientific). Eluted 

peptides were directly electrosprayed into the mass spectrometer through a standard non-coated silica 

tip (New Objective, Woburn, MA, USA) using a spray voltage of 2.8 kV. 
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 2.5.3 LTQ ORBITRAP VELOS 

LTQ Orbitrap Velos is a hybrid mass spectrometer incorporating the LTQ Velos™ dual cell 

linear trap and the Orbitrap™ analyzer [224, 225]. The ion storage and the injection into the Orbitrap 

allows high resolving power, mass accuracy, and transmission over a wide dynamic range and forms 

the basis for a hybrid mass spectrometer combining these analytical parameters with the MSn 

capability of the linear ion trap mass spectrometer. 

Briefly, the LTQ Orbitrap Velos (Figure 17) consists of four main components: i) a dual cell 

linear ion trap for sample ionization, selection, fragmentation, and AGC™; ii) an intermediate storage 

device (curved linear trap) that is required for short pulse injection; iii) an Orbitrap analyzer for 

Fourier transformation-based analysis and iv) a collision cell for performing higher energy CID 

experiments. 

The LTQ Orbitrap Velos ETD has also an additional reagent ion source for enabling post-

translational modification analyses of peptides by Electron Transfer Dissociation (ETD). 

As its name suggests, Orbitrap is a device that is able to store and trap ions [226]. It is not 

conventional ion trap as a linear ion trap [227], because there is neither RF nor a magnet to hold ions 

inside, but an electrostatic field that trap ions [228]. The electrostatic attraction towards the central 

electrode is compensated by a centrifugal force that arises from the initial velocity of ions, which 

makes ion moving like a satellite on orbit. The electrostatic field forces the ions to move in complex 

spiral patterns. The axial component of these oscillations can be detected as an image current on the 

two halves of an electrode encapsulating the Orbitrap. A Fourier transform is employed to obtain 

oscillation frequencies for ions with different m/z values, which can be determined from these values. 

Since ions can be trapped for long times, the frequency of their image current can be registered with 

high accuracy, allowing to obtain high resolution mass spectrum. 
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Figure 17: LTQ ORBITRAP VELOS 

2.5.4 Tandem Mass Spectrometry 

An important application of mass spectrometry is the possibility to fragment molecules to 

study the different fragments and to better understand the structure and possible mutations of the 

molecules. These fragmentation studies can be done by Tandem Mass Spectrometry technique or 

MS/MS analysis. This technique involves the activation of a known precursor ion, formed in the ion 

source, and the mass analysis of its fragmentation products. MS/MS analysis can be done using 

different ion activation techniques: CID (Collision-induced dissociation), HCD (Higher energy 

collision dissociation), and ETD (Electron-transfer dissociation). 

In this work, the LTQ-Orbitrap was operated in positive mode in data-dependent acquisition 

mode to automatically alternate between a full scan (m/z 350-2000) in the Orbitrap (at resolution 

60000, AGC target 1000000) and subsequent collision-induced dissociation (CID) MS/MS in the 

linear ion trap of the 20 most intense peaks from full scan (normalized collision energy of 35%, 10 

ms activation). Isolation window: 3 Da, unassigned charge states: rejected, charge state 1: rejected, 

charge states 2+, 3+, 4+: not rejected; dynamic exclusion enabled (60 s, exclusion list size: 200). 

Three technical replicate analyses of each sample were performed. Data acquisition was controlled 

by Xcalibur 2.0 and Tune 2.4 software (Thermo Fisher Scientific). 
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2.6 Data processing and analysis 

Mass spectra were analyzed using MaxQuant software (version 1.3.0.5). the initial maximum 

allowed mass deviation was set to 6 ppm for monoisotopic precursor ions and 0.5 Da for MS/MS 

peaks. Enzyme specificity was set to trypsin, defined as C-terminal to arginine and lysine excluding 

proline, and a maximum of two missed cleavages were allowed. Carbamidomethyl cysteine was set 

as a fixed modification, while N-terminal acetylation, methionine oxidation and Ser/Thr/Tyr 

phosphorylation were set as variable modifications. The spectra were searched by Andromeda search 

engine against the rat Uniprot sequence database (release 29.05.2013). Protein identification required 

at least one unique or razor peptide per protein group. 

Quantification in MaxQuant was performed using the built in XIC-based label free 

quantification (LFQ) algorithm [228] using fast LFQ. The required false positive rate was set to 1% 

at the peptide and 1% at the protein level against a concatenated target decoy database, and the 

minimum required peptide length was set to six amino acids. Statistical analyses were performed 

using the Perseus software (version 1.4.0.6, www.biochem.mpg.de/mann/tool/). 

Only proteins/phosphopeptides present and quantified in at least 3 out of 4 technical repeats 

were considered as positively identified in a sample and used for statistical analyses. An Anova test 

(Permutation based FDR 0.05) was carried out to identify proteins/phosphopeptides differentially 

expressed among the different conditions. To tackle specific biological issues, we then compared 

subsets of three proteomic data related to specific conditions, namely: [ns-Zr15, NGF, PLL], [ns-

Zr15, NGF, flat-Zr], [ns-Zr15, NGF, ns-Zr25]. Therefore, proteins/phosphopeptides were considered 

differentially expressed if they were present only in one condition or showed a Post-hoc Bonferroni 

test p < 0.0167. Regarding the proteomic data of ns-Zr15 hypo and PLL hyper which refer to peculiar 

cell conditions, the following comparisons were performed: [ns-Zr15, ns-Zr15 hypo], [PLL hyper 

and PLL], and [ns-Zr15 hypo, PLL hyper]. Proteins/phosphopeptides were considered differentially 
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expressed if they were present only in one condition or showed a significant Welch t-test difference 

(cut-off at 5% permutation-based FDR). 

Bioinformatic analyses were carried out by DAVID software (release 6.7) [229], Panther 

software [230], ClueGO application of Cytoskape software (release 3.2.0) 

(http://www.cytoscape.org/), and Ingenuity Pathway Analysis (IPAR) (QIAGEN Redwood City, 

www.qiagen.com/ingenuity) to cluster enriched annotation groups of Molecular Function, Biological 

Processes, Pathways, and Networks within the set of identified proteins/phosphopeptides. The 

compared data sets are indicated in the relative figures. Functional grouping was based on a Fisher 

Exact test p ≤ 0.05 and at least two counts. 
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3. RESULTS AND DISCUSSION 

3.1 Similarities and differences at the protein level between biochemically 

and mechanotransductively promoted neuronal differentiation at the protein 

level  

To dissect similarities and differences at the proteome level between the biochemically and 

mechanotransductively promoted neuronal differentiation we compared the data sets of ns-Zr15 

(neuritogenesis-triggering cluster-assembled zirconia surface), PLL and NGF [canonical condition 

on PLL-coated glass, in the presence (NGF) or absence (PLL) of NGF]. Venn diagram, workflow 

and volcano plot are showed in figure 18.  

 

Figure 18: Veen Diagram of the proteins identified in PC12 cells grown on poly-L-lysine-coated glass in absence 
(PLL) or in presence of NGF (NGF) and nanostructured zirconia 15 nm (nsZr15). An Anova test (FDR 0.05) was 
carried out to identify proteins differentially expressed among the different conditions: 19, 23 and 19 proteins are 
exclusively expressed in nsZr15n, PLL and NGF respectively, while 231 out of 669 common proteins differ with 
statistical significance. 
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The analysis allowed to identify 669 common proteins among the three conditions as resumed 

in Figure 18. An ANOVA test (false discovery rate 0.05) was carried out to identify proteins 

differentially expressed among the three conditions: 231 out of 669 common proteins differ with 

statistical significance and were selected for further analyses. In particular, to better understand the 

effect of the surface nanotopography, specific analyses were carried out by comparing specific data 

sets: the proteome of cells interacting with the nanostructured cluster-assembled zirconia surfaces 

that trigger neuritogenesis (ns-Zr15) was compared to the proteome of cells grown in the canonical 

condition on PLL-coated glass, in the presence (NGF) or absence (PLL) of NGF. NGF vs PLL was 

used as positive control of differentiation induce by NGF. 

The analysis provides information on protein expression and also on post translational 

modification (phosphorylation). Proteins were considered differentially expressed if they were 

present only in in one condition or showed significant t-test difference (Post hoc Bonferroni test p 

value = 0.0167) (figure 19).  

 

Figure 19: Volcano Plot. The colored data points in the volcano plot that are located above the p value line (t test value 
cut off is 0.0167) correspond to the proteins that were differentially expressed in two conditions considered upon treatment 
with large magnitude fold changes and high statistical significance. In green are indicated proteins that are up regulated, 
in red are the down regulated. The proteins having a fold-change less than 1.5 are shown in gray.  
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The experimental steps performed in the proteomics approach are summarized in Figure 20. 

 
Figure 20: workflow of comparison of PLL, NGF and ns-Zr15. Numbers are referred to expressed proteins. 
 

The proteomic analysis of NGF vs PLL compared to ns-Zr15 vs PLL highlights the common 

outcome of neuronal differentiation, independent of whether initiated canonically by NGF 

stimulation (NGF) or instead by mechanotransductive processes (ns-Zr15). 11 out of 35 proteins 

found to be significantly altered in NGF vs PLL are differentially expressed in the same manner also 

in ns-Zr15 vs PLL. Several of these proteins indeed have prominent and versatile known roles in the 

regulation of neuronal functioning and neurogenic processes (such as e.g., Htra1 [231, 232]; Vps35 

[233, 234]; Fasn [235]; Pdia3/ERp57 [236, 237]; C3 [238]; RPL19 [239].) 

The comparison of ns-Zr15 vs PLL with ns-Zr15 vs flat-Zr [153] shows that the impact of ns-

Zr15 on the protein expression profile is very similar (24 proteins altered in the same manner; marked 

X in Table 1) with respect to the two flat surfaces (flat-Zr and PLL). 

Pointing instead more specifically toward the differences between ns-Zr15 and NGF (ns-Zr15 

vs NGF, Table 2), the comparison reveals that 19 proteins (37%) are involved in cell proliferation 

and differentiation, 11 (22%) are receptors or players in signal transduction processes and 4 (8%) are 

related to Ca2+ signaling. Moreover, the ClueGo analysis highlights that these proteins are mainly 

involved in neurofilament formation and assembly (e.g., vimentin, an intermediate filament protein 
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needed during initiation of neuritogenesis; [240]) and some in protection against oxidative damage 

(Figure 21). 

 

Figure 21: ClueGo analysis of proteins upregulated or expressed only in cells grown on ns-Zr15 vs NGF. 
Functional grouping was based on p ≤ 0.05 and at least two counts. Numbers represent genes numerosity. 

For some of these proteins crucial and versatile functions in (post-)transcriptional and epigenetic 

regulation have been observed (e.g., DDB1 [241], Nedd4 [242, 243, 244]; Dpy30 [245]; Nsun2 [246, 

247], HMGB2 [248], hnRNP A1 [249, 250], Vbp1/prefoldin 3 [251].). Moreover, various proteins 

are of particular interest regarding a potential connection of mechanotransductive signaling and 

neuronal differentiation processes in the nanotopography- induced setting (e.g., Fat4 [252-254], 

Versican [255, 256], Thrombospondin [257-260, 256], ADAM12 [261, 262], Talin [263, 264], 

NCoa2 [265-274], Ran(bp3/GAP) [275]). This information is additionally validated by the IPA 

bioinformatics analysis of the proteins differentially expressed in ns-Zr15 vs NGF. This evaluation 

detected relevant protein networks modulated by the surface nanotopography related to: cell 

morphology, cellular assembly and organization, cellular movement, molecular transport, cell 

signaling, vitamin and mineral metabolism, cancer and invasion (Table 4). 
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Table 2 Proteins differently expressed comparing ns-Zr15 vs PLL. X = proteins differentially expressed in the same 
manner in ns-Zr15 vs flat-Zr and ns-Zr15 vs PLL. In gray, proteins differentially expressed in the same manner in NGF 
vs PLL and ns-Zr15 vs PLL. 

Welch 
Difference Protein IDs Protein names 

Gene 
names 

Comparison 
ns-Zr15vsflat-
Zr with ns-
Zr15vsPLL  

-3,79609 P63312 Thymosin beta-10 Tmsb10 X 

-1,98755 F1LP80;P20156;M0RDR2 
Neurosecretory 
protein VGF Vgf  

-1,82048 P00787;Q6IN22 Cathepsin B Ctsb X 

-1,59084 F1LXK8 

Protein Kmt2d 
(Histone-lysine N-
methyltransferase) 

LOC100362
634 X 

-1,47791 P11232;R4GNK3 Thioredoxin Txn X 

-1,4192 Q4KM49 

Tyrosine--tRNA 
ligase, cytoplasmic 
(YARS) Yars  

-1,32253 B2RYM3;CON__Q0VCM5 

Inter-alpha trypsin 
inhibitor, heavy chain 
1 Itih1 X 

-1,21926 

Q7TP54;D4A8D3;P02793;M0R5T8;M0R
6L9;M0R597;M0RCS3;F1M5T1;D3ZUZ
5;D4ADM5 

Ferritin;Ferritin light 
chain 1 

Fam65b;Ftl;
Ftl1  

-1,18024 P25236 

Selenoprotein 
P;Selenoprotein Se-
P10;Selenoprotein Se-
P6;Selenoprotein Se-
P2;Selenoprotein Se-
P1 Sepp1  

-1,13526 M0R9G2;P06238 
Alpha-2-
macroglobulin A2m X 

-0,9431 D4A9V4 Protein E2f4 
LOC100360
427 X 

-0,92619 Q5U216 
ATP-dependent RNA 
helicase DDX39A Ddx39a  

-0,82184 G3V7K3;P13635 Ceruloplasmin Cp  
-0,79789 M0RBF1;M0RBJ7 Complement C3 C3   

-0,75414 
M0R685;D3ZSS4;D4ADQ0;D3Z875;D3
Z888 Ulk4 Ulk4 X 

-0,70887 P13668;A0A096MK73;P21818 Stathmin Stmn1  

-0,67426 Q6AXU6 

Hematological and 
neurological 
expressed 1 protein Hn1 X 

-0,6597 Q5U328;P13383 Nucleolin Ncl X 

-0,63929 
F7FEZ6;P04256;M0R584;F1M6M1;D4A
2D2;F1LUF2;F1M6C7;D4ACJ7 

Heterogeneous 
nuclear 
ribonucleoprotein A1 Hnrnpa1 X 

-0,62126 M0R7B4 Protein LOC684828 LOC684828  

-0,61327 Q6P7A7;P07153 

Dolichyl-
diphosphooligosaccha
ride--protein 
glycosyltransferase 
subunit 1 Rpn1  

-0,58489 
D3ZC07;Q63945;Q63945-
2;F6Q1X3;D4ADL2;P80349 Protein SET Pkn3;Set  
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-0,53705 
P04937;P04937-3;P04937-2;P04937-
4;A0A096P6L8;F1LST1 Fibronectin Fn1 X 

-0,42766 
Q64268;CON__ENSEMBL:ENSBTAP00
000018574 Heparin cofactor 2 Serpind1 X 

-0,19459 P11598 
Protein disulfide-
isomerase A3 Pdia3 X 

0,28212 

P11980-
2;P11980;M0R4B8;M0RD14;M0RBT1;
M0R5T1;D3ZH80;P12928;P12928-
2;D4ADU8 

Pyruvate kinase 
isozymes M1/M2 Pkm2  

0,29285 P85845 Fascin Fscn1 X 

0,344429 Q08163 
Adenylyl cyclase-
associated protein 1 Cap1 X 

0,355151 

G3V8C3;P31000;F1M7P4;P48675;Q6P7
25;P21807;P16884;F1LRZ7;P12839;G3V
8Q2;P23565 Vimentin Vim  

0,383326 P34058;F1LTA7;F1M2F7;F1LYW7 
Heat shock protein 
HSP 90-beta Hsp90ab1  

0,459751 M0R9D5 Protein Ahnak Ahnak  
0,50837 F1LQQ1;P13697 Malic enzyme Me1  

0,541918 M0R4M2 Olfactory receptor Olfr1320  

0,548924 Q499N6 
UBX domain-
containing protein 1 Ubxn1  

0,549268 G3V852 Protein Tln1 Tln1  

0,569478 P06214;M0RDE7 
Delta-aminolevulinic 
acid dehydratase Alad  

0,597732 P85973;D3ZXK9 
Purine nucleoside 
phosphorylase Pnp X 

0,61237 P13471;Q6PDV6 
40S ribosomal protein 
S14 Rps14  

0,661978 P12785 Fatty acid synthase Fasn   
0,678424 Q4FZU6 Annexin A8 Anxa8  

0,685157 P25235 

Dolichyl-
diphosphooligosaccha
ride--protein 
glycosyltransferase 
subunit 2 Rpn2  

0,748252 F1MA18;Q62764;D4A0L4;Q62764-2 
Y-box-binding protein 
3 Csda X 

0,759332 G3V6W6 Protein Psmc6 LOC100365
869  

0,800036 G3V8A5 

Vacuolar protein 
sorting-associated 
protein 35 Vps35   

0,824451 E9PU16;Q6NYB7 
Ras-related protein 
Rab-1A 

Rab1;Rab1
A  

0,835074 Q5XIM5;Q6QI67 
Protein CDV3 
homolog 

Cdv3;LOC4
99235  

0,839502 B1WC34 Protein Prkcsh Prkcsh  

0,842592 F1LR10 
Epithelial protein lost 
in neoplasm Lima1  

0,880544 
D3ZM33;P62271;M0R5K9;D3ZAU6;D3
ZII2;F1M6D1;D4AA93 

40S ribosomal protein 
S18 

LOC100362298;Rps18;RGD156
1919;RGD1562404 

0,959727 Q4G061 

Eukaryotic translation 
initiation factor 3 
subunit B Eif3b  

1,02124 Q920J4 
Thioredoxin-like 
protein 1 Txnl1 X 
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1,12943 F1LNI5 
Ppm1g (Protein 
phosphatase 1G) Ppm1g  

1,18258 D4A3S8 

NOL1/NOP2/Sun 
domain family, 
member 2  Nsun2  

1,24811 Q9QZK5 
Serine protease 
HTRA1 Htra1   

1,5611 Q62658 

Peptidyl-prolyl cis-
trans isomerase 
FKBP1A Fkbp1a X 

1,56464 P62634 
Cellular nucleic acid-
binding protein Cnbp X 

1,60303 Q63207 

Coagulation factor 
X;Factor X light 
chain;Factor X heavy 
chain;Activated factor 
Xa heavy chain F10  

2,03314 P84100 
60S ribosomal protein 
L19 Rpl19 X 

2,04107 M0R979 Protein Thbs1 Thbs1  

2,10847 P61314;D3ZF52;D3ZXA2;M0R6I6 

60S ribosomal protein 
L15;Ribosomal 
protein L15 

Rpl15;RGD
1565767;RG
D1565131 X 

2,29659 Q920Q3 

Spermatogenesis-
associated protein 19, 
mitochondrial Spata19   

2,37902 P61515 

Putative 60S 
ribosomal protein 
L37a Rpl37a-ps1 X 

 
 
Table 3 Proteins differently expressed comparing NGF vs ns-Zr15. Proteins that are of particular interest regarding a 
potential connection of IAC/mechanotransductive signaling and neuronal differentiation processes in the 
nanotopography-induced setting are marked in gray. 
Welch 
Difference Protein IDs Protein names 

Gene 
names 

-7,12165 P25427 Beta-nerve growth factor Ngf 
-3,37741 P63312 Thymosin beta-10 Tmsb10 

-2,88836 F1LP80;P20156;M0RDR2 

Neurosecretory protein VGF;VGF(24-63);VGF(180-
194);VGF(375-407);Neuroendocrine regulatory 
peptide-1;Neuroendocrine regulatory peptide-
2;TLQP-11;TLQP-21;TLQP-30;TLQP-62;HFHH-
10;AQEE-30;LQEQ-19 Vgf 

-2,24729 Q3T1J1;G3V7J7 Eukaryotic translation initiation factor 5A-1 Eif5a;Eif5a2 

-1,5625 P25236 
Selenoprotein P;Selenoprotein Se-P10;Selenoprotein 
Se-P6;Selenoprotein Se-P2;Selenoprotein Se-P1 Sepp1 

-1,517 P31232 Transgelin Tagln 
-1,39688 F1LUM5 Protein Tubal3 Tubal3 
-1,36922 F1M9Z9 Protein Adam12 Adam12 
-1,31466 Q6AXU6 Hematological and neurological expressed 1 protein Hn1 
-1,31205 P52925;D3ZS25 High mobility group protein B2 Hmgb2 
-1,30598 P11232;R4GNK3 Thioredoxin Txn 

-1,23615 D3ZN59 Protein RGD1559962 
LOC1009118
56 

-1,22788 F1LRN8 Protein Nedd4l Nedd4l 
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-0,998347 P00787;Q6IN22 
Cathepsin B;Cathepsin B light chain;Cathepsin B 
heavy chain Ctsb 

-0,98734 F1LXK8 Protein Kmt2d 
LOC1003626
34 

-0,927585 

Q7TP54;D4A8D3;P02793;M
0R5T8;M0R6L9;M0R597;M
0RCS3;F1M5T1;D3ZUZ5;D
4ADM5 Ferritin;Ferritin light chain 1 

Fam65b;Ftl;F
tl1 

-0,903233 Q5PQL2 Cell differentiation protein RCD1 homolog Rqcd1 

-0,82259 D4A9V4 Protein E2f4 
LOC1003604
27 

-0,819237 
P13084;P13084-
2;F7FKF2;D3ZXI2 Nucleophosmin Npm1 

-0,773041 

F7FEZ6;P04256;M0R584;F1
M6M1;D4A2D2;F1LUF2;F1
M6C7;D4ACJ7 Heterogeneous nuclear ribonucleoprotein A1 Hnrnpa1 

-0,726569 G3V7K3;P13635 Ceruloplasmin Cp 

-0,654307 
A0A096MK30;O35763;F1L
P60;E9PT65 Moesin Msn 

-0,634319 M0R919 Protein Vbp1 Vbp1 
-0,577521 P15865;D4A3K5;P06349 Histone H1.2 Hist1h1c 
0,311619 M0R9D5 Protein Ahnak Ahnak 

0,44417 

G3V8C3;P31000;F1M7P4;P
48675;Q6P725;P21807;P168
84;F1LRZ7;P12839;G3V8Q2
;P23565 Vimentin Vim 

0,447913 M0R9X8;P38650;F1LRT9 Cytoplasmic dynein 1 heavy chain 1 Dync1h1 
0,488957 F1MA61;Q9WUI9 Nuclear receptor coactivator 2 Ncoa2 
0,490331 P06214;M0RDE7 Delta-aminolevulinic acid dehydratase Alad 

0,49894 Q9EPQ0;F1LN72 Sodium/potassium/calcium exchanger 3 Slc24a3 

0,49986 P23764;Q64625;D3ZH29 
Glutathione peroxidase 3;Glutathione peroxidase 
6;Glutathione peroxidase Gpx3;Gpx6 

0,504105 

D3ZPL5;D3ZU22;P62425;F1
M013;D3ZWM2;F1M1M2;D
3ZJH5;D4A6B9;F1M0R8;D3
ZNA3;F1M4C7;D4A8X2;F1
M300;M0R6L1;M0R3M3;F1
M4Z6;F1M394;F1LV49;F1L
UI8;F1M0S7;D4A2J1;F1LU
72;M0R9T3;D3ZD15;M0RD
P4 60S ribosomal protein L7a 

RGD1562953
;LOC100361
311;Rpl7a;R
GD1559149;
RGD1563220
;RGD156240
9;LOC68016
1;LOC68502
7;RGD15630
45 

0,613201 G3V852 Protein Tln1  Tln1 
0,628405 M0R4M2 Olfactory receptor Olfr1320 

0,674795 
F1LQS3;P21533;H7C5Y5;F1
LVJ5 60S ribosomal protein L6 Rpl6 

0,681933 Q9QZK5 Serine protease HTRA1 Htra1 

0,683081 G3V9K0 
Cysteinyl-tRNA synthetase (Predicted), isoform 
CRA_b Cars 

0,71095 B1WC34 Protein Prkcsh Prkcsh 
0,74149 P18331 Inhibin beta A chain Inhba 

0,816835 D3ZP02 Olfactory receptor Olr552 
0,860588 Q920J4 Thioredoxin-like protein 1 Txnl1 
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0,909781 
P61314;D3ZF52;D3ZXA2;M
0R6I6 60S ribosomal protein L15;Ribosomal protein L15 

Rpl15;RGD1
565767;RGD
1565131 

0,970465 Q641X8 Eukaryotic translation initiation factor 3 subunit E Eif3e 
0,973167 G3V8T4;Q9ESW0 DNA damage-binding protein 1 Ddb1 

1,04444 P13221 Aspartate aminotransferase, cytoplasmic Got1 
1,15907 P62634 Cellular nucleic acid-binding protein Cnbp 
1,20349 P18291 Granzyme B Gzmb 
1,2938 D3ZEH1 Protein Fat4 Fat4 

1,38075 G3V9R2;F1M983 Protein Cfh Cfh 
1,99062 M0R979 Protein Thbs1 (Fragment) Thbs1 
2,41476 Q63207      F10 

 
 
Table 4 IPA bioinformatics analysis of the proteins differentially expressed in ns-Zr15 vs NGF. 

Networks Molecules in network Score 

Cell Morphology, Cellular Assembly 
and Organization, Cellular Movement  

Actin, AHNAK, Akt, Ap1, API5, caspase, CD3, Cg, CNIH4, 
Creb, ERK, estrogen receptor, FSH, GOT1, Gsk3, GZMB, 
HDLBP, Histone h3, HN1, IDH2, Lh, MAP2K1/2, MCAM, 
NCOA2, NGF, p85 (pik3r), PARP, Pkc(s), PLC gamma, 
RANGAP1, ROCK2, TMSB10/TMSB4X, Vegf, VGF, VIM  34 

Cancer, Neurological Disease, 
Organismal Injury and Abnormalities  

26sProteasome, ACADL, ALAD, CD163, CFH, DDB1, 
DYNC1H1, EML2, HISTONE, Histone h4, IgG, IL1, IL12 
(complex), IL12 (family), Immunoglobulin, ING3, Insulin, Jnk, 
NEDD4L, NFkB, (complex), Nr1h, P38 MAPK, PI3K 
(complex), Pka, PSMA1, PSMD11, Ras, Ras homolog, RNA 
polymerase II, RPA2, RPL6, RPL15,Tnf (family), 
TUBB2A,TXNL1  34 

Cancer, Organismal Injury and 
Abnormalities, Reproductive System 
Disease  

ACY1, Alpha Actinin, collagen, Collagen Alpha1, Collagen type 
I, Collagen type IV, Collagen(s), CTGF, ERK1/2, F10, F Actin, 
Focal adhesion kinase, HTRA1, INHBA, Integrin, Laminin, 
LDL, Mek, Mmp, Myosin, NEB, Pdgf (complex), PDGF BB, 
RANBP3, Rock, SELP, SERPINB8, Smad, Smad2/3, Sphk, 
TAGLN, Tgf beta, THBS1, TLN1, VCAN  26 

Molecular Transport, Cell Signaling, 
Vitamin and Mineral Metabolism  

12-hydroxyeicosatetraenoic acid, ADGRB2, AMT, ATP6V1A, 
C1QBP, Ca2+, CHAT, CNBP, CYP2D6, DLD, EGF, 
FAM136A, FFAR4, GCSH, GPX3, growth factor receptor, 
Hmgb2 (includes others), HNF4A, HTT, ILK, MGST3, MYC, 
Nefm, Neurotrophin, Ntrk1 dimer, PNPLA6, potassium channel, 
quinolinic acid, S1PR2, SCG2,SHC1, SLC24A3, sn-glycero-3-
phosphocholine, TUBAL3, VGF  23 

Cell Cycle, Cellular Development, Hair 
and Skin Development and Function  

12-hydroxyeicosatetraenoic acid, ADAM12, CARS, CCDC80, 
CDK4, CDKN2A, CHRNB4, CTNND2, DPY30, DUSP4, E2F4, 
EIF5A, KIF3C, KRAS, LIFR, Mapk, mir-1260a, miR-1913 (and 
other miRNAs w/seed CUGCCCC), miR-378a-3p (and other 
miRNAs w/seed CUGGACU), neuroprotectin D1, NPM1, 
PRKCSH, Rac, RALB, Rho gdi, ROR1, RPS15, S100A12, 
S1PR2, SH3RF1, STMN2, TGFB1, TNF, TRIO, VTA1 14 

Cardiovascular Disease, Connective 
Tissue Disorders, Dermatological 
Diseases and Conditions  LBR, Olfr1320  2 
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3.2 Influence of the surface nanotopography roughness on the protein 

expression  

As shown in Figure 22, the higher surface roughness Rq 25 nm RMS (ns-Zr25) also induced 

neuritogenesis in PC12 but to a lower degree [153].  

 

Figure 22: representations of the cell morphology in the different conditions and a summary of the results 
presented in Schulte et al., 2016a [153]. The figure summarizes the results of publication by Schulte et al., 2016a [153] 
which provided the basis for the selection of the experimental conditions of the extended phosphoproteomic analyses of 
this work. In the upper row representations of the surface nanotopographies are displayed which were also used in this 
work (PLL-coated glass, flat-Zr, ns-Zr15, and ns-Zr25). Underneath example photos demonstrate the morphology of 
PC12 cells in the indicated conditions. In the table the impact of these different conditions on examined cellular parameter 
are recapitulated (FA, focal adhesions; FC, focal complexes; IAC, integrin adhesion complex; n.a., not analyzed).  

The rationale of this phenomenon is not completely clear yet. Therefore, in addition to the 

mentioned ns-Zr15, we have included ns-Zr25 into this proteomic approach. The Venn diagram and 

work flow for the comparison of NGF, ns-Zr15, ns-Zr25 are shown in Figures 23 A, B respectively. 
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Figure 23: comparison of NGF, ns-Zr15, ns-Zr25. (A) Venn diagram; (B) work flow 

Several proteins (7 out of 26) found to be upregulated in ns-Zr25 vs NGF are also upregulated 

in the comparison ns-Zr15 vs NGF (Table 3) or ns- Zr15 vs PLL (Table 2), suggesting that the 

biological processes triggered by the cell/nanostructure interaction are partially similar, even if the 

roughness parameter is increasing. 

The proteins upregulated only in ns-Zr25 vs NGF, and not in the other conditions, are e.g., 

stress-induced proteins (such as CASC5, GPX3, A1M, and HSP90) and proteins involved in transport 

and trafficking. The data further demonstrates that the interaction of PC12 cells with higher roughness 

is accompanied by an increase of proteins related to formation/degradation of atherosclerosis plaques 

(APOB, SERPIND1), secretion, anti-inflammation activity and stress response (HMOX1, 
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LOC681468, TXN, HMGN1, Cybasc3) while others are directly involved in gene expression control. 

Accordingly, the enrichment analysis of GO biological processes carried out by Panther on the 

proteins upregulated or only expressed in ns-Zr25 (Table 5) shows that the roughness increase triggers 

the expression of proteins involved in response to oxygen-containing compounds. 

Table 5 Comparison of ns-Zr15vsns-Zr25 with respect to biological processes. 

GO biological process complete Fold enrichment p-value 
Regulation of peptidase activity (GO:0052547)  11.55 1.68E-02 

Response to oxygen-containing compound (GO:1901700)  4.82 2.37E-02 

Regulation of biological quality (GO:0065008)  3.29 4.24E-02 
Negative regulation of cellular process (GO:0048523)  3.02 2.48E-02 

Negative regulation of biological process (GO:0048519)  2.96 1.40E-02 
The proteome analysis of cells grown on ns-Zr25 also displays an increased expression of 

proteins involved in regulation of cell proliferation, differentiation and apoptosis, adhesion and 

trafficking, as well as intercellular signaling pathways. Some of these proteins indicate a strong 

neuronal differentiation- promotive effect also for this substrate (e.g., syntaxin 4 [276, 277], clathrin 

[278, 279], HMGN1 [280, 281], and SCN1B [282]), consistent with our results in primary 

hippocampal neurons where ns-Zr25 had the most significant effect on neuron differentiation and 

maturation [283]. However, the induction of many stress- related proteins suggests that the substrate 

situation is becoming suboptimal for PC12 cells leading to the altered expression of proteins that are 

essential for the regulation of neuronal survival (e.g., CREM [284, 285], NPM1 [286, 287]). 

Compared to ns-Zr15, in ns-Zr25 there was decreased protein expression of tumor suppressors 

involved in apoptosis (PARK7, GZMB, SRSF1, FAT4) and cytoskeletal proteins that play essential 

roles in the integrin signaling. The IPA confirms the latter observation by identifying ILK (integrin-

linked kinase) signaling as the only canonical pathway significantly decreased on ns-Zr25 (Z score-

1, proteins CDH1, FN1, ACTN4, TMSB10/TMSB4X) (Table 6).  
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Table 6 IPA bioinformatics comparison of ns-Zr15 vs ns-Zr25. 

Ingenuity canonical pathways  p-Value z-score  Molecules 
Epithelial Adherens Junction Signaling   5,37E-03 NaN CDH1, ACTN4, TUBB  
Germ Cell-Sertoli Cell Junction Signaling 8,71E-03 NaN CDH1, ACTN4, TUBB 

Sertoli Cell-Sertoli Cell Junction Signaling  1,02E-02 NaN CDH1, ACTN4, TUBB 

GIalpha12/13 Signaling  3,98E-02 NaN CDH1, ARHGEF1  

ILK Signaling 1,32E-03 -1 
CDH1, FN1, ACTN4, 
TMSB10/TMSB4X 

Actin Cytoskeleton Signaling  2,34E-03 0 
FN1, ARHGEF1, ACTN4, 
TMSB10/TMSB4X  

Heme Degradation 3,09E-04 NaN HMOX1, BLVRB 

IL-10 Signaling 1,29E-02 NaN HMOX1, BLVRB 

Unfolded protein response 7,41E-03 NaN P4HB, EIF2AK3 

Acute Phase Response Signaling 7,59E-04 NaN PLG, HMOX1, FN1, SERPIND1 
Coagulation System 3,24E-03 NaN PLG, SERPIND1 

Insulin Receptor Signaling  4,90E-02 NaN PTPN1, STX4  

Intriguingly, this pathway has been reported to be pivotal in the regulation of IAC 

architecture/composition and to be sensitive to integrin ligand density of the substrate [288]. In the 

context of mechanosensing, lysophosphatidylcholine acyltransferase (Lpcat2b) expression only in the 

ns-Zr25 condition is intriguing. This protein converts lysophosphatidylcholine in 

phosphatidylcholine; a process essential in the regulation of membrane dynamics (i.e., 

curvature/bending, tension), recruitment of F-BAR proteins and membrane/f-actin linkage [289]. 

Also regarding cell/cell contact, IAC and actomyosin organization some changes are noteworthy 

(such as Rab14 [290], clathrin [291], nischarin [292-296], ArhGEF1/P115-RhoGEF [297-299]). In 

addition, SF3B2 and 5 (upregulated in the cells on ns-Zr15), are components of the spliceosomal U2 

small nuclear ribonucleoprotein particle that has an important role in neuronal transcriptional 

regulation [300]. In conclusion, it emerges that several critical proteins for membrane dynamics and 

configuration, integrin activation, IAC assembly and linkage to the f-actin are affected even by 

relatively subtle differences in the nanotopographical characteristics [153]. 

This impact suggests a prominent role of the mentioned proteins in mechanosensing of 

topographical surface features. 
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3.3 Impact of the cellular interaction with the neuritogenesis-inducing 

cluster-assembled zirconia surface on protein phosphorylation 

The proteomic data presented here are complemented by an analysis of the phosphorylation 

state of proteins in the outlined experimental conditions, providing more profound information on the 

signaling pathways and potential specific key mediators. A detailed analysis of individually identified 

phosphorylated proteins with interesting functions in the framework of this study is displayed in Table 

7. 

Table 7: comparison of the conditions ns-Zr15, ns-Zr25, NGF, PLL and flat-Zr to analyse the impact of the 
cellular interaction with the neuritogenesis-inducing cluster-assembled zirconia surface on protein phosphorylation.  
Protein 
name Reported protein functions References 

Nidogen-1 

The basement membrane protein nidogen-1 is known to be 
important in the regulation of hippocampal synaptic plasticity and 
network excitability. Vasudevan et al., 2010 [301] 

Brorin 

Brorin has been reported to favor neurogenesis and to inhibit 
astrogenesis contributing to axon guidance in the zebrafish 
forebrain. Myyake et al., 2017 [302] 

Galectin-8 

Galectin-8 is a secreted ECM protein and matricellular modulator of 
cell adhesion that is bound by integrins which regulates cell 
adhesion and survival, promoting or inhibiting, dependent on 
whether it is present in a soluble or immobilized manner. 

Hadari et al., 2000 [303]; 
Zick et al., 2004 [304] 

Ptprf (receptor-
type tyrosine-
protein 
phosphatase 
F)/LAR 
(leukocyte 
common 
antigen-related) 

The Ptprf/LAR receptor, a neuronal adhesion molecule essential in 
synapse maturation, is particularly interesting with respect to IAC, 
mechanotransduction and calcium signaling. The presence of this 
receptor in focal adhesions (FA) is controlled in a negative manner 
by myosin II-generated force and has been shown to have the 
capacity to regulate FAs (in mouse embryonic fibroblasts). It 
interacts in a CaMKII (Ca2+/calmodulin-dependent protein kinase 
II)-regulated way with liprin-α 1. The liprin-α 1/LAR interaction 
determines LAR distribution and therefore synapse morphogenesis. 
Moreover, Ptprf/LAR can be found, to a minor extent, tyrosine-
phosphorylated in the adult brain. The function of this 
phosphorylation is yet unknown but could be important for the 
binding of SH2/SH3 domain-containing adaptor proteins. 

den Hertog et al., 1994 
[305]; Johnson and Van 
Vactor, 2003 [306]; Dunah 
et al., 2005 [307]; Kuo et 
al., 2011 [308]; Um and 
Ko, 2013 [309]; Sarhan et 
al., 2016 [310]. 

Gpr56 (G 
protein-coupled 
receptor 56) 

Malfunctions of Gpr56 can cause the neurodevelopmental disease 
polymicrogyria. In the brain it is predominantly expressed in 
neuronal progenitor cells (NPC) in regions of postnatal neurogenesis 
where it is involved in the control of brain convolution/patterning in 
the cerebral cortex in an integrin α3β1-dependent manner. 
Moreover, Gpr56 operates together with Gα13 in the Rho-mediated 
regulation of NPC adhesion/migration. Gα13 again is essential in 
integrin signaling. 

Piao et al., 2004[311]; Iguchi 
et al., 2008 [312]; Gong et 
al., 2010 [313]; Shen et 
al., 2012 [314]; Jeong et 
al., 2013 [315]; Bae et 
al., 2014 [316] 

ROCK (Rho-
associated, 
coiled-coil-
containing 
protein kinase) 

ROCK/RhoA activity has a complex role in neuritogenesis. 
Although on the one hand it is known to be inhibitory for 
neuritogenesis, and in particular for the initial neurite formation, on 
the other hand spatially restricted ROCK/RhoA activity is also 
essential to suppress lamellipodial protrusions, thereby consolidating 
neurites/axons by maintaining the growth cone polarity. ROCK and 
its RhoA binding activity is tightly regulated by phosphorylation 

Yamaguchi et al., 2001[317]; 
Loudon et al., 2006 [318]; 
Lee et al., 2010 [319]; 
Schulte et al., 2010 [320] 
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downstream of src and contributes to the modulation of focal 
adhesion turnover. 

GFRA1 (GDNF 
family receptor 
α-1) 

GFRA1 was found to form a complex with β1 integrin, together with 
Ret and NCAM-140, and to play an important role in the 
differentiation of neurons in the olfactory system and the survival of 
glutamatergic cortical neurons. 

Cao et al., 2008 [321]; 
Marks et al., 2012 [322]; 
Konishi et al., 2014 [323] 

G3BP1 (Ras 
GTPase-
activating 
protein-binding 
protein 1) 

G3BP1 has been reported to have an impact on neuronal sprouting 
by promoting the formation of tau mRNA ribonucleoprotein 
granules and can be found associated with α5β1 integrin-containing 
complexes. Moreover, G3BP1 deficiency impairs the synaptic 
plasticity and calcium homeostasis in hippocampal neurons. 

Meng et al., 2004 [324]; 
Martin et al., 2013 [325]; 
Moschner et al., 2014 [326] 

ArhGAP18 
(Rho GTPase 
activating 
protein 18) 

ArhGAP18 has been shown to be involved, as negative regulator, in 
the control of RhoA activity and stress fiber formation by increasing 
the GTPase activity of Rho and stabilizing the RhoA-GDP inactive 
form. The protein, interacting with RhoA, has been described 
recently as YAP effector in the actomyosin-dependent regulation of 
tissue tension. A specific role of this protein in neurons has not been 
reported so far, but its expression level decreases in neurospheres 
during differentiation and it appeared as a gene associated with 
schizophrenia in a screening for single nucleotide polymorphisms. 
For another ArhGAP family member, ArhGAP15, a contribution in 
the neurogenesis of hippocampal neurons has been shown very 
recently. 

Gurok et al., 2004 [327]; 
Potkin et al., 2009 [328]; 
Maeda et al., 2011 [329]; 
Porazinski et al., 2015 [330]; 
Zamboni et al., 2016 [331] 

ASPM 
(Abnormal 
spindle-like 
microcephaly-
associated 
protein) 

ASPM is known to contribute to the regulation of neuronal 
differentiation processes by actomyosin-dependent actions. As the 
protein name indicates, this protein is involved in the control of 
brain size and mutations of this protein can be responsible for 
developing the neural disorder microcephaly. ASPM is a positive 
regulator for Wnt signaling and its expression is essential for 
accurate neurogenesis. Furthermore, recently it has been found that 
the drosophila ortholog of this protein interacts with and regulates 
myosin II localization, thereby controlling neuroepithelium 
morphogenesis by mechanobiological events. 

Buchman et al., 2011 [332]; 
Rujano et al., 2013 [333] 

Cofilin/destrin/
ADF (actin 
depolymerising 
factor) 

Cofilin is essential for actin cytoskeletal organization by regulating 
the severing of f-actin and the turnover rate of actin and therewith, 
in the neuronal context, the actin retrograde flow in neurite growth 
cones of the developing brain. Phosphorylation negatively regulates 
its actin binding and thereby controls the f-actin homeostasis. 

Hawkins et al., 1993 [334]; 
Jovceva et al., 2007 [335]; 
Flynn et al., 2012 [336] 

Septin-2 

Septin-2 modulates actomyosin contractility by binding myosin II 
and recruiting regulatory proteins. Septin phosphorylation controls 
the assembly of septins into highly ordered polymers. Interestingly, 
septin-2 has been found to be phosphorylated in post-mitotic 
neurons. 

Spiliotis and Nelson, 2006 
[337]; Joo et al., 2007 [338] 

KMT2D 
(histone-lysine 
N-
methyltransfera
se 2D)/MLL4 
(mixed-lineage 
leukemia 4) 

This protein is a mammalian histone H3 lysine 4 (H3K4) mono-
methyltransferase essential in differentiation-specific gene 
activation. It has been shown to participate in the regulation of 
neuronal differentiation, facilitating the activation of differentiation-
specific genes (e.g., nestin). Dhar et al., 2012 [339] 

RTCB (RNA 
2′,3′-cyclic 
phosphate and 
5′-OH ligase) 

This RtcB RNA ligase participates in tRNA ligation and it is 
involved in the regulation of neuronal growth and axon regeneration. 

Kosmaczewski et al., 2015 
[340] 

E2F4 
This transcription factor has been shown to play a role in neuronal 
differentiation and neuritogenesis. Persengiev et al., 1999 [341] 

Rab23 (Ras-
related protein 
23) 

Rab23 participates to endocytic vesicle trafficking and is involved in 
the regulation of sonic hedgehog signaling in neural tube patterning. 

Eggenschwiler et 
al., 2001[342]; Evans et 
al., 2003 [343] 
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Specifically, the phosphoproteomic data shows that the cell/nanotopography interaction (ns-

Zr15) leads to a differential phosphorylation of various proteins reported to be important in 

controlling IAC dimension/composition, the actin cytoskeleton, and the cellular mechanics (e.g., 

ADAM12 [261, 262] nidogen-1 [301], brorin [302], Ptprf/LAR [305-310], Gpr56 [311-316], ROCK 

[317-320], GFRA1 [321-323], G3BP1 [324-326], ArhGAP18 [327-331], ASPM [332, 333], cofilin 

[334-336], septin-2 [337, 338]). Furthermore, several proteins essential in epigenetic and (post-

)transcriptional regulation of gene expression are modulated at the phosphorylation level (e.g., 

KMT2D [339], RtcB [340], E2F4 [341]). Regarding this latter aspect, it is noteworthy that lipin-1 

phosphorylation is affected by the interaction with ns-Zr15. This phosphatidic acid phosphatase is 

important in lipid synthesis and SREBP-mediated transcriptional regulation. Its phosphorylation is 

regulated by mTOR which thereby also controls its intracellular localisation and the lamin A-

dependent nuclear organization [344, 345]. 

The alterations (regarding expression and phosphorylation levels) extend in a consistent 

manner our previous results [153], accentuating additionally the impact of the cell/nanotopography 

interaction on mechanotransductive processes and defining more precisely nanotopography-sensitive 

signaling hubs (Figure 24). 
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Figure 24: schematic representation of the potential relation and crosstalk among different signaling pathways 
modulated by the neuron/nanotopography interaction. On the left the illustration arranges proteins dissected from the 
whole (phospho)proteomic data set into several categories and sets them into a (potential) relation to each other with 
respect to their reported cell biological function and context. The main categories are visualized as follows; cell/cell 
interaction (green box), glycocalyx and ECM (box with gray patterned filling), cell substrate interaction and IAC (gray 
box, gray oval represents the IAC), membrane/f-actin linkage and integrin activation (yellow box), actomyosin 
organization/cellular mechanics (red box), nuclear organization, and transcriptional regulation (blue circle, representing 
the nucleus). Further information on the reported specific functions of the individual proteins, justifying their 
categorization, can be found in the corresponding tables throughout the manuscript. Moreover, on the right a selection of 
proteins is listed with association to their functions in neuronal differentiation processes, particularly in neurite growth 
cones.  

To find relevant patterns and specific differences in signaling processes related to the diverse 

conditions (PLL, NGF, ns-Zr15, ns-Zr25, and flat-Zr) a principal component analysis (PCA) was 

carried out on the corresponding phosphoproteomes. The analysis, applied to all the peptides found 

phosphorylated in these 5 conditions, reveals at a glance that the phosphoproteomes of NGF and ns-

Zr15 cluster together (confirming again the common outcome of a differentiated cell). Flat-Zr and 

PLL instead are at the opposite ends of the plot (Figure 25 A), suggesting that the cells on these two 

substrates behave very differently as far as protein phosphorylation concerns, in agreement with the 

other data reported so far. If the same analysis is carried out focusing only on the sequence phospho-

motifs present in the phosphoproteome data, a similar plot can be obtained (Figure 25 B), but in this 

case a more evident separation can be observed between NGF and ns-Zr15, indicating that the kinases 

and phosphatases involved are, at least in part, different. Figure 25 C reports in green all the substrate 
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motifs that are more relevant in the PCA analysis, accounting for the 16% of all the phospho-motifs 

present in the phosphopeptides. 

 

Figure 25: principal component analysis (PCA) on the phosphoproteome of PC12 cells grown in different 
experimental conditions. (A) PCA analysis of the phosphopeptides of PC12 cells in the experimental conditions PLL, 
NGF, ns-Zr15, ns-Zr25, and flat-Zr. (B) PCA analysis of the sequence phospho-motifs present in the phosphoproteome 
data of PLL, NGF, ns-Zr15, ns-Zr25, and flat-Zr. (C) Visual representation of the PCA analysis of the sequence phospho-
motifs. All the substrate motifs that are more relevant in the PCA analysis are marked in green. (D) PCA analysis of the 
phosphopeptides of PC12 cells in the experimental conditions PLL, NGF, ns-Zr15, PLL hyper, and ns-Zr15 hypo.  

The enrichment analysis of these phospho-motifs, carried out by Panther and David, shows 

that there is a highly significant enrichment (p ≤ 0.05) of few signaling pathways in the cells on ns-

Zr15 (Table 8).  
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Table 8 Enrichment analysis of the kinases substrate motifs that are more relevant in the PCA analysis of phospho-sites 
differently expressed in ns-Zr15vs NGF.  

PANTHER PATHWAYS  
Fold 

enrichment  p-value  
Heterotrimeric G-protein signaling pathway-rod outer segment phototransduction  >100  1.47E-02  

VEGF signaling pathway   78.4 4.40E-02 

Parkinson disease 64.84 1.72E-03 

CCKR signaling map  54.74 8.16E-05 
Angiogenesis  45.05 5.07E-03 

Wnt signaling pathway  22.45 3.96E-02 
DAVID PATHWAYS    
Wnt signaling pathway  27,58865 1.93E-04 
VEGF signaling pathway   48,625 1.198-03 

GABAergic synapse 33,53448 2.503-03 

Gap junction  33,15341 2.56-03 

GnRH signaling pathway  31,71196 2.795-03 
Inflammatory mediator regulation of TRP channels  25,36957 4.333-03 

Thyroid hormone signaling pathway  25,36957 4.333-03 

Tight junction 20,54577 6.542-03 

Oxytocin signaling pathway  18,23438 8.247-03 

The angiogenesis and VEGF signaling pathways are in line with the processes mentioned 

throughout this work as they comprise many players also involved in focal adhesion, MAPK and Ca2+ 

signaling. In addition, the results suggest that the differences between PC12 cells grown on ns-Zr15 

(compared to the NGF condition) could be partially ascribed to a modulation within the Wnt pathway 

(Table 8). An indicator is e.g., the downregulation of E-cadherin in the cells on ns- Zr15, considering 

the known crosstalk between (E-)cadherin cell adhesion and canonical Wnt signaling by release of β-

catenin [346]. Interestingly, Wnt expression in PC12 cells leads to an upregulation of E-cadherin and 

a flat epithelial-like cell morphology associated with unresponsiveness to NGF-induced 

neuritogenesis [347]. In epithelial cells E-cadherin-mediated cell/cell adhesions are essential in 

mechanically connecting the intercellular actomyosin machineries to regulate tissue organization 

[348]. Moreover, it has been demonstrated in human embryonic stem cells that the surface 

nanotopography has an impact on E-cadherin expression level [349]. The potential impact of the 
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substrate nanotopography on Wnt signaling in a neuronal setting is therefore an interesting issue for 

further investigations. 

In the comparison ns-Zr15 vs ns-Zr25, apart from various already mentioned proteins, lamin 

A appeared as differentially phosphorylated. This protein is particularly interesting in the context of 

mechanotransduction representing one of the intermediate filaments that forms the interior of the 

nuclear envelope. It was found to be involved in the regulation of nuclear architecture/biophysics, 

chromatin organization, and transcription regulation at the end of mechanotransductive signaling 

cascades that influence differentiative processes [350]. Its differential expression during adult 

neurogenesis proposes a potential role in it; however, to date details remain still unclear [351]. Further 

proteins found to be phosphorylated on ns-Zr25 are Galectin-8 [303, 304], and Rab23 [342, 343] 

which have essential reported functions in cell adhesion/survival and neuronal development, 

respectively (Table 8). 

Altogether, many proteins that are important in neurogenic and/or mechanotransductive 

processes are differentially expressed and/or phosphorylated upon cellular interaction with the 

cluster-assembled zirconia surface that promotes neuritogenesis. Combining the analysis of our 

proteomic data with information available on these proteins and their functions, suggests a dynamic 

and complex modulation of an entire signaling network by the cell/nanotopography interaction that 

is in control of cellular behavior and fate, i.e., in this case neuronal differentiation. We were able to 

dissect potential nanotopography-sensitive key elements regulated within a mechanotransductive 

sequence, identifying many proteins that can be assigned to these principal categories: cell/cell 

adhesion, ECM and glycocalyx, cell/substrate interaction and IAC, integrin activation and 

membrane/f-actin linkage, integrin adhesion complexes, actomyosin organization/cellular mechanics 

and nuclear organization and transcriptional regulation (Figure 24). 
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3.4 Alterations in cellular processes and signaling by the modulation of 

cellular tension 

In our paper Schulte et al., 2016 we identified the alteration of the cellular nanomechanical 

properties as critical for the signal integration within the nanotopography-dependent 

mechanotransductive sequence that fostered neuronal differentiation. The interaction with the 

nanostructured surface dictated the IAC nanoarchitecture/dynamics and cytoskeletal organization in 

a manner that consequentially resulted in a softer membrane/cytoskeletal layer of the neuronal cell. 

Compensating this effect by a hypoosmotic gradient (causing cell swelling and an increase of cell 

tension) counteracted gradually the nanostructure-induced neuritogenesis on the morphological level 

[153]. 

The mechanotransduction dependency of the nanotopography-promoted differentiation was 

broadly validated by a proteomic comparison of PC12 cells interacting with the ns-Zr15 in the 

isoosmotic standard medium (ns-Zr15) or instead in the presence of hypoosmotic medium (ns-Zr15 

hypo). Many proteins found to be expressed only in ns-Zr15 or to be downregulated in ns-Zr15 hypo 

can be classified as proteins involved in RhoGTPase-controlled cytoskeletal organization according 

to the IPA canonical pathways enrichment analysis (Figure 26). Consistent with the hypoosmotic 

manipulation of the membrane tension, clathrin- and caveolar-mediated endocytosis appeared among 

the five most affected pathways in this evaluation (Figure 26).  
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Figure 26: comparison of ns-Zr15vsns-Zr15 hypo. IPA canonical pathways enrichment analysis of ns-Zr15vsns-Zr15 
hypo.  

These pathways are regulated by and respond to modulations of the membrane tension and are 

crucially involved in cell volume and shape control [352-354]. 

Intriguingly, mTOR signaling emerged as the strongest modulated pathway in this analysis 

(Figure 26). mTOR signaling represents a highly conserved pathway known to be an integrative 

master regulator of many cellular processes/pathways at the interface of intracellular and extracellular 

signals [355], also in regard to neurogenic events [356]. Inhibition of mTOR(C1) with rapamycin had 

different effects on flat and nanostructured substrates. On PLL there was an increase of neurite 

outgrowth upon rapamycin inhibition both in the absence, or presence, of NGF. In the latter, the effect 

was additive to the NGF- induced increase, reproducing data reported by others [357]. On ns-Zr15 

instead no significant impact, neither promotive nor inhibitory, with respect to neurite outgrowth was 

observable (Figure 27).  
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Figure 27: effect of rapamycin inhibition on neurite outgrowth of PC12 cells on PLL and ns-Zr15. The phase 
contrast images and the graph display the reaction of PC12 cells on PLL (± NGF) or on ns-Zr15 after rapamycin 
treatment at two different concentrations: 0.1 and 1 µM. The graph summarizes the global statistics of two independent 
experiments showing the change of the differentiation rate and neurite length compared to the PLL –NGF Ø inhibition, 
with in total 367–943 cells and 216–661 neurites quantified for the differentiation rate (black bars), respectively neurite 
length (white bars). The bars show the average (mean ± s.d.) of the two experiments.  

It can be speculated that the boosted neuritogenesis on PLL is due to an induction of mTORC2 

activation triggered by the rapamycin-mediated inhibition of mTORC1 as a negative feedback 

between the two mTORCs is known [358]. Moreover, mTORC2 has been shown to be involved in 

the regulation of actin dynamics and morphology of neurons in a Rac/PAK-dependent signaling 

pathway that controls cofilin phosphorylation [359, 360]. Very recently, it has been demonstrated in 

DRG neurons that topographical features can potentiate mTORC2 guiding neurite outgrowth [361]. 

On ns-Zr15 the mTORC2 might already be induced by the cell/nanotopography interaction and thus 

rapamycin treatment does not further affect neurite outgrowth. The altered cofilin phosphorylation 

(Table 8) is in line with this [359]. The varying impact of mTOR(C1) inhibition by rapamycin 
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depending on whether the cells interact with a flat or a nanotopographical surface makes mTOR 

signaling an interesting and promising target for further studies in this context but goes beyond the 

scope of this work. 

Moreover, prominent markers for (developing) neurons and neurite outgrowth, such as 

BASP1, MAP1B, or β-tubulin (TUBB5), are strongly downregulated in the hypoosmotic condition. 

The same is true for many proteins involved in the actin polymerisation machinery and the 

cytoskeletal organization (e.g., Capg, Arpc1b, 3 and 5, Capzb, fascin) which are crucial for the 

realization of neuritogenesis [362, 363]. The alterations in the protein expression profile are largely 

mirror-inverted to those seen in the comparison ns-Zr15 vs flat-Zr [153]. 37 proteins have an opposite 

expression level in these two comparisons, whereas only 5 proteins are altered in the same way. 

On the other hand, a hyperosmotic shock applied to cells on PLL-coated glass (resulting in a 

decrease of membrane tension) led morphologically to the outgrowth of neurites (Figure 22). The 

proteomic data disclosed that the neuritogenesis was accompanied by a modification of the protein 

profile similar to those found in ns-Zr15 vs flat-Zr [153]. 39 proteins had the same alteration of the 

expression level. However, proteins known to be involved in IAC are basically missing here. In 

addition, 16 proteins also showed an opposite expression level modification. 

The PCA analysis carried out on the phosphopeptides differentially expressed in these 

conditions (ns-Zr15, ns-Zr15 hypo, NGF, PLL hyper, PLL) indicates that either hypoosmotic swelling 

on ns-Zr15, as well as the hyperosmotic shock on PLL, moves the profiles partially closer to the NGF 

condition. This emphasizes again that ns-Zr15 hypo basically lost its nanotopography-specific 

features, whereas PLL hyper has gained at least some characteristics of the NGF condition (Figure 

25 D). 

Overall, these proteomic data further reinforce that the modulation of the cellular 

nanomechanical properties is a key integrating signal causally linked to the change of the cellular 
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program and the differentiation processes that we discussed in our previous work [153], with a 

potential involvement of mTOR signaling constituents. 

3.5 Calcium signaling/homeostasis-related proteins affected by the 

cell/nanotopography interaction 

Alterations of the integrin/ECM interaction (e.g., in growth cone filopodia) [364, 365] and 

cellular biomechanics can modulate another important mechanotransduction-susceptible pathway; 

that is calcium signaling regulated by Ca2+ influx passing mechanosensitive membrane channels 

[366,178]. In turn, it has long been known that integrin/ligand binding is affected by divalent cations 

(also Ca2+) [367]. Local changes in calcium concentration influence integrin adhesion dynamics in 

growth cones and axon guidance in a calpain/talin-dependent manner [368], mediated e.g., by 

Piezo1/Fam38A [369]. However, despite this acknowledged role of calcium signals in neuronal 

differentiative processes, the exact spatiotemporal regulation and impact of calcium signaling is 

rather complex and intricate with many details still elusive [370-373]. To study the involvement of 

mechanosensitive channel types in our experimental context, we used the inhibitors SKF- 96365 for 

transient receptor potential cation channels (TRPC) and GsMTx4 for stretch-activated channels 

(SAC, such as e.g., Piezo) in collaboration with CIMAINA, Physics Department of University of 

Milan. With respect to the canonical NGF-stimulated outgrowth our results were in line with findings 

published by others, i.e., the two inhibitors showed opposing effects on neurite outgrowth [374, 375, 

372]. SKF-96365 impeded differentiation and neurite outgrowth, whereas GsMTx4 had a minor 

differentiation- enhancing effect (Figure 28).  
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Figure 28: impact of treatment with drugs affecting different types of calcium channels (SKF-96365 and 
GsMTx4). The phase contrast and the graph show the effect of the drugs SKF-96365 (15 µM) and GsMTx4 (10 µM), 
affecting transient receptor potential cation channels (TRPC), respectively stretch-activated channels (SAC), on PC12 
differentiation grown in the PLL +NGF and ns-Zr15 condition. The graph represents the global statistics of two 
independent experiments with the change of differentiation rate (left graph) and neurite length (right graph) in 
comparison to the corresponding condition Ø inhibition (white bars: PLL + NGF, gray bars: ns-Zr15). The bars 
represent the average (mean ± s.d.) of the two experiments (comprising in total 434–650 cells and 108–387 neurites 
quantified).  

This is consistent with the reported crosstalk between NGF/TrkA and TRPC-mediated calcium 

signaling [376, 377]. More interestingly and despite its independence of NGF/TrkA activation [153], 

the outcome was practically in the same range for the nanotopography-promoted neuritogenesis 

(Figure 28) suggesting a contribution of calcium signaling also in this mechanotransductively fostered 

differentiation. 

This reflected in the phosphoproteomic analysis. Independent of whether the neuritogenesis-

inducing stimulus was NGF or the nanotopography, numerous proteins with reported roles in the 

regulation of calcium signaling or homeostasis were differentially expressed and/or phosphorylated 

in the differentiated cells, compared to the PLL condition. However, the phosphoproteomic data 
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insinuate potential differences in calcium signaling-involved proteins between the ns-Zr15 and the 

NGF condition. Some proteins e.g., are only upregulated in ns-Zr15vsPLL and not in NGFvsPLL, 

such as annexin A8, thrombospondin-1, and versican. Annexin A8 is particularly interesting 

regarding mechanotransduction due to the fact that this protein is recruited in a Ca2+ -dependent 

manner to PIP2 -rich membrane domains at F-actin accumulation sites. It might therefore be 

important in the organization of specific membrane/cytoskeleton contacts [378]. To our best 

knowledge, roles of annexin A8 in neuronal cells have not been reported yet. The ECM glycoproteins 

thrombospondin-1 and versican; beyond the already mentioned involvement in IAC dynamics and 

neurito/synaptogenesis, bind calcium which affects their structure/function and participates in the 

regulation of calcium concentration [379, 380]. 

Other proteins related to calcium signaling can be found upregulated comparing directly ns-

Zr15 vs NGF, such as Ahnak, Fat4 (protocadherin 4) and Prkcsh/PKC substrate 80K- H. Ahnak is a 

scaffolding protein that partakes in versatile cellular processes, many in fact related to calcium 

signaling [381] and/or membrane morphogenesis (together with S100A10) [382, 383]. In the neuronal 

context, it is also a marker of enlargeosomes. These exocytic vesicles can contribute to the membrane 

supply for neurite outgrowth in a REST-regulated manner [384, 385, 320]. Fat/Protocadherin 4 

belongs to the calcium-dependent cadherin cell adhesion protein family and has been reported to be 

involved in the regulation of neuroprogenitor proliferation and differentiation upstream of YAP. Fat4 

downregulation lowers differentiation of neuroprogenitors into neurons in the cerebellum [386]. 

Prkcsh/PKC substrate 80K-H, which colocalises with IP3 R1, modulates IP3 -induced calcium release 

and might therefore have a role in synaptic plasticity [387]. 

In comparison to ns-Zr25 the S100 calcium-binding protein A10 [382, 388, 389] differentially 

phosphorylated in the cells on ns-Zr15. 
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In summary, Ca2+ signaling is important for both, NGF- and nanotopography-triggered 

neuritogenesis, but the proteomic data suggest that the cell/nanotopography interaction might 

influence some specific proteins prominently involved in calcium homeostasis and/or signaling. 

The presently adopted quantitative proteomic approach (associated to a systematic 

characterization) challenges PC12 cells with diverse experimental situations that address the impact 

of substrate nanotopography and/or cellular biomechanics on neuronal cell fate. The analyzed 

conditions comprised the canonical PC12 cell differentiation setting with a biochemical stimulus 

(PLL ±NGF; i.e., PLL and NGF), three different zirconia surface topographies with distinct nanoscale 

roughness parameters (flat-Zr, ns-Zr15, ns-Zr25) and treatments that affect the tensional state of the 

cell (ns-Zr15 hypo, PLL hyper). This approach enabled us to acquire an extensive molecular image 

of the processes and pathways that are sensitive to changes in the microenvironmental 

nanotopography and/or cellular nanomechanical properties, and to identify potential key elements 

therein. The data thus provide various starting points and indications on how the nanotopographical 

sensitivity is achieved and integrated into signaling pathways. 

 A robust engagement of proteins involved in cell morphology, cellular assembly and 

organization, and cellular movement (see IPA, Table 4) was observed and many proteins with 

acknowledged roles related to IAC/mechanotransduction were altered. In addition, versatile proteins 

with tasks in neuronal functioning and differentiation have been identified to be modulated in the 

nanotopography setting; as well as several proteins essentially involved in epigenetic and (post-

)transcriptional regulation during neuronal differentiation. This is in line with the hypothesis of a 

potential epigenetic regulation of cell reprogramming and differentiation dependent on cellular 

mechanics and microenvironmental cues (such as in this case surface nanotopography) [389, 390]. 

We have seen on the morphological level that only specific roughness parameters of the 

cluster-assembled zirconia surfaces (for PC12 cells ns-Zr15) provide appropriate biophysical cues to 

gain full neuritogenesis. An increased nanotopography roughness (ns-Zr25) instead leads to an only 
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partial effect on neuritogenesis [153]. In line with this, the proteomic analysis demonstrated that there 

is a partial overlap in the molecular alterations between ns-Zr15 and ns-Zr25, compared to NGF. Yet, 

the comparison revealed and specified also some decisive differences regarding proteins important 

for integrin activation and cytoskeletal organization. Notably, the IPA emphasized the importance of 

IAC in the mechanosensing to interpret the distinct natures of the topographies as ILK (integrin-

linked kinase) signaling is the only decreased pathway (Table 6). This is striking because ILK 

signaling is essentially involved in determining the molecular architecture of IAC and its signaling is 

sensitive to variations in ligand spacing/density. The proteomic data suggests furthermore that the 

increase in roughness starts to cause cellular stress in this PC12 cell model. 

In summary, many of the proteins found to be altered at the expression and/or phosphorylation 

level can be associated with the following categories which all have high relevance with respect to 

mechanotransductive signaling: cell/cell adhesion, glycocalyx and ECM, integrin activation and 

membrane/f-actin linkage, cell/substrate interaction and IAC, actomyosin organization/cellular 

mechanics, and nuclear organization and transcriptional regulation. By integrating the dissected 

alterations into a potential context, a complex nanotopography-sensitive network with broad crosstalk 

opportunities crystallizes, capable of regulating the cell/microenvironment interface and 

consequentially cellular cytoskeletal mechanics and signaling, here in control of neuronal 

differentiation processes (Figure 24). 

This comprehensive proteomic analysis insinuates that other pathways with strong correlation 

to mechanotransduction, such as Wnt (Table 8), mTOR (Figures 26, 27) and Ca2+ signaling (Figure 

28), might also be affected by, and involved in, the nanotopography-triggered cellular processes. 

However, more profound future studies are required regarding these pathways. 

Altogether, this proteomic-based analysis defined nanotopography-sensitive signaling hubs 

and key elements potentially important in the promotion of neuronal differentiation by 

nanotopographical cues. It delivered several interesting starting points to evaluate in more specific 
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studies, and in a wider context with respect to the role of certain proteins in mechanotransductive 

signalin that regulates neuron development and maturation. In the framework of biomaterials that are 

based on nanoscale surface features, an in-depth understanding of the impact of cell/nanotopography 

interaction on cellular processes and fate is the indispensable prerequisite. An improved insight might 

help to harness and effectively control the potential of these biomaterials in biomedical applications. 

Vice versa, information obtained by advanced biomaterial approaches could provide conclusions for 

a better comprehension of the difficult to access in vivo mode of operation of microenvironmental 

and cellular mechanobiological processes, e.g., regarding epigenetic regulation. 
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Proteomic analysis of GM1 Oligosaccharide, II3Neu5Ac-Gg4, in 

Neuroblastoma Cells 
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1. INTRODUCTION 

1.2 Structural lipids membrane: sphingolipids 

The structure of biological membranes consists in a lipid bilayer which acts as a barrier for 

polar molecules and ions. Membrane lipids are amphipathic so they have an hydrophilic head, polar 

and soluble in water, and an hydrophobic end, nonpolar and soluble in fat.  

Among this group of different lipids there are sphingolipids, also composed by a polar head 

and two nonpolar tail, but they differ from other glycerophospholipids for the absence of glycerol. 

 

Figure 29: Structure of sphingolipids. In sphingolipids, the hydrophobic region consists of a longchain sphingoid 
base with generally 18 carbons, such as sphingosine, which is linked to the acyl group of a fatty acid via an amide bond 
(R2). The hydrophilic region (R1) consists in the simplest case of a hydroxyl group in the case of ceramide [figure and 
legend from 392]. 
 

Sphingolipids are composed by a molecule of sphingosine, a long chain amino alcohol, also 

known as 4-sphingenin, or by its derivative, by a molecule of long chain fatty acid and by a polar 

head joined, in some cases, by a glycosidic bond, in other, by a phosphodiesteric bridge. The 

fundamental unit, common to all sphingolipids, is ceramide, formed when sphingosine reacts with 

long fatty acid. There are three subclasses of sphingolipids: 

• Sphingomyelins: phosphocholine or phosphoethanolamine are bounded at OH 

in C1, forming a polar head. They are in plasmatic membrane of animals and they are 

abundant in myelin. 
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• Glycosphingolipids: Localized in abundance on the outer surface of the plasma 

membrane, they have polar head, composed by a one or more sugar directly bound to -OH of 

ceramide C1, they don’t contain phosphate. Cerebroside and globoside are two neutral 

glycosphingolipids, the first is form by a single saccharidic unit bound to ceramide, the second 

are with two or more sugar, usually D-glucose, D- galattose or N-acetyl-D-galactosammin. 

They have pH 7, therefore are neutral at physiological pH, equal to 7.  

• Ganglioside: they are the most complex sphingolipids whit polar head formed 

by complex oligosaccharides, which end with one or more residues of N-acetylneuraminic 

acid (Neu5Ac) and sialic acid. The latter gives to ganglioside a negative charge at pH 7 which 

distinguishes them from globosides. Gangliosides with only one residue of sialic acid belong 

to GM series, where M is for mono; those with two residues are GD (D for di-) series and so 

on.  

When sphingolipids where discovered, more than 100 years ago, their function seemed 

enigmatic like Sphinx, their name comes from this consideration. Many of these are particular 

abundant in plasmatic membrane of neurons, others are recognition sites on the surface of the cell, 

but only for few of them it’s been recognized a specific function.  
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1.3 Gangliosides GM1  

Gangliosides are the major sialoglycoconjugate type in the nervous system and they have 

defined roles in signaling and/or regulatory mechanisms. It’s a molecule composed of a 

glycosphingolipid (ceramide and oligosaccharide) with N-acetylneuraminic acid linked on the sugar 

chain.  

 

Figure 30: structure of ganglioside GM1 

GM1 ganglioside has been of special interest with regards to its unusually heavy burden of 

signaling and regulatory assignments [393]. The list of cellular duties is guaranteed by the 

collaboration of GM1 with biomolecules that drive cellular functions such as: 

• microdomain regulation; 

• ion transport modulation; 

• neuronal differentiation; 

• immune cell reactivity; 

• neurotrophin signaling.  

The essential role of ganglioside GM1 (II3Neu5Ac-Gg4Cer) in neuronal differentiation, 

protection, and restoration is a milestone as demonstrated by the disastrous consequences deriving 

from its genetic deletion and, on the other hand, by its therapeutic potential in relation to 

neurodegenerative diseases [394-398]. The molecular mechanism explaining its physiological 

function and its pathological implication still remain to be clarify. For many years in vivo and in vitro 
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studies have suggested that oligo portion of GM1 could have a key role in promotion of neuritogenesis 

process, starting from results of Schengrund and Prouty paper (1988). To reinforce this evidence, two 

semisynthetic derivatives, LIGA4 and LIGA20, were produced through chemical modification in the 

GM1 ceramide structure. These two GM1 analogs maintained the neurotrophic potency, suggesting 

that the ceramide structure is not critical in determining the GM1 modulatory effects.  

Recently, Chiricozzi et al. proved, in the neuroblastoma cell line Neuro2a (N2a), that within 

the entire molecule, the oli- gosaccharide chain, β-Gal-(1-3)-β-GalNAc-(1-4)-[α- Neu5Ac-(2-3)]-β-

Gal-(1-4)-Glc-, II3 Neu5Ac-Gg4 (OligoGM1), is actually the moiety responsible for GM1 

neurodifferentiative properties by directly interacting with NGF-specific receptor TrkA at the plas- 

ma membrane (PM), leading to the activation of the ERK1/2 downstream pathway [399]. The 

hydrophilic head protrudes in the extracellular environment and acts at the cell surface level across 

the interaction with PM proteins, in this way GM1 exerts its bioactive feature.  
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1.4 Neuroblastoma cell line, Neuro2a (N2a)  

Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to 

study neuronal differentiation, axonal growth and signaling pathway [400]. These cells have neuronal 

and ameboid stem cells morphology. 

 

Figure 31: Neuro-2a at phase contrast microscopy 

These cells are able to differentiate in a few days into neurons of different type. Neurite 

outgrowth is a requisite for an accurate functional network of neurons during development [401, 402] 

and N2a cell have the advantage of responding quickly to environmental stimuli, e.g. serum 

deprivation by expressing signaling molecules that lead to neuronal differentiation and neurite 

growth.  

The neuroblastoma cell line Neuro2a (N2a) could differentiate under the influence of 

oligoGM1 by directly interacting with NGF-specific receptor TrkA at the plasma membrane (PM), 

leading to the activation of the ERK1/2 downstream pathway [19].  
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1.5 Nerve growth factor (NGF) 

In 1954 a nucleoprotein particle was isolated from mouse sarcomas, it was called Nerve growth 

factor for its property of enhancing growth and differentiation in sensory and sympathetic nerve cells. 

This important discovery is to be attributed to Rita Levi-Montalcini and collaborators and for this in 

the 1986 she was awarded the Nobel prize for Medicine, together with Stanley Cohen. Several studies 

demonstrate that NGF administered to primary cultured neurons prevents neuronal apoptosis and 

reduces neuronal degeneration in animal models of neurodegenerative diseases.  

NGF is a member of neurotrophins family formed by growth and survival factors, it has trkA 

as receptor, expressed primarily on nociceptors giving to NGF a prominent role in nociception, the 

sensory nervous system's response to certain harmful or potentially harmful stimuli. Neurotrophins 

are fundamental for neuronal survival, they innervate peripheral tissue and compete for the 

appropriate trophic molecules. Sensory and sympathetic neurons expressing trkA, bind NGF 

available, if they win survive instead they die through apoptosis. This is the mechanism through 

which is matched the number of central neurons to the size of the periphery to be innervated.  

NGF is produce after the cleavage of Pro-NGF, its precursor protein; however they have 

different and opposite roles. Pro-NGF administered to cervical ganglia neurons, expressing both NGF 

receptors p75NTR and trkA, leads them to programmed cell death instead NGF treatment of the same 

neurons results in survival and axonal growth. Free NGF have several physiological actions in the 

central nervous system. It exerts neurotrophic effects being critical for the neurite outgrowth and 

survival and maintenance of neurons, moreover NGF has also a strong antiapoptotic effect. NGF 

could also circulates throughout the body playing roles in different organs. It’s been demonstrated 

that NGF dysregulation could be involved in various neuronal degeneration diseases such as 

Alzheimer’s disease and multiple sclerosis [403-405]. Moreover, the dysfunction of NGF is linked to 

mental and psychiatric disorder, like schizophrenia, depression and autism [406-408].  
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NGF plays its role through binding with its receptors located on the cell surface. NGF exerts 

its trkA-mediated effects by becoming internalized and activating diverse signaling pathways [409]. 

Clathrin is essential for the internalization of NGF/trkA complex into endosomes that are transported 

to cell body where the cell signaling takes place. Trka is a 140 kDa glycoprotein which bind NGF. 

The receptor activated by NGF undergoes dimerization and autophosphorylation at several tyrosine 

residues activating its downstream targets, such as protein kinase B (Akt) or extracellular signal 

regulated protein kinase 1/2 (ERK1/2), which could cause neural differentiation and prevention of 

apoptosis. The other NGF low affinity receptor is p75NTR. Even if its distribution is wider the affinity 

of NGF for trkA is stronger. This receptor is mainly expressed in peripheral sensory neurons, 

sympathetic neurons, and basal forebrain cholinergic neurons [410]. 

 

Figure 32: Signaling of NGF receptors. NGF is formed by cleavage from Pro-NGF, which is the precursor protein 
form of NGF. TrkA receptor is the high affinity receptor for NGF; NGF binding to TrkA causes the phosphorylation of 
TrkA and activation of multiple signaling pathways such as the PI3K/Akt, Ras/Raf/MEK/ERK1/2, or PLC𝛾/PKC 
signaling pathways. Activation of these pathways eventually leads to different biological functions including the 
prevention of apoptosis. The other NGF receptor, p75NTR, is a low affinity receptor. The precise role of p75NTR depends 
upon the cellular context; it can enhance cell survival through NF-𝜅B pathway or promote cell death through JNK/c-Jun 
signal pathway [Figure and legend from 405]. 

TrkA is the high affinity catalytic receptor for the NGF and it mediates the main effects of 

NGF, which include cell growth, the formation and regeneration of neurites, and avoidance of 

programmed cell death [411]. The complex NGF-trkA leads to receptor dimerization and activation 
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thanks to phosphorylation of its tyrosine residues. When trkA is active it works as docking site for 

effector molecules such as Sch which in turn induces the recruitment of a complex of Shc/Grb2, 

subsequent to which several downstream signaling cascades are initiated and propagated [412]. The 

phosphorylation of Shc is the first step of activation of Ras-mediated activation of the mitogen-

activated protein kinase (MAPK) pathway. The membrane-associated G protein, Ras, binds and 

phosphorylates the protooncogene Raf, which in turn activates MAPK kinase (MEK) and 

phosphorylated MEK activates ERK1/2 [413]. Phosphorylated ERK1/2 could regulate the activity of 

many transcription factors, when it enters into the nucleus, like ETS domain-containing protein 

ELK1. ERK1/2 may also phosphorylate ribosomal S6 kinase (S6K), which leads to the 

phosphorylation of cyclic adenosine monophosphate response element binding protein, eventually 

affecting the regulation of the expression of NGF-inducible genes and, thus, contributing to neuronal 

differentiation or neurite outgrowth [414]. 

1.6 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine hydrochloride (MPTP) 

In this thesis we investigated the OligoGM1 role in the protection from 1-methyl-4-phenyl-

1,2,3,6- tetrahydropyridine hydrochloride (MPTP)-mediated cytotoxicity [415-417]. Biochemical 

analysis highlighted that the GM1 oligosaccharide protects neuroblastoma cells from MPTP toxic 

effect as well as from mitochondrial oxidative stress starting with PM activation of TrkA- ERK1/2 

signaling pathway. 

 

Figure 33: chemical structure of MPTP [figure from 418] 
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The MPTP is a secondary compound that is formed during meperidine synthesis. Meperidine 

is a synthetic piperidine ester with opioid analgesic activity. Meperidine mimics the actions of 

endogenous neuropeptides via opioid receptors, thereby producing the characteristic morphine-like 

effects on the mu-opioid receptor, including analgesia, euphoria, sedation, respiratory depression, 

miosis, bradycardia and physical dependence [537]. 

MPTP exerts its neurotoxic effect through biological activation by the catecholaminergic 

enzyme monoamine oxidase [419], producing an unstable intermediate 1-methyl-4-phenyl-2,3- 

dihydropyrdinium ion (MPDP+), prior to forming the toxic metabolite 1-methyl-4-phenyl pyridinium 

(MPP+) [415]. MPTP, via complex I, can inhibit mitochondrial respiration [420, 421] causing 

mitochondrial energy deprivation and eventual cell death [422]. In addition, MPTP is thought to 

mediate the generation of toxic reactive oxygen species [423] causing lethal damage to critical 

biomolecules. This is supported by the protective capacity of various antioxidants to alleviate MPTP-

induced cell death [424]. Even if the mechanism of action of MPTP is still not totally clear, the cell’s 

response to stress involves multiples signaling pathways. MAPK pathways plays important role in 

mediating neurotoxicity indeed in vivo studies have recently suggested that MPTP-induced cell death 

can be attenuated by inhibition of the stress-activated protein kinase (SAPK) [425]. 
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2. MATERIALS AND METHODS 

2.1 Preparation of OligoGM1  

OligoGM1 was prepared by ozonolysis followed by alkaline degradation [399, 426] from GM1 

ganglioside, which was purified from the total ganglioside mixture extracted from pig brains [427, 

428]. Briefly, GM1 was dissolved in methanol and slowly saturated with ozone at 23 °C. The solvent 

was then evaporated under vacuum and the residue brought immediately to pH 10.5–11.0 by addition 

of triethylamine. After solvent evaporation, GM1 oligosaccharide was purified by flash 

chromatography using chloroform/methanol/2-propanol/water 60:35:5:5 v/v/v/v as eluent. GM1 

oligosaccharide was dissolved in methanol and stored at 4 °C.  

NMR, mass spectrometry (MS), and HPTLC analyses [429] showed a purity over 99% for the 

prepared oligosaccharide (Fig 35).  

 

Figure 34 OligoGM1 structure and chemical synthesis. GM1 was purified from a mixture of bovine extract 
gangliosides using the ion-exchange chromatography technique. Subsequently, GM1 underwent catalytic ozonolysis and 
basic treatment with triethylamine to cleave the apolar chain from the oligosaccharide core. OligoGM1 was purified from 
the reaction mixture using standard chromatographic procedures and its purity was proved by MS analysis. 
Glycoconjugates representation is according to Varki et al. 2015 [430] (TEA, triethylamine) 
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Figure 35 MS profile ESI-MS (negative-ion mode): m/z= 997 [M - H]-. 

2.2 Cell Cultures  

Murine neuroblastoma N2a cells (RRID: CVCL_0470) were cultured and propagated as 

monolayer in DME high glucose medium supplemented with 10% heat-inactivated FBS, 1% L-

glutamine, and 1% penicillin/streptomycin all from EuroClone (Paignton, UK), at 37 °C in a 

humidified atmosphere of 95% air/5% CO2. Cells were subcultured to a fresh culture when growth 

reached the 80–90% confluence (i.e., every 3–4 days).  

2.3 Cell Treatments 

N2a cells were plated at 5 × 103/cm2 and incubated for 24 h to allow cell attachment and 

recovery in complete medium before treatments. 

2.3.1 OligoGM1 or RA Treatment 

To induce neurodifferentiation, growth medium was removed and N2a cells were pre-

incubated in pre-warmed (37 °C) Transfectagro medium (Corning, NY, USA) containing 2% FBS, 

1% L-glutamine, and 1% penicillin/streptomycin (EuroClone Paignton, UK), for 30 min at 37 °C. 

Sequentially, cells were incubated at 37 °C with 50 µM OligoGM1 [399] or 20 µM RA (Sigma-
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Aldrich, St. Louis, MO, USA) [431]. Control cells were incubated under the same experimental 

conditions but omitting any addition of OligoGM1 or RA. 

2.3.2 MPTP Treatment 

To induce neurotoxicity, following 24 h from OligoGM1 or RA treatment, cells were 

incubated with MPTP (250 µM) [415] (Figure 36). Control experiments were carried out under the 

same experimental conditions. 

 

Figure 36 Paradigm of OligoGM1 treatment. N2a cells were plated at 5 x 103/cm2 in complete medium and incubated 
for 24 h. After, cells were preincubated with 50 µM OligoGM1 for 24 h prior to exposure to MPTP (250 µM) for 24 h 
(Transfectagro medium containing 2% FBS).  

2.3.3 Inhibition of TrkA Receptor 

To block TrkA activity in N2a cells, TrkA inhibitor (CAS 388626-12-8 from Merck Millipore 

Billerica, MA, USA) (120 nM) was added to the incubation medium 1 h before the addition of 

OligoGM1 [432, 433]. 

2.4. Proteomic analysis 

N2a cells were incubated in the absence (control) or in the presence of 50 µM OligoGM1 for 

24 h. Then, medium was removed and cells were rinsed twice with 1 mM Na3VO4, 1 mM PMSF, 2% 

(v/v) aprotinin, and 1% (v/v) IP in cold PBS (Sigma-Aldrich St. Louis, MO, USA). Cells were scraped 

in the same buffer and centrifuged 800×g for 5 min at 4 °C. Pellets were immediately frozen by liquid 

nitrogen and conserved at − 80 °C before proteomic analysis by a shotgun label-free proteomic 

approach for the identification and quantification of expressed proteins. 
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Sample treatment and mass parameters of mass spectrometric analysis remain the same 

described in chapter 2.4 Protein identification by mass spectrometry and 2.5 Mass Spectrometry of 

PC12 section.  

2.5 Data processing and analysis 

MS spectra were searched against the mouse Uniprot sequence database (release 31.07.2017) 

by MaxQuant (version 1.3.0.5) [437]. The following parameters were used: initial maximum allowed 

mass deviation of 15 ppm for monoisotopic precursor ions and 0.5 Da for MS/MS peaks, trypsin 

enzyme specificity, a maximum of two missed cleavages, carbamidomethyl cysteine as fixed 

modification, N-terminal acetylation, methionine oxidation, asparagine/glutamine deamidation, and 

serine/threonine/tyrosine phosphorylation as variable modifications. False protein identification rate 

(5%) was estimated by searching MS/MS spectra against the corresponding reversed-sequence 

(decoy) database. The minimum required peptide length was set to 6 amino acids and the minimum 

number of unique peptide supporting protein identification was set to 1. Quantification in MaxQuant 

was performed using the built-in label-free quantification (LFQ) algorithms based on extracted ion 

intensity of precursor ions. 

Three biological replicates, each one replicated twice, were carried out for treated and control 

cells. Only proteins present and quantified in at least 2 out of 3 biological repeats were considered as 

positively identified in a sample and used for statistical analyses performed by the Perseus software 

module (version 1.5.5.3, www.biochem.mpg.de/mann/tools/). A t test (p value ≤ 0.01) was carried 

out to identify proteins differentially. 
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3. RESULTS AND DISCUSSION 

3.1 Proteomic profile of oligoGM1-treated cells 

The information on TrkA-MAPK cascade activation by the OligoGM1 on N2a cells [399] 

suggests the triggering of other biochemical signaling processes besides that of cellular 

differentiation. To verify such hypothesis, we performed a proteomic analysis of cells treated with 50 

µM OligoGM1 for 24 h. 

Proteins were identified by a shotgun proteomic approach, using label free for the relative 

quantification of their expression levels. The proteomic analysis led to the identification of 3166 

proteins in treated cells and 3132 in control cells with Pearson’s correlation of 0.94, suggesting that 

the two data sets are very similar in terms of protein composition (figure 37a).  

In accordance, the Venn diagram (figure 37b) shows that 2842 proteins are commonly 

expressed both in control and OligoGM1-treated cells, among which 70 proteins are differently 

expressed, 23 up and 47 downregulated, in treated cells in comparison to controls (Table 9), while 

350 (Table 10) and 324 (Table 11) proteins are expressed only in control cells and in OligoGM1-

treated cells, respectively. 
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Figure 37 Proteomic characterization of OligoGM1-treated cells and control cells. a Scatter plot of the proteome of 
N2a cells treated (OligoGM1) and untreated (CTRL) with OligoGM1. Pearson’s correlation coefficient R = 0.94. b Venn 
diagram showing the proteins identified in at least 2/3 replicates. Proteins common to both data sets were considered for 
differential expression. 

Table 9 List of the proteins statistically differentially expressed in OligoGM1 vs CONTROL N2a cells 

Student's T-test Difference 
OLIGO_CTR 

Majority 
protein IDs Protein names 

Gene 
names 

-3,97953 E9QMV2 Costars family protein ABRACL 
3110003A1

7Rik 
-3,19309 Q9CQR2 40S ribosomal protein S21 Rps21 
-3,07356 Q9CQZ1 Heat shock factor-binding protein 1 Hsbp1 
-3,00908 Q3TIX9 U4/U6.U5 tri-snRNP-associated protein 2 Usp39 
-2,89295 P60710 Actin, cytoplasmic 1 Actb 
-2,47279 Q9CWZ3 RNA-binding protein 8A Rbm8a 
-2,46072 P55105 Bone morphogenetic protein 8B Bmp8b 
-2,12761 Q6ZWV3 60S ribosomal protein L10 Rpl10 
-2,00293 A6H6S0 Hect domain and RLD 3 Herc3 
-1,92439 Q8BJA2 Solute carrier family 41 member 1 Slc41a1 
-1,91339 Q9ESW4 Acylglycerol kinase, mitochondrial Agk 
-1,75705 Q8VIB5 BarH-like 2 homeobox protein Barhl2 
-1,68246 P11157 Ribonucleoside-diphosphate reductase subunit M2 Rrm2 
-1,61967 A0A0R4J0I2 Transmembrane protein 132D Tmem132d 

-1,5279 E9Q2G7 
Solute carrier family 2, facilitated glucose 

transporter member 3 Slc2a3 
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-1,51962 P54103 DnaJ homolog subfamily C member 2 Dnajc2 
-1,49549 P58389 Serine/threonine-protein phosphatase 2A activator Ppp2r4 
-1,40454 E9PW66 Nucleosome assembly protein 1-like 1 Nap1l1 
-1,37956 Q9Z1R2 Large proline-rich protein BAG6 Bag6 
-1,37446 Q8VEH6 COBW domain-containing protein 1 Cbwd1 
-1,37404 Q9CWF2 Tubulin beta-2B chain Tubb2b 
-1,31362 Q924T2 28S ribosomal protein S2, mitochondrial Mrps2 
-1,31199 Q9QZD8 Mitochondrial dicarboxylate carrier Slc25a10 

-1,23455 G3X8Y3 
N-alpha-acetyltransferase 15, NatA auxiliary 

subunit Naa15 
-1,21106 A0A0R4J008 Histone deacetylase 2 Hdac2 
-1,14768 E9Q6G4 ATP-binding cassette sub-family A member 7 Abca7 
-1,13689 Q9Z2Q6 Septin-5 Sept5 
-1,12486 Q4FE56 Ubiquitin carboxyl-terminal hydrolase Usp9x 
-1,09299 Q0VBD2 Protein MCM10 homolog Mcm10 
-1,0627 Q6P1J1 Crmp1 protein Crmp1 

-0,961719 A2AFI6 Transmembrane 9 superfamily member Gm364 
-0,908271 D3Z780 Translation initiation factor eIF-2B subunit delta Eif2b4 
-0,878172 E9QM77 Ataxin-2 Atxn2 
-0,840163 Q9R0P4 Small acidic protein Smap 

-0,831308 Q9Z0V8 
Mitochondrial import inner membrane translocase 

subunit Tim17-A Timm17a 
-0,814648 I1E4X0 Disks large-associated protein 4 Dlgap4 
-0,801263 E9Q1P8 Interferon regulatory factor 2-binding protein 2 Irf2bp2 

-0,750502 Q62465 
Synaptic vesicle membrane protein VAT-1 

homolog Vat1 
-0,7079 E9Q616 AHNAK nucleoprotein (desmoyokin) Ahnak 

-0,703338 Q9CQ22 Ragulator complex protein LAMTOR1 Lamtor1 
-0,64407 P56480 ATP synthase subunit beta, mitochondrial Atp5b 
-0,641168 Q9DAP7 Histone chaperone ASF1B Asf1b 
-0,509192 Q9Z1N5 Spliceosome RNA helicase Ddx39b Ddx39b 
-0,448086 Q8BTW3 Exosome complex component MTR3 Exosc6 
-0,387215 Q6PAM1 Alpha-taxilin Txlna 
-0,368086 Q9WTM5 RuvB-like 2 Ruvbl2 
-0,316293 Q3UHJ0 AP2-associated protein kinase 1 Aak1 
0,272641 Q99LC8 Translation initiation factor eIF-2B subunit alpha Eif2b1 
0,309552 Q8VE73 Cullin-7 Cul7 
0,450782 Q9EQI8 39S ribosomal protein L46, mitochondrial Mrpl46 

0,484953 G5E8R4 
Serine/threonine-protein phosphatase 6 regulatory 

subunit 3 Ppp6r3 
0,550471 Q60790 Ras GTPase-activating protein 3 Rasa3 
0,657146 E9Q0S6 Tensin 1 Tns1 
0,700328 Q3U9G9 Lamin-B receptor Lbr 
0,71614 A0A087WPU8 Transcription factor Dp-2 Tfdp2 
0,724323 P53994 Ras-related protein Rab-2A Rab2a 
0,868009 Q6PDI6 Protein FAM63B Fam63b 
0,886094 Q64378 Peptidyl-prolyl cis-trans isomerase FKBP5 Fkbp5 
0,972225 P36552 Coproporphyrinogen-III oxidase, mitochondrial Cpox 
1,02418 P62827 GTP-binding nuclear protein Ran Ran 
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1,11385 P61514 60S ribosomal protein L37a Rpl37a 
1,21209 A0A0U1RNX8 B-cell CLL/lymphoma 7 protein family member C Bcl7c 
1,25283 Q6GQT9 Nodal modulator 1 Nomo1 
1,33364 P29595 NEDD8 Nedd8 
1,35297 P62281 40S ribosomal protein S11 Rps11 
1,53449 P35550 rRNA 2-O-methyltransferase fibrillarin Fbl 
1,60853 P62889 60S ribosomal protein L30 Rpl30 
1,7774 Q6PIU9 Uncharacterized protein FLJ45252 homolog N/A 
1,84351 Q8CBB6 Histone H2B Gm13646 
2,89154 P02301 Histone H3.3C H3f3c 

 

Table 10 List of the proteins only expressed in CONTROL cells in the comparison OligoGM1 vs CONTROL N2a 

cells 

Majority protein 
IDs Protein names Gene names 

A0A075B5Z7 T cell receptor alpha variable 5-1 Trav5-1 
A0A087WPL5 ATP-dependent RNA helicase A Dhx9 

Q9CWU4 UPF0690 protein C1orf52 homolog 
2410004B18Ri

k 
Q8BXK8 Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 Agap1 

A0A087WRX8 Serine/arginine repetitive matrix protein 2 Srrm2 
Q60862 Origin recognition complex subunit 2 Orc2 

A0A087WSQ9 Zinc finger CCHC domain-containing protein 2 Zcchc2 
G3UZM1 Probable JmjC domain-containing histone demethylation protein 2C Jmjd1c 
B7ZCJ1 Rho GTPase-activating protein 21 Arhgap21 

A0A0A6YVS2 Transmembrane and coiled-coil domain-containing protein 1 Tmco1 
Q64735 Complement component receptor 1-like protein Cr1l 

A0A0A6YVW3 Immunoglobulin heavy variable V1-23 Ighv1-23 
A0A0A6YXG9 Uridine-cytidine kinase 2 Uck2 
A0A0B4J1J5 Immunoglobulin heavy variable V9-3 Ighv9-3 

E9PZ43 Microtubule-associated protein Mtap4 
A0A0G2JEG1 Serine/arginine-rich-splicing factor 11 Srsf11 

O54946 DnaJ homolog subfamily B member 6 Dnajb6 
A0A0G2JFP4 Ferric-chelate reductase 1 FRRS1 

Q8BXV2 BRI3-binding protein Bri3bp 
A0A0G2LB90 Tubulin polyglutamylase TTLL7 Ttll7 
A0A0J9YTZ5 Protein FAM193A Fam193a 

O35427 DNA-directed RNA polymerase III subunit RPC9 Crcp 
F7BJB9 MORC family CW-type zinc finger protein 3 Morc3 
Q3UEZ8 Sodium/bile acid cotransporter 4 Slc10a4 
Q4VC33 Macrophage erythroblast attacher Maea 
P17183 Gamma-enolase Eno2 
Q80V62 Fanconi anemia group D2 protein homolog Fancd2 
Q9CQR6 Serine/threonine-protein phosphatase 6 catalytic subunit Ppp6c 

A0A0N4SVR5 RasGEF domain family, member 1A Rasgef1a 
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A0A0R4J023 Methylglutaconyl-CoA hydratase, mitochondrial Auh 
A0A0R4J0D1 Store-operated calcium entry-associated regulatory factor Tmem66 
A0A0R4J0H8 Fibronectin type III domain-containing protein 3B Fndc3b 
A0A0R4J0J4 Atypical chemokine receptor 1 Ackr1 
A0A0R4J0P1 Isobutyryl-CoA dehydrogenase, mitochondrial Acad8 
A0A0R4J0T5 CUGBP Elav-like family member 1 Celf1 
A0A0R4J1C6 Butyrophilin-like protein 10 Btnl10 
A0A0R4J1K1 CCR4-NOT transcription complex subunit 4 Cnot4 

Q9QZR5 Homeodomain-interacting protein kinase 2 Hipk2 
A0A0R4J220 Atypical chemokine receptor 1 Kifc3 
A0A0R4J259 Heterogeneous nuclear ribonucleoprotein Q Syncrip 

Q8BX09 Retinoblastoma-binding protein 5 Rbbp5 
A0A0U1RNX4 Unconventional prefoldin RPB5 interactor Uri1 
A0A140LJ04 Zinc finger ZZ-type and EF-hand domain-containing protein 1 Zzef1 
A0A140LJ70 Protein arginine N-methyltransferase 1 Prmt1 

O55222 Integrin-linked protein kinase Ilk 
Q6PD31 Trafficking kinesin-binding protein 1 Trak1 
Q3TIR3 Synembryn-A Ric8a 
G5E8I8 Calcium homeostasis endoplasmic reticulum protein Cherp 

E9PZW8 Unconventional myosin-IXb Myo9b 
O54833 Casein kinase II subunit alpha Csnk2a2 
Q7TR45 Olfactory receptor Olfr1131 
Q9WU63 Heme-binding protein 2 Hebp2 
Q8R4S0 Protein phosphatase 1 regulatory subunit 14C Ppp1r14c 

A0A1L1SUG9 Cadherin EGF LAG seven-pass G-type receptor 3 Celsr3 
Q4VBF2 R3H domain-containing protein 4 R3hdm4 
K3W4Q9 Golgi-associated PDZ and coiled-coil motif-containing protein Gopc 
Q8VHR5 Transcriptional repressor p66-beta Gatad2b 
A2A432 Cullin-4B Cul4b 
P02535 Keratin, type I cytoskeletal 10 Krt10 
A2A654 Bromodomain PHD finger transcription factor Bptf 
A2AE27 AMP deaminase 2 Ampd2 
Q9D711 Pirin Pir 
A2AIR7 Voltage-dependent N-type calcium channel subunit alpha-1B Cacna1b 

A2AMD0 Predicted gene 12666 Gm12666 
A2AML7 Zinc finger protein 352 Zfp352 
Q8JZX4 Splicing factor 45 Rbm17 
A2APR8 Mitotic checkpoint serine/threonine-protein kinase BUB1 Bub1 
Q80TY0 Formin-binding protein 1 Fnbp1 
A2ASI5 Sodium channel protein type 3 subunit alpha Scn3a 

A2AUD5 Tumor protein D54 Tpd52l2 
A2AVR2 HEAT repeat-containing protein 8 Heatr8 
A2AWI7 Endophilin-B2 Sh3glb2 
Q9D868 Peptidyl-prolyl cis-trans isomerase H Ppih 
A3KFM7 Chromodomain-helicase-DNA-binding protein 6 Chd6 
A4FUP9 Glycosyltransferase 1 domain-containing protein 1 Glt1d1 
A6H630 UPF0364 protein C6orf211 homolog Armt1 
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Q9D3L3 Synaptosomal-associated protein Snap23 
Q9WTT4 V-type proton ATPase subunit G 2 Atp6v1g2 
B1AQW2 Microtubule-associated protein Mapt 
Q9QWI6 SRC kinase signaling inhibitor 1 Srcin1 
B1AUN2 Eukaryotic translation initiation factor 2B, subunit 3 Eif2b3 
B1AVB2 Scm polycomb group protein-like 2 Scml2 
B1AZM2 Predicted gene 15091 Gm15091 
O35317 Pre-B-cell leukemia transcription factor 3 Pbx3 

B2M1R6 Heterogeneous nuclear ribonucleoprotein K Hnrnpk 
B2RXS4 Plexin-B2 Plxnb2 
B7ZC40 Glutaredoxin-2, mitochondrial Glrx2 
P47934 Carnitine O-acetyltransferase Crat 
B8JJZ4 Zinc finger protein 808 Zfp808 

G3UZF7 Centrosomal protein C10orf90 homolog D7Ertd443e 
P62843 40S ribosomal protein S15 Rps15 
E9Q425 Tubulin polyglutamylase TTLL5 Ttll5 
P17515 C-X-C motif chemokine 10 Cxcl10 

Q9Z1M4 Ribosomal protein S6 kinase beta-2 Rps6kb2 
D3YXS5 Kinesin-like protein KLP6 Klp6 
D3YXW1 Protein LLP homolog Llph 
Q99MN9 Propionyl-CoA carboxylase beta chain, mitochondrial Pccb 
Q9D6K7 Tetratricopeptide repeat protein 33 Ttc33 
D3Z2J4 AKT-interacting protein Aktip 

Q9WTZ1 RING-box protein 2 Rnf7 
Q9CQB5 CDGSH iron-sulfur domain-containing protein 2 Cisd2 
D3Z4U8 DDB1- and CUL4-associated factor 11 Dcaf11 
D3Z6B7 DNA damage-regulated autophagy modulator protein 2 Dram2 
D3Z7P4 Glutaminase kidney isoform, mitochondrial Gls 
P97785 GDNF family receptor alpha-1 Gfra1 
Q8CIG9 F-box/LRR-repeat protein 8 Fbxl8 
D6RJI8 TBC1 domain family member 13 Tbc1d13 

Q5SUQ9 CST complex subunit CTC1 Ctc1 
E0CXT7 Cleavage and polyadenylation specificity factor subunit 4 Cpsf4 
E9PU87 Serine/threonine-protein kinase SIK3 Sik3 
P70170 ATP-binding cassette sub-family C member 9 Abcc9 
E9PUR1 Opticin Optc 
P48774 Glutathione S-transferase Mu 5 Gstm5 

E9PVN6 Synaptojanin-2-binding protein Gm20498 
E9PVZ8 Golgi autoantigen, golgin subfamily b, macrogolgin 1 Golgb1 
E9PWQ7 Zonadhesin Zan 
Q8CCB4 Vacuolar protein sorting-associated protein 53 homolog Vps53 
E9PXU1 Integrator complex subunit 6-like Ddx26b 
E9PYD5 Transcription elongation factor A protein 1 Tcea1 
Q6NZN0 RNA-binding protein 26 Rbm26 
E9Q430  Gm2832 
O08532 Voltage-dependent calcium channel subunit alpha-2/delta-1 Cacna2d1 
Q8R0F3 Sulfatase-modifying factor 1 Sumf1 
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E9Q2E4 HECT domain E3 ubiquitin protein ligase 4 Gm15800 
E9Q2N4 Vomeronasal type-1 receptor Vmn1r184 
E9Q394 A-kinase anchor protein 13 Akap13 
E9Q4K7 Kinesin family member 13B Kif13b 
E9Q4R1 Protein FAM102B Fam102b 
E9Q545 Olfactory receptor Olfr552 
E9Q5L3 Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial Acadsb 
G5E8P0 Gamma-tubulin complex component 6 Tubgcp6 
E9Q7E2 AT-rich interactive domain-containing protein 2 Arid2 
Q3UQ84 Threonine--tRNA ligase, mitochondrial Tars2 
E9Q7P5 Olfactory receptor Olfr640 
E9Q9J4 Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 Ppip5k2 
Q6ZPL9 ATP-dependent RNA helicase DDX55 Ddx55 
H3BJQ9 Homeobox protein cut-like 1 Cux1 
F6QYZ5 Peptidase inhibitor 16 Pi16 
F6S169 Tankyrase-2 Tnks2 
O88384 Vesicle transport through interaction with t-SNAREs homolog 1B Vti1b 
Q810U5 Coiled-coil domain-containing protein 50 Ccdc50 
Q6DFZ2 Nesprin-2 Syne2 
F6XVH0 Predicted gene 12830 Gm12830 
Q9CR21 Acyl carrier protein, mitochondrial Ndufab1 

F6ZGR6 RIKEN cDNA D430041D05 gene 
D430041D05R

ik 
J3QPW1 Phosphatidylinositol transfer protein alpha isoform Pitpna 
Q69ZR2 E3 ubiquitin-protein ligase HECTD1 Hectd1 
Q99N84 28S ribosomal protein S18b, mitochondrial Mrps18b 
P19426 Negative elongation factor E Rdbp 
Q80VJ2 Steroid receptor RNA activator 1 Sra1 
G3X9H5 Huntingtin Htt 

G3X9Z8 Innate immunity activator protein 
5730559C18Ri

k 
G5E852 Tyrosine-protein kinase Jak2 
H3BLL4 Heterogeneous nuclear ribonucleoprotein K Hnrnpk 
Q60766 Immunity-related GTPase family M protein 1 Irgm1 
K4DI67 Condensin-2 complex subunit D3 Ncapd3 
K7N678 Olfactory receptor Olfr893 

M9MMK5 Olfactory receptor Olfr329-ps 
O08675 Proteinase-activated receptor 3 F2rl2 
O35350 Calpain-1 catalytic subunit Capn1 
O54732 Matrix metalloproteinase-15 Mmp15 
O54774 AP-3 complex subunit delta-1 Ap3d1 
O70456 14-3-3 protein sigma Sfn 
P01649 Ig kappa chain V-V regions  
P01897 H-2 class I histocompatibility antigen, L-D alpha chain H2-L 
P01942 Hemoglobin subunit alpha Hba 
P02772 Alpha-fetoprotein Afp 
P08122 Collagen alpha-2(IV) chain Col4a2 
P10922 Histone H1.0 H1f0 
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P13542 Myosin-8 Myh8 
P15533 Tripartite motif-containing protein 30A Trim30a 
P20060 Beta-hexosaminidase subunit beta Hexb 
P22437 Prostaglandin G/H synthase 1 Ptgs1 
P31938 Dual specificity mitogen-activated protein kinase kinase 1 Map2k1 
P35585 AP-1 complex subunit mu-1 Ap1m1 
P42227 Signal transducer and activator of transcription 3 Stat3 
P43247 DNA mismatch repair protein Msh2 Msh2 
P48432 Transcription factor SOX-2 Sox2 
P49586 Choline-phosphate cytidylyltransferase A Pcyt1a 
Q922U2 Keratin, type II cytoskeletal 5 Krt5 
P51125 Calpastatin Cast 
P51807 Dynein light chain Tctex-type 1 Dynlt1 
P51943 Cyclin-A2 Ccna2 
P55200 Histone-lysine N-methyltransferase MLL Mll 
P57716 Nicastrin Ncstn 
P58058 NAD kinase Nadk 
P58871 182 kDa tankyrase-1-binding protein Tnks1bp1 
P59017 Bcl-2-like protein 13 Bcl2l13 
P61967 AP-1 complex subunit sigma-1A Ap1s1 
P61971 Nuclear transport factor 2 Nutf2 
P63147 Ubiquitin-conjugating enzyme E2 B Ube2b 
P70279 Surfeit locus protein 6 Surf6 
P70333 Heterogeneous nuclear ribonucleoprotein H2 Hnrnph2 
P70388 DNA repair protein RAD50 Rad50 
P81117 Nucleobindin-2 Nucb2 
Q6P4T3 Eyes absent homolog 3 Eya3 
P97481 Endothelial PAS domain-containing protein 1 Epas1 

Q0VBL3 RNA-binding protein 15 Rbm15 
Q14AX6 Cyclin-dependent kinase 12 Cdk12 
Q14CH7 Alanine--tRNA ligase, mitochondrial Aars2 
Q32KG4 Retrotransposon gag domain-containing protein 1 Rgag1 
Q3TC93 HCLS1-binding protein 3 Hs1bp3 
H9H9T1 Protein FAM107B Fam107b 
Q3TMP1 General transcription factor IIIC, polypeptide 3 Gtf3c3 
Q3TTY0 Phospholipase B1, membrane-associated Plb1 
Q3TZR9 Cyclic AMP-dependent transcription factor ATF-7 Atf7 
Q3U186 Probable arginine--tRNA ligase, mitochondrial Rars2 
Q3UHI4 Protein TMED8 Tmed8 
Q6PDG5 SWI/SNF complex subunit SMARCC2 Smarcc2 
Q3UM18 Large subunit GTPase 1 homolog Lsg1 
Q3UMR5 Calcium uniporter protein, mitochondrial Mcu 
Q3UMU9 Hepatoma-derived growth factor-related protein 2 Hdgfrp2 
Q3USJ8 FCH and double SH3 domains protein 2 Fchsd2 
Q64458 Cytochrome P450 2C29 Cyp2c29 

Q3UWX6 RIKEN cDNA E330034G19 gene 
E330034G19Ri

k 
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Q561M1 Acp1 protein Acp1 
Q68FF6 ARF GTPase-activating protein GIT1 Git1 
Q5ND29 Rab-interacting lysosomal protein Rilp 
Q8BFY7 Protein FAM64A Fam64a 
Q5RJG1 Nucleolar protein 10 Nol10 
Q99N89 39S ribosomal protein L43, mitochondrial Mrpl43 
Q5SSW2 Proteasome activator complex subunit 4 Psme4 
Q7TNE3 Sperm-associated antigen 7 Spag7 
Q60596 DNA repair protein XRCC1 Xrcc1 
Q60778 NF-kappa-B inhibitor beta Nfkbib 
Q60886 Olfactory receptor 147 Olfr147 
Q61025 Intraflagellar transport protein 20 homolog Ift20 
Q61048 WW domain-binding protein 4 Wbp4 
Q61136 Serine/threonine-protein kinase PRP4 homolog Prpf4b 
Q61838 Alpha-2-macroglobulin A2m 
Q63886 UDP-glucuronosyltransferase 1-1 Ugt1a1 
Q641P0 Actin-related protein 3B Actr3b 
Q64676 2-hydroxyacylsphingosine 1-beta-galactosyltransferase Ugt8 
Q6A037 NEDD4-binding protein 1 N4bp1 
Q6A152 Cytochrome P450 4X1 Cyp4x1 
Q6DID3 Protein SCAF8 Scaf8 
Q6NV83 U2 snRNP-associated SURP motif-containing protein U2surp 
Q6NXJ0 Protein WWC2 Wwc2 
Q6NZR5 Superkiller viralicidic activity 2-like (S. cerevisiae) Skiv2l 
Q6P1C6 Leucine-rich repeats and immunoglobulin-like domains protein 3 Lrig3 
Q6P5E6 ADP-ribosylation factor-binding protein GGA2 Gga2 
Q6P9J9 Anoctamin-6 Ano6 

Q6PGC1 ATP-dependent RNA helicase Dhx29 Dhx29 
Q6V4S5 Protein sidekick-2 Sdk2 
Q6ZQ73 Cullin-associated NEDD8-dissociated protein 2 Cand2 

Q7TMM9 Tubulin beta-2A chain Tubb2a 
Q7TPM6 Fibronectin type III and SPRY domain-containing protein 1 Fsd1 
Q7TQA6 Taste receptor type 2 member 38 Tas2r38 
Q7TQT7 Olfactory receptor Olfr1371 
Q7TQZ0 Olfactory receptor Olfr32 
Q7TR71 Olfactory receptor Olfr1062 
Q7TRI9 Olfactory receptor Olfr129 
Q80X59 Transmembrane and coiled-coil domain-containing protein 5B Tmco5b 
Q80X71 Transmembrane protein 106B Tmem106b 
Q80X98 DEAH (Asp-Glu-Ala-His) box polypeptide 38 Dhx38 
Q80ZX2 Zfp790 protein Zfp790 
Q8BFQ4 WD repeat-containing protein 82 Wdr82 
Q8BGD6 Putative sodium-coupled neutral amino acid transporter 9 Slc38a9 
Q8BGR9 Ubiquitin-like domain-containing CTD phosphatase 1 Ublcp1 
Q9EQ28 DNA polymerase delta subunit 3 Pold3 
Q8BH79 Anoctamin-10 Ano10 
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Q8BHF7 
CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase, 

mitochondrial Pgs1 
Q8BJ03 Cytochrome c oxidase assembly protein COX15 homolog Cox15 
Q8BP48 Methionine aminopeptidase 1 Metap1 
Q9CTN4 Rho-related BTB domain-containing protein 3 Rhobtb3 
Q8BVG4 Dipeptidyl peptidase 9 Dpp9 
Q8BYL4 Tyrosine--tRNA ligase, mitochondrial Yars2 
Q8C052 Microtubule-associated protein 1S Map1s 
Q8C0L8 Conserved oligomeric Golgi complex subunit 5 Cog5 
Q8C263 Spindle and kinetochore-associated protein 3 Ska3 
Q8C3Y4 Kinetochore-associated protein 1 Kntc1 
Q8C9W3 A disintegrin and metalloproteinase with thrombospondin motifs 2 Adamts2 
Q8CD10 EF-hand domain-containing family member A1 Efha1 
Q8CD92 Tetratricopeptide repeat protein 27 Ttc27 
Q8CDA1 Phosphatidylinositide phosphatase SAC2 Inpp5f 
Q8CE46 Pseudouridylate synthase 7 homolog-like protein Pus7l 
Q8CEC6 Peptidylprolyl isomerase domain and WD repeat-containing protein 1 Ppwd1 
Q8CI03 FLYWCH-type zinc finger-containing protein 1 Flywch1 
Q8CI61 BAG family molecular chaperone regulator 4 Bag4 
Q8CIL4 Uncharacterized protein C1orf131 homolog  
Q8CJ27 Abnormal spindle-like microcephaly-associated protein homolog Aspm 
Q8CJG0 Protein argonaute-2 Eif2c2 
Q8K202 DNA-directed RNA polymerase I subunit RPA49 Polr1e 
Q8K248 4-hydroxyphenylpyruvate dioxygenase-like protein Hpdl 
Q8K4P0 pre-mRNA 3 end processing protein WDR33 Wdr33 
Q8R000 Organic solute transporter subunit alpha Osta 
Q8R080 G2 and S phase-expressed protein 1 Gtse1 
Q8R0A0 General transcription factor IIF subunit 2 Gtf2f2 
Q8R293 Vomeronasal type-1 receptor Vmn1r73 
Q8R322 Nucleoporin GLE1 Gle1 
Q8R3H7 Heparan sulfate 2-O-sulfotransferase 1 Hs2st1 
Q8R3K3 Pentatricopeptide repeat-containing protein 2 Ptcd2 
Q8R3N6 THO complex subunit 1 Thoc1 
Q8R480 Nuclear pore complex protein Nup85 Nup85 
Q8R4H4 Carboxypeptidase A5 Cpa5 
Q8R5A6 TBC1 domain family member 22A Tbc1d22a 
Q8VCV2 Protein NDRG3 Ndrg3 
Q8VDK1 Nitrilase homolog 1 Nit1 
Q8VED5 Keratin, type II cytoskeletal 79 Krt79 
Q8VGW6 Olfactory receptor Olfr124 
Q8VHZ7 U3 small nucleolar ribonucleoprotein protein IMP4 Imp4 
Q8VI47 Canalicular multispecific organic anion transporter 1 Abcc2 
Q8VIH1 Homeobox protein NOBOX Nobox 
Q91UZ5 Inositol monophosphatase 2 Impa2 
Q91WG2 Rab GTPase-binding effector protein 2 Rabep2 
Q91XL3 UDP-glucuronic acid decarboxylase 1 Uxs1 
Q920G5 Olfactory receptor Olfr713 
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Q99J10 Cytoplasmic tRNA 2-thiolation protein 1 Ctu1 
Q99L85 Dermal papilla-derived protein 6 homolog Derp6 
Q99LB2 Dehydrogenase/reductase SDR family member 4 Dhrs4 
Q99NI3 General transcription factor II-I repeat domain-containing protein 2 Gtf2ird2 
Q99P31 Hsp70-binding protein 1 Hspbp1 
Q99PL6 UBX domain-containing protein 6 Ubxn6 
Q9CQA6 Coiled-coil-helix-coiled-coil-helix domain-containing protein 1 Chchd1 
Q9CQT7 Desumoylating isopeptidase 1 Pppde2 
Q9CWE0 Protein FAM54B Fam54b 
Q9CZH7 Matrix-remodeling-associated protein 7 Mxra7 
Q9D0N7 Chromatin assembly factor 1 subunit B Chaf1b 
Q9D1M4 Eukaryotic translation elongation factor 1 epsilon-1 Eef1e1 
Q9D2F1 PRAME family member 12 Pramef12 
Q9D2H8 Fibronectin type III domain-containing protein 8 Fndc8 
Q9D2R8 28S ribosomal protein S33, mitochondrial Mrps33 
Q9D6X6 Serine protease 23 Prss23 
Q9D771 Transmembrane protein 206 Tmem206 
Q9D7A8 Armadillo repeat-containing protein 1 Armc1 
Q9D9S2 Transmembrane protein 225 Tmem225 
Q9DC33 High mobility group protein 20A Hmg20a 
Q9DC70 NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial Ndufs7 
Q9DCC4 Pyrroline-5-carboxylate reductase 3 Pycrl 
Q9EP97 Sentrin-specific protease 3 Senp3 
Q9EPQ8 Transcription factor 20 Tcf20 
Q9EQG9 Collagen type IV alpha-3-binding protein Col4a3bp 
Q9ER38 Torsin-3A Tor3a 
Q9ER81 Torsin-1A-interacting protein 2, isoform IFRG15 Tor1aip2 
Q9ESN1 Double C2-like domain-containing protein gamma Doc2g 
Q9JKS4 LIM domain-binding protein 3 Ldb3 
Q9JL35 High mobility group nucleosome-binding domain-containing protein 5 Hmgn5 

Q9QWV9 Cyclin-T1 Ccnt1 
Q9QXV1 Chromobox protein homolog 8 Cbx8 
Q9QXW0 F-box/LRR-repeat protein 6 Fbxl6 
Q9QYC1 Pecanex-like protein 1 Pcnx 
Q9QYX7 Protein piccolo Pclo 
Q9QZI8 Serine incorporator 1 Serinc1 
Q9WTP7 GTP:AMP phosphotransferase, mitochondrial Ak3 
Q9WUK4 Replication factor C subunit 2 Rfc2 
Q9WUN2 Serine/threonine-protein kinase TBK1 Tbk1 
Q9WVL0 Maleylacetoacetate isomerase Gstz1 
Q9Z2U2 Zinc finger protein 292 Zfp292 
S4R1D6 H-2 class I histocompatibility antigen, TLA(B) alpha chain H2-T3 
Z4YKJ7 Excitatory amino acid transporter 5 Slc1a7 
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Table 11 List of the proteins expressed only in OligoGM1 cells in the comparison OligoGM1 vs CONTROL N2a 

cells 

Majority protein 
IDs Protein names Gene names 

A0A075B607 T cell receptor alpha variable 14-3 Trav14d-2 
A0A075B6D5 Immunoglobulin kappa chain variable 19-93 Igkv19-93 
A0A087WQ44 Snf2-related CREBBP activator protein Srcap 

Q5DTW7 Uncharacterized protein C12orf35 homolog Kiaa1551 
A0A087WR36 Vomeronasal type-1 receptor Vmn1r90 
A0A1L1SQU7 FAT atypical cadherin 1 Fat1 
A0A0A0MQA5 Tubulin alpha-4A chain Tuba4a 
A0A0A0MQD1 Tudor domain-containing protein 7 Tdrd7 

P09925 Surfeit locus protein 1 Surf1 
Q3TRR0 Microtubule-associated protein 9 Map9 

A0A0A6YVV8 Muscleblind-like protein 1 Mbnl1 
Q8VBV3 Exosome complex component RRP4 Exosc2 
Q99PJ1 Protocadherin-15 Pcdh15 

A0A0A6YX01 Protocadherin beta-6 Pcdhb6 
A0A0A6YY47 Neural cell adhesion molecule 1 Ncam1 
A0A0B4J1I7 Immunoglobulin kappa variable 4-68 Igkv4-68 

A0A0G2JDF6 RIKEN cDNA I830077J02 gene I830077J02Rik 
A0A0G2JDW9 Immunoglobulin kappa variable 4-62 Igkv4-62 
A0A0G2JE49 Paired immunoglobulin-like type 2 receptor alpha Pilra 
A0A0G2JEK2 Cysteine-rich protein 1 Crip1 
A0A0G2JEY5 Immunoglobulin kappa variable 4-81  

Q920L5 Elongation of very long chain fatty acids protein 6 Elovl6 
A0A0G2JFV8 Polypyrimidine tract-binding protein 2 Ptbp2 

Q5DW34 Histone-lysine N-methyltransferase EHMT1 Ehmt1 
A0A0J9YUP9 Transcription factor 4 Tcf4 

Q91YP3 Putative deoxyribose-phosphate aldolase Dera 
A0A1N9MDH9 Probable G-protein coupled receptor 19 Gpr19 

B2RPV6 Multimerin-1 Mmrn1 
Q91WI7 Integrin-alpha FG-GAP repeat-containing protein 2 Itfg2 
F6V2U0 Type I inositol 3,4-bisphosphate 4-phosphatase Inpp4a 

A0A0R4J0U3 Period circadian protein homolog 2 Per2 
A0A0R4J187 X-ray repair cross-complementing protein 6 Xrcc6 
A0A0R4J1N7 Ankyrin-1 Ank1 

Q8R2Q6 Tectonic-3 Tctn3 
A0A0U1RPA0 Pleckstrin homology domain-containing family A member 7 Plekha7 

Q8BMB0 Protein EMSY Emsy 
A0A0U1RQ37 Ubiquitin-conjugating enzyme E2 S Ube2s 

Q9Z179 SHC SH2 domain-binding protein 1 Shcbp1 
E9QPQ8 39S ribosomal protein L48, mitochondrial Mrpl48 
Q571B6 WASP homolog-associated protein with actin, membranes and microtubules Whamm 
Q9CQG6 Transmembrane protein 147 Tmem147 

A0A140LIT2 7-dehydrocholesterol reductase Dhcr7 
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A0A140LIW7 Ankyrin-repeat and fibronectin type III domain-containing 1 Ankfn1 
Q8CG73 Protein fantom Rpgrip1l 
Q9D6T0 Nitric oxide synthase-interacting protein Nosip 
Q8JZK6 MCG22896, isoform CRA_b Trim61 

A0A1D5RLF0 F-box and WD-40 domain protein 27 Fbxw27 
A0A1D5RLL4 Transformation/transcription domain-associated protein Trrap 

F8WI85 Leucine-rich repeat-containing protein 36 Lrrc36 
A0A1L1SRQ8 Olfactory receptor Olfr251 

Q91XE8 Transmembrane protein 205 Tmem205 
Q9DCU6 39S ribosomal protein L4, mitochondrial Mrpl4 

A0A1L1SSZ5 Olfactory receptor 1248 Olfr1248 
Q9D083 Kinetochore protein Spc24 Spc24 

A0A1W2P7F9 MCG50764, isoform CRA_a Btg1 
Q9CWV7 Zinc finger SWIM domain-containing protein 1 Zswim1 
Q3TB48 Transmembrane protein 104 Tmem104 
Q9D7S1 Transmembrane protein 54 Tmem54 
A2A9L3 Serine/threonine-protein kinase PDIK1L Pdik1l 
E9Q0J2 Ral GTPase-activating protein subunit beta Ralgapb 

A2ACM0 Regulatory-associated protein of mTOR Rptor 
Q9ER67 Maged2 protein Maged2 
A2AI92 Predicted gene 9112 Gm9112 
Q6P2L7 Protein CASC4 Casc4 
A2AT37 UPF2 regulator of nonsense transcripts homolog (Yeast) Upf2 
Q80YN3 Breast carcinoma-amplified sequence 1 homolog Bcas1 
A2AX52 Collagen alpha-4(VI) chain Col6a4 
A4QPD3 Proto-oncogene c-Rel Rel 
A6PWV5 AT-rich interactive domain-containing protein 3C Arid3c 
A7TZG3 Selection and upkeep of intraepithelial T-cells protein 9 Skint9 
B2RQS1 Striatin-3 Strn3 
B2RXC1 Trafficking protein particle complex subunit 11 Trappc11 
Q8BXQ2 GPI transamidase component PIG-T Pigt 

J3QQ27 Coiled-coil domain-containing 191 
2610015P09Ri

k 
B8QI34 Liprin-alpha-2 Ppfia2 
D3YU71 3 beta-hydroxysteroid dehydrogenase type 7 Hsd3b7 
D3YUK0 Predicted gene 3259 Gm3259 
D3YUP1 Histone-arginine methyltransferase CARM1 Carm1 
Q3TQR0 Post-GPI attachment to proteins factor 2 Pgap2 
Q99LG0 Ubiquitin carboxyl-terminal hydrolase 16 Usp16 
P30285 Cyclin-dependent kinase 4 Cdk4 
Q9JIY5 Serine protease HTRA2, mitochondrial Htra2 

D3YYL7 40S ribosomal protein S29 Gm10126 
D3YZP5 Ras-related protein Rab-3A Rab3a 
D3Z0X5 Pleckstrin homology-like domain family B member 1 Phldb1 
Q9DCL8 Protein phosphatase inhibitor 2 Ppp1r2 

D3Z3G0 Uncharacterized protein C12orf56 homolog 
D930020B18Ri

k 
D3Z3S5 Predicted gene 4744 Gm4744 



 128 

Q9CXK9 RNA-binding protein 33 Rbm33 
D3Z6C4 Carbonyl reductase family member 4 Cbr4 
Q9D8N6 Protein lin-37 homolog Lin37 
Q9Z120 tRNA (guanine-N(7)-)-methyltransferase Mettl1 
D6RFB0 Adhesion G protein-coupled receptor L3 Lphn3 
E9Q2M9 WD repeat and FYVE domain-containing 4 Wdfy4 
E9PXJ8 Vomeronasal 2, receptor 90 Vmn2r90 
Q8C2B3 Histone deacetylase 7 Hdac7 
Q9CQJ6 Density-regulated protein Denr 
E9Q0J5 Kinesin-like protein KIF21A Kif21a 
E9Q0N0 Intersectin-1 Itsn1 
E9Q163 X-ray repair cross-complementing protein 6 Xrcc6 
E9Q1P2 Olfactory receptor Olfr288 
A7RDN6 Renalase Rnls 
Q9QVP9 Protein-tyrosine kinase 2-beta Ptk2b 
Q8BMQ2 General transcription factor 3C polypeptide 4 Gtf3c4 
E9Q5A3 Histone-lysine N-methyltransferase EHMT1 Ehmt1 
E9Q622 Protocadherin 11 X-linked Pcdh11x 
Q6ZQE4 Transmembrane protein 194A Tmem194a 
E9Q7Q3 Tropomyosin alpha-3 chain Tpm3 
E9Q876 ATP-binding cassette, sub-family A (ABC1), member 12 Abca12 
E9Q912 RAP1, GTP-GDP dissociation stimulator 1 Rap1gds1 
E9Q9M1 Cytosolic purine 5-nucleotidase Nt5c2 
E9QAN2 Poly(A) polymerase alpha Papola 
Q6RT24 Centromere-associated protein E Cenpe 
E9QKK4 Glucocorticoid-induced transcript 1 protein Glcci1 
Q70KF4 Cardiomyopathy-associated protein 5 Cmya5 
Q8VEH3 ADP-ribosylation factor-like protein 8A Arl8a 
Q3UQN2 FCH domain only protein 2 Fcho2 

F6UK53 MCG62900 
4933403O08Ri

k 
P10493 Nidogen-1 Nid1 

F6VWU8 Zinc finger protein 946 Zfp946 
Q8BND4 Protein DDX26B Ddx26b 
Q8K3A9 7SK snRNA methylphosphate capping enzyme Mepce 
F8VPP8 Zinc finger CCCH type-containing 7B Zc3h7b 
F8WIN2 AT-rich interactive domain-containing protein 3B Arid3b 
V9GX74 Zinc finger transcription factor Trps1 Trps1 
Q9QUS9 Reg III delta Reg3d 

Q3UW64 
Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine 

kinase Gne 
H3BJU3 Mitoguardin 2 Fam73b 
Q4VGL6 Roquin Rc3h1 
Q549C9 Cellular tumor antigen p53 Trp53 
Q9D572 UBX domain-containing protein 11 Ubxn11 
J3QMK1 Shugoshin 2B Sgo2b 
J3QNW4 UPF0533 protein C5orf44 homolog Trappc13 
K3W4Q5 Protein FAM186A FAM186A 
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O55057 
Retinal rod rhodopsin-sensitive cGMP 3,5-cyclic phosphodiesterase subunit 

delta Pde6d 
O08643 Granzyme M Gzmm 
O35257 Prolactin-6A1 Prl6a1 
O35615 Zinc finger protein ZFPM1 Zfpm1 
O35654 DNA polymerase delta subunit 2 Pold2 
O35943 Frataxin, mitochondrial Fxn 
O54786 DNA fragmentation factor subunit alpha Dffa 
O54988 STE20-like serine/threonine-protein kinase Slk 
O55142 60S ribosomal protein L35a Rpl35a 
O55183 Stanniocalcin-1 Stc1 
O88495 Melatonin-related receptor Gpr50 
O88574 Histone deacetylase complex subunit SAP30 Sap30 
O88630 Golgi SNAP receptor complex member 1 Gosr1 
O89001 Carboxypeptidase D Cpd 
P01325 Insulin-1 Ins1 
P01639 Ig kappa chain V-V region MOPC 41 Gm5571 
P08508 Low affinity immunoglobulin gamma Fc region receptor III Fcgr3 
P11438 Lysosome-associated membrane glycoprotein 1 Lamp1 
P11930 Nucleoside diphosphate-linked moiety X motif 19, mitochondrial Nudt19 
P12367 cAMP-dependent protein kinase type II-alpha regulatory subunit Prkar2a 
P16330 2,3-cyclic-nucleotide 3-phosphodiesterase Cnp 
P16382 Interleukin-4 receptor subunit alpha Il4r 
P19137 Laminin subunit alpha-1 Lama1 
P22339 Growth arrest and DNA damage-inducible protein GADD45 beta Gadd45b 
P30549 Substance-K receptor Tacr2 
P34152 Focal adhesion kinase 1 Ptk2 
P35546 Proto-oncogene tyrosine-protein kinase receptor Ret Ret 
P45952 Medium-chain specific acyl-CoA dehydrogenase, mitochondrial Acadm 
P46414 Cyclin-dependent kinase inhibitor 1B Cdkn1b 
P48455 Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform Ppp3cc 
P48542 G protein-activated inward rectifier potassium channel 2 Kcnj6 
P54726 UV excision repair protein RAD23 homolog A Rad23a 
P61027 Ras-related protein Rab-10 Rab10 
P61458 Pterin-4-alpha-carbinolamine dehydratase Pcbd1 
P61957 Small ubiquitin-related modifier 2 Sumo2 
P62071 Ras-related protein R-Ras2 Rras2 
P62911 60S ribosomal protein L32 Rpl32 
P63166 Small ubiquitin-related modifier 1 Sumo1 
P63328 Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform Ppp3ca 
P70213 Friend virus susceptibility protein 1 Fv1 
P70298 Homeobox protein cut-like 2 Cux2 
P97489 Transcription factor GATA-5 Gata5 
P97496 SWI/SNF complex subunit SMARCC1 Smarcc1 
Q02614 SAP30-binding protein Sap30bp 
Q03402 Cysteine-rich secretory protein 3 Crisp3 
Q04447 Creatine kinase B-type Ckb 
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Q07563 Collagen alpha-1(XVII) chain Col17a1 
Q0V8T7 Contactin-associated protein like 5-3 Cntnap5c 
Q0VAV1 Muc6 protein Muc6 
Q8BZH4 Pogo transposable element with ZNF domain Pogz 
Q3TCU5 Tapasin Tapbp 
Q3TDD9 Protein phosphatase 1 regulatory subunit 21 Ppp1r21 
Q80W82 Mitogen-activated protein kinase 10 Mapk10 
Q3TSN9 BTB/POZ domain-containing protein 3 Btbd3 

Q3UDW8 Heparan-alpha-glucosaminide N-acetyltransferase Hgsnat 
Q3UQ17 MCG3834 Zbtb16 
Q3UVL4 Protein fat-free homolog Ffr 
Q3UY93 Melanin-concentrating hormone receptor 1 Mchr1 
Q3V3G9 Nardilysin, N-arginine dibasic convertase, NRD convertase 1 Nrd1 
Q3V3Q4 Pyrin domain-containing protein 3 Pydc3 
Q4ZGD9 Nuclear RNA export factor 3 Nxf3 
Q569L8 Centromere protein J Cenpj 
Q91YI4 Beta-arrestin-2 Arrb2 
A2AH25 Rho GTPase-activating protein 1 Arhgap1 
Q5I043 Ubiquitin carboxyl-terminal hydrolase 28 Usp28 
Q5SSE9 ATP-binding cassette sub-family A member 13 Abca13 
E9Q284 Coilin Coil 
Q5SXG7 Vitelline membrane outer layer protein 1 homolog Vmo1 
Q60707 T-box transcription factor TBX2 Tbx2 
Q61687 Transcriptional regulator ATRX Atrx 
Q61781 Keratin, type I cytoskeletal 14 Krt14 
Q62048 Astrocytic phosphoprotein PEA-15 Pea15 
Q62095 ATP-dependent RNA helicase DDX3Y Ddx3y 
Q62172 RalA-binding protein 1 Ralbp1 
Q640M1 U3 small nucleolar RNA-associated protein 14 homolog A Utp14a 
Q64505 Cholesterol 7-alpha-monooxygenase Cyp7a1 

Q6DFV1 Condensin-2 complex subunit G2 Ncapg2 
Q9WV80 Sorting nexin-1 Snx1 
Q6P1G0 HEAT repeat-containing protein 6 Heatr6 
Q6P539 Uncharacterized protein C17orf63 homolog Fam222b 
Q6P6J9 Thioredoxin domain-containing protein 15 Txndc15 
Q6P8K3 Predicted gene 7978 BC061212 
Q6P9R1 ATP-dependent RNA helicase DDX51 Ddx51 
Q6PGF7 Exocyst complex component 8 Exoc8 
Q6PR54 Telomere-associated protein RIF1 Rif1 
Q6UJY2 Sodium/hydrogen exchanger 10 Slc9c1 
Q6ZPY5 Zinc finger protein 507 Znf507 
Q704Y3 Transient receptor potential cation channel subfamily V member 1 Trpv1 
Q7M721 Taste receptor type 2 member 120 Tas2r120 
Q7TS04 Olfactory receptor 301 Olfr301 
Q80UW8 DNA-directed RNA polymerases I, II, and III subunit RPABC1 Polr2e 
Q80WQ2 Protein VAC14 homolog Vac14 
Q8BHE0 Proline-rich protein 11 Prr11 
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Q8BHG9 CGG triplet repeat-binding protein 1 Cggbp1 
Q8BLY2 Probable threonine--tRNA ligase 2, cytoplasmic Tarsl2 
Q8BNY6 Neuronal calcium sensor 1 Ncs1 
Q8R2L5 28S ribosomal protein S18c, mitochondrial Mrps18c 
Q8BU03 Periodic tryptophan protein 2 homolog Pwp2 
Q8BUJ9 Low-density lipoprotein receptor-related protein 12 Lrp12 

Q8BVT7 RIKEN cDNA 4921511C20 gene 
4921511C20Ri

k 
Q8BXZ1 Protein disulfide-isomerase TMX3 Tmx3 
Q8BZR0 Probable G-protein coupled receptor 82 Gpr82 
Q8C2E4 Pentatricopeptide repeat-containing protein 1 Ptcd1 
Q8C5R8 Ribose-phosphate pyrophosphokinase Prps1l1 
Q8C754 Vacuolar protein sorting-associated protein 52 homolog Vps52 
Q8C845 EF-hand domain-containing protein D2 Efhd2 
Q8CBF3 Ephrin type-B receptor 1 Ephb1 
Q8CCX5 Keratin-like protein KRT222 Krt222 
Q8CDK2 Cytosolic carboxypeptidase 2 Agbl2 
Q8CF66 UPF0539 protein C7orf59 homolog Lamtor4 
Q8CH09 SURP and G-patch domain-containing protein 2 Sugp2 
Q8CIV2 Membralin ORF61 
Q8JZM8 Mucin-4 Muc4 
Q8JZR0 Long-chain-fatty-acid--CoA ligase 5 Acsl5 
Q8K0Z7 Translational activator of cytochrome c oxidase 1 Taco1 
Q8K394 Inactive phospholipase C-like protein 2 Plcl2 
Q8K3H0 DCC-interacting protein 13-alpha Appl1 
Q8K3V4 Protein-arginine deiminase type-6 Padi6 
Q8N7N5 DDB1- and CUL4-associated factor 8 Dcaf8 
Q8R054 Sushi repeat-containing protein SRPX2 Srpx2 
Q8R105 Vacuolar protein sorting-associated protein 37C Vps37c 
Q8R2E3 Vomeronasal type-1 receptor Vmn1r36 
Q8R2P1 Ectoderm-neural cortex protein 2 Klhl25 
Q8R3F5 Malonyl-CoA-acyl carrier protein transacylase, mitochondrial Mcat 
Q8R420 ATP-binding cassette sub-family A member 3 Abca3 
Q8R4Y8 Rotatin Rttn 
Q8VDV8 MIT domain-containing protein 1 Mitd1 
Q8VFJ7 Olfactory receptor Olfr1012 
Q8VFV9 Olfactory receptor Olfr1459 
Q8VFZ3 Olfactory receptor Olfr513 
Q8VG32 Olfactory receptor Olfr1408 
Q8VGE3 Olfactory receptor Olfr160 
Q8VGL3 Olfactory receptor Olfr535 
F8WJ23 Hornerin Hrnr 
Q8VHP6 Cadherin-related family member 1 Cdhr1 
Q8VHY0 Chondroitin sulfate proteoglycan 4 Cspg4 
Q91XC9 Peroxisomal membrane protein PEX16 Pex16 
Q91YP0 L-2-hydroxyglutarate dehydrogenase, mitochondrial L2hgdh 
Q91ZP4 MCG3105, isoform CRA_a Slc5a4b 
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Q91ZZ3 Beta-synuclein Sncb 
Q921Y2 U3 small nucleolar ribonucleoprotein protein IMP3 Imp3 
Q922B1 O-acetyl-ADP-ribose deacetylase MACROD1 Macrod1 
Q99L04 Dehydrogenase/reductase SDR family member 1 Dhrs1 
Q99LI5 Zinc finger protein 281 Zfp281 
Q99LJ0 CTTNBP2 N-terminal-like protein Cttnbp2nl 

Q99MR1 PERQ amino acid-rich with GYF domain-containing protein 1 Gigyf1 
Q99MZ3 Carbohydrate-responsive element-binding protein Mlxipl 
Q99N05 Membrane-spanning 4-domains subfamily A member 4D Ms4a4d 
Q99N96 39S ribosomal protein L1, mitochondrial Mrpl1 

Q9CPN9 RIKEN cDNA 2210010C04 gene 
2210010C04Ri

k 
Q9CQ54 NADH dehydrogenase [ubiquinone] 1 subunit C2 Ndufc2 
Q9CQQ7 ATP synthase subunit b, mitochondrial Atp5f1 
E9PW43 Protein transport protein Sec61 subunit beta Gm10320 
Q9CR02 Translation machinery-associated protein 16 Tma16 
Q9CXR1 Dehydrogenase/reductase SDR family member 7 Dhrs7 
Q9CY97 RNA polymerase II subunit A C-terminal domain phosphatase SSU72 Ssu72 
Q9CZN8 Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial Qrsl1 
Q9CZX5 PIN2/TERF1-interacting telomerase inhibitor 1 Pinx1 
Q9D0M5 Dynein light chain 2, cytoplasmic Dynll2 
Q9D1C8 Vacuolar protein sorting-associated protein 28 homolog Vps28 
Q9D1H8 39S ribosomal protein L53, mitochondrial Mrpl53 
Q9D1N9 39S ribosomal protein L21, mitochondrial Mrpl21 
Q9D1Z3 Protein FAM173B Fam173b 
Q9D267 Epididymal-specific lipocalin-9 Lcn9 

Q9D3Z8 RIKEN cDNA 4933425L06 
4933425L06Ri

k 
Q9D411 Testis-specific serine/threonine-protein kinase 4 Tssk4 
Q9D9V3 Ethylmalonyl-CoA decarboxylase Echdc1 
Q9DAT2 MRG-binding protein Mrgbp 
Q9DBE0 Cysteine sulfinic acid decarboxylase Csad 
Q9DBG1 Sterol 26-hydroxylase, mitochondrial Cyp27a1 
Q9DBJ3 Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1 Baiap2l1 
Q9DCA5 Ribosome biogenesis protein BRX1 homolog Brix1 
Q9DCF9 Translocon-associated protein subunit gamma Ssr3 
Q9DD18 D-tyrosyl-tRNA(Tyr) deacylase 1 Dtd1 
Q9EQ06 Estradiol 17-beta-dehydrogenase 11 Hsd17b11 
Q9ERN0 Secretory carrier-associated membrane protein 2 Scamp2 
Q9ES83 Blood vessel epicardial substance Bves 
Q9JIK9 28S ribosomal protein S34, mitochondrial Mrps34 
Q9JIX0 Enhancer of yellow 2 transcription factor homolog Eny2 
Q9JJ28 Protein flightless-1 homolog Flii 
Q9JJ78 Lymphokine-activated killer T-cell-originated protein kinase Pbk 
Q9JJ94 Sjoegren syndrome nuclear autoantigen 1 homolog Ssna1 
Q9JJT0 RNA 3-terminal phosphate cyclase-like protein Rcl1 
Q9R0H0 Peroxisomal acyl-coenzyme A oxidase 1 Acox1 
Q9R0K2 Olfactory receptor Olfr1264 
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Q9WTR1 Transient receptor potential cation channel subfamily V member 2 Trpv2 
Q9WV54 Acid ceramidase Asah1 
Q9Z262 Claudin-6 Cldn6 
Q9Z2X2 26S proteasome non-ATPase regulatory subunit 10 Psmd10 
V9GXI9 Striatin-4 Strn4 

 

3.2 Classification of the differentially expressed proteins based on 

bioinformatic analysis  

In order to understand the effect of OligoGM1, we focused on the proteins expressed in 

OligoGM1-treated cells. The bioinformatic analyses by DAVID (p value ≤ 0.05, at least 2 counts) 

showed that in these cells, there is a significant enrichment of gene ontology terms related to 

endocytic trafficking, ribosome biogenesis, and regulation of transcription, regulation of cell cycle, 

mitochondrion, fatty acid metabolism, and cell adhesion (Table 12).  
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Table 12 Bioinformatic analysis by David of the proteins exclusively expressed in OligoGM1 cells in the comparison 
OligoGM1 vs CONTROL N2a cells 

 DAVID analysis p-value ≤ 0.05  counts ≥ 2 

 

Category Term Count p-
value 

Genes 

en
do

so
m

e/
en

do
cy

tic
 tr

af
fic

ki
ng

 

Annotation Cluster 1 Enrichment Score: 
1.9283871903046559 

   

UP_KEYWORDS Endosome 14 7,27E-
03 

RET, SCAMP2, VAC14, VPS52, SNX1, 
VPS37C, MITD1, APPL1, EPHB1, 

LAMP1, CDKN1B, ARL8A, VPS28, 
RAB10 

GOTERM_CC_DIRECT GO:0010008~endosome membrane 7 8,49E-
03 

LAMP1, RET, VAC14, VPS52, SNX1, 
VPS28, APPL1 

GOTERM_CC_DIRECT GO:0005768~endosome 15 2,66E-
02 

RAB3A, RET, SCAMP2, VAC14, 
VPS52, SNX1, VPS37C, MITD1, APPL1, 

EPHB1, LAMP1, CDKN1B, ARL8A, 
RAB10, VPS28 

Annotation Cluster 5 Enrichment Score: 
1.2682691071296288 

   

SMART SM00282: LamG 4 1,77E-
02 

LAMA1, FAT1, CSPG4, CNTNAP5C 

INTERPRO IPR001791: Laminin G domain 4 4,92E-
02 

LAMA1, FAT1, CSPG4, CNTNAP5C 

Annotation Cluster 8 Enrichment Score: 
1.0091254512435084 

   

UP_KEYWORDS Coated pit 4 2,82E-
02 

ARRB2, LRP12, ITSN1, FCHO2 

ri
bo

so
m

e 
bi

og
en

es
is 

an
d 

re
gu

la
tio

n 
of

 tr
an

sc
ri

pt
io

n  

Annotation Cluster 2 Enrichment Score: 
1.5686242450542756 

   

GOTERM_CC_DIRECT GO:0005840~ribosome 10 1,65E-
03 

MRPL53, MRPL1, RPL35A, MRPS34, 
MRPL4, MRPL21, MRPS18C, RPL32, 

TMA16, DENR 
UP_KEYWORDS Ribosomal protein 9 6,36E-

03 
MRPL53, MRPL1, RPL35A, MRPS34, 
MRPL4, MRPL21, MRPS18C, RPL32, 

MRPL48 
UP_KEYWORDS Ribonucleoprotein 10 2,42E-

02 
MRPL53, MRPL1, RPL35A, IMP3, 

MRPS34, MRPL4, MRPL21, MRPS18C, 
RPL32, MRPL48 

GOTERM_CC_DIRECT GO:0030529~intracellular 
ribonucleoprotein complex 

10 4,28E-
02 

MRPL53, MRPL1, RPL35A, IMP3, 
MRPS34, MRPL4, MRPL21, MRPS18C, 

RPL32, TDRD7 
Annotation Cluster 3 Enrichment Score: 

1.561905533986465 

   

UP_KEYWORDS Ribosome biogenesis 5 8,66E-
03 

RCL1, IMP3, BRIX1, UTP14A, DDX51 

GOTERM_BP_DIRECT GO:0006364~rRNA processing 6 3,71E-
02 

RCL1, RPL35A, IMP3, EXOSC2, 
UTP14A, DDX51 

GOTERM_BP_DIRECT GO:0042254~ribosome biogenesis 5 4,09E-
02 

RCL1, IMP3, BRIX1, UTP14A, DDX51 

KEGG_PATHWAY mmu03008: Ribosome biogenesis in 
eukaryotes 

5 4,31E-
02 

RCL1, IMP3, NXF3, UTP14A, PWP2 

Annotation Cluster 24 Enrichment Score: 
0.586830761089792 
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GOTERM_MF_DIRECT GO:0001085~RNA polymerase II 
transcription factor binding 

4 4,51E-
02 

TRP53, GATA5, TRPS1, ZFPM1 

Annotation Cluster 28 Enrichment Score: 
0.547197473552621 

   

GOTERM_BP_DIRECT GO:0000122~negative regulation of 
transcription from RNA polymerase 

II promoter 

19 2,07E-
02 

TRP53, EHMT1, TBX2, TRPV1, 
MLXIPL, ZBTB16, MAPK10, SAP30, 

REL, CGGBP1, PSMD10, TRPS1, PER2, 
ZFP281, CUX2, ZFPM1, TCF4, MEPCE, 

… 

ce
ll 

cy
cl

e 

Annotation Cluster 9 Enrichment Score: 
0.9624582129177877 

   

GOTERM_BP_DIRECT GO:0051301~cell division 11 4,77E-
02 

SPC24, POGZ, NCAPG2, ARL8A, 
CENPE, MITD1, MAP9, USP16, CDK4, 

CENPJ, UBE2S 
Annotation Cluster 11 Enrichment Score: 

0.8865229236222075 

   

GOTERM_BP_DIRECT GO:0051726~regulation of cell 
cycle 

6 2,39E-
02 

TRP53, PRR11, PER2, USP16, CDK4, 
GADD45B 

m
ito

ch
on

dr
io

n,
 fa

tty
 a

ci
d 

m
et

ab
. 

Annotation Cluster 4 Enrichment Score: 
1.2776717793217818 

   

UP_KEYWORDS Mitochondrion 23 2,91E-
02 

TRP53, MRPL53, MRPL1, MRPS34, 
MRPL4, ACADM, MCAT, ATP5F1, 
NDUFC2, CBR4, MAPK10, TACO1, 

QRSL1, MRPL21, MRPS18C, HTRA2 

Annotation Cluster 6 Enrichment Score: 
1.0521935305885302 

   

KEGG_PATHWAY mmu01212: Fatty acid metabolism 5 8,61E-
03 

ACOX1, ACADM, MCAT, ELOVL6, 
ACSL5 

UP_KEYWORDS Fatty acid metabolism 6 2,63E-
02 

ACOX1, ACADM, MCAT, CBR4, 
ELOVL6, ACSL5 

GOTERM_BP_DIRECT GO:0006631~fatty acid metabolic 
process 

7 2,67E-
02 

ACOX1, ACADM, MCAT, PER2, CBR4, 
ELOVL6, ACSL5 

KEGG_PATHWAY mmu03320: PPAR signaling 
pathway 

5 3,84E-
02 

ACOX1, ACADM, CYP27A1, CYP7A1, 
ACSL5 

Annotation Cluster 12 Enrichment Score: 
0.8062496294708845 

   

INTERPRO IPR026082:ABC transporter A, 
ABCA 

3 2,11E-
02 

ABCA3, ABCA13, ABCA12 

ce
ll 

ad
he

sio
n 

 

Annotation Cluster 7 Enrichment Score: 
1.0256913451821696 

   

INTERPRO IPR002126: Cadherin 6 3,29E-
02 

RET, PCDHB6, PCDH11X, FAT1, 
CDHR1, PCDH15 

INTERPRO IPR015919: Cadherin-like 6 3,48E-
02 

RET, PCDHB6, PCDH11X, FAT1, 
CDHR1, PCDH15 

Annotation Cluster 21 Enrichment Score: 
0.6276318581765036 

   

GOTERM_BP_DIRECT GO:0030155~regulation of cell 
adhesion 

4 2,30E-
02 

LAMA1, RET, PTK2, PTK2B 
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va
ri

ou
s  

Annotation Cluster 18 Enrichment Score: 
0.6872907708951744 

   

UP_KEYWORDS Nucleotide-binding 36 1,25E-
02 

RAB3A, GNE, TRPV1, XRCC6, ABCA3, 
EPHB1, CKB, QRSL1, PRKAR2A, 

PTK2, SLK, PTK2B, NT5C2, DDX3Y, 
4933425L06RIK, KIF21A, … 

UP_SEQ_FEATURE active site:Proton acceptor 19 1,51E-
02 

HSD17B11, ACOX1, RET, ACADM, 
HSD3B7, NRD1, CNP, CBR4, PBK, 
MAPK10, CDK4, EPHB1, DHRS7, 

DHRS1, PDIK1L, PTK2, SLK, PTK2B, 
TSSK4 

UP_KEYWORDS ATP-binding 27 4,62E-
02 

TRPV1, GNE, XRCC6, ABCA3, EPHB1, 
CKB, QRSL1, PTK2, SLK, PTK2B, 

DDX3Y, KIF21A, TARSL2, ABCA13, 
ABCA12, ACSL5, RET, ATRX, … 

GOTERM_MF_DIRECT GO:0000166~nucleotide binding 38 4,64E-
02 

RAB3A, RBM33, GNE, TRPV1, XRCC6, 
ABCA3, EPHB1, CKB, QRSL1, 

PRKAR2A, PTK2, SLK, PTK2B, NT5C2, 
DDX3Y, 4933425L06RIK, PTBP2, … 

Annotation Cluster 25 Enrichment Score: 
0.5793190221422585 

   

UP_SEQ_FEATURE binding site:S-adenosyl-L-
methionine; via carbonyl oxygen 

3 4,30E-
02 

METTL1, CARM1, MEPCE 

Panther analysis on the same data set suggested a significant enrichment of proteins related to 

organelle bio- genesis and maintenance (R-MMU-1852241) (p value 0.006). In accordance, IPA 

showed, among the top biofunctions in terms of p value, cellular assembly and organization, cell and 

organism survival, tissue morphology, and nervous system development and function (Table 13). 

Table 13 Bioinformatic analysis by IPA of the proteins exclusively expressed in OligoGM1 cells in the comparison 
OligoGM1 vs CONTROL N2a cells 

Molecular and Cellular Functions   
 p-value Molecules 

Cell Death and Survival  1.24E-02-2.37E-06 86 
Cell Morphology 1.16E-02-1.18E-05 54 

Cellular Assembly and Organization 1.28E-02-1.18E-05 76 
DNA Replication, Recombination, and Repair 1.18E-02-2.09E-05 28 

Carbohydrate Metabolism 1.15E-02-3.99E-05 12 

   
Physiological System Development and Function   

 p-value Molecules 
Organismal Survival  3.56E-03-1.29E-05 75 

Nervous System Development and Function 1.28E-02-4.21E-05 54 
Tissue Morphology 1.24E-02-1.62E-04 33 

Connective Tissue Development and Function 1.15E-02-1.89E-04 25 
Embryonic Development 1.25E-02-3.14E-04 60 
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We then compared by IPA the proteins that are upregulated or only expressed in treated cells 

(347 proteins) with the proteins that are downregulated in treated cells or expressed only in the control 

(397 proteins) to highlight differences that may be triggered by the presence of OligoGM1 (Table 

14).  

Table 14 Bioinformatic analysis by IPA of the proteins differentially expressed in the comparison OligoGM1 vs 
CONTROL N2a cells 

TOP BIOFUNCTION 
Molecular and Cellular Functions   

 p-value Molecules 
Cell Death and Survival  1.24E-02-2.37E-06 86 

Cell Morphology 1.16E-02-1.18E-05 54 
Cellular Assembly and Organization 1.28E-02-1.18E-05 76 

DNA Replication, Recombination, and Repair 1.18E-02-2.09E-05 28 
Carbohydrate Metabolism 1.15E-02-3.99E-05 12    

Physiological System Development and Function   
 p-value Molecules 

Organismal Survival  3.56E-03-1.29E-05 75 
Nervous System Development and Function 1.28E-02-4.21E-05 54 

Tissue Morphology 1.24E-02-1.62E-04 33 
Connective Tissue Development and Function 1.15E-02-1.89E-04 25 

Embryonic Development 1.25E-02-3.14E-04 60 
 

Interestingly, the proteome of OligoGM1-treated cells presents upregulation or exclusive 

expression of proteins involved in the biochemical mechanism of neuronal differentiation, protection, 

and restoration, such as suppression of proinflammatory molecules and inhibition of oxidative stress. 

Sirtuins, for example, are described as a protein family whose activities cause activation of anti-

apoptotic, anti- inflammatory, anti-stress responses, and the modulation of the aggregation of proteins 

involved in neurodegenerative disorders [435]. SUMOylation has emerged as a potential therapeutic 

target for neuroprotection in brain ischemia, including both global and focal brain ischemia (ischemic 

stroke) [436]. EIF2 is a signaling pathway involved in cell proliferation and protein translation whose 

dysregulation is associated with a number of pathologies, including neurodegenerative diseases, 

metabolic disorders, and cancer [437]. In the central nervous system, the phosphatase and tensin 

homolog deleted on chromosome ten (PTEN) plays a fundamental role in development, in 
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synaptogenesis and synaptic plasticity, and in neuronal death [438]. The renin-angiotensin pathway 

is involved in neurodevelopment and participates in cell growth inhibition, fetal tissue development, 

extracellular matrix modulation, neuronal regeneration, apoptosis, and cellular differentiation [439]. 

Mostly, the proteomic analysis pointed out an increased expression of proteins typically involved in 

mitochondria bioenergetic and in oxidative stress protection in N2a treated with OligoGM1. Among 

them, we found the expression of  

• mitochondrial ribosome (mitoribosome) proteins (MRPL53, MRPL1, MRPS34, 

MRPL4, MRPL21, MRPS18C, MRPL48), which synthesize essential components of 

the oxidative phosphorylation machinery [440, 441];  

• proteins involved in the mitochondrial bioenergetics (i.e., ACADM, MCAT, ATP5F1, 

NDUFC2, CBR4, TACO1, CYP27A1, L2HGDH, SURF1, ACSL5, ACOX1, SNCB, 

CKB, PPP3CA, ACSL5, NUT19, RAP1GDS1, NDUFC2, DHRS1);  

• frataxin (FXN) protein, whose loss of function activates an 

iron/sphingolipid/PDK1/Mef2 pathway leading to a neurodegeneration [442];  

• CYP27A1 enzyme, a member of the cytochrome P450 superfamily, whose functions 

are related to iron ion binding, to oxidoreductase activity, and to vitamin D metabolism 

in the brain [443].  

In addition, we found the expression of the mitochondrial serine protease HtrA2, which 

negatively correlates with mitochondrial dysfunction leading to neurodegenerative disease with 

Parkinson’s feature [444].  

3.3 OligoGM1 protection in MPTP-treated cells  

All the subsequent results are obtained thanks to the collaboration with the group the Prof. 

Sandro Sonnino at the Department of Medical Biotechnology and Translational Medicine of 

University of Milan. 
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MPTP is a lipophilic compound which easily crosses the blood- brain barrier inducing in vivo 

selective degeneration of nigrostriatal neurons, thereby mimicking the Parkinson’s disease. MPTP is 

converted by mitochondria MAO-B enzyme to its toxic metabolite MPP+ [415-417]. Although, the 

mechanisms of cell death induced by MPP+ are not fully clear, it is known that MPP+ exerts its 

neurotoxic effect by the inhibition of mitochondrial respiration via complex I, leading to 

mitochondrial energy deprivation and eventual cell death. An additional mechanism of MPTP-

induced toxicity involves oxidative stress resulting in generation of toxic mitochondrial reactive 

oxygen species (ROS) causing damage to critical biomolecules [415, 417]. Considering the reported 

GM1 efficacy in vitro, in mouse and non-human primate MPTP models [396, 445-447], its ability to 

protect PC12 cells by the activation of MAPK against hydrogen peroxide toxicity [445], and what 

the proteomic analysis highlighted, we chose to verify whether the GM1 oligosaccharide has a 

neuroprotective potential in MPTP-treated cells.  
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3.4 OligoGM1 protects from MPTP-induced cell death  

N2a cells were exposed to 50 µM OligoGM1 which leads to activation of the TrkA-ERK1/2 

pathway and differentiation in neuron-like cells (figure 38).  

 

Figure 38 OligoGM1 neurodifferentiative effect on N2a cells. a) Morphological analysis of N2a cells. 1, control; 2, 
OligoGM1. Following 24 h incubation, cells were analyzed by contrast phase microscopy with 200x magnification. 
Images are representative of ten independent experiments (n=10). b) Expression of TrkA, phosphorylated TrkA (Tyr490), 
total ERK1/2 and phosphorylated ERK1/2 in cell lysate by means of specific antibodies and reveled by enhanced 
chemiluminescence. Top: immunoblotting images are shown. Bottom: Semi-quantitative analysis of phosphorylated 
TrkA and ERK1/2 related to total level of TrkA and ERK1/2, respectively. Data are expressed as fold increase over 
control of the mean ± SEM from five different experiments (*p < 0.05, Student’s t-test, n=5). 
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After 24 h from OligoGM1 treatment, N2a cells were exposed to MPTP (250 µM). MPTP-

treated cells showed a morphological dam- age immediately after 24-h treatment, while the 

OligoGM1 pretreatment induced identifiable dose-dependent signal of survival in the presence of 

MPTP (Figure 39a).  

 

Figure 39 OligoGM1 neuroprotective effect versus MPTP treatment. a Morphological analysis of N2a cells. 1, 
control; 2, OligoGM1; 3, MPTP; 4, OligoGM1 + MPTP; 5, TrkA-Inh + OligoGM1 + MPTP; 6, RA; 7, RA + MPTP. 
Following 24-h treatment with MPTP, cells were evaluated at × 200 magnification with phase- contrast microscopy. 
Images are representative of five independent experiments (n = 5). b Viability of cells under different treatments. The 
number of living (white square) and dead (black square) cells was determined by trypan blue exclusion assay. Values rep- 
resent the percentage mean of living (trypan blue negative) and dead (trypan blue positive) cells for three different 
experiments (*p < 0.01; one-way ANOVA, followed by Bonferroni’s post hoc, n = 3)  
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Trypan blue assay showed that the pretreatment with 50 µM OligoGM1 was effective in 

preventing the MPTP-mediated cell death (Figure 39b), with a significant reduction in cell death over 

50% with respect to MPTP-treated cells. 

To clarify if the OligoGM1 neuroprotective effect against MPTP was due only to the 

OligoGM1-induced neuro-like phenotype, N2a cells were incubated with RA, a well- known 

neurodifferentiative agent. The RA treatment induced cell differentiation but did not prevent from 

the MPTP toxic effect (Figure 39), supporting OligoGM1 specificity in activating proper signal 

pathways. 

3.5 OligoGM1 protective effect is abolished by TrkA inhibitor 

To understand if the OligoGM1 protective effect is mediated by TrkA activation at the PM by 

the GM1 oligosaccharide interaction, we blocked TrkA activity using a specific inhibitor able to fit 

in the ATP pocket [399, 433]. The presence of inhibitor together with OligoGM1 abolished the 

OligoGM1 protective effect against MPTP (figure 39), suggesting that the OligoGM1 

neuroprotective effect is associated to the TrkA-ERK1/2 pathway activation. 
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3.6 OligoGM1 protects from MPTP-induced mitochondrial oxidative stress 

N2a cells were pretreated with OligoGM1 for 24 h before MPTP. After 6, 10, and 24 h from 

MPTP administration, using the fluorescent probe MitoSOX Red, we carried out measurements of 

mitochondrial ROS levels via live-cell microscopy (Figure 40).  

 

Figure 40 OligoGM1 effect on ROS production induced by MPTP. a Representative fluorescence images showing 
mitochondrial superoxide (MitoSOX Red fluorescence), nuclei (Hoechst blue fluorescence), and overlay of the two 
signals (merge) with × 400 magnification. Images are representative of three indepen- dent experiments (n = 3). b 
MitoSOX Red signal was quanti- fied using ImageJ software in percentage pixel intensity nor- malized on cell number. 
Data are the mean of three independent experiments and are expressed as fold increase over CTRL of mean ± SEM from 
three different ex- periments (*p < 0.01; one-way ANOVA, followed by Bonferroni’s post, n = 3)  
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Interestingly, we observed reduced MitoSOX Red signal in pretreated OligoGM1 cells 

compared to controls, for every time point analyzed (Figure 40), suggesting that OligoGM1 limits 

MPTP-ROS production. 

From the latter result, we can infer that the molecular mechanism underlying the OligoGM1 

neuroprotective property relies on the modulation of mitochondrial ROS production conferring a 

protection against oxidative stress induced by MPTP. 

Comparing the protein patterns of OligoGM1-treated and untreated cells, we found restricted 

but significant differences of basal protein content, depending on the differential expression of 

specific groups of genes as a consequence of the down- stream molecule cascade promoted by 

OligoGM1-induced TrkA activation (Table 9; Figure 38). In addition, we found 324 proteins present 

exclusively in cells treated with the OligoGM1. Some of these are known to be involved in 

neuroprotection and survival processes (Tables 12, 13, and 14). Thus, we examined more in detail 

the protective potential of OligoGM1 against neurotoxicity induced by MPTP. MPTP- mediated 

toxicity is related to the inhibition of electron transport chain and to oxidative stress [415-417]. It has 

been reported, for example, that MPTP caused H2O2 accumulation and inhibited catalase activity. 

Hydrogen peroxide can react with Fe2+ via Fenton reaction to generate OH•, a strong reactive oxidant. 

For the first time, here, we showed that OligoGM1 pretreatment for 24 h before exposure of 

cells to MPTP reduces mitochondrial ROS production conferring a protection against oxidative stress 

and reduces the cell death (Figures. 39 and 40). 

To confirm that OligoGM1-induced TrkA activation represents the trigger event underling 

MPTP protection, we specifically inhibited the TrkA activity: the administration of OligoGM1 

together with TrkA inhibitor abolished the OligoGM1 protective effect against MPTP treatment 

(Figure 39). On the other hand, to exclude that the OligoGM1 effect was simply due to the acquisition 

of a neuron-like phenotype, N2a cells were differentiated with retinoic acid and 24 h later were treated 
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with MPTP. Retinoic acid was not able to confer any protection against MPTP toxicity. The latter 

result strengthened the specificity of OligoGM1 effect (Figure 39). 

The neuroprotective properties of GM1 ganglioside have been reported in many papers. Now, 

as for the GM1 differentiative properties [399], we confirm that the GM1 neuroprotection, at least in 

N2a cells, derives from a direct interaction between the GM1 oligosaccharide and the TrkA receptor, 

and the following signaling cascade capable to overexpress specific neuroprotective proteins. 

Although much experimental work is needed to fully clarify the GM1 mechanism of action 

with respect to its potential, our findings sustain the idea that the oligosaccharide chain is the key 

molecular portion and the starting point for GM1- mediated protective function at the plasma 

membrane level. 

We propose that GM1 oligosaccharide may stabilize the TrkA-NGF complex on the cell 

surface triggering the phosphorylation of Tyr490 promoting the MAPK differentiation signaling. This 

induces the activation of a complex network of signaling processes that are involved in the 

biochemical pathway of neuroprotection and neurorestoration (Figure 41). 
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Figure 41 Diagram of the proposed mechanism for GM1-mediated neuroprotection in N2a cells. On the cell plasma 
membrane, ganglioside GM1 induces the TrkA activation by autophosphorylation. GM1 enhances TrkA activity 
stabilizing the TrkA-NGF com- plex by a direct interaction with its oligosaccharide chain. GM1 promotes the 
phosphorylation of Tyr490 triggering the differentiation, mitochondrial neuroprotective, and calcium signaling. This 
image is updated from [399]. GM1 representation is according to [430]. ERK, extracellular signal- regulated protein 
kinases 1 and 2; Grb2, growth factor receptor- bound protein 2; Gab1, Grb2- associated binder-1; HrtA2, serine protease; 
PINK1, PTEN (phosphatase and tension homolog)-induced putative kinase 1; RAS, GTP-binding protein; RAF, 
serine/threonine kinase; SHC, transforming protein 1; SOS, son of sevenless. 
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Proteomic and behavioural analysis of thermal stress effects on 

zebrafish brain 
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1. INTRODUCTION 

1.1 Global warming 

Global warming is the long-term warming of the planet’s overall temperature, as defined by 

National geographic. This phenomenon is amplified by anthropic action, the release of CO2 and other 

greenhouse gases, higher now than at any time in the last 800,000 years. Indeed, the increase of 

human population caused the augmented volume of fossil fuels burned; they are form by coal, oil and 

natural gas and from their burning originates the so called “greenhouse effect” in Earth’s atmosphere. 

The greenhouse effect is realized when the Sun’s ray which penetrate the atmosphere aren’t reflected 

off the surface in the space because of the presence of gases derived from the burning of fossil fuels. 

Among these carbon dioxide, chlorofluorocarbons, water vapor, methane and nitrous oxide were 

found. 

 

Figure 42: This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct 
measurements, provides evidence that atmospheric CO2 has increased since the Industrial Revolution. [448] 

The situation just described has caused the average global temperature to rise overtime, 

presenting another issue called climate change. Indeed global warming and climate change are not 

synonyms, the second is used for the complex shifts now affecting our planet’s weather and climate 

systems. The Earth’s climate responds to changes in greenhouse gas levels as demonstrate from ice 
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cores drawn from Greenland, Antartica, and tropical mountain glaciers. Ancient evidence can also be 

found in tree rings, ocean sediments, coral reefs, and layers of sedimentary rocks. This ancient, or 

paleoclimate, evidence reveals that current warming is occurring roughly ten times faster than the 

average rate of ice-age-recovery warming [449]. The evidences of climate changes are: 

• global temperature rise; 

• warming of oceans; 

• shrinking of ice sheets; 

• glacial retreat; 

• decreased snow cover; 

• sea level rise; 

• declining arctic sea ice; 

• extreme events; 

• ocean acidification. 

The most worrying aspect for the species that inhabit the earth, human and animal, is the 

overheating of the waters of our planet. Indeed the oceans have absorbed much of this increased heat, 

with the top 700 meters of ocean showing warming of more than 0.4 degrees Celsius since 1969 

[450]. Climate changes can deeply alter the habitat of the species and impact on all levels of biological 

life from that of the population to the molecule affecting the survival and longevity of the organism 

[17]. The poikiloterm animals such as fish, whose body temperature varies considerably with the 

environmental temperature, are particularly sensitive to thermal variations and in aquatic ectotherms, 

water temperature is considered the major ecophysiological variable, influencing the physiology, 

behaviour and the distribution of organisms [451].  
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1.2 The response of fish to climate changes 

The potential evolutionary and plastic responses to physical fish drivers are widely 

documented in the literature. However, predicting actual responses in natural populations remains a 

core challenge because observed responses typically fail to match predictions based on theory or 

laboratory experiments [452]. The first response to climate changes of fish is the modulation of its 

behaviour migrating to areas where the environmental factors favor the biological fitness [453], 

otherwise it has to adapt and acclimatize to new environment. The prolonged exposure to altered 

conditions could lead to phenotypic changes, through an acclimatory response which is triggered by 

different conditions among species. In zebrafish (Danio rerio), developmental plasticity affects 

acclimation to temperature substantially later in life [454].  

A common physiological effect of rising temperatures in fish is the increase of metabolic rates, 

however there are many factors from which ecological and evolutionary consequences of rising 

temperature depend, like population-specific proximity to lethal limits or growth optima [455, 456], 

interspecific dynamics [457] and disease impacts [458]. Thermoregulation can reduce expression of 

physiological responses or increase them because of concomitant stressors like diseases.  

The thermal acclimatization is based on complex yet not fully understood physiological 

processes known as temperature compensation that allow acclimated (or adapted) animals to change 

their thermal sensitivity [459]. An important role in this phenomenon is play by the variation of 

enzymatic concentration trough the regulation of transcription and translation.  

1.3 Animal model: Danio Rerio (Zebrafish) 

The zebrafish (Danio rerio) is a small, tropical, freshwater fish, native to river of South Asia, 

which has become known as an excellent model organism for studies of vertebrate biology, vertebrate 

genetics, embryonal development, diseases and drug screening [460]. It is also usefull in behavioural 

studies associated with feeding, predator evasion, habituation and memory. Danio rerio became a 
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model for research in the late 1960s thanks to the researcher George Streisinger, of Oregon 

University, who used it for developmental biology studies. 

 

Figure 43: Some adults wild-type zebrafish with normal body length, eyes and pigmentation [figure from 539] 
 

Adult reach 2.5 cm of dimension and have a generation time of 3-4 months, they can lay 

hundreds of transparent eggs in very short time, at weekly intervals, which make them useful for 

different type of research. Their maintenance is cheaper than that for rats and mice and required little 

space. Zebrafish’ immune system is well developed and similar to mammalian one.  

The species is an annual species. Adults inhabit streams, canals, ditches, and they slowly move 

to stagnant standing water, like rice-fields and lower reaches of streams. They eat worms and small 

crustaceans, even insect larvae. Spawning is induced by temperature and commences at the onset of 

the monsoon season. Food availability also acts as cue for breeding. The ZF is an ectotherm and 

poikiloterm, so its internal temperature depends on the temperature of the surroundings and varies 

considerably, it’s a cyprinid characterized by a wide thermal tolerance in the range of 6.7 to 41.7°C 

[461, 462]. Danio prefers to live in shallow water at temperatures ranging from 24 °C to 30°C, 

suitable for its development, reproduction and growth, and pH 6.0–8.0.  

Before electing zebrafish as the perfect animal model for human research it is important to 

understand the extent to which zebrafish genes and gene structures are related to orthologous human 

genes [463]. Zebrafish genome sequencing project, started in 2001 at the Sanger Institute, allowed 

the annotation of more than 26000 protein-coding genes, the largest gene set of any vertebrate so far 
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sequenced. As a result of comparison with the human genome, 70% of human genes have at least one 

obvious zebrafish orthologue. Moreover, zebrafish genome displays several interesting features like:  

• unique repeat content; 

• scarcity of pseudogenes; 

• enrichment of zebrafish-specific genes on chromosome 4; 

• chromosomal regions that influence sex determination 

1.3.1 Nervous system development and organization 

The first step in building the nervous system is the specification of the neural plate, a process 

called neural induction. The neural plate, through neurulation, give rise to neural tube, this process 

involved the formation of a neural rod followed by the establishment of a lumen. Except these two 

events, the morphogenetic movements and molecular mechanisms involved in Danio rerio are almost 

the same of those of other vertebrates. The Planar Cell Polarity (PCP) pathway, mediated by non-

canonical Wnt signaling, is the responsible for the convergence of dorsal tissues, a critical point for 

the formation of a single neurulation center. At this point, the activity of genes directly involved in 

cytoskeletal organization, like Zic genes and cadherins, play important role in neuro development 

phenomena, as the maturation of the neural plate. The commitment of neuroepithelial progenitors 

towards neuronal or glial differentiation is initiated concomitantly to neural plate formation and 

neurulation [464]. The early phase of neurogenesis, consists in the recruitment of early proneural 

clusters to build the first larval neuronal scaffold, which will permit autonomous larval behavior, and 

it is controlled by the “lateral inhibition” process.  

As the neuronal numbers increase and the diversification of neuronal subtypes occours, there 

is the onset of “secondary neurogenesis”.  

Positional cues, first established during gastrulation, concomitant to neural induction, and 

refined later on, guide the perfect organization of the neurogenesis pattern. These cues involve 

signaling from the Hh, Nodal, BMP and Wnt pathways and have been extensively reviewed [465]. 
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These signaling processes have two major outcomes, the definition of brain subdivision (tel-, di-, 

mes- and rhombencephalon) and the definition of roof, alar, ventral and basal plate which give rise 

to the major organization of the adult brain. Thanks to co-regulation of patterning and neurogenesis 

some important features were found: 

- a stereotyped organization of the primary neuronal scaffold; 

- specific characteristics to the neurons and neural progenitors of the different central 

nervous system subdivisions; 

- a very similar organization of the body plan to other vertebrates at the mid-

embryogenesis stage.  

Despite the similarities between zebrafish and other vertebrates, some differences can be noted 

like the absence of serotonergic neurons and the diencephalic (and not mesencephalic) localization 

of dopaminergic neurons with ascending projections [466, 467]. 

Cholinergic cranial and spinal motoneurons, interneurons of various subtypes and large spinal 

cord glutamatergic sensory neurons composed the primary neuronal scaffold, which controls the 

escape response. Visually guided behavior, feeding, sleep, refined locomotion, mechanosensation and 

escape are ensured by modulatory neurons that appear within the first 5-6 days of life. Instead, 

reticulospinal ‘‘functional groups’’ rather than individual neurons are involved in sensory–motor 

connection. Their identity and localization within the brainstem renders them sensitive to distinctly 

localized stimuli [468]. Zebrafish central nervous system is organized in a very similar way to that of 

other vertebrates and it is divided into four parts:  

- spinal cord; 

- rhombencephalon; 

- forebrain or prosencephalon; 

- mesencephalon. 
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These four parts are subdivided into morphological and functional areas, for example the 

forebrain is divided into diencephalon and secondary prosencephalon, which give rise to the 

hypothalamus. 

 1.4 Behavioural test: Y-Maze 

In the last decade, zebrafish have been gaining popularity in behavioural brain research [456]. 

The extensive literature demonstrates the cognitive and mnemonic capabilities of zebrafish and this 

allows the use of this animal as development of disease models that affect the central nervous system 

and also permits the evaluation of toxic or neuroprotective agents on cognition [457]. 

 

Figure 44: Schematic representation of the experimental design and the behavioral tasks [457]. 

To study learning and memory in zebrafish protocols are available based on longer training 

periods and/or on reward or avoidance. Y-Maze represent an alternative approach, firstly developed 

for rats but also useful for zebrafish, showing many advantages: 

• it does not involve conditioned learning and thus enables specific testing of memory 

[457]; 

• it minimizes motivational and emotional states that influences the results; 

• it is based on natural tendency to explore novelty, starting form a short training-test 

interval (TTI) to establish a preferential exploration, moving to longer TTIs; 

• retention does not last longer than a few hours, so performance could be repeated 

several times in the same animal; 
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• through the record of the number of arm visits or distance traveled locomotor activity 

can be evaluated; 

• measurement of behavior is quick, precise, and entirely automated. 

The Y-maze was built by replicating exactly the same features of the maze successfully used 

on ZF by Cognato and collaborators [470]. Briefly, the Y-Maze is built with three arms of glass (25 

× 8 × 15 cm width × depth × height) in which the single arm is identified by the presence of geometric 

shapes (square, circle and triangle) made of white paper and placed on the external walls and visible 

from the inside. The work by Cognato et al. [470] demonstrated the ability to recognize, distinguish 

and not to be feared by the geometric shapes chosen. In their work they wanted to evaluate the 

learning and memory, without using place preference, establishing appropriate visual cues for each 

arm, in a way that the fish did not show signs of avoidance or preference. During the test they measure 

the time spent by the fish in each arm, associated to a specific geometric form. In the first trial they 

used squares, triangles and crosses; the zebrafish spent less time in the arm with crosses passing most 

of it in that with squares or triangles cues. After this result, crosses were substituted by circles, and 

the preference between circles, squares or triangles was evaluated. The zebrafish spent statistically 

comparable times in each arm, so the final Y-Maze apparatus consisted of squares, triangles and 

circles for arm cues.  

1.5 Aim of the project  

The aim of this study is to determine the effects of environmental temperature on the zebrafish 

brain proteome, through a shotgun proteomic approach, and the behavioural responses of animals 

thanks to Y-Maze apparatus in collaboration with University La Sapienza in Rome, to analyze 

swimming performance, response to novelty and spatial memory. For such purpose 99 fish were 

maintained for 21 days at two test temperatures 18°C and 34°C and animals kept at 26°C were used 

as controls. At the end of thermal treatments, the proteome of 9 brains for each condition not subjected 

to behavioural tests was analyzed by a shotgun label free proteomic approach for the identification 
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and quantification of expressed proteins. Instead 20 individuals were subjected to the behavioural test 

performed by Mattia Toni. At the end we try to verify if proteomic results could explain at the 

molecular level what we observe thanks to the behavioural test, and also if a proteomic approach 

could be useful to analyze the impact of temperature variation on proteome. 
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2. MATERIALS AND METHODS 

2.1 Subjects 

A total of 99 adult (6–7 months old) wild type ZF, purchased from commercial dealers, was 

used in the present study. Sex ratio was about 50:50 male:female and the mean weight was 0.4 g. Fish 

were randomly placed in three tanks (40×30×30 cm, width×depth×height) of 33 l (hometanks) and 

maintained at 26 °C (control temperature) for 10 days to acclimate to the tank (adaptation period). 

Fish, 33 for each tank, were maintained under an artificial photoperiod (12:12 light/dark cycle) and 

fed three times a day (10 am, 2 pm and 6 pm) with commercial dry granular food (TropiGranMIX, 

Dajanapet) by using automatic fish feeders (Eden 90, Eden Water paradise, Germany). 1.3 g/day of 

food, corresponding to 10% of body mass, were administrated to each tank. The water used 

throughout the experimental phase was produced by reverse osmosis pumps (Reverse Osmosis 

AquiliOS2) and reported to the appropriate salinity adding aquarium salt (1 g/l, Aqua Medic 301.01). 

In order to ensure good water quality, a constant flow of filtered water (600 l/h) was maintained 

by external filter systems (Eden 511 h) in each tank and water was also continuously aerated (7.20 

mgO2/l) by aerator for aquaria (SicceAIRlight, 3300 cc/min 200 l/h). The chemical/physical 

characteristics of tank water were checked at least two times per week by measuring the values of 

water hardness, pH, ammonium (NH4), ammonia (NH3), nitrate (NO3), nitrite (NO2), phosphate 

(PO4), copper (Cu) and calcium (Ca2+) with the Sera aqua-test box kit (Sera Italia srl). The salinity 

was checked with a hand-held refractometer. Faeces and the remaining food waste were removed 

from the animal tanks at least three times per week. During the tank-cleaning operations, a water 

exchange of about 20–30% per week was performed to restore the correct volume of water and to 

maintain its chemical–physical parameters. 
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2.2. Thermal treatment 

Subjects were exposed to thermal treatment. In two of the three hometanks the water 

temperature was gradually brought from 26 °C to 18 °C or 34 °C in 72 h. Fish were then maintained 

at the two experimental temperatures, 18 ± 1 °C and 34 ± 1 °C, for 21 days. Fish maintained at 26± 

1 °C were used as control. The three temperature values were chosen according to Vergauwen et al. 

[472] within the ZF vital range and correspond to temperatures the fish cope with in the natural 

environment. The water temperature was kept constant by external water chiller (TK 150 Teco) or 

digital thermostats (Eden 430) connected to a heating coil (Eden 415, 230 V, 50/60 Hz, 80 W). The 

water temperature was further checked daily using a hand thermometer. The interior enrichment of 

each tank (consisting of a heating coil, inlet and outlet pipes of the filters and aerator) was replicated 

identical in all the tanks. During the thermal treatment only three fishes died: two at 18 °C and one at 

34 °C. All the experimental procedures were approved by the Animal Care Committee and authorized 

by the Italian Ministry of Health (protocol number 290/2017-PR). 

At the end of the thermal treatment, of the total of 33 fishes present in each hometank, 20 

individuals were subjected to the behavioural test, 9 were used for proteomic analysis and the 

remaining fish were stored for mRNA expression analysis. All the individuals enrolled in the study 

were euthanised individually by a prolonged immersion in a solution of the anaesthetic tricaine 

methanesulfonate MS-222 (300 mg/l). All the procedures were performed between March and May 

2017. 
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2.3. Proteomic analysis 

Total protein expression in fish brain homogenates was analysed and compared under the three 

thermal regimes. Although this analysis is not able to discriminate proteins expressed in the different 

cell populations of the brain (neurons, glial cells, endothelial cells), it provides a useful tool for 

assessing the impact of thermal treatment on the brain function and neurochemistry. 

2.3.1 Sample homogenization 

At the end of thermal treatments, the brain proteome from ZF adapted at the three temperatures 

(not subjected to behavioural tests) was analysed by a shotgun label free proteomic approach for the 

identification and quantification of expressed proteins. At each temperature, 9 whole brains were 

homogenized using a Potter homogenizer in 500 µl of extraction buffer (8M urea, 20mM Hepes pH 

8, with protease inhibitors Complete Mini) at full speed for 1–3 min. The homogenate was centrifuged 

at 10000 rpm for 10 min to sediment unhomogenized tissue and large cellular debris. The pellet was 

discarded and the protein content was determined by a bicinchoninic acid assay (Thermo Fisher 

Scientific).  

2.3.2 Bicinchoninic acid (BCA) assay 

The concentration of each sample was determined using the bicinchoninic acid method. The 

BCA protein assay is used for quantitation of total protein in a sample. The principle of this method 

is that proteins can reduce Cu+2 to Cu+1 in an alkaline solution (the biuret reaction) and result in a 

purple color formation by bicinchoninic acid. The reduction of copper is mainly caused by four amino 

acid residues including cysteine or cystine, tyrosine, and tryptophan that are present in protein 

molecules. However, unlike the Coomassie dye-binding methods, the universal peptide backbone 

also contributes to color formation, helping to minimize variability caused by protein compositional 

differences. The assay is monitored at 562 nm in a Du® 730 Life Science Uv/vis Spectrophotometer 

(Beckman Coulter), and determines the purple-colored complex formed by two molecules of 
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bicinchoninic acid chelate with each Cu+ ion. Bovine plasma immunoglobulin was used as standard 

protein. 

2.4 Protein identification by mass spectrometry 

Proteins were subjected to reduction with 13mM dithioerythritol (30 min at 55 °C) and 

alkylation with 26mM iodoacetamide (IAA; 30 min at RT). Peptide digestion was conducted using 

sequence-grade trypsin (Roche) for 16h at 37°C using a protein:trypsin ratio of 20:1 [473].  

2.4.1 Zip-Tip C18 

The proteolytic digest was desalted using Zip-Tip C18 (Millipore) before mass spectrometric 

(MS) analysis [434]. The protocol is the same described in chapter 2.4 of PC12 section. 

2.5 Mass Spectrometry 

Mass spectrometry theory is already reported in the chapter 2.5 of PC12 section. The only clarification 

concerns the gradient, that in this case is 2% ACN in 0.1% formic acid for 10min, 2–4% ACN in 

0.1% formic acid for 6min, 4–30% ACN in 0.1% formic acid for 147 min and 30–50% ACN in 0.1% 

formic for 3 min at a flow rate of 0.3 µl/min. All the other parameters remain the same.  

2.6 Data processing and analysis 

MS spectra were searched against the ZF Uniprot sequence database (release 01.04.2015) by 

MaxQuant (version 1.3.0.5). The following parameters were used: initial maximum allowed mass 

deviation of 15 ppm for monoisotopic precursor ions and 0.5 Da for MS/MS peaks, trypsin enzyme 

specificity, a maximum of two missed cleavages, carbamidomethyl cysteine as fixed modification, 

N-terminal acetylation, methionine oxidation, asparagine/glutamine deamidation and serine/ 

threonine/tyrosine phosphorylation as variable modifications. False protein identification rate (5%) 

was estimated by searching MS/MS spectra against the corresponding reversed-sequence (decoy) 
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database. Minimum required peptide length was set to 6 amino acids and minimum number of unique 

peptide supporting protein identification was set to 1. 

Quantification in MaxQuant was performed using the built-in label- free quantification 

algorithms (LFQ) based on extracted ion intensity of precursor ions [474, 475]. 

Four replicates were carried out for each group: 18 °C, 34 °C and 26 °C used as the control. 

Only proteins present and quantified in at least 3 out of 4 technical repeats were considered as 

positively identified in a sample and used for statistical analyses. Statistical analyses of Max Quant 

results were performed using the Perseus software module (version 1.4.0.6, 

www.biochem.mpg.de/mann/tools/). A one-way analysis of variance (ANOVA) test was carried out 

to identify proteins differentially expressed among the different conditions. Proteins were considered 

to be differentially expressed if they were present only in 18 °C, 34 °C, or 26 °C samples or showed 

significant t-test difference p- value (cut-off at 0.05 FDR). Focusing on specific comparisons, namely 

26 °C vs 18 °C and 26 °C vs 34 °C, proteins were considered differentially expressed if they were 

present only in one condition or showed significant t-test difference (Welch's test p value = 0.05). 

Bioinformatic analyses were carried out by Panther software (Version 10.0) [488] and Revigo to 

reduce redundant GO terms [489], DAVID software (release 6.7) [490], BINGO and Enriched Map 

[491] to cluster enriched annotation groups of Molecular Function, Biological Processes, Pathways 

and Networks within the set of identified proteins. Functional grouping was based on p value ≤ 0.05 

and at least two counts.  

2.7 Y-maze apparatus 

The Y-maze was built by replicating exactly the same features of the maze successfully used 

on ZF by Cognato and collaborators [470]. Briefly, the Y-Maze was built with three arms of glass 

(25 × 8 × 15 cm width × depth × height) in which the single arm was identified by the presence of 

geometric shapes (square, circle and triangle) made of white paper and placed on the external walls 

and visible from the inside. The work by Cognato et al. [470] demonstrated the ability to recognize, 
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distinguish and not to be feared by the geometric shapes chosen. In addition, in our setting, the 

external walls of the maze were coated by a 2 cm thick polystyrene panel to ensure the heat insulation 

and to keep constant the water temperature for the entire duration of behavioural tests. 

Preliminary tests were carried out to ensure that the water temperature remained constant 

during behavioural testing. The difference in water temperature measured at the beginning and at the 

end of each experimental test was 1 °C at maximum. A diffuse light was present in the room to avoid 

directional lighting that could interfere with the fish behaviour. All tests were video recorded by a 

webcam (Logitech C170) placed 1 m above the maze. 

2.8 Behavioural testing 

The maze was filled with 4 l of water at the same temperature at which the animal had been 

acclimated and the water depth was 6.5 cm, enough to submerge the geometric shapes present on the 

sides of the arms. The total number of experimental subjects was 60 (20 for each temperature). Each 

single fish was captured by using a beaker and transferred from the hometank to waiting tank (size 

15 × 10 × 10 cm, width × depth × height) for 30 min until the beginning of the behavioural test. 

One single task consisted of four trials (T1, T2, T3 and T4) separated by a one-hour interval. 

Each trial consisted of a training phase (Tr) in which the fish could freely swim in the start (S) arm 

and in the other (O) arm for 5 min but it could not have access to the novel (N) arm for the presence 

of a dividing wall, and of a testing phase (Te) in which the wall was removed and the fish was free 

of swimming for 5 min all over the maze also exploring the novel environment constituted by the N 

arm. The assignment of circle, square, and triangle to the S, O and N arm was randomized for each 

experimental subject. 

The behaviour was analysed using the ANY-Maze® software (Stoelting Co., Wood Dale, IL, 

USA). Locomotor activity was evaluated by measuring the mean speed, the total distance travelled, 

and the rotations of the body (clockwise, CW and counterclockwise, CCW). The exploratory activity 

and the interest in the novel environment were evaluated by quantifying the time spent in each arm, 
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the number of passages among arms and the degree of exploration of the novel arm. In order to 

determine whether the temperature influences fish tendency to explore the novel environment in its 

entirety, the N arm was virtually divided into three equal parts named as sector 1, 2 and 3 starting 

from the centre of the maze. At the end of each trial the experimental subject was transferred to the 

waiting tank for one hour until the next trial. The temperature of the water contained in the waiting 

tank was the same to which the fish had been acclimated. After each trial the water contained in the 

maze was removed and the apparatus was rinsed and filled with clean water. 

2.9 Statistical analysis of functional behavioural data 

Results were expressed as mean ± SEM. Data were subjected to ANOVA analysis with a post 

hoc test utilizing Bonferroni correction by ORIGIN® 2018 software. Depending on the data 

considered among swimming activity and behaviour measured as time spent in the Start arm, mean 

speed, total distance travelled, number of total rotations of the body, number of right (CW) and left 

(CCW) rotations, number of passages between Start and Other arms, one-, two- or three- way 

ANOVA analyses were performed. Differences were considered to be statistically significant at p ≤ 

0.05 and p ≤ 0.01.  
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3. RESULTS AND DISCUSSION 

3.1. Proteomic analysis 

To evaluate the possible effects of temperature on protein expression, we have adopted a 

quantitative label free shotgun proteomic approach. This method allows to examine the impact of 

different conditions by achieving the simultaneous identification of thousands of proteins and their 

quantification in each sample.  

Therefore, it is well suited for studying differences in global protein expression between 

samples and provides substantial information to delineate cell signalling pathways involved in 

thermal responses. The whole brains of ZF acclimated for 21 days to three temperatures (18 °C, 26 

°C and 34 °C) were homogenized and submitted to tandem mass spectrometry analysis.  

The identification of the proteins from the MS/MS data was then achieved using a database 

search by MaxQuant which compares acquired mass spectra to a database of known sequences to 

identify the proteins. This strategy allowed the identification of 1735, 2077 and 1817 proteins at 18 

°C, 26 °C and 34 °C, respectively. The comparison of the three data sets highlights the presence of 

proteins exclusively expressed at a single temperature, as well as 1499 proteins present at all 

temperatures, among which 125 are differentially expressed at the thermal regimes tested (figure 45).  

 

Figure 45 Veen Diagram of the proteins identified in ZF brains acclimated at 26°C (Control Condition), 18°C and 
34°C). An Anova test (FDR 0.05) was carried out to identify proteins differentially expressed among the different conditions: 1735, 
1817 and 2077 proteins are exclusively expressed in 18°C, 34°C and 26°C, respectively, while 125 out of 1499 common proteins differ 
with statistical significance. 

125
Differentially
expressed
(p-value 0.05)
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Bioinformatic analysis carried out on these proteins by DAVID software suggested that 

different temperatures affect mainly cytoskeleton and ribosome and, to a lesser extent, carbon 

metabolism and mitochondrion related categories (Table 15). 

Table 15 DAVID functional grouping of the proteins differentially expressed at 18 °C, 34 °C and 26 °C. The Table 
reports the proteins statistically differentially expressed among the three different conditions (ANOVA test FDR 0.05). 
The column “Counts” indicates the number of genes present in each category. Functional grouping was based on p ≤ 
0.05 and at least two counts.  

Term Count PValue Genes 
Enrichment Score: 2.53    

GO:0005509~calcium ion 
binding 9 1.57E-02 SRI, PVALB6, HPCAL4, MYLZ3, PVALB5, CALB2A, 

ANXA3B, LCP1, CELSR1A 
Enrichment Score: 2.49    

GO:0005882~intermediate 
filament 4 2.06E-03 PRPH, KRT18, KRT5, KRT8 

GO:0005198~structural 
molecule activity 4 3.49E-02 PRPH, KRT18, KRT5, KRT8 

Enrichment Score: 2.12    
GO:0005874~microtubule 5 1.45E-03 PAFAH1B1B, LOC100149074, MAP2, TUBA8L2, TUBA8L3 
GO:0005856~cytoskeleton 5 3.72E-02 PAFAH1B1B, MAP2, TUBA8L2, LCP1, TUBA8L3 

Enrichment Score: 1.66    
GO:0006412~translation 7 1.47E-03 TUFM, RPS8B, MRPL12, RPS19, EIF4A2, RPL4, EIF5A2 
GO:0030529~intracellular 
ribonucleoprotein complex 5 8.94E-03 HNRPDL, RPS8B, MRPL12, RPS19, RPL4 

GO:0005840~ribosome 4 2.84E-02 RPS8B, MRPL12, RPS19, RPL4 
dre03010:Ribosome 4 4.32E-02 RPS8B, MRPL12, RPS19, RPL4 

Enrichment Score: 0.96    
dre01200:Carbon 
metabolism 4 3.63E-02 SDHB, TPI1B, IDH3G, PGAM1B 

Enrichment Score: 0.84    

GO:0000166~nucleotide 
binding 14 3.85E-02 

TUFM, MYHC4, RBM4.2, HSPA4A, ADRBK2, SYNCRIP, 
NCL, TUBA8L2, TUBA8L3, HNRPDL, SRSF5B, UBE2D3, 

EIF4A2, ACTA1A 
Enrichment Score: 0.75    

GO:0005739~mitochondrio
n 8 4.77E-03 TUFM, SDHB, IDH3G, COX6B1, CHCHD2, ACADL, VDAC2, 

TIMM8A 

Specific analyses were carried out by comparing 18 °C and 34 °C with 26 °C, kept as the 

control condition. Figures 45A and B reports the corresponding Volcano plots.  
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Figure 45 Volcano plot of the proteins differentially expressed in the comparison 26 °C vs 18 °C (A) and 26 °C vs 34 
°C (B). Proteins were considered differentially expressed if they were present only in one condition or showed 
significant t-test difference (Welch's test p = 0.05). The proteins up- or down- regulated are indicated in green and red, 
respectively.  

According to our results, 290 proteins are exclusively expressed at 18°C or down-regulated at 

26°C whereas 225 proteins are exclusively expressed at 34 °C or down-regulated at 26 °C. 

To disclose the effect of temperature treatment on the ZF brain proteome, the proteins 

differentially expressed in the comparison 26 °C vs 18°C and 26°C vs 34°C were analysed for 

functional grouping. Interestingly, most proteins whose expression decreased in response to thermal 

changes (18 and/or 34 °C) are associated to different steps of protein synthesis, from RNA translation 

to protein folding, localization and degradation (Table 16). 

Table 16 DAVID functional grouping of the proteins differentially expressed at 26 °Cvs18°C and 26 °Cvs34°C. The 
table reports the proteins up-regulated or exclusively expressed at 26 °C. The column “Counts” indicates the number of 
genes present in each category. The first column reports a manual clustering of the Terms reported in column 2. 
Functional grouping was based on p ≤ 0.05 and at least two counts.  

Increased at 26 °C   
26 °C vs 

18 °C_26°Cup_only26°C 
26 °C vs 

34 °C_26°Cup_only26°C 
Clustering Term Counts Genes Counts Genes 

RNA 
translation 

Nucleotide 
binding 

51 CKBA, PSMC1A, 
SYNCRIP, ATP2B1B, 

LONP1, LARSA, 
DHX37, U2AF1, 
ADCK3, AGAP1, 
GLULA, RABL3, 
ARL16, ABCC12, 
SARS2, EIF4A3, 
NME3, EIF4BA, 

43 HNRNPH1L, SEPT3, 
PSMC1A, ATL1, 

MYO10L3, SYNJ1, 
SYNCRIP, SEPT7A, 

CHEK2, SF3B4, 
GMPPAB, ATP2B1B, 

SRSF5B, LARSA, 
EIF3G, DHX37, 
TUBB5, U2AF1, 
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CAMK4, EIF4BB, 
GNAS, GNAI3, 

MYO10L3, SNRPB2, 
MYO10L1, SEPT7A, 
CHEK2, GMPPAB, 

SF3B4, IARS, 
UBE2D3, EIF3G, 

GSK3AB, SEPT8A, 
PRKCDA, SNRNP70, 

YES1, RHOAA, DHX9, 
MATR3L1.1, MYO6A, 

RBM4.2, ADCY1A, 
MAPK10, TIA1L, 
GNA15.3, PSMC2, 
HUG, PABPC1A, 

MAP2K2A, ATP8A2 

SNRNP70, YES1, 
MARS, RPS24, 

MATR3L1.1, DHX9, 
MYO6A, SI:ZFOS-

588F8.1, 
HNRNPA0L, OLA1, 
ARL16, ELAVL3, 

ABCC12, MAPK10, 
NCL, TUBA8L2, 

SARS2, HNRPDL, 
NME3, ZGC:63587, 
MAP2K2A, PFKMB, 

EIF4BB, ATP8A2, 
KATNAL2 

 
Intracellular 

ribonucleoprotei
n complex 

9 RPS25, DHX9, LSM6, 
HUG, RPL24, RPS10, 
SNRNP70, MRPL46, 

RPL28 

11 HNRPDL, DHX9, 
RPS28, LSM6, 

RPS12, SNRPC, 
ELAVL3, SNRNP70, 

MRPL46, RPS24, 
RPS7  

Nucleosome 
assembly 

8 ZGC:153405, 
HISTH1L, NAP1L1, 

SETB, H1FX, 
ZGC:163061, 
ZGC:110216, 

SI:CH211-103 N10.5 

  

 
Chromosome 7 ZGC:153405, 

HISTH1L, H1FX, 
ZGC:163061, 
ZGC:110216, 

SI:CH211-103 N10.5, 
SMC3 

  

 
Ribonucleoprotein 

 
10 HNRPDL, RPS28, 

LSM6, RPS12, 
SNRPC, ELAVL3, 

SNRNP70, MRPL46, 
RPS24, RPS7  

Cytosolic small ribosomal subunit 5 RPS28, RPS12, 
ZGC:114188, RPS24, 

RPS7 
Protein folding Protein folding 7 ERP44, PFDN1, PPIFB, 

PFDN6, PPID, VBP1, 
AIP 

7 PFDN1, GRPEL1, 
TXNDC5, PPID, 

PPIAA, VBP1, PDIA4  
Prefoldin 
complex 

3 PFDN1, PFDN6, VBP1 
  

Protein 
localization 

Protein transport 
 

10 SEC23A, BC2, 
SLC7A6OS, AP1G1, 
TOM1L2, TIMM10, 
AP3S1, VPS26BL, 

AP4S1  
Protein transport 

 
10 SCAMP1, SEC23A, 

BC2, SLC7A6OS, 
AP1G1, TIMM10, 
EXOC4, AP3S1, 

VPS26BL, AP4S1  
Protein transporter activity 5 AP1G1, TIMM10, 

AP3S1, VPS26BL, 
AP4S1 
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PT 
modification 

Phosphoprotein 
phosphatase 

activity 

7 PPM1BB, PGAM5, 
PPM1BA, PTPRNB, 
PPP3CB, UBLCP1, 

PPP1CAB 

8 PPP3CCB, PPM1BB, 
PGAM5, PPM1BA, 
PTPRNB, PPP3CB, 
UBLCP1, PPP1CAB  

Protein serine/threonine phosphatase activity 4 PPM1BB, PPM1J, 
PPM1BA, UBLCP1  

Protein phosphatase 5 PPM1BB, PPM1BA, 
PTPRNB, UBLCP1, 

PPP1CAB 
Degradation Proteasome 

complex 
7 PSMB7, PSMB6, 

PSMC1A, PSMC2, 
PSMB2, PSMD7, 

PSMA6B 

5 PSMB7, PSMC1A, 
PSMB3, PSMA3, 

PSMD7 
 

Proteasome core 
complex 

4 PSMB7, PSMB6, 
PSMB2, PSMA6B 

  

 
Proteolysis 
involved in 

cellular protein 
catabolic process 

5 PSMB7, PSMB6, 
PSMB2, CTSH, 

PSMA6B 

  

 
Protein catabolic 

process 
4 LONP1, PSMC1A, 

PSMC2, CTSD 

  

Redox balance Cell redox homeostasis 5 TXNDC5, PRDX2, 
PDIA4, SH3BGRL3, 

GLRX  
Mitochondrial respiratory chain complex I 3 NDUFS5, NDUFS4, 

NDUFB9  
Oxidoreductase activity 16 HADHAA, GLUD1B, 

GMPR2, AIFM2, 
AKR1A1B, CBR1L, 

FDXR, PRDX2, 
GPD1L, SDHB, 

IDH3G, MICAL2A, 
CAT, CYP8B1, 

GPX1A, GLYR1 
Other Endopeptidase 

activity 
5 PSMB7, PSMB6, 

PSMB2, SI:DKEY-
21C19.3, PSMA6B 

  

 
Threonine-type 
endopeptidase 

activity 

4 PSMB7, PSMB6, 
PSMB2, PSMA6B 

  

 
ATP-dependent 
RNA helicase 

activity 

5 DHX9, EIF4A3, 
DDX39AB, DHX37, 

DDX39B 

  

 
Calcium ion binding 

 
19 SRI, CALUA, 

LRP1AA, HPCAL4, 
PVALB6, PVALB5, 
SI:DKEY-110 K5.6, 

NID1B, ANXA4, 
EFHD2, SCGN, 

NCALDA, NCALDB, 
CAPNS1A, SYT1B, 

F2, CELSR1B, 
S100A10B, LCP1  

Isomerase activity 
 

5 TXNDC5, PPID, 
PPIAA, PGAM1B, 

PDIA4 
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All these proteins are more expressed or only expressed at 26 °C suggesting that heat or cold 

temperatures may hamper the normal protein synthesis cascade.  

GO enrichment analysis according to Panther software, BINGO and Enriched Map (Figure 

46) suggests that this effect is possibly mediated by a significant impact on the cytoskeleton.  

 

 

Figure 46 (A) Enriched Map analysis of gene sets up-regulated or only expressed at 26 °C in the comparison 26 °C vs 
18 °C and 26°C vs 34°C (increased at 26°C). The differentially ex- pressed proteins were classified into different 
biological processes according to the Gene Ontology Slim classification system using BINGO and Enriched Map 
software. Functional grouping was based on p ≤ 0.05. Nodes represent gene-sets and edges represent GO defined 
relations. Gene-sets that did not pass the enrichment significance threshold are not shown. Nodes are colored according 
to samples: black represents enrichment in the comparison 26°C vs 18°C whereas light grey represents the gene sets in 
the comparison 26 °C vs 34 °C. (B) Enriched map analysis of gene sets down-regulated at 26 °C or only expressed at 18 
°C or 34 °C in the comparison 26°C vs 18°C and 26°C vs 34°C (decreased at 26°C).  

GO Slim Biological Processes (GOBP), GO Slim Molecular Function (GOMF) and GO Slim 

Cellular Component (GOCC) highlight changes in structural cytoskeleton constituents, cellular 

morphogenesis and organization at extreme temperature conditions and a more pronounced effect on 

motor activity, transmembrane movement and vesicle mediated transport at 18 °C and 34 °C. This 

finding is in agreement with the functional grouping analysis by DAVID that shows a decrease at 26 

°C of proteins related to cytoskeleton and transport or motor activity (Table 17). 
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Table 17 DAVID functional grouping of the proteins differentially expressed at 26 °Cvs18°C and 26 °Cvs34°C. The 
Table reports the proteins down-regulated at 26° C or exclusively expressed in stress conditions. The column “Counts” 
indicates the number of genes present in each category. The first column reports a manual clustering of the Terms 
reported in column 2. Functional grouping was based on p ≤ 0.05 and at least two counts.  

Decreased at 26 °C   
26 °C vs 

18 °C_26°Cdown_only18°C 
26 °C vs 

34 °C_26°Cdown_only34°C 
Clustering Term Counts Genes Counts Genes 
Cytoskeleton Structural molecule 

activity 
9 SI:DKEY-178 K16.1, 

PRPH, COPG2, 
KRT18, KRT5, 

COPB1, CLTCA, 
CLDNK, INAB 

5 GFAP, KRT5, 
CLTCB, KRT8, 

KRT4 

 
Intermediate 

filament 
4 PRPH, KRT18, 

KRT5, INAB 
4 GFAP, KRT5, KRT8, 

KRT4  
Microtubule 8 FSD1, PAFAH1B1B, 

LOC100149074, 
MAP2, TUBA8L, 

SI:DKEY-77A20.5, 
TUBA8L2, TUBA8L3 

  

 
Cytoskeleton 12 FSD1, SI:DKEY-178 K16.1, PAFAH1B1B, MYO15AA, 

ACTB1, MAP2, TUBA8L, SI:DKEY-77A20.5, LCP1, 
TUBA8L2, TUBA8L3, PLECA  

Microtubule-based 
process 

4 DYNLL1, TUBA8L, 
TUBA8L2, TUBA8L3 

  

 
Structural 

constituent of 
cytoskeleton 

4 SI:DKEY-178 K16.1, 
TUBA8L, TUBA8L2, 

TUBA8L3 

  

 
Keratin filament 

  
3 KRT5, KRT8, KRT4 

 
Actin-binding 

  
7 MYHC4, SYNE2B, 

SPTBN5, MYO18AB, 
CAPZA1B, FLNA, 

MYH10  
Myosin complex 

  
4 MYHC4, MYO15AA, 

MYO18AB, MYH10 
Transport/motor 

activity 
Vesicle-mediated 

transport 
7 COPG2, ZGC:92912, 

COPB1, CLTCA, 
AP3B2, STXBP1A, 

STXBP3 

  

 
Intracellular protein 

transport 
8 COPG2, NAPG, 

CSE1L, COPB1, 
CLTCA, AP3B2, 
VPS35, ADPRH 

  

 
Lipid transporter activity 

 
3 VTG4, VTG7, VTG5 

 
Motor activity 

  
4 MYHC4, MYO15AA, 

MYO18AB, MYH10 
Ion binding Magnesium ion 

binding 
5 IDH3G, PGM1, 

ENO2, ENO3, 
ADPRH 

  

 
Calcium ion binding 

  
12 PVALB4, PCDH1A3, 

MYLPFA, HMCN1, 
LRP2A, MYLZ3, 
MYL1, PCDH1B, 

SPNA2, NOTCH1B, 
CELSR1A, CAPN2B 

Other Nucleotide binding 30 TUFM, GNA11A, 
ATL1, ACTB1, 

28 MYHC4, TUFM, 
HSP90AB1, 



 171 

CKMB, ADRBK2, 
IARS2, SI:DKEY-
172 J4.3, SRSF5B, 

SRSF2A, HNRNPM, 
MARK4A, PRKAA1, 
CSNK1A1, CSTF2, 

TUBA8L, ATP1A3B, 
RNPS1, NCL, 

TUBA8L2, 
TUBA8L3, SRSF6A, 

PSMC3, RARS, 
UBA2, EIF4A2, 

GSK3B, PFKMB, 
ACTA1A, CARS2 

ADRBK2, IARS2, 
HNRNPM, ACTR1, 

MYO18AB, 
GSK3AB, PRKAA1, 

HSPA5, HSPA9, 
HSPA4A, SSB, 

ABCA4A, EIF4A3, 
ATP2A3, RARS, 
UBA2, RRAS2, 
EIF4A2, REM2, 
ACTA1A, CCT8, 
FGFR1B, RHEB, 
KIF19, MYH10 

 
Ribosome 10 RPS8B, MRPL12, 

RPS19, RPS16, 
RPS15, RPL10, RPL4, 

RPL10A, RPLP2L, 
RPS3 

  

 
Sm01391 4 PRPH, KRT18, 

KRT5, INAB 

  

 
Glycolytic process 4 ALDOAB, PFKMB, 

ENO2, ENO3 

  

 
Proteasome complex 5 PSMB4, PSMD13, 

PSMD12, PSMC3, 
PSMD6 

  

 
Oxidation-reduction 

process 
15 SQRDL, KCNH6B, CYP2V1, FDXR, DLAT, ACADL, 

GLDC, SDHB, G6PD, IDH3G, YWHABL, UQCRH, 
ALDH4A1, GLYR1, RTN4IP1  

Mitochondrion 12 TUFM, SDHB, 
IDH3G, UQCRH, 

OTC, FDXR, SIRT5, 
ALDH4A1, IARS2, 
ACADL, RTN4IP1, 

FH 

  

 
Tricarboxylic acid 

cycle 
3 SDHB, IDH3G, FH 

  

 
Gtpase activity 6 TUFM, GNA11A, 

ATL1, TUBA8L, 
TUBA8L2, TUBA8L3 

  

 
ATP binding 

  
26 MYHC4, HSP90AB1, 

ADRBK2, TTNB, 
IARS2, ACTR1, 

MYO18AB, 
GSK3AB, PRKAA1, 
HSPA5, DYNC1H1, 
HSPA9, HSPA4A, 
DDX1, ABCA4A, 

EIF4A3, MYO15AA, 
ATP2A3, RARS, 
UBA2, EIF4A2, 

ACTA1A, CCT8, 
FGFR1B, KIF19, 

MYH10  
Stress response 

  
4 HSP90AB1, 

HSPA4A, HSPA5, 
HSPA9 
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At low temperature the GO enrichment analysis reveals a profound impact on morphogenesis, 

cytoskeleton organization and synaptic transmission, as well cell communication all de- creased. Cold 

also induces a marked alteration of the actin cytoskeleton and actin binding proteins (Figure 46). 

The fold enrichment analysis gave more information on cold and heat effects. There are 

pathways exclusively enriched at 34 °C or 18 °C (Figure 47) and most pathways altered at the two 

temperatures decreased in comparison to controls at 26 °C (Figure 47).  

 

Figure 47 Gene Ontology Pathway classification of proteins differentially expressed in the comparison 26 °C vs 18 °C 
and 26 °C vs 34 °C. The differentially expressed proteins were classified into different GO Pathways using the Panther 
software. Functional grouping was based on p ≤ 0.05 and minimum two counts. Negative values refer to fold 
enrichment of proteins less expressed at 26 °C or only expressed at 18 °C or 34 °C (decreased at 26 °C) whereas 
positive value refer to proteins more or only expressed at 26 °C in the comparison 26 °C vs 18 °C and 26 °C vs 34 °C 
(increased at 26 °C).  

The effects on WNT signalling pathways are quite interesting. Beside the canonical WNT 

pathway that leads to the regulation of gene transcription, two non canonical WNT pathways were 

described: the planar cell polarity pathway that regulates the cytoskeleton, and the WNT/calcium 

pathway that regulates calcium levels inside the cell [479]. By targeting the cytoskeleton directly or 

through Rho GTPase [480], WNT signalling alteration may be related to a significant impact of 

temperature on the cytoskeleton in ZF brain (Figure 47). 
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3.2. Temperature treatment: impact on metabolism and transport 

Data show an increase in the transketolase and transaminase activity suggesting that the 

pentose metabolism (PPP) prevails at 34 °C in keeping with the decrease of the oxidative 

phosphorylation at 34 °C compared to 26 °C (Table 16). The need of the cell to counteract the 

oxidative stress induced by high temperatures could explain the increase associated with the PPP 

which produces NADPH necessary both for DNA production and for the regeneration of reduced 

glutathione, which in turn plays an important role in the regulation of the intracellular redox state by 

providing reduced equivalents for antioxidative pathways (Table 17, Fig. 46B) [481]. However, the 

cell redox balance is hampered by heat due to a decrease of the antioxidant and peroxidase activity 

(Table 16). 

The alteration of mitochondrion-associated proteins found at 34 °C suggests a perturbed cell 

energy metabolism that may compromise cell physiology and brain functioning. Most of the energy 

produced in the brain (75% -80%) is consumed by neurons [482] that are highly dependent on ATP 

amounts necessary to support synaptic vesicle mobilization, to generate the membrane action 

potential [483] and to ensure calcium homeostasis at the synaptic level [484, 485]. The different 

cellular districts need different amounts of energy and the synapse has a high energy requirement for 

restoration of neuronal membrane potentials following depolarization [486]. For these reasons, a 

reduced energy availability in the neuronal cells may induce synaptic impairments [487]. Moreover, 

the reduction of proteins involved in the mitochondrial transport at 34 °C may suggest a defective 

mitochondria positioning in synaptic terminals [488] where they are involved in regulating 

neurotransmission [489-492] and synaptic plasticity [493, 494]. The defective transport of 

mitochondria is believed to contribute to the onset of neurodegenerative diseases [495-498]. Our 

proteome results are consistent with literature data showing that high temperature induces 

mitochondrial uncoupling and dysfunction by the reduction of cristae, oxidative phosphorylation and 

ATP synthesis [499-501]. Experimental evidence shows that the impairment of mitochondrial 
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function can lead to synaptic degeneration [488, 493, 502, 503]; consistently, our results show a 

reduction in proteins associated to synapse, neurotransmitter secretion, receptor-mediated 

endocytosis and endosome suggesting an impairment of intercellular communication. 

Heat also induces the increase of ion transporter activity and transmembrane movement of 

substances, muscle contraction, motor activity, nuclear and protein transport and the increase in lipid 

and fatty acids metabolic processes (Table 17, Fig. 46B). 

At 18 °C, the data reported in figure 46 clearly show an increase of catalytic activity, catabolic 

processes and TCA cycle (figure 46B), in accordance with findings suggesting that cold stress 

increases the cellular content in ATP and ADP as possible strategy for offsetting kinetic effects of 

low temperatures on the reaction rates [504]. 

The increase in proteins associated with catalytic activity, catabolic processes, carbohydrate 

metabolism and TCA cycle (figure 46B) found at 18 °C might be related to cellular production of a 

greater amount of ATP to counteract the reduced enzyme kinetics and vesicular mobility occurring 

at low temperatures [505-507]. The increased expression of proteins involved in the transport of 

vesicles and polypeptides could be also related to the restoring of the axon flow slowed by low 

temperatures. However, the reduction of proteins associated to synapse and neurosecretion was 

detected at both 18 °C and 34 °C. 

Consequently, the exposure to thermal extremes both determines synaptic function 

impairments that, associated with the modulation of signal transduction pathways, might be 

responsible for functional alterations of the CNS. 

3.3. Temperature treatment: impact on cytoskeleton 

As shown in Table 17 and figure 46, heat treatment has a profound impact on cytoskeleton, 

mitochondrial organization and chromatin remodelling. We then asked if the temperature itself may 

lead to a change in cytoskeleton that can reverberate on cell signalling. It is known that temperature 

modulates stiffness and elasticity of cells and recent findings in rat demonstrated that neurons display 
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a significant drop in the average elastic modulus with increasing temperature [508]. The decrease in 

neuron stiffness is linked to an increase in myosin II activity at high temperature since active myosin 

II fluidizes the cells while inactive myosin II acts as a cross linker for F-actin. Moreover, metabolic 

activity of the myosin II motor is dependent on the temperature and availability of ATP [508-511], 

as well as on the length and orientation of actin filaments. In accordance, our GO analysis at 34 °C 

shows a significant enrichment of proteins involved in muscle contraction, structural activity, 

intermediate and actin cytoskeleton while at 18 °C the effect on microtubules are prevalent (Tables 

16, 17). 

Interestingly, at 18 °C and 34 °C there is also an increase of proteins involved in calcium 

binding (Table 17, figure 46B). This finding is in line with the data reported in Amato & Christner 

[504] which suggest that the link between thermoregulation and neurotransmission is largely 

dependent on intracellular calcium homeostasis [512]. 

Therefore, the temperature treatment effects on proteins involved in actin rearrangements and 

calcium binding observed in ZF brains at 18 °C and at 34 °C can be framed in the mechano-biological 

interplay between cytoskeleton and calcium concentration. 

3.4. Signal transduction pathway modulation 

Several proteins involved in fundamental signalling pathways are modulated at both thermal 

extremes. Interestingly, many of the down-regulated pathways are involved in cognitive processes 

(figure 47). 

The expression of proteins involved in the integrins pathway was reduced at 34 °C in 

comparison to 26 °C. Integrins are a large family of heterodimeric transmembrane cell adhesion 

receptors involved in processes that can modify the brain cytoarchitecture by affecting axon growth 

and guidance, dendritic spine morphology, synaptogenesis [514], synaptic plasticity [517, 514, 515], 

cell migration and regeneration [516] and by supporting the differentiation and maintenance of neural 

stem cells [518]. Integrins are also engaged in learning mechanisms and their reduced expression in 



 176 

mice determined the impairment of long term potentiation (LTP) stabilization, memory acquisition 

and long- term storage of several kinds of memories, including spatial and working memory [517], 

long-term object-location memory and novel- object recognition [517, 519]. 

The down-regulation of the arrestin pathway at 18 °C and 34 °C could provoke alterations of 

ZF cognitive abilities in analogy to β arrestin 1 KO-mice that showed deficits in learning tasks 

suggesting spatial learning deficiencies and general alteration in reward processing [520]. 

The down-regulation of the Ras pathway at 18 °C and 34 °C suggests that the exposition to 

the extreme temperatures could affect the cognitive abilities of the animals, as the Ras signalling is 

implicated in synaptic events leading to formation of long-term memories [521]. 

Focusing on pathways exclusively altered at 18 °C or altered in the same way at 18 °C and 34 

°C (Figure 47), cold acclimation leads to a lower expression of EGF and PDGF signalling in 

comparison to 26°C. Although these growth factors belong to different families and drive different 

biological roles, they share some overlapping targets. Both EGF and PDGF engage several well-

characterized pathways as the Ras- MAPK, PI3K, and PLCG that are deeply involved in diverse 

cellular responses, and their dysregulation is common during oncogenesis and pathophysiological 

tissue remodelling [522]. The reduced expression of the PDGF pathway observed at 18 °C suggests 

that ZF brain acclimated to low temperatures may be more susceptible to environmental stressors 

considering the neuroprotective role of the PDGF pathway demonstrated in different animal models 

during ischemy [523, 524], oxidative stress [525] and glutamate- or NMDA-induced excitotoxicity 

[526]. Moreover, PDGF increases neuronal cell survival, neurogenesis, angio- genesis and gliosis and 

its neuroprotective effect on dopaminergic neurons is well documented [527]. The reduced expression 

of the PDGF pathway could have a negative impact on animal cognitive abilities being PDGF 

involved in the regulation of synaptic plasticity and function, in the hippocampal LTP and 

hippocampus-dependent memory [528]. The EGF pathway down-regulation detected in fish at 18 °C 

and 34 °C could contribute to the altered cognitive performances on considering that EGF 
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administration ameliorates the cognitive decline [529] and memory deficit [530], and prevents brain 

injury upon hypoxia in mice [531]. 

The down-regulation of the ubiquitin pathway observed at 18 °C could further contribute to 

the CNS impairment as the failure of the ubiquitin-proteasome system has been found in Parkinson's 

disease [532]. 

3.5. Behavioural data analysis 

With the aim of verifying if the adaptation to thermal extremes determines impairments of 

cognitive abilities of the animals, experimental and control subjects maintained for 21 days at the 

three temperatures were subjected to behavioural tests by using a Y-Maze apparatus. The Behavioural 

analysis was performed by Mattia Toni at University La Sapienza in Rome. The Y-Maze task is 

widely used on mouse model and has been also successfully used in ZF [470]. It allows evaluating 

both physical performances related to the locomotor activity and cognitive abilities related to the 

response to novelty and spatial orientation. 

Behavioural parameters were analysed in both Training phase (Tr) and Testing phase (Te) in 

order to evaluate the swimming performances and the dynamism of the fish together with its tendency 

to explore the novel environment. 

During Tr, fish did not show preference for one or the other of the two arms, spending 

approximately the 50% of the total time in each arm. Neither temperature nor trial replication 

influenced these results (figure. 48A).  

As indicated by mean speed and distance travelled, animals maintained at 18 °C and 34 °C 

respectively showed a decrease and an increase in locomotor activity compared to controls (figure 

48B, C). In the intra-temperature analysis, no differences were detected in mean speed and distance 

travelled between Tr and Te at 18 °C and 26 °C. At 34 °C fish in Te showed higher values of mean 

speed and distance. The number of body rotations, which is the number of 360° rotations, was 

respectively lower and higher in fish at 18 °C and 34 °C compared to controls (figure 48D). The 
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three-way ANOVA analysis among temperatures (18 °C, 26 °C and 34 °C), experimental phases (Tr 

and Te) and directions of rotation (clockwise, CW and counter-clockwise, CCW) did not show 

significant differences in intra-test phase analysis between CW and CCW rotations, except at 34 °C 

in which a higher number of CW rotations was detected in Te (figure 48E). The swimming activity 

and the dynamism of fish were also estimated by measuring the number of passages between the S 

and O arms. At both 26 °C and 34 °C, fish increased the number of passages from T1 to T4, whereas 

no differences were detected in fish at 18 °C (figure 48F).  

 

Figure 48 Behavioural response to thermal treatment on Y-Maze test observed in Training phase (Tr) and Testing 
phase (Te). Swimming activity and behaviour measured as time spent in the Start arm (A), mean speed (B), total 
distance travelled (C), number of total rotations of the body (D), number of right (CW) and left (CCW) rotations (E), 
number of passages between Start and Other arms (F). Data were analysed by two-way ANOVA (A-D, F) and three-
way ANOVA (E) with a post hoc test that utilizes a Bonferroni correction. #, p ≤ 0.05 between Tr at 18 °C and 26 °C; 
@, p ≤ 0.05 between Te at 18 °C and 26 °C; §, p ≤ 0.05 between Tr at 34 °C and 26 °C; $, p ≤ 0.05 between Te at 34 °C 
and 26 °C; °, p ≤ 0.05 in intra-temperature Tr vs Te comparison; *, p ≤ 0.05; **, p ≤ 0.01.  
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The lower swimming performances showed by fish at 18°C in comparison to those kept at 26 

°C or acclimated to 34 °C are consistent with literature data showing the increase in swimming 

activity at higher temperatures [533-535]. 

In Te, fish could freely swim in the three arms of the maze exploring the novel environment 

of the N arm for 5 min. Fish acclimated at 34 °C showed the tendency to carry out a greater number 

of passages among the arms than those at 26 °C and 18 °C in all the trials, although only the 

comparison between 18 °C and 34 °C in T2 was statistically significant. No statistically significant 

differences were measured in the intra-temperature analysis (figure 49A). 

The number of times that fish entered into the N arm reaching the sector 3 was measured to 

evaluate whether temperature affects the exploration of the novel environment. Fish acclimated to the 

34°C entered more often in the sector 3 of the N arm than fish at 18 °C and 26 °C. The number of 

entries was significantly higher at 34 °C than at 26°C in T1 and T2 and at 34°C than 18°C in T1, T2, 

T3 (figure 49B). Intra- temperature analysis revealed differences in number of entries in the sector 3 

of the N arm only at 18 °C between T4 and the other trials (figure 49C). To better evaluate the 

temperature effect on the exploration of the novel environment, the ratio between the number of times 

the animal reached the sector 3 of the N arm and the number of total entries in the N arm was 

calculated. No statistically significant differences were found both in the intra-trial and intra-

temperature analysis (figure 49D): in all conditions tested, fish tended to fully explore the N arm 

reaching the sector 3 the 60–80% of time. 

The total time spent by the experimental subjects in each arm was also measured in Te to 

estimate the animal's interest in the novel environment. Fish maintained to the control temperature 

(26 °C) during T1 spent most of the time in the N arm (54% of total time) (figure 49E). This result 

demonstrates fish interest for the N arm, where they spent most of the time and is coherent with 

findings by Cognato and co-workers [470] thus confirming that control fish are able in spatial 

orientation and distinguish the unexplored from the explored arms. As expected from the results of 

proteomic analysis, fish acclimated to 18 °C and 34 °C showed a different behaviour compared to 
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controls as they showed no preference for the N arm where they spent only 25–30% of the time. 

Different phenomena could explain the reduced interest in novelties such as the compromised ability 

in recognizing the geometric figures that distinguish the arms, difficulties in spatial orientation and 

the inability in recognizing the N arm like a novel environment. 

In the subsequent trials at 26 °C, there was a progressive significant reduction in the time spent 

in the N arm that gradually declines from T1 to T4 (45% in T2, 36% in T3 and 29% in T4) (figure 

49E, F), demonstrating a progressively lowered interest in the N arm that is no longer a novelty for 

the fish, as it has already been explored previously.  

 

Figure 49 Behavioural response to thermal treatment on Y-Maze test observed in Testing phase (Te). Total number of 
passages among the three arms (A), total number entries in the sector 3 of the N arm (B, C), ratio between the number 
of entries in sector 3 and the number of total entries in N arm expressed as percentage (D), time spent in N arm 
expressed as percentage of the total time (E, F) are represented. Data are shown as mean ± SEM and analysed by two-
way ANOVA with a post hoc test that utilizes a Bonferroni correction. Test with p ≤ 0.05 and p ≤ 0.01 represented by * 
and ** respectively. Ç refers to the comparison T4 vs T1 at 18 °C with a p ≤ 0.05 in a one-way ANOVA among values 
at 18 °C.  
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These data indicate that past experiences affect behaviour of control fish. Therefore, they 

suggest that fish memorise experience made in previous trials. Differently, fish acclimated at 18 °C 

and 34 °C continued to exhibit a scarce interest in the N arm also in the following trials (figure 49E, 

F). Their behaviour appears not to be modulated by past experiences and this may be related to an 

impairment of learning abilities due to thermal treatment. Both the extreme temperatures seem to 

induce a similar effect on the exploratory behaviour. However, it is interesting that the number of 

entries in sector 3 of the N arm (figure 49C) and the time spent in the N arm (figure 49F) showed 

higher values in T4 compared to T1 at 18 °C, while no differences were found at 34 °C. This result 

may suggest differences in behavioural effects of the exposure to 18 °C and 34 °C, as if specimens 

acclimated to 18 °C in T4 could recognize the N arm as a novel environment with a sort of delay in 

comparison to fish at 26 °C. Further studies will be devoted to deeply investigate physiological and 

behavioural differences between low and high temperature acclimation. 

The GOBP, GOMF, GOCC and Pathway enrichment analysis showed a strong impact of 

environmental temperature on the brain proteome. Overall, present results suggest that, in adult ZF, 

the exposure at 18 °C and 34 °C for 21 days provokes detectable alterations in the brain proteome 

possibly causing functional alterations of the CNS which can impair the exploratory behaviour of the 

animal (figure 50). 
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Figure 50 Schematic summary of Gene Ontology classification of brain proteins expressed after thermal treatment fully 
reported in Tables 2, 3. Down-regulation ↓, Up-regulation ↑ and general variation ↑↓ of proteins are reported at 18 °C 
on the left and at 34 °C on the right.  
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Both thermal extremes induce quantitative alterations of proteins associated with metabolism, 

cytoskeleton organization and cellular transport suggesting a strong impact of environmental 

temperature on the cytoarchitecture and the energy state of the brain. In particular, the reduced 

expression of synaptic proteins and the down-regulation of pathways positively correlated to 

cognitive functions in fish acclimated to 18 °C and 34 °C, suggest that thermal treatment may alter 

the animal's cognitive abilities. This alteration is suggested by the Y-Maze tests in which the interest 

in novelties and spatial orientation abilities appear significantly reduced in specimens maintained at 

18 °C and at 34 °C compared to controls. 

The reduced interest in novelty at the extreme temperatures may be due to the compromised 

ability in recognizing the geometric figures that distinguish the Y-Maze arms. Thermal treatment may 

cause a stress condition that prevent or impair fish from distinguishing new objects and recognizing 

familiar from unfamiliar parts of the environment. 

In conclusion, although temperatures tested fall within the ZF vital range, present results 

demonstrate that long term acclimation to extreme temperatures strongly influences brain protein 

expression and the exploratory behaviour of animals suggesting the impairment of some cognitive 

abilities. Under a global warming scenario such temperature-dependent cognitive alterations could 

seriously compromise the survival of wild fish in the long-term perspective. 
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4. CONCLUSIONS 

Proteome is the entire complement of proteins, protein-protein interaction and post-

translational modification within an organism.  Since protein modifications, such as phosphorylation, 

acetylation, glycosylation and methylation, are state-dependent, the proteome is constantly changing 

in response to cellular cues. Proteomics involves the applications of technologies for the identification 

and quantification of overall proteins present content of a cell, tissue or an organism. It supplements 

the other “omics” technologies to expound the identity of proteins of an organism, and to cognize the 

structure and function of a particular protein [536]. The complexity of proteome could be elucidated 

thanks to the modern proteomics that benefits from the ability to assess the modification state of 

proteins directly. In this thesis I present three different projects in which, beside canonical 

biochemical techniques and a behavioural analysis, a shotgun label free proteomic approach is used 

to understand how change in protein expression or protein state could explain the results obtained or 

observed by other analytical methods.  

In the first project the proteomic-based analysis defined nanotopography-sensitive signaling 

hubs and key elements potentially important in the promotion of neuronal differentiation by 

nanotopographical cues.  It gives new information on the mechanotransductive signaling that 

regulates neuron development and maturation.  

We found distinctive features in the protein expression and phosphorylation profiles 

comparing the canonical biochemically (NGF-)induced neuronal differentiation and the one triggered 

by the cell/nanotopography interaction. In this neuron-like PC12 cell model the mechanotransductive 

stimulus provided by an appropriate nanotopography is alone sufficient to achieve the necessary 
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change in the cellular program that implements the neuronal differentiation. There are indications in 

the phosphoproteomic data that the nanotopographical stimulus is even more effective. 

In the second project, we confirmed that in N2a cells the GM1 neuroprotection, derives from 

a direct interaction between the GM1 oligosaccharide and the TrkA receptor, activating the following 

signaling cascade capable to overexpress specific neuroprotective proteins. Our results suggest that 

the oligosaccharide chain is the key molecular portion and the starting point for GM1- mediated 

protective function at the plasma membrane level. However more experimental work is needed to 

fully clarify the GM1 mechanism of action with respect to its potential.  

And finally, thanks to proteomics used in combination to a behavioural approach, we were 

able to demonstrate that, in adult ZF, the exposure at 18 °C and 34 °C for 21 days provokes detectable 

alterations in the brain proteome possibly causing functional alterations of the CNS which can impair 

the exploratory behaviour of the animal. Further studies will be devoted to deeply investigate 

physiological and behavioural differences between low and high temperature acclimation. 
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