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Highlights 

 

 A boat full of more than 500 migrants sank in the Mediterranean in 2013 

 Genetic profiles were extracted both from victims and putative living relatives 

 The Identity by State (IBS) and the Identity by Descent (IBD) statistics were calculated 

 Genetic identifications were confirmed by pedigree analysis using FAMILIAS 
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1. INTRODUCTION 

Among the few main paths used by migrants in their attempt to reach Europe, the “Central 

Mediterranean route” (basically from Libya to Italy) has been the most heavily trafficked and the 

deadliest maritime route in the world [1]. Human traffickers load rubber dinghies and rusty fishing 

boats with tens to hundreds of people, in the hope that they are rescued by humanitarian or official 

vessels before they sink. The total number of victims is not known with certainty, but the death toll 

reported by the Missing Migrants Project of the International Organization for Migration is of the 

order of several thousands/yr in the past few years [2]. Sadly, not only the number of victims is 

huge, but also only a small fraction of the bodies may be recovered to allow for identification, 

which is universally recognized as a fundamental human right [3,4]. 

A turning point in the general awareness of the dramatic dimension of this ongoing tragedy has 

been a shipwreck which occurred on October 3rd, 2013. A boat packed with more than 500 migrants 

capsized and sank in about 40 m of water, half a mile off the shores of Lampedusa, a tiny Italian 

island south of Sicily [5]. Only 155 survived. It has been reported that most migrants were from 

Eritrea, Somalia and Ethiopia. One hundred ninety-four bodies were recovered soon after the 

disaster, and a further 108 were retrieved from the inside of the boat's hull some days later; other 

corpses were found during the following days. The final count of the dead was 366. Even if the 

exact number of victims remains unknown, it can be reasonably rounded up to 400. The tragedy 

shocked the Italian as well as the international public opinion; the media highlighted the news for 

many days. This triggered the attention of the Italian Authorities towards the need for a specific 

program dealing with this type of mass disasters. The “Lampedusa’s October 3rd shipwreck” was 

the first major migrant disaster off the Italian coasts for which data on all victims was collected in 

the same fashion (complete external examination, photographs and DNA sampling) and pooled in 

the same dataset [6]. External examination, apparent aging and sexing and pictures of all bodies 

were collected by the Polizia Scientifica before burial, and samples were collected for DNA 

analysis. Later, the Office of the Commissioner for Missing Persons of the Italian Government 

approved a protocol aimed at identifying the victims through the search of antemortem material that 

could be provided by putative living relatives [6, 7]. 

An article presenting and discussing the general aim of a pilot study conducted on the victims of 

this disaster and an overview of the results of the anthropological and genetic examinations has 

been published elsewhere [6]. Here, we describe the methodological and statistical approach leading 
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to the genetic identification of the victims by kinship analysis, in this open disaster victim 

identification (DVI) scenario that is a tragedy without an exact number of victims.  

In order to address the problem of the genetic and familial composition of the victim sample, we 

have used a “blind search” approach using the software FAMILIAS [8, 9] to spot putative parent-

child (PC) pairs based on autosomal STRs genetic profiles. Then, the same approach was applied to 

the reference persons (RP) paired to the victims to identify putative PC and full-sibling (FS) pairs.  

For the statistical evaluation of these large-scale genetic data comparisons, we have defined a 

posterior probability value for a positive identification, according to the Bayesian approach.  

This is the first paper that tries to systematically deal with the genetic identification of African 

migrants who died in the Mediterranean Sea. The methodological and statistical approach used in 

this study to achieve genetic identifications will be evaluated for a future application to other 

similar mass disasters. 

2. MATERIALS AND METHODS 

2.1. Data collection 

2.1.1 STR analysis (European Standard Set of markers, 16 STRs) 

Victims - Biological samples from 364 bodies recovered after the shipwreck (saliva, blood, or 

muscle tissue) were collected depending on the state of preservation of the corpses. DNA profiling 

of 16 autosomal STRs was performed in duplicate using two commercial kits (Powerplex 17 ESX, 

Promega or NGMSElect, AppliedBiosystems) by the ISO/IEC 17025 accredited lab of Palermo’s 

Polizia Scientifica as already described elsewhere [6]. 

Living relatives - Following an international call from 2013 to 2017, 52 alleged relatives of 47 

victims belonging to 42 familial groups presumably on this boat were recruited. Biological samples 

(buccal swabs, hair, saliva, or nails) of these reference persons (RP), after having been collected at 

the Ministry’s quarters in Rome or at the University of Milano, were sent to the Forensic Genetics 

Laboratory of the University of Pavia. DNA profiling for the same set of 16 autosomal STRs was 

carried out as described [6]. 

The DNA profiles of the RP were anonymised, according to [6]. As some reference subjects 

were relatives to each other and/or were missing more than one relative, we resolved such many-to-

many relationships by assigning a unique identifier (Fam x) to each family (Supplementary Table 

1). Nine families included more than one RP (Fam 02, 04, 14, 16, 33, 34, 35, 37, 41), whereas two 

families were missing more than one victim (Fam 30 and 33). The final RP database included 43 

subjects from 36 different familial groups typed for 16 loci (Fam01-Fam36 in Supplementary Table 

1).  
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2.1.2 Extended genetic typing  

Additional autosomal STRs and lineage markers (Y-STRs or mtDNA) were typed in selected 

cases, both in the victims and the RP, separately by the two forensic genetics laboratories involved. 

Autosomal markers – Five additional autosomal STRs (D7S820, CSF1PO, D13S317, TPOX, and 

D5S818), included in the AmpFLSTR Identifiler Plus PCR Amplification kit (ThermoFisher 

Scientific), were amplified following the manufacturer’s recommendations, using 0.5-1 ng input 

DNA amount. The amplified products were run either on the ABI 310 or 3500 genetic analyzers 

(AppliedBiosystems) in the Pavia or Palermo labs. The electropherograms were analyzed and the 

alleles called using GeneMapper ver 3.2.1 or Genemapper Id- X software.  

Y-chromosome STRs - DNA amounts varying from 0.25 to 1 ng were used to amplify, according 

to the manufacturers’ recommendations, 23-26 Y-STRs contained in the commercial kits 

PowerPlex Y23 System (Promega Corporation) and Yfiler plus (Thermofisher). The amplified 

products were separated through capillary electrophoresis and the alleles called as for the previous 

autosomal markers. In most of the victim-reference person pairs both subjects were typed with the 

PowerPlex Y23 kit while, in two cases, the victim was typed with PowerPlex Y23 and the 

corresponding alleged relative with Yfiler plus, thus generating a common shared 21 Y-STRs 

haplotype. 

Mitochondrial DNA - The hypervariable regions HVR-I and HVR-II of the mtDNA were 

amplified separately using primer sets and PCR conditions described by Ginther et al [10] in a total 

volume of 25 μl, through 34 PCR cycles, using 0.25 ng input DNA amount. The amplified products 

were checked on 2% agarose gel and then purified with NucleoSpin® Gel and PCR Clean-up 

(Macherey-Nagel GmbH & Co KG, Germany) following the manufacturer’s instructions. 

Sequencing was carried out using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems) and the same primers were employed in the sequencing reactions. The sequenced 

products were further purified to remove unincorporated dye terminators using Performa® DTR Gel 

Filtration Cartridges (Edge BioSystems, Gaithersburg, MD, USA), according to the manufacturer’s 

protocol. Sequences were resuspended in 20 µl of formamide and separated by capillary 

electrophoresis on ABI PRISM® 310 Genetic Analyzer (Applied Biosystems). Data was analyzed 

using the Software Sequencing Analysis v.5.2 and then compared to the rCRS sequence [11].  

2.2 Data analysis 

2.2.1 Pairwise sample comparison 

In blind search analysis, all individuals of a sample are paired to each other, or, otherwise, all 

individuals of a sample are paired to all individuals of a second sample. In our settings, the first case 
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was applied to the victim sample and the second case was applied to the RP paired to the victims. 

Two statistics were calculated for each pair, based on the Identity By State (IBS) and the Identity 

By Descent (IBD) approaches, respectively.  

The IBS approach is a non-parametric (or “model free”) method, where no specific relationship 

is hypothesized between any two subjects, and pairs of individuals are ranked by the number of loci 

with 0, 1 or 2 shared alleles (z0, z1, and z2), or by the total number of shared alleles (zt). Calculations 

were carried out by a modified version of the spreadsheet AlleleSharingSheet [12]. The IBD 

approach is the usual LR calculation, where the likelihood of a specified relationship is contrasted 

with the hypothesis of unrelatedness for any pair of subjects (or pedigree); calculations were 

performed by the DVI module of FAMILIAS3 [8, 9]. 

The evidential weight of the observed z(.) and LR values against those expected for unrelated 

individuals was evaluated by reshuffling the database of the victims. In this procedure, each of the 

32 allele arrays of the victim database was randomly permuted across the genetic profiles. This 

method leaves the allele frequencies unchanged, whereas the individual’s genotypes are reshuffled 

at all loci. Ten such random databases were obtained. Each of these sets can be interpreted as a 

sample of unrelated subjects obtained from the population represented by the victims. The z(.) and 

LR calculations were repeated for each set, both for the random subjects paired to each other and 

for the reference persons paired to the random subjects. 

2.2.2 Bayesian approach 

In a Bayesian setting, the posterior odds that a given victim (among N victims, a fraction of 

which may be untyped) is the missing individual claimed by a reference family is computed as the 

prior odds times the likelihood ratio. We hypothesized N = 400 total victims and set the posterior 

probability for a positive identification to 0.999 [13-15], assuming a uniform prior. Calculations 

were carried out in FAMILIAS3 [8, 9]. In this implementation, the probability of identifying a 

given missing individual of a given family is partitioned among all unidentified persons; 

specifically, calling PPi the posterior probability and O’i the posterior odds that subject i is the true 

missing subject of a given family, PPi is calculated with a formula equivalent to PPi = O’i /Σj O’j, 

where the sum is conducted over all unidentified persons 1, ..., j, …, N. In this way, the sum of the 

PPj is constrained to be 1. 

2.2.3 Population genetic analysis 

For LR and posterior probability calculations, the allele frequencies of a large population sample 

from the Horn of Africa typed for 35 autosomal STRs, including the 16-21 markers characterized 
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for the genetic screening of the victims, was used, which included estimates of mutation rates [16]. 

We refer to this sample as the “Dupuy frequencies”. 

Allele frequencies were also estimated from the victim sample, after removing some first-degree 

relatives (parent-child and full siblings) that were spotted in the blind search. The sample was 

analyzed by the exact test of Hardy-Weinberg equilibrium using ARLEQUIN 3 (v. 3.5.1.3) [17], 

and for population sub-structuring using STRUCTURE [18]; in addition, the Wright’s fixation 

index F (= 1 – Hobs/Hexp, where Hobs and Hexp are the observed and expected heterozygosities, 

respectively) was calculated for each locus. This parameter corresponds to the definition of FIT in 

subdivided populations [19]. The resulting database was compared with that of Dupuy, and also 

with other East African population samples typed for a smaller set of markers [20, 21]. The analyses 

were performed by computing pairwise and total FST and testing for population differentiation using 

ARLEQUIN 3.  

The Y-chromosome haplotypes were searched in the YHRD database [22, 23], considering 

different sets of markers (the “minimal” 8-markers and the 21 or 23 markers haplotypes) and 

different sets of African population samples (metapopulations).  

The mtDNA haplotypes typed were searched in the EMPOP database [24, 25] and in its African 

metapopulations. 

3 RESULTS AND DISCUSSION 

3.1 Population genetic analyses 

Victims sample - The final database included 335 full genetic profiles.  ARLEQUIN’s exact test 

of Hardy-Weinberg equilibrium showed two loci with nominal p-values <0.05, but significance was 

not maintained after the Bonferroni correction. Wright’s fixation index (equivalent to FIT) was 

included between –0.06 (D10S1248, with an excess of heterozygotes) and +0.05 (SE33, with an 

excess of homozygotes), and the mean overall value was near zero. In addition, the program 

STRUCTURE did not show any evidence of population admixture; forcing k = 2, all individuals 

had nearly equal posterior probability of being assigned to either group, and the same occurred with 

k = 3 and k = 4. Even though no population substructure has been identified in the sample, we 

cannot exclude the presence of a population admixture so limited that it could not be detected, 

making this a complicated issue in such context.  

The allele frequencies were compared with those reported for other African population samples, 

including the one studied by Dupuy [16, 20-21]. As shown in Table 1, the FST values were generally 

small, both by locus and overall (maximum value: TH01 = 0.0086, average value = 0.0026 ± 

0.002), indicating a remarkable similarity of allele frequencies among samples. ARLEQUIN’s exact 
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test of differentiation was significant for some of the pairwise locus comparisons at the nominal P-

value of 0.01, but the false-discovery rate was high due to the high number of comparisons (n = 78) 

and these observations were considered irrelevant. Of interest is the number of alleles that have 

been observed only once in the four samples (the so-called "private alleles", in brackets in Table 1). 

Most were observed in single copy; it is worth noting that their number was disproportionately 

higher for the two markers SE33 and FGA (16 and 14, respectively, almost the number of all other 

loci combined); the Dupuy population sample showed the largest number of private alleles (36), 

undoubtedly because of its large sample size. 

The similarity of the allele frequencies between the victim sample and other population-based 

surveys is important, as it represents an independent confirmation that most victims were truly from 

East Africa, meaning that the Dupuy frequencies are appropriate for kinship analysis. 

3.2 Familial groups within the victims 

To examine the possibility that the victims sample included some familial groups, all individuals 

with full genetic profiles (n = 347) were paired to each other and for each pair the number of loci 

with 0, 1 and 2 identical by state (IBS) alleles (z0, z1, and z2) and the total number of shared alleles ( 

zt) were computed. Fourteen pairs showed no “exclusions” (at least one allele shared at all loci, z0 = 

0), thus qualifying for being putative parent-child (PC) pairs. The corresponding LR PC/NR (NR 

stands for non-relatives) were 103 to 108 and 104 to 107, using the allele frequencies by Dupuy [16] 

and those calculated from the victim group, respectively. 

The expected number of pairs with z0 = 0 in a database of unrelated pairs of 347 individuals was 

estimated by ten random permutations of the victim database (see Data Analysis, section 2.2). We 

found 7 “PC” matches, leading to a point estimate of the probability of a false PC pair of 1.17 x 10-5 

and to an expected number of false PC pairs in the real database of 0.8. Although this number is not 

negligible, the 14 pairs were investigated in more detail. Four of them were present in more than 

one pair, namely, one person was connected with three subjects, and three other persons were 

connected each with two subjects. By considering their estimated age (from medico-legal records), 

it emerged that these four groups composed by more than one family member were a mother with 

three children, two mothers with two children and a pair of parents with a child. The other five 

putative single PC pairs did not show evidence of other first-degree relatives among the victims. In 

conclusion, nine independent putative familial groups were tentatively identified among the victims 

through a parent-child relationship. Other putative pairs of first-degree relatives (full siblings) could 

be recognized by looking at the total distribution of allele sharing and LRs. However, we deferred 

any further analysis of the victim database until possible living relatives were identified. 
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3.3 Reference persons and families 

As outlined in Parsons [26], we first performed a blind search between victims and reference 

persons (each RP was contrasted against all victims), disregarding the relationships reported with 

their missing relatives. This approach can mitigate issues deriving from unexpected pedigree 

relationships. Only after a victim was recognized as a putative relative of a given reference person 

was the relationship claimed by the living relative used to confirm the identification in a pedigree 

analysis.  

3.3.1  Blind search analysis 

The 43 reference persons were paired to the 347 victims with full genetic profile, and the values 

of z0, z1, and z2 and zt were determined for each pair. In parallel, a pairwise matching was performed 

by the DVI module of FAMILIAS3 (also including the victims with partial profiles), checking for 

parent-child and full sibling relations.  

Eleven pairs with z0 = 0, i.e. with no exclusions, were observed. FAMILIAS recognized them as 

putative parent-child with LR PC/NR from 104 to 1010. These eleven pairs included 8 different 

victims.  

In addition, a reference person (Fam01) showed a single exclusionary locus with a victim 

(D21S11; reference person 31.2/32.2, victim 29/33.2), for which a germline mutation was inferred. 

Using the mutation model included in the Dupuy database available in FAMILIAS website 

(www.familias.no), the resulting LR PC/NR was 5 x 105. In conclusion, nine victims showed 

parent-child relationships with 12 reference persons and these pairs were checked in pedigree 

analysis. 

For full sibling pairs, no obvious cut-off values of any statistics can be considered, so we 

examined the distributions of the total number of shared alleles (zt) and of the log10 of the LR 

FS/NR in the reference persons paired to the ten replicas of the randomized victim databases. As 

shown in Table 2, 44 total pairs showed LR FS/NR > 100, two of which with LR > 1000, resulting 

in 4.4 and 0.2 expected numbers in the real data, respectively. Thus, the chance of false FS with LR 

> 10,000 was negligible, provided that none of the reference persons were first-degree relatives of 

any of the victims. Considering the zt distribution (not shown), sixty-five total pairs (out of 149,210) 

showed zt = 17, eighteen showed zt = 18 and none showed zt > 18, so that the corresponding 

expectations were 6.5 (zt = 17), 1.8 (zt = 18), and undetermined, but close to 0 (zt > 18), 

respectively. 

The identified FS pairs that had already been considered as putative parent-child relationships 

were removed from the results (14,921 pairs – 12 PC = 14,909 pairs). Among these 14,909 pairs, 19 

showed LR FS/NR > 104 (all with zt > 18) and were selected for further analysis. These pairs 
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involved 17 reference persons and 17 victims. Eight pairs included three victims that had already 

been detected by the PC analysis (Fam02, Fam04 and Fam16) and three victims that had been 

related to two reference persons previously involved in parent-child relationships (Fam33). These 

victims were the missing relatives of families with multiple reference persons. The other 11 pairs 

included a single reference person missing a single full sibling and a single case of a missing half-

brother (Fam21). These pairs were considered in the subsequent kinship analysis.  

Other eight pairs showed LR FS/NR 102 to 104 (Fam05, Fam06, Fam07, Fam08, Fam23, Fam24, 

Fam26, Fam30) (see Figure 1). As the chance of false FS pairs is not negligible in this range (Table 

2), we decided to extend the genetic typing, including five additional autosomal STRs, and either Y-

chromosome STRs or mtDNA variants. 

The remaining eight families (Fam03, Fam11, Fam14, Fam17, Fam19, Fam20, Fam27 and 

Fam36) showed LR values lower than 102. In three cases (Fam14, Fam19, Fam27), the reference 

persons were looking for second degree relatives and are considered in the next paragraph (see 

3.3.3). The remaining families involved putative relatives seeking a father (Fam17) and a brother 

(Fam3, Fam11, Fam20, fam36). In the first case, no matches were identified using both IBS and 

IBD approaches and the search was considered negative; for the other four, the maximum LR 

observed in the blind search was considered too low to be investigated with the extended typing 

approach, although definite exclusions could not be attained. 

All the results of PC and FS relations were plotted in Figure 1.  

3.3.2 Pedigree analysis 

Family pedigrees were built for the 27 reference persons associated to one or more victims in the 

blind search test, and were paired to the entire victim group using FAMILIAS. Pedigree LRs were 

calculated using the allele frequencies both from the victims database and the East African 

population studied by Dupuy [16], while posterior probabilities were calculated assuming the 

number of victims rounded up to 400 and by only using the Dupuy database. The pedigree LRs 

were calculated, for each reference family, by contrasting the hypotheses that the missing individual 

was any of the victims, rather than some unknown person, and provided values between 104 and 

1016. The corresponding posterior probabilities were greater than 99.9% in all cases except for 

Fam18, whose members were submitted to the extended genetic typing.  

Among the found matches, a putative second-degree pair (Fam21, half-brothers sharing a 

common father) provided a posterior probability greater than 99.9%. In order to confirm the 

paternal lineage, Y- STR markers were analyzed both in the victim’s and the corresponding living 

relative’s DNA (see section 3.3.3.).  
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In conclusion, pedigree analysis based on 16 autosomal STRs provided posterior probabilities 

greater than 99.9% for 22 missing relatives of 19 reference families by assigning equal priors to 

each of an estimated number of 400 victims (see Table 3, section “Pedigree Analysis”). 

3.3.2.1 Extended genetic typing.  

Nine victim-RP pairs showed FS/NR LR lower than 104 but greater than 102 in the blind search. 

This is a “gray zone”, where both the chances of false-positives and false-negatives are high. 

Therefore, we extended the genetic typing, including five autosomal STR markers and lineage 

markers (Y-chromosome STRs or mtDNA). As shown in the bottom part of Table 3 (section 

“Extended Genetic Typing”), the 21-loci LRs increased by two to five orders of magnitude for six 

of the nine pairs, leading to posterior probabilities ≥ 99.9% in all cases except three (Fam07, 

Fam08, and Fam26), which are further described below. The lineage markers confirmed the former 

six putative relationships. 

Each haplotype was searched in the forensic Y-STR or mtDNA databases YHRD [22, 23] and 

EMPOP [24, 25], respectively. All the haplotypes were unique in the entire databases when the 

complete set of markers was considered. The number of shared Y-STR and mtDNA haplotypes and 

the corresponding frequencies in the general database and in specific African metapopulations are 

reported in Supplementary Tables 2 and 3, respectively. 

We did not calculate a combined LR of the autosomal STRs and the lineage markers as 

suggested in [14-15, 27]. In most cases, in fact, the combined LRs would have been boosted by at 

least three orders of magnitude, since all the complete observed Y-chromosome and mtDNA 

haplotypes were unique, even in the general population databases comprising the African 

metapopulations. Unfortunately, there is still limited high-quality forensic data about lineage 

markers in African populations, and this may lead to under-estimating the haplotype frequencies. 

However, we did not ignore the high discriminatory power of extended Y-chromosome and mtDNA 

haplotypes in the final process of identification of a victim. In fact, the finding of shared haplotype 

in relative-victim pairs was considered as a strong support to the positive identification of the six 

victims. 

3.3.3 Second-degree relationships 

As the autosomal loci do not distinguish second-degree relatives (such as half-sib, avuncular or 

grandparent-grandchild) in kinship analysis, the persons missing half siblings or nieces/nephews 

(six missing relatives in total) were grouped. Two reference persons were missing a half-brother 

(Fam19 and Fam21), two were missing a nephew and a niece, respectively (Fam14 and Fam27), 

and one (Fam30) was missing a nephew and a niece, his sister’s children. The last case was 
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resolved by the extended genetic typing, which confirmed a full-sibling relationship with a female 

victim (PP = 0.9996, Family 30, Table 3), who had already been identified as the mother of two 

other victims; the possibility that the putative niece could have been the actual sibling of the 

reference person was ruled out, as the PP of this relationship was < 10–10. This case perfectly fits the 

situation described in [26] where the DNA profile of an identified victim was used as a reference 

sample for other corresponding missing relatives. 

In addition, the half-brother paternal relationship previously described for Fam21 was also 

confirmed by Y-STR markers.  

Three reference persons, from Fam14, Fam19 and Fam27 respectively, were missing a single 

second-degree relative each, and the highest value of the posterior probability obtained by searching 

all the victims was lower than 50% in all three cases. This ruled out the option to perform additional 

analyses in these cases. 

3.3.4 Multidisciplinary approach to identification 

Two familial groups (Fam26 and Fam07) showed posterior probability values very close to 

99.9% and were submitted to lineage marker analysis. 

Fam26 included a brother looking for his sister. Kinship analysis resulted in LR FS/NR equal to 

4.0 x 104, corresponding to a posterior probability of 99.86%. Since mtDNA analysis confirmed the 

maternal origin, and a biological match was also detected by anthropological and medico-legal 

investigations, all these findings supported the identification of the victim.  

Fam07 was a man looking for his brother. In this case, LR and posterior probability were lower 

than the selected threshold, corresponding to 3.0 x 103 and 98.54%, respectively. The analysis of Y-

chromosome STRs highlighted the same paternal origin, and anthropological and medico-legal 

investigations revealed a biological match. Therefore, as in the previous case, all these findings 

supported the identification of the victim.  

These results highlight the importance of the support of other primary and secondary identifiers 

in DVI. As it is well known, a multidisciplinary approach involving anthropology, odontology and 

genetics can increase the number of the identified victims. This was clearly pointed out in the 2007 

ISFG recommendations regarding the role of forensic genetics in disaster victim identification [14] 

and in the paper reporting the ICMP experience [26]. 

Finally, the last pair included in the analysis, Fam08, was excluded to be a true full sibling 

relationship. In fact, in this case, the analysis of the additional autosomal markers led to a decrease 

of LR FS/NR and posterior probability (from 4.0 x 102 to 6.6 x 101 and from 87.0% to 52.48%, 

respectively). The results were confirmed by lineage markers which did not highlight a common 

paternal origin.  
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4. CONCLUSIONS 

In the end, the present work identified 29 first-degree relatives out of 35 (83%) missing by the 

reference families, and 3 second-degree relatives out of 6 (50%). With reference to the paper by 

Olivieri et al. [6], eight additional identifications are reported here, which are supported by kinship 

analysis only; in another case, the genetic match confirmed a previous identification obtained by 

anthropological investigations. 

The main reason for this increase was the typing of additional autosomal markers and haploid 

systems in the pairs that previously did not reach a posterior probability of 99.9%. This suggests 

that a 21 autosomal STRs profiling should be considered as a standard screening approach in future 

DVI analysis of the same kind and that lineage markers could support the identification process. 

However, more population data are needed, especially for the Sub-Saharan countries where most 

migrants come from. This is especially true for lineage markers, though even for autosomal STRs it 

is very difficult to find large published population surveys for the complete 21 marker set.  

Another reason of the overall high rate of victim identification is undeniably the great care taken 

by the interviewers of the putative victim’s relatives (a team composed by a trained psychologist, a 

forensic anthropologist/odontologist, a forensic pathologist and a cultural/linguistic mediator), in 

such a way that the final recorded information was highly reliable. 

The success rate achieved suggested the reliability of the strategy and its applicability in cases of 

mass disasters. Moreover, even in this challenging context, the results obtained highlighted the 

beneficial role of DNA analysis in victim identification as already described in other DVI scenario 

[28]. However, the lack of suitable frequency databases concerning sub Saharan populations, both 

for autosomal and lineage markers, highlighted the need to fill this gap in order to perform more 

accurate statistical analyses. In addition, while agreement was reached among recommendations on 

the role of forensic genetics in DVI events concerning sampling and genetic characterization of 

victims and reference samples [14, 29, 30], different approaches have been adopted about statistical 

evaluation, especially concerning the association of lineage markers with autosomal STRs in a 

combined likelihood ratio value [14, 30-35]. This lack of a shared statistical approach should be 

filled in view of future identification cases from most catastrophic humanitarian tragedies, such as 

that which occurred on April 18th 2015 [36], in which about 1,000 migrants coming from different 

African countries drowned in the Mediterranean Sea. 
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Figure 1. Plot of the log10(LR PC and FS/NR) representing the blind search analysis performed between all the victims 

against all the reference persons. In the upper and lower part of the graph, the results obtained for parent-child and full sibling 

searching using the Dupuy frequencies are shown. For parent-child relationships, pairs with no exclusions or LR greater than 104 are 

reported, including, moreover, the only RP missing a father, which provided low LR values matches (LR < 2) in the analysis 

(Fam17). The first family at the top (Fam01) is the PC relation with the germline mutation. Reference persons belonging to the same 

family are marked with the same color. Families showing LR values greater than 104 are reported on the right (underlined in red); 

families providing LR values between 102 and 104 are reported in the center (underlined in black); families showing LR values lower 

than 102 are reported on the left (B: brother, M: mother, S: sister). The red lines correspond to the 102 and 104 LR values. 
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This study (335) Dupuy (799) Tomas (198) Tilmar (404) 

 Marker Na (Np) Hexp Na (Np) Hexp Na (Np) Hexp Na (Np) Hexp FST 

D3S1358 9 (0) 0.760 14 (4) 0.753 8 (0) 0.754 6 (0) 0.737 0.0007 

VWA 10 (0) 0.804 12 (2) 0.819 9 (0) 0.802 9 (0) 0.800 0.0024 

D16S539 7 (0) 0.794 10 (2) 0.801 8 (0) 0.802 8 (0) 0.782 0.0017 

D2S1338 13 (1) 0.877 14 (1) 0.872 12 (0) 0.854 12 (0) 0.858 0.0043 

D8S1179 11 (0) 0.822 12 (0) 0.806 10 (0) 0.777 11 (0) 0.790 0.0033 

D21S11 16 (0) 0.826 24 (4) 0.852 17 (1) 0.836 18 (0) 0.826 0.0045 

D18S51 20 (0) 0.907 27 (4) 0.902 20 (1) 0.902 21 (0) 0.902 0.0033 

D19S433 14 (1) 0.841 12 (0) 0.833 11 (0) 0.807 13 (0) 0.818 0.0032 

TH01 7 (1) 0.770 8 (2) 0.752 6 (0) 0.745 6 (0) 0.716 0.0086 

FGA 23 (6) 0.874 31 (8) 0.868 16 (0) 0.853 19 (1) 0.860 0.0004 

D12S391 16 (0) 0.865 17 (1) 0.863 15 (0) 0.836 

  

0.0014 

D1S1656 16 (2) 0.869 14 (0) 0.872 14 (1) 0.866 

  

0.0022 

D2S441 11 (0) 0.787 11 (0) 0.796 8 (0) 0.790 

  

0.0011 

D10S1248 10 (0) 0.790 9 (0) 0.750 9 (0) 0.791 

  

0.0010 

D22S1045 9 (0) 0.716 10 (1) 0.790 8 (0) 0.724 

  

0.0012 

SE33 45 (8) 0.940 46 (7) 0.935 34 (1) 0.930 

  

0.0030 

Average 14.8 0.828 16.9 0.829 12.8 0.817 12.3 0.809 0.0026 

SD 9.2 0.059 10.2 0.055 6.9 0.056 5.4 0.057 0.0020 

Table 1. Population data of four samples from East Africa. Numbers right of sample names are the number of typed individuals. 

Na: Number of alleles; Np: number of private alleles; Hexp: expected heterozygosity. 
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x Observed number 

with log10(LR) > x 

Estimate of P(log10 

(LR) > x) 

Expected number 

with log10(LR) > x 

0 1,363 0.0091 136.3 

0.5 630 0.0042 63.0 

1 259 0.0017 25.9 

1.5 109 0.0007 10.9 

2 44 3.0E-04 4.4 

2.5 14 9.4E-05 1.4 

3 2 1.34E-05 0.2 

3.5 0 0 0.0 

4 0 0 0.0 

Table 2. Distribution of the log10(LR FS/NR) in the randomized and the real data. Observed number (2nd column) of pairs with 

log10 (LR FS/NR) larger than the given x value (1st column) in the 43 reference persons paired to the ten replicas of the randomized 

database (149,210 total pairs), and the corresponding expected number in the real data (14,921 pairs), in the hypothesis that none of 

the reference persons were relatives of any of the victims. 
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Pedigree analysis 

Fam 
Reference 
samples 

Missing 
person 

LR 
(Victims) 

LR (Dupuy) 
PP 

(Dupuy) 
Pedigree 

Fam01 
RP 1 

(father) 
Son 2.2 x 105 7.6 x 105 99.99%  

Fam02 

RP 2 
(mother) 

RP 3 
(sister) 

Son/Brother 3.8 x 1013 1.3 x 1014 > 99.99% 

 

Fam04 

RP 5 

(mother) 

RP 6 
(sister) 

RP 7 
(brother) 

Son/Brother 5.4 x 1014 2.7 x 1015 > 99.99% 

 

Fam09 
RP 12 

(brother) 
Brother 1.4 x 106 1.2 x 106 99.99%  

Fam10 
RP 13 

(sister) 
Sister 4.8 x 107 2.0 x 108 > 99.99%  

Fam12 
RP 15 

(sister) 
Brother 2.3 x 108 3.1 x 109 > 99.99%  

Fam13 
RP 16 

(sister) 
Brother 1.0 x 105 1.2 x 105 99.90%  

Fam15 
RP 18 

(sister) 
Sister 1.1 x 105 2.8 x 105 99.96%  

Fam16 

RP 19 

(mother) 

RP 20 
(brother) 

Son/Brother 1.3 x 109 1.3 x 109 > 99.99% 

 

Fam18 
RP 22 

(sister) 
Brother 1.0 x 104 3.3 x 104 96.90%  

Fam21 
RP 25 

(half-
brother) 

Half-brother 3.5 x 104 7.7 x 105 99.94%  

Fam22 
RP 26 

(sister) 
Brother 7.0 x 106 4.5 x 106 > 99.99%  

Fam25 
RP 29 
(brother) 

Brother 2.0 x 105 4.5 x 105 99.97%  

Fam28 
RP 32 

(brother) 
Brother 4.5 x 1013 2.7 x 1014 > 99.99%  

Fam29 
RP 33 

(brother) 
Brother 2.9 x 105 1.9 x 106 99.99%  

Fam31 
RP 35 

(son) 
Mother 7.6 x 107 9.3 x 107 > 99.99%  

Fam32 
RP 36 

(son) 
Father 9.2 x 105 1.5 x 106 99.99%  

Fam33 

RP 37 
(son) 

RP 38 
(daughter) 

Mother 4.4 x 1011 3.5 x 1011 > 99.99% 

 

 

RP 37 
(brother) 

RP 38 
(sister) 

Brother 3.0 x 1010 1.9 x 1010 > 99.99% * 

 

RP 37 
(brother) 

RP 38 
(sister) 

Sister 3.7 x 1013 4.3 x 1014 > 99.99% * 
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RP 37 
(brother) 

RP 38 
(sister) 

Sister 1.8 x 1012 1.9 x 1012 > 99.99% * 

 

Fam34 

RP 39 
(son) 

RP 40 
(daughter) 

Father 2.1 x 1015 5.3 x 1016 > 99.99% 

 

Fam35 

RP 41 
(daughter) 

RP 42 
(son) 

Father 2.4 x 1012 7.0 x 1012 > 99.99% 

 

Extended genetic typing 

Fam 
Reference 

samples 

Missing 

person 

LR  
(PP) 

16 STR 

LR  
(PP) 

21 STR 
Lineage Pedigree 

Fam05 
RP 8 
(brother) 

Brother 
1.4 x 103 

(96.52%) 

8.2 x 105 

(99.99%) 

21/21 Y-

STR 
 

Fam06 
RP 9 
(brother) 

Brother 
7.9 x 102 

(93.57%) 

1.9 x 107 

(> 99.99%) 

23/23 Y-
STR 

 

Fam07 
RP 10 
(brother) 

Brother 
5.6 x 103 

(99.20%) 

3.0 x 103 

(98.54%) 

21/21 Y-
STR 

 

Fam18 
RP 22 
(sister) 

Brother 
3.3 x 104 

(96.90%) 

1.2 x 106 

(99.91%) 
HVR1/2  

Fam23 
RP 27 
(brother) 

Sister 
1.5 x 103 

(62.50%) 

1.4 x 106 

(99.93%) 
HVR1/2  

Fam24 
RP 28 

(brother) 
Brother 

5.0 x 103 

(98.29%) 

2.3 x 105 

(99.96%) 

23/23 Y-
STR 

 

Fam26 
RP 30 
(brother) 

Sister 
1.8 x 103 

(97.02%) 

4.0 x 104 

(99.86%) 
HVR1/2  

Fam30 

RP 34 
(brother) 

Sister 
4.1 x 103 

(98.51%) 

1.9 x 105 

(99.96%) 
HVR1/2 

 

--- 
Mother 

Daughter 

1.4 x 106 

(99.99%) * 

9.6 x 105 

(99.99%) * 
--- 

 

 

--- 
Mother 

Son 

1.6 x 106 

(99.99%) * 

1.9 x 106 

(99.99%) * 
--- 

 

--- 
Sister 

Brother 
5.1 x 106 1.0 x 109 --- 

 

Fam21 
RP 25 

(half-
brother) 

Half-brother 
7.7 x 105 

(99.94%) 
--- 

23/23 Y-

STR 
 

 

Table 3. Results of the pedigree analysis and the extended genetic typing. Top section: LRs and posterior 

probabilities (PP) for the 20 families whose reference persons were identified as putative parent/child or full sibling by 
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blind search analysis. Computations were performed using both victim and Dupuy databases. As the results obtained 

with the two datasets were very similar, only the posterior probabilities calculated with the Dupuy database are 

reported. The parental relationship is reported for each reference person and missing relative between round brackets. In 

the last column a graphic representation of the pedigree for the complex families is shown (colors identify the following 

persons: orange, reference persons; grey, victims; white, relatives not available).  

Bottom section: likelihood ratios, posterior probabilities (PP) and Y/mitochondrial results for the ten families submitted 

to the extended genetic typing. For each victim-reference person pairs, LR and PP values calculated using the Dupuy 

frequencies for 16 and 21 markers are reported. In the “lineage” column, the number of shared Y-STR alleles between 

victim and paternal relative is shown. For mitochondrial DNA analysis, HVR1/2 represents the same shared 

mitochondrial haplotype between pairs. In the last column a graphic representation of the complex pedigree of Fam 30 

is shown. An asterisk in PP columns means that the posterior probability is calculated for that specific victim, after 

removing from the analysis, in turn, the victims that were strong candidates to be the other missing relatives of that 

family. Reference persons were anonymized.  
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