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Riassunto 

Con l’inquinamento crescente e il riscaldamento globale dell'ambiente, è 

emerso un ampio spettro di tecnologie ingegneristiche per sviluppare 

imballaggi innovativi con meno rilascio di anidride carbonica ed emissioni di 

gas serra. Un imballaggio alimentare ideale deve soddisfare tutti i requisiti di 

sicurezza alimentare e conformarsi in concomitanza alle preoccupazioni 

ambientali. Una delle strategie per implementare un imballaggio che 

comprenda tutte le esigenze del consumatore è quella di ricorrere a laminati 

ecologici che combinano diversi strati di materiali con diverse funzioni in 

termine di barriera gas / olio / acqua e proprietà meccaniche. La ricerca di 

dottorato mirava a sostituire dei laminati barriera sintetica ai gas come il 

copolimero di etil vinil alcool (EVOH) attualmente usato, con dei laminati a 

barriera biologica contenenti i nanocristalli di cellulosa (CNCs) per 

l'estensione della shelf-life dei prodotti sensibili all’ossidazione. Dal punto di 

vista chimico-fisico, la cellulosa è una struttura microfibrillata composta da 

milioni di β1-4 glucosio legati da legami glicosidici; la sua organizzazione 

gerarchica denota delle regioni cristalline e amorfe contenenti catene di 

glucosio saldamente unite da legami idrogeno. I CNCs sono generalmente 

ottenuti per idrolisi acida o ossidativa della parte amorfa della cellulosa e sono 

delle particelle piccolissime e biodegradabili in cui almeno una dimensione è 

inferiore o uguale a 100 nm. I film plastici rivestiti con CNCs presentano 

proprietà barriera straordinarie ai gas. Tuttavia, poiché la maggior parte dei 

materiali biodegradabili sono di natura idrofila, i CNCs tendono ad assorbire 

umidità dall’ambiente circostante, che consente ai gas di diffondere molto 

velocemente attraverso i film plastici rivestiti. Quel fenomeno di sensibilità 

all'acqua dei CNCs è stato approfondito durante la prima fase della ricerca e 

due soluzioni sono state ritenute plausibili per alleviare questo inconveniente, 

ricorrendo alla modifica chimica dei CNCs per renderli più idrofobici o/e alla 

laminazione di rivestimenti di CNCs tra due film plastici idrorepellenti per 

proteggerli dall'umidità. CNCs standard (non modificati) ed esterificati 
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(modificati) sono stati prodotti e caratterizzati per valutare i loro gruppi 

funzionali, indice di cristallinità, dimensioni e comportamento idrofilo. 

Successivamente, i film plastici rivestiti dei CNCs sono stati caratterizzati 

mediante l’angolo di contatto, il potenziale Z e la permeabilità agli aeriformi 

(vapore acqueo, O2, CO2). I film plastici di CNCs rivestiti sono stati quindi 

laminati con adesivo poliuretanico e caratterizzati da test di delaminazione e 

permeabilità ai gas al 50% e all'80% di UR per valutare l'efficacia della 

laminazione. Dopo la laminazione, è stato ottenuto un miglioramento tra il 

90% e il 1200% della barriera ai gas anche in condizioni umide. La modifica 

chimica dei CNCs combinata con la laminazione si è rivelata la migliore 

strategia per superare la sensibilità all'acqua dei CNCs in ambienti umidi. 

Infine, è stata eseguita con successo una valutazione comparativa della shelf-

life utilizzando sia laminati sintetici (EVOH) che bio-laminati (CNCs) su 

formaggi grattugiati e caffè macinato. I risultati ottenuti hanno confermato con 

certezza che l'implementazione dei CNCs in sostituzione della barriera 

sintetica ai gas è efficace e che contribuirà allo sviluppo di imballaggi 

alimentari più avanzati e sostenibili in grado di ridurre la dipendenza dai 

polimeri sintetici promuovendo un'economia circolare. 
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Abstract 

With increasing pollution and global warming of the environment, a wide 

spectrum of engineering technologies has emerged in food packaging to 

develop innovative materials with less carbon dioxide release and Green 

House emissions. Nowadays, an ideal food packaging must meet all the 

requirements of food safety and comply with environmental concerns 

concomitantly. One of the strategies to implement a food package that 

encompasses all consumer needs is to resort to eco-friendly laminates that 

combine several layers of materials with different functions in terms of 

gas/oil/water barrier and mechanical properties. The PhD research was 

focused on the replacement of currently used EVOH conventional gas barrier 

laminates with bio-based laminates containing cellulose nanocrystals (CNCs) 

for shelf-life extension of sensitive-oxidation foods products. Chemico-

physically, cellulose is a microfibrillated structure, the most abundant 

biopolymer, made of millions of beta 1-4 glucose linked by glycosidic bonds; 

its hierarchical organization denotes from the crystalline and amorphous 

regions containing chains of glucose firmly hold together side-by-side by 

hydrogen bonds providing high tensile strength. CNCs are generally obtained 

by a chemical process called “top-down” either by acidic or oxidative 

hydrolysis of the amorphous part of cellulose. CNCs are biodegradable tiny 

particles whose at least one dimension is smaller than or equal to 100 nm. 

Actually, CNCs-coated polymers exhibit unique and extraordinary barrier 

properties to gases. However, since most biodegradable materials are 

hydrophilic by nature, CNCs tend to integrate water in wet environment which 

then allows the gases to pass through the coated polymers even abruptly. 

That phenomenon of water sensibility of CNCs was investigated in-depth 

during the first stage of the research and two solutions were considered 

plausible to alleviate that drawback, that of chemically modifying the CNCs 

surface for making them more hydrophobic or/and that of laminating the CNCs 

between two water-repellent plastic films to protect them from the humid 
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surrounding. Standard (unmodified) and esterified (modified) CNCs were 

produced and characterized to assess their functional groups, crystallinity 

index, apparent hydrodynamic diameter and size and hydrophilic behavior. 

Subsequently, plastic films were coated with standard and modified CNCs and 

characterized by the contact angle, Z-potential, gases permeability (Water 

vapor, O2, CO2). Coated-CNCs plastic films were then laminated with solvent-

based polyurethanic adhesive and characterized by delamination test and gas 

permeability at 50% and 80% RH to evaluate the effectiveness of the 

lamination in the protection of CNCs coatings from the wet environment. 

Between 90% and 1200% improvement of gas barrier was achieved after the 

lamination. More importantly, the chemical modification of cellulose 

nanocrystals combined with the lamination resulted to be the best strategy to 

overcome the water sensitivity of CNCs in wet environment. Finally, a 

comparative food shelf-life assessment by using both synthetic (EVOH) and 

bio-based (CNCs) barriers laminates were successfully performed on grated 

cheese and ground coffee. The results obtained confirmed with certainty that 

CNCs implementation as a replacement of petroleum-based gas barrier is 

effective and that will contribute to develop more advanced and sustainable 

food packaging able to reduce the dependency on synthetic polymers and 

promoting a circular economy. 
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General Introduction 

For more than eighty years, synthetic plastic polymers such as polyethylene 

(PE), polypropylene (PP), polystyrene (PS), polyvinylchloride (PVDC), 

polyethylene terephtalate (PET), Ethyl-vinyl-alcohol (EVOH) have been used 

for the packaging of food for their unique properties like stiffness, high gas 

barrier and optical properties (Mark, 2007; Urbanski et al., 1977).The vast 

majority of packaging products are based on fossil hydrocarbons; therefore, 

they are not biodegradable nor renewable, but toxic and unfriendly for our 

environment. In fact, those materials accumulate as debris in ocean and 

landfills rather than degrade and decompose (Thompson et al. 2009). In this 

decade, the growing consciousness about environmental and healthy damage 

caused by oil resins has encouraged manufacturers, researchers and 

scientists to seek alternatives such as bio-based materials to these synthetic 

resources. The world has taken the issue of environmental pollution very 

seriously and Europeans in particular have shown great interest in it.  

According to European bioplastics, a plastic material is defined as a bioplastic 

if it is bio-based, biodegradable, or both. The term bio-based means that the 

material is (partly) obtained from biomass such as corn, sugarcane, or 

cellulose whereas the term biodegradable is intended as the biodegradation 

of materials into water, CO2 and compost by the microorganisms available in 

the environment through a chemical process without adding any artificial 

additives (Wool and Sun, 2011). A material biodegradation is rather linked to 

its chemical structure than its resource basis. In a nutshell, 100% bio-based 

plastics may be non-biodegradable and 100% petroleum based plastics can 

be biodegradable in environmental conditions (figure 1). Bioplastics are 

materials characterized by energy consumption saving during the production 

and lower carbon-dioxide gas during degradation. Not only are the bioplastics 

and biopolymers bio-based materials but they also exhibit higher 

functionalities and similar mechanical properties such as stiffness and tensile 

strength compared to synthetic counterparts. Increasing awareness of 
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developing and developed countries regarding the environmental concern and 

compelling laws/measures have contributed to increase the demand of bio-

based packaging such as biopolymers and bioplastics, which has promoted 

the regeneration and provided the potential of carbon neutrality 

significantly.According to German nova-Institute (2018), the total production 

polymers is estimated to reach 400 million tonnes in 2020, with the  bio-based 

share increasing from 1.5% to 3% in the same period of time, meaning that 

bio-based production rate will be faster than overall production. 

 

Figure1. Definitions and similarities of biobased, fossil-based, and biodegradable and 

biodegradable bioplastics. 

From the graphs below, packaging sector will remain the most consumers with 

56.8% of overall bio-based polymers in 2018 (1.2 million tons of the total 

bioplastics) (figure 2). Bioplastics materials have been used for years in many 

other sectors such as textiles, consumer goods and applications in the 

automotive and transport sector as well as the agriculture and horticulture 

sector. It is expected that, global bioplastics production capacity will increase 

from around 2.1 million in 2018 to 2.6 million tons in 2023 with the driving force 
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the growth of polylactic acid) and PHAs (polyhydroxyalkanoates). In addition, 

the largest plastics market is actually the packaging. 

 

Figure 2. Global production capacities of bioplastics 2018 (by material type) 

 

All this progress and improvements have been made in order to reduce the 

dependency of synthetic polymers in packaging with a subsequent decrease 

in human-caused greenhouse gases and CO2 emissions. Notwithstanding 

all the advantages and assets of bio-based materials, it is still a challenge, 

that to use them as a mono-layer because they display poor mechanical and 

gas barrier properties. Actually, the combination of biopolymers with 

nanocellulose might contribute to obtain complex nanomaterials that meet 

relevant requirements of a food packaging. Nanocellulose (CN) represents a 

branch of the cellulose nanomaterials. As a rule of thumb, nanocellulose 

represent particles whose at least one size is smaller than or equal to 100 nm. 

CN can be subdivided into two categories: cellulose nanocrystals and 

cellulose nanofibrils. Cellulose nanocrystals (CNCs) are nanoparticles 

obtained by the chemical process through the acid hydrolysis or oxidation of 

the cellulose and the cellulose nanofribrils (CNFs), being obtained by the 

mechanical process where the cellulose is defibrillated to a nanoscale.CNCs 
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are biodegradable nano-spindles derived from the cellulose “top-down” which 

exhibit high performance properties capable of filling the gaps of both bio-

based and synthetic polymers in terms of lack of gas barrier (Dufresne, 2013). 

The most captivating benefit is that CNCs can be used in synergy with 

biopolymers to implement a fully compostable food packaging with improved 

gas barrier properties for food shelf-life extension. The cellulose nanocrystals 

feature outstanding gas barrier properties and improved tensile strength; they 

can be incorporated into packaging for food shelf-life extension. Figure 3 and 

4 indicate the main producers of cellulose nanofribrils and cellulose 
nanocrystals in 2018. It bears noting that USA and Canada are the leading 

producers of nanocellulose. 

 

Figure 3. World production of cellulose nanofibrils, 2018 (per producer) 
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Figure 4. World production of cellulose nanocrystals, 2018 (per producer) 

 

Figure 5. Nanocellulose market forecasts 

From the 2015 TAPPI report, the nanocellulose market was around $250 

million in 2014, with projected growth (CAGR) of 19% to 2019. The figure 5 

reports the nanocellulose market forecasts for the next years. The cellulose 

nanocrystals (CNCs) feature outstanding gas barrier properties and improved 

tensile strength; they can be incorporated into packaging for food shelf-life 

extension. It can be observed in the figure 6 below that, the nanocellulose 

displays the highest oxygen barrier properties than synthetic polymers and 

biopolymers. 
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Figure 6. Oxygen and water vapour permeability of the nanocellulose in comparison with 

synthetic, bioplastics and bio-based structures (Nelson et al. 2016). 

From that discovery, a new door was opened, that of using the CNCs to 

replace the synthetic gas barrier currently used in food packaging for a further 

contribution in the reduction of packaging dependency on synthetic polymers. 

Depending on the type of the extraction process adopted and the raw 

materials used, various functional groups present on the CNCs surface dictate 

their dispersibility in water or solvent to open a wide spectrum of their use in 

various fields of potential commercial applications (Nelson et al. 2016). In 

addition to material performance like rheological (the shear thinning) and gas 

barrier properties (oxygen, carbon dioxide…); exceptionally mechanical 

properties (high strength and stiffness); and optical properties (lightweight), 

cellulose nanocrystals gain a strong sustainability profile. Being obtained from 

biomass, it is renewable, biodegradable, compostable, and designed for 

making the environment friendly with a sustainable life cycle carbon footprint. 
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1. Nanotechnology: current trends, capabilities and applications. 

Nanotechnology is the art and science of manipulating matter at the nanoscale 

to create new and unique materials (Paul and Robeson, 2008). That term was 

first coined by Richard Feyman in 1959 and afterwards, it was then spread in 

the world of scientists who showed a high interest in the possibility of 

developing more advanced and engineering materials at the nanoscale 

(Maynard, 2006). During 2000 to 2015, the number of nano-articles has 

increased from 19754 to 141663. In 2015, more than 110 countries in the 

world took part in publishing of nano-articles, and the two countries United 

States and China ranked first and second with a huge distance with other 

countries (Statnano, 2017).Nanotechnology, an emerging area which shows 

how atoms, molecules and supramolecules can be organized differently to 

regain high performance properties with evolutionary advances for the 

development of cutting-edge and peak performance packaging, machinery 

and computation. From 1996 and 2018, as it is indicated in figure 1, the 

nanotechnology has definitely sprung up with its implementation in a 

bewildering array of applications such as medicine, energy, agriculture 

automotive, food packaging, composites (Barreto et al., 2011; Baruah and 

Dutta, 2009; Duncan, 2011; Srinivas et al., 2009; Wilkinson, 2003). 

Nanoparticles are ultrafine particles whose at least one dimension is equal to 

or less than 100 nanometers. Nanomaterials are generally characterized by 

their their tiny size, high surface area per unit, lightweight, strength which 

feature new properties and functions (Guozhong, 2004). 
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Figure 1.  Applications of cellulose nanomaterials 

The nanotechnology is a very promising field for promoting disruptive food 

packaging which concomitantly guarantees unique mechanical properties and 

gas barrier properties for food shelf-life extension meeting the   environmental 

requirements. The potential of the nanotechnology can be very beneficial to 

the food packaging and the non-exhaustive list of recent trends is:  

i. Improvement of adsorption and nutrients delivery 

ii. Active packaging development referred to antimicrobials and oxygen 

scavengers 

iii. Nanosensors and nanodevices applications to detect freshness, 

contaminants or packaging structure modification.  

iv. Sensorial improvement (such as texture, colour and flavor 

modifications 

v. Nanoparticles incorporation for developing intelligent and active 

materials 
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vi. Nanocoatings and nanoemulsions in combination with polymer matrix 

for conferring gas barriers and mechanical properties to the materials. 

vii. Biodegradable nanocomposites and nanoparticles fillers. 

 

Nanocomposites term was first published by Komarneni in 1983 while 

describing the nano-heteregenous sol-gel matrix. Nanocomposite is referred 

to a material composed of more than one solid phase (Koo, 2006).  Polymer 

nanocompites are obtained by the combination of polymer and solid phase 

such nanoparticles and are characterized by their high surface area unit, very 

low density, high stiffness and tensile strength, flexibility (Paul and Robeson, 

2008). In the past years, nanoparticles from magnesium oxide and zinc oxide 

have been successfullytested for food shelf-life extension due to their 

antimicrobial properties (Rekha et al., 2010; Xie et al., 2011); in addition, silica 

and nano-sized montmorillonite have been used for packaging durability 

increase. However, the inorganic character of these nanoparticles does not 

guarantee consumers safety and food/ medicine security. The research of 

organic nanoparticles becomes a necessity and the cellulose nanomaterials 

comply with all the requirements of biodegradability and therefore, because 

they are isolated from the cellulose, consumers would be inclined to accept 

them. 

2. Branches and aspects of cellulose nanomaterials 

Cellulose nanomaterials (CNMs) are a new family of innovative materials that 

has sprung up over the last 30 years. CNMs include bewildering array of 

technologically advanced applications such as membranes, transparent-

flexible electronics, flexible shoes, papers money, high resistant shoes, 

templates for electronic components, food and polymers coatings, 

antimicrobial films, optical and biomedical, adhesives reinforcers, cements, 

inks, polymer reinforcement, nanocomposites, transparent films, layer-by-

layer films, paper products, cosmetics (Moon et al., 2011). Generally, CNMs 
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are materials that encompass cellulose of various sizes, shapes and 

functional surface in their structure, opens a new gate for offering 

biodegradable, biocompatible and multifunctional innovative-materials (Sacui 

et al., 2014). CNMs can be used in combination with polymers to reduce the 

dependency on petroleum-based polymers and contribute to make the 

environment friendly for humans and animals. The implementation of such 

amalgamation is possible due to the unique and extraordinary gas barrier and 

mechanical properties that the CNMs exhibit, and that favors their blending 

with polymers structures in various ways such as CNMs-coating, CNMs-

laminating, CNMs-layer-by-layer, CNMs-fillers (Shatkin et al., 2014). In CNMs 

act as a nucleating agent increasing the polymer crystallization rate and 

reinforcing structures, and the main mechanical properties are the tensile 

strength, Young's modulus and the storage modulus (Kargarzadeh et al., 

2018). CNMs can include 4 groups: nanocellulose (NC) derived from the 

plants and wood(Dufresne, 2011; Thakur et al., 2014); algal cellulose (AC) 
obtained from the frequently studied species of algae such asMicrasterias 

denticulata, Micrasterias rotate, Valonia, Caldophora, and Boergesenia(Hua 

et al., 2014; Klemm et al., 2011); bacterial cellulose (BC)obtained from the 
one of the most studied species calledGluconacetobacter xylinus (reclassified 

from Acetobacter xylinum) (Gatenholm and Klemm, 2010) and finally, the 

tunicate cellulose (TC) derived from the most studied species like Halocynthia 

roretzi,  Halocynthiapapillosa and Metandroxarpa uedai (Zhao et al., 2015). 

The nanocellulose that will be the focus in the next discussion, can be 

subdivided into two categories: cellulose nanocrystals and cellulose 

nanofibrils. Cellulose nanocrystals (CNCs) are nanoparticles obtained by the 

chemical process through the acid hydrolysis or oxidation of the cellulose and 

the cellulose nanofribrils (CNFs) being obtained by the mechanical process 

where the cellulose is defibrillated. Prior to implementing the “top-down” 

process (chemical or mechanical shear) which can be assisted by the 

microwave (De Melo et al., 2017), the raw materials containing cellulose are 
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pre-treated first with enzymes, alkali and acid to facilitate the disintegration of 

fibers and make consistent and efficient the subsequent treatments with a 

much higher CN yield (Phanthong et al., 2018). Water immersion, heating and 

sonication can also contribute to make the extraction easier mostly from 

recalcitrant sources such as materials with high lignin content (Cui et al., 

2016). CN is characterized by its size, morphology aspect and shape, 

cellulose I polymorph surface charges, rheological properties, tensile strength 

and stiffness, the degree of crystallinity which all depend not only on the type 

of process acquired but also on the raw material sources (plant) used for the 

production.  

Throughout the years, the nomenclature of the CNCs has changed from being 

called whiskers, needles to rod-like, crystallites while CNFs have been 

referred to as nanofribrillated cellulose, cellulose microfibrils; however, the 

ISO standard terms “cellulosenanocrystals” (CNCs) and “cellulose nanofibrils” 

(CNFs) have been adopted by TAPPI (Technical Association of Pulp and 

Paper Industry) as acronyms to be used to avoid confusion. 

2.1. General features of the cellulose 

Cellulose is one of the most abundant biopolymer on the earth. It is generally 
synthesized by plants, but it is also found in some bacteria (Acetobacter 

xylinum…) (Andrade et al., 2010). From the table 1, it can be observed that 

the highest cellulose content was found in cotton with about 82-95% cellulose, 

compared to wood that has about 40–50% cellulose content and other 

sources (Oliveira de Castro et al., 2015) or bast fibers such as flax, hemp, or 

ramie, which have about 70–80% cellulose content (Abdul et al., 2012; 

Fernandes et al., 2013) while the maize straw and rice husk contain about 35-

40% of cellulose. (Marin et al., 2015; Nunes et al., 2013; Rehman et al., 2014) 
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Table 1. List of cellulosic sources and percentage in cellulose content. 

D-glucopyranose molecules contribute to the building blocks of cellulose 

polymer chains. Cellulose contains 44.44% carbon, 6.17% hydrogen, and 

49.39% oxygen. The chemical formula ofcellulose is (C6H10O5)n where n is 

the degree of polymerization and represents the number of glucose groups. 

Cellulose chains form anhydroglucose units when linked by 1-4 glucosidic 

bonds and form anhydrocellobiose when they form two units of 

anhydroglucose. The figure shows the β1-4 glicosidic bonds formed between 

two and millions of units of glucose to give the cellobiose and cellulose 

structures respectively. 

Figure 2. Cellobiose and glucose units 

The cellulose degree of polymerization (DP) is generally expressed in terms 

of anhydroglucose with each unit having 6 carbon atoms and 3 hydroxyl 
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groups at the position C2, C3 and C6 atoms. The accessibility of hydroxyl 

groups to reaction depends on swelling effects and degree of crystallinity of 

the fibrous structure (Turbak et al., 1983). Cellulose is a hydrophilic, 

biodegradable and chiral structure due to their hydrogen bonds, hydroxyl 

groups and molecular structure. Cellulose chains are a tough, fibrous, and 

water-insoluble structure arranged in microfibrils with high strength and other 

superior mechanical properties (Zimmermann et al., 2004). The 

intramolecular bonds provide stiffness to the polymer chain, while the 

intermolecular bonds provide sheet structures. Cellulose fibers are insoluble 

in water and most conventional organic solvents because of their high 

crystallinity and many hydrogen bonds present in their structure. In nature, 

cellulose is in the form cellulose I and can be converted to other crystalline 

forms. Cellulose II is formed by treating cellulose I with NaOH (mercerization), 

with alkali/salt or by removing the functional groups from cellulose, derivatives 

(regenerated cellulose). Cellulose II is the most thermodynamically stable 

form of cellulose. Cellulose II is antiparallel probably due to its precipitation 

from solution as it occurs with many synthetic polymers. Cellulose III is formed 

by soaking cellulose in cold (about − 80 °C) liquid anhydrous ammonia 

followed by its subsequent evaporation. Cellulose I and cellulose II are 

transformed into cellulose III1 and cellulose III2 respectively (Hearle, 2001). 

When rehydrated, cellulose III returns to its original form. Finally, Cellulose IV 

is formed by soaking cellulose in hot (about 200 °C) glycerol followed by its 

subsequent removal with 2-propanol and water. Cellulose I is transformed into 

cellulose IV1 and cellulose II is transformed into cellulose IV2 (Wickholm et 

al., 2001). The hydroxyl groups of mercerized cotton cellulose II has a lower 

degree of crystallinity than natural cotton cellulose I but are more covalently 

reactive. Generally, due to the hydroxyl groups, cellulose fibers interact more 

with water than solvents. Methanol interacts to a greater degree with cellulose 

I than with cellulose II but, this phenomenon can be reversed if the methanol 
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is mixed with water. Native cellulose (Figure 3) contains crystalline regions 

interspersed with amorphous regions (Atalla and Vanderhart, 1984).  

 

Figure 3. Schematics of (a) repeating single cellulose chain unit with the directionality of the 

1-4 linkage and intra chain hydrogen bonding (dotted line), (b) idealized cellulose microfibril 
illustrating a suggested configuration of the crystalline and amorphous regions. 

The amorphous regions are more porous than the crystalline regions, allowing 

water or dyes to be absorbed increasing the reactivity to acid or enzymatic 

hydrolysis. When purified cellulose fibers are subjected to dilute acid 

hydrolysis, the amorphous regions selectively hydrolyze because they are 

lower packed and the crystalline regions are released unaffected 

2.2. Cellulose nanofribrils (CNFs) 

CNFs as a new cellulosic material was first coined by Turbak et al. (1983) and 

Herrick et al. (1983) who produced cellulose with lateral dimensions in 

nanometer range by passing a softwood pulp aqueous suspension several 

times through a high-pressure homogenizer. Even nowadays, CNFs are 

nanoparticles still obtained mechanically from the cellulosic materials. The 

mechanical isolation of the CNFs can be combined with a chemical or 

enzymatic treatment not only to further facilitate the disintegration (high 

shearing forces) of the cellulose fibers with a yield increase but also, the 

functionalization of the CNFs can be obtained during the production 

(Arvidsson et al., 2015). Residual charges can be found on the surface of the 

CNFs because combinations such as tempo-mediated oxidation and 

mechanical treatment, carboxymethylation and mechanical treatment, 
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phosphorylation and mechanical disintegration have been used recently to 

develop diverse functional charges (Nechyporchuk et al., 2016; Saito et al., 

2007).   CNFs and CNCs are both nanoscale materials but they are different 

from their shape, size and surface chemistry.  CNFs are known to be more 

flexible and less crystalline than the CNCs due to the presence of both 

amorphous and crystalline domains in their structure; however, they bear 

better mechanical properties. CNFs possess high aspect ratio and form gels 

in water with shear-thinning and thixotropic behavior. CNFs has a morphology 

with length >1µm, width 25-100 nm and aspect ratios 10-100. The figure 

illustrates the steps which comprise the cellulose nanofribrils isolation from 

the cellulose pulp. 

 

Figure 4. Mechanical, chemical and enzymatic steps for CNFs production 

 

These features included the surface chemistry and degree of branching are 

dependent on many factors such as the type of the mechanical shear process, 

the raw materials used or the utilization of an eventual pretreatment. Experts 

of the nanotechnology field suggest to use CNFs as a mechanical properties 

reinforcer and CNCs as a gas barrier enhancer in complex and composite 

structures (Khalil et al., 1012, 2014). 

2.3. Cellulose nanocrystals (CNCs) 

It is worth noting that the first CNCs production was introduced by Ranby, 

(1951), When cellulosic materials are subjected to a combination of 

mechanical, chemical and enzymatic treatments, amorphous regions of the 

cellulose are hydrolyzed letting unblemished the crystalline regions (figure 5) 
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which can be isolated easily. CNCs are stiff and ordered nano-spindles which 

exhibit high surface area, higher specific strength and higher crystalline 

compared to the bulk cellulose (George and Sabapathi, 2015). Generally, the 

chemical hydrolysis is the most efficient way to extract the CNCs. However, 

the high-pressure homogenization, micro-fluidization, high-intense ultrasonic 

(Tang et al., 2014) and chemical pretreatments (acidic and basic) have been 

utilized in combination with the chemical hydrolysis to obtain a higher yield of 

the CNCs production (Lu and Hsieh, 2010). Microcrystalline cellulose 

production follows the same steps of process but the hydrolysis occurs in a 

more diluted acid followed by the sonication. Traditionally, CNCs are isolated 

by acid hydrolysis with the grafting of functional groups such as sulfate half 

esters or phosphate half esters if they are extracted with sulfuric or phosphoric 

acid respectively (Camarero et al., 2013). CNCs can be also oxidized with the 

formation of aldehyde and carboxyl groups on their surface due to the use of 

periodic acid, ammonium persulfate (APS). 

 

Figure 5. Cellulose nanocrystals (CNCs) by TEM. 

Common ways to extract the CNCs by removing the amorphous regions from 

cellulose fibers by acid or oxidative hydrolysis. The crystals obtained from both 

methods are pure with different yield, morphology, surface chemistry, 

morphology, rheology properties and crystallinity.  
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2.3.1.  Cellulose nanocrystals isolation by acid hydrolysis 

The production of CNCs by acid hydrolysis typically involves the following 

steps: 

 Hydrolysis of cellulose under controlled conditions (acid concentration, 

temperature, time, agitation, acid and water to cellulose ratio); 

 Stop and cool of the reaction by addition of water under stirring (this step 

dilutes the solubilized products), followed by successive purification and 

centrifugation to eliminate the amorphous parts hydrolyzed; 

 Extensive dialysis to eliminate residual acids; 

 Mechanical treatment by sonication for dispersion of the particles; 

 Filtration, ultrafiltration and soxhlet-extraction to remove the remaining 

residues of amorphous solid and to obtain the final stable colloidal 

suspension  

 Concentration of the nanoparticles and, when needed, freeze-drying and 

spray-drying to obtain solid CNCs. 

 

Acid hydrolysis is traditionally adopted to isolate high crystalline materials 

called cellulose nanocrystals (CNCs) from the cellulosic sources (Bondeson 

et al., 2006). The tightly-packed nature of the cellulose makes the crystalline 

regions less accessible to acid attack but preferably accessible to amorphous 

regions which are less organized. The raw materials can be cotton linters, 

wood fibers, microcrystalline cellulose (MCC), soy husks, rice hulls and other 

natural resources (Bondeson et al., 2006). Various acids such as sulfuric acid, 

hydrochloride acid, periodic acid and phosphoric acid have been successfully 

employed for the extraction of CNCs. Although CNCs obtained by HCl do not 

contain charges on their surface (Boujemaoui et al., 2015), CNCs obtained by 

other acids contain residual charges derived from the acid used for its isolation 

(George and Sabapathi, 2015). As a result of the reaction, a wide spectrum of 

residual charges has been found on the CNCs surface, providing great 

benefits for their functionalization (Habibi et al., 2010). Native cellulose 
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contains amorphous and crystalline regions. After the disintegration of the 

amorphous regions which hydrolyze easily, the solution is purified through 

centrifugation, dialysis and filtration.  

 

Figure 6. Schematics of (a) repeating single cellulose chain unit with the directionality of the 
1-4 linkage and intra chain hydrogen bonding (dotted line), (b) idealized cellulose microfibril 

illustrating a suggested configuration of the crystalline and amorphous regions, and (c) 

cellulose nanocrystals with disordered regions removed. 

The final colloidal suspensionnow contains only crystals, also called 

nanowhiskers or cellulose nanocrystals. The table 2 clearly indicates that the 

geometrical features (length, width, aspect ratio, morphology) of the CNCs 

depend strongly on the botanic origin of the raw materials. The size and 

morphology of the CNCs are also influenced by the time/temperature of the 

reaction, the concentration of the acid used for the hydrolysis. 
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Table 2. Dimensions of cellulose nanocrystals (by type of preparation) adopted by George 
and Sabapathi, (2015) 

2.3.2.  Cellulose nanocrystals isolation by oxidative hydrolysis  

Generally, a simultaneous hydrolysis and oxidation of the celluloseis possible 

when a strong oxidizing agent like the 2,2,6,6-tetramethylpiperidine-1-oxyl 

(Tempo) is used for the CNCs production (Saito and Isogai, 2004). Tempo is 

used for the oxidation of hydroxyl groups present on the CNCs surface 

following the acid hydrolysis with the hydrochloride acid (HCl) producing 

uncharged CNCs. Very recently, Leung et al. (2011) has developed a valid 

alternative to isolate the cellulose nanocrystalsfrom the cellulosic raw 

materials. More importantly, the use of the APS allows the bleaching of the 

raw materials, hydrolyze the amorphous parts of the cellulose and oxidize the 

hydroxyl groups simultaneously during the reaction in one-step production, 

therefore; APS-assisted oxidation can be performed directly on the cellulosic 

materials to obtain oxidized CNCs. Both APS and TEMPO allow the 

production of CNCs with residues of carboxylic acid on their surface and that, 

opens a wide spectrum of functionalizations of the CNCs surface 

(esterification, amidation…). 

3. Properties and drawbacks of cellulose nanocrystals 

After the production, the cellulose nanocrystals are characterized by their size, 

morphology, charges density, crystallinity and other relevant parameters 

useful for a better understanding of the properties of the CNCs. 
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CNCs size and morphology 

The apparent and actual size of the cellulose nanomaterials can be assessed 

by the means of dynamic light scattering (DLS) and transmission electron 

microscopy (TEM). By DLS, Stokes–Einstein equation relates the radius of 

the particles, while they are subjected to fluctuations in scattered light under 

the assumption, that the particles have a constant diffusion during the 

fluctuations over time (Kholodenko and Douglas, 1995). It is worth mentioning 

that DLS has been developed only for spherical particles and polymers but 

which was further used for obtaining “the apparent particles size” of rodlike or 

nanowhiskers while the actualsize (length, thickness and width) to be 

determined by TEM and the morphology by the atomic force microscopy 

(AFM). Apparent diameter cannot be correlated because nanowhiskers have 

different translationaldiffusion constants, which depend on the orientation of 

the particles (parallel, orthogonal…). Critical parameters to consider while 

using the DLS to obtain the apparent size of a colloidal dispersion of CNCs, 

are the temperature, sample concentration, the absence of impurities and the 

pH. The stability of the colloidal suspension is dictated by the negative 

charges present on the CNCs surface which create the electrostatic repulsion. 

Noting that accurate TEM imaging is obtained when the pH of the never-dried 

or redispersed CNCs is adjusted at pH between 4 and 5 to provide more acidic 

forms (negatively protonated) prior to setting on carbon-coated TEM grids. 

Microscopy techniques readily used for imaging the CNCs are AFM and TEM 

because they have the nanometer scale resolution capabilities. Real 

dimensions (i.e., length and width) of the CNCs can be observed and identified 

by TEM. Morphology, surface topography, mechanical properties can be 

studied and obtained by means of the AFM. Both AFM and TEM might be 

used in combination to provide a deeper description of the nanoparticles 

morphology. Another technique called photon correlation spectroscopy (PCS) 

has also been used to obtain the particle size of the nanoparticles. PCS was 
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applied on CNCs added of electrolyte screens to prevent the CNCs not to 

undergo agglomeration (Dong and Gray, 1997).  

Charges density and colloidal stability of CNCs 

Charges density and colloidal stability of dispersed CNCs have been 

evaluated by Z potential measured through electrophoretic light scattering 

(ELS) where the mobility of particles occurs in an applied electric field 

according to the Henry equation with Huckel and Smoluchowski 

considerations. Conductometric titration has been used to assess the charges 

density (strong and weak charges) of the charged CNCs but not the CNCs 

obtained by HCl which are uncharged, common Z potential values are 

between -20 and -50 mV dependent upon the degree of oxidation (Abitbol et 

al., 2013). Reliable zeta potential values are obtained at 0.25 wt% of 

suspended CNCs with or without 5-10mM of NaCl. The most important 

parameter, which strongly affects the Z potential, is the pH because it causes 

the protonation and deprotonation of negative charges generating a different 

electrostatic interaction. Generally, CNCs obtained by oxidative hydrolysis 

strongly depend on the pH and have values of Z potential higher than CNCs 

obtained by acid hydrolysis (Romdhane et al., 2015). 

Optical properties of the cellulose nanocrystals 

Scientists have extensively studied optical properties of the cellulose 

nanocrystals in recent years. CNCs suspension can be stable as a result of 

the repulsion of electrostatic negative charges. It is worth noting that CNCs 

can spontaneously auto-assemble into a chiral nematic phase above a critical 

value of CNCs concentration. Further information on the organization and 

dispersion as well as on the pitch of the chiral nematic and anisotropic-

isotropic ration can be obtained via a polarized light (Mariano et al., 2014). 

The anisotropic (birefringent) behavior of the CNCs depends on the 

concentration of the dispersed CNCs which can show a switch between lower 

chiral nematic liquid crystalline phase and an upper isotropic phase above a 
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certain concentration (>2 wt%). Bright light patterns diffraction appears when 

dispersed CNCs are stirred and this is related to the parallel alignment of 

individual CNCs. Poor and well dispersed CNCs provide visible 

monochromatic and polychromatic domains respectively. The critical 

parameters which dictate the crystalline behavior of the CNCs, are the size of 

the crystals, the concentration of the dispersed CNCs and necessary time to 

obtain the crystalline equilibrium and the chiral nematic and birefringent 

behavior (Foster et al., 2018). Numerical Control can be used to observe a 

bluish color due to the chiral nematic classification and the length of the pitch 

spacing (p). Therefore, CNCs films of different colors can be seen if the films 

are thin enough because CNCs are able to absorb visible light and, depending 

on the different wavelengths are absorbed and the reflected light emits 

different colors (Revol et al., 1992).  

 

Figure 7. At certain concentrations, the nanocrystals self-organize into a chiral nematic 

ordering where the length of the pitch gap (p) in the helical structure can absorb different 
wavelengths and emit wavelengths with different colors (Revol et al., 1992). 

Cellulose nanocrystal crystallinity index 

The study of the crystallinity provides insights on the purity of the crystalline 

network / lattice of the cellulose nanocrystals isolated from the cellulose. High 

crystallinity index translates the purity of the raw materials used and the 

efficiency of the extraction process. According to Bragg law, n λ=2dsinθ the 

cleavage faces of crystals appear to reflect X-ray beams at certain angles of 
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incidence (theta, θ). The variable distance between atomic layers in a crystal, 

and the variable lambda λis the wavelengthof the incident X-ray beam; n is an 

integer. This observation is an example of X-ray wave interference when it 

leaves the crystals measuring their average spacings between layers or rows 

of atoms correlated to the size, size and internal stress of particles. The 

crystallinity of the cellulose nanocrystals depends on various factors such as 

the origin of the native cellulosic fibers used, the type of the extraction process, 

the time and the temperature applied during the extraction and the 

concentration of the acids used for the extraction (Dong and et al., 1998). As 

a matter of facts, the degree of polymerization decreases as the acid 

hydrolysis proceeds since the non-crystalline regions in the microfibril will be 

removed. Due to the loss of amorphous regions, the crystallinity will increase 

and also the insolubility in water because the crystalline regions are less 

accessible (Hamad and Hu, 2010; Leung et al., 2011). 

 

Figure 8. Crystallinity size in relation to the DP. During acid hydrolysis, the DP will decrease 

and the cellulose crystallinity will increase, due to loss of non-crystalline regions and, as a 
result, smaller crystal size will be obtained. 
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Mechanical properties of the cellulose nanocrystals 

Mechanical properties are strongly affected by the source and type of the 

cellulose. The entanglement of the fibers plays a vital role in the structure as 

the hydrogen bondings. Cellulose I with intramolecular and intermolecular 

bonding has a young’s modulus of approximately 137 GPA and 92 GPA 

respectively. Regenerated cellulose also called cellulose II has a young’s 

modulus close to 113 GPA. CNCs whose density is about 1.5-1.6 g/cm3 which 

do not contain the amorphous regions have a young’s modulus of 60-125 GPA 

similar to that of Kevlar (density is approximately 1.45 g/cm3) but higher to that 

of glass fibers, which has a young’s modulus of 70 Gpa and a density of 2.6 

g/cm3(Mariano et al., 2014). The specific Young’s modulus of cellulose 

crystals was found to be greater than that of the stainless steel. In addition, 

Nanocomposites like polymer-CNCs blendings could allow to improve 

physical properties such as robustness, flexibility, durability, weight and 

transparency of various high-performance structural applications (Boufi et al., 

2014). CNCs have been blended in many matrices, such as polyacrylonitrile, 

with a consequent increase in tensile modulus and strength from 14.5 to 19.6 

GPA and from 624 GPA to 709 MPA respectively. Moreover, the Young's 

modulus and tensile strength of the resulting composite increased from 0.51 

to 344 MPA and 4.27 to 14.86 MPA, respectively in presence of water-based 

polyurethane (Khan et al., 2012). 

Thermal properties of cellulose nanocrystals 

The acid hydrolysis of the cellulose by sulfuric acid provides more stable 

colloidal suspension of cellulose nanocrystals in water because of the 

repulsion of the negatives charges (sulfate half esters) present on their 

surface (Kargarzadeh et al., 2012). The hydrolysis breaks down the 

amorphous regions of the cellulose allowing the isolation of crystalline parts 

with a consequent decrease of degree of polymerization and thermal stability 

compared to cellulose fibers. That drawback represents a major pitfall for their 
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incorporation into nanocomposites generally processed at a temperature of 

over 200°C; therefore, it can be justified the lack of nanocellulose employment 

in polymer matrix. Thermal stability improvements of structures containing 

CNCs and waterbone epoxy composites (Xu et al., 2013), bacterial polyester 
and CNCs were obtained (Yu et al., 2012); moreover, according to the recent 

findings, PLA thermal properties were improved after they were blent with the 

nanocellulose (Arrieta et al., 2014; Siqueira et al., 2013). 

3.1. Reactivity of the cellulose nanocrystals 

Due to their hydrophilic nature, scientists have been involved in search of 

strategies to confer hydrophobic nature to cellulose nanocrystals in order to 

promote their incorporation into hydrophobic nanocomposites. 

Reactive and chemical charges such as carboxyl and hydroxyl groups present 

on the surface of the cellulose nanocrystals have been studied to better 

understand their ratio, specific surface area reactivity and availability for 

functionalization. The specific surface area has been considered as one of the 

most important parameters to assess in order to study the availability of the 

CNCs. Based on the cellulose source, the specific surface area of the CNCs 

varies between 150 and 150 m2/g (Chazeau et al., 1999; Terech et al., 1999), 

while that of the MCC and MFC is much lower, 1.8 m2/g and 7-20 m2/g 

respectively (Lu et al., 2008; Portugal et al., 2010). Therefore, the 

functionalization of the CNCs provide various properties useful for being 

embedded and incorporated into many organic matrices. Tegge et al. (1981) 

demonstrated that the primary hydroxyl groups of the cellulose reacted 

tentimes faster than the secondary ones in position 2 and 3 during the 

esterification at the processing conditions. Subsequently, steric effects due to 

the supramolecular structure of the cellulose (Lenz, 1994) will govern the 

reaction of the hydroxyl groups of the cellulose nanocrystals surface, under 

heteregenous conditions. A single cellulose chain with a 1g mass has one 

exposed C1 hydroxyl and one exposed C4 hydroxyl. The study of the 
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availability revealed that only 1/3 of the hydroxyl groups could participate in 

chemical modifications of the cellulose and the cellulose nanocrystals since 

some of the hydroxyl groups are oriented geometrically to the internal part of 

the crystal (Siqueira et al., 2010). Therefore, it is worth emphasizing that the 

reactivity of the CNCs is not based on the number of the total number of 

hydroxyl groups but rather on their availability to react with other surrounding 

compounds during the functionalization. In addition, operative conditions such 

as pH, temperature, time and other critical parameters have to be controlled 

during the chemical modification (Cetin et al., 2009). Lin et al. 2012 developed 

mathematic equations to calculate the content of hydroxyl groups (nOH) on 

the CNCs surface. 

nOH = 3
∗

( )( )  (1) 

Vcnc= ∗  (2) 

= − = ′ ′     (3) 

Where w is the weight of CNC sample (1g in this case), NA is the Avogadro 

number (6.02 x1023 mol-1), Vcnc is the volume and Scnc is the surface area of 

an individual nanocrystal calculated with the width(d) and the length (L) 
measured by microscopic techniques (AFM, TEM…) and S’ is the surface 

area of two units of glucose. For 1 g of CNCs, the computerized surface of 

hydroxyl roups has to be found to be between 2-4mmol/g depending on the 

crystal dimensions and the active hydroxyl amount deduced was 0.4 and 0.8 

mmol/g. Therefore, the resulting product of the modifications can be linked 

either by covalent or non- covalent bonds. Covalent bonds derive from the 

chemical interaction with CNCs surface through esterification, amidation, 

etherification, etc. Surfactants and CNCs can form non-convalent interaction 

through hydrogen bonding, electrostatic interaction and van der walls forces 

to improve their dispersibility in the solvents. 
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3.2. Drawbacks of the cellulose nanocrystals 

The CNCs bear several useful capabilities in terms of gas barrier, rheological 

and mechanical properties and more importantly, they have high surface area 

with functional chemical groups which opens up a wide spectrum array of 

applications in food packaging, pharmaceutical applications, automobile, 

electronics…; however, the high propensity of the cellulose nanocrystals to 

swell in presence of the water is detrimental to their extraordinary features. 

The water sensitivity of the cellulose nanocrystals and cellulosehas been 

extensively studied to identify the type of chemical relationships and 

interactions that exist between the water and the cellulose-based materials 

when they are in contact. Fotie et al. (2017) have explored the impact of the 

water on the CNCs-coated polymers in terms of the gas barrier performance 

(oxygen, carbon dioxide). The gas permeation performed on the coated PET 

films was found to be quite null in the absence of the water, while a dramatic 

and abrupt increase of the gas permeation was observed with the increase in 

the relative humidity. This behavior was attributed to the water, which 

occupies the free volume, therefore,progressively acts as a plasticizer and 

disrupts the crystalline lattice to facilitate the gas to diffuse with minor 

obstacle.For the reasons cited above, notwithstanding the relevant properties 

and potential of the cellulose nanocrystals, their application in food packaging 

will be effective only if there are made more hydrophobic via the 

functionalization of their surface (esterification, amidation, sylation…) and/or 

via the lamination of the CNCs- coatings layers to isolate them from the 

external surroundings. 

3.3. Biodegradability and Toxicology assessment of cellulose 
nanocrystals 

Several scientific works have proved the biodegradability of the cellulose 

nanocrystals. The first study of the biodegradability of the nanocellulose used 

as a reinforcer in the polymers was performed by Coma et al. (1994) and 
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according to their findings, the complex matrix was biodegradable. Although 

the nanoparticles are very tiny and small, their biodegradability is not 

compromised (Kummerer et al., 2011). In fact, they reprted reported that the 

nanoparticles from cellulose and starh were even rapidly than their 

macrocospic counterparts. It is a strong proof that the nanocellulose into the 

packaging will be recycled readily. 

Nanomaterials have recently drawn the attention of the scientific community 

about their possible adverse effects on health and safety have extensively 

been evaluated. Cytotoxicity, genotoxicity and ecotoxicity potential of the 

nanomaterials have been evaluated by researchers of the field. Nanometerials 

properties differ from their parent bulk materials because of their smaller size, 

different morphology and larger surface area resulting in their ability to cross 

natural barriers including electronic and plasmonic effects. Pure cellulose 

cellulose-based foods additives such as carboxylmethyl cellulose, 

microcrystalline cellulose, etc are generally known as a safe and non toxic 

food substance. Recently, a Canadian research group CNCs assessed the 

potential environmental risks of the carboxymethyl cellulose and cellulose 

nanoparticles and according to their findings, the toxicity potential and 

environmental risk of both cellulose-based materials are negligible (Kovacs et 

al., 2010). Ni et al. (2012) found a low cytotoxicity of the nanomaterials to L929 

cells and MTT assay; in addition, Moreira and co-workers tested the potential 

genotoxicity of bacterial cellulose on fibrous nanoparticles and through vitro 

analysis and other techniques, they did not find any genotoxic effect. 

Vartiainen found no imflammatory effects or cytotoxic on mouse and human 

macrophages after being exposed for 6 and 24 h to nanocellulose.  

Furthermore, the health effects of the modified nanocellulose (oxidized and 

carboxilated) obtained from various biomass sources, were studied by 

exposing the cells (Spodoptera frugiperda insect cells, Sf9) to the 

nanocellulose. After they evaluated by electric cell by their spreading and 

viability according to the findings, none of the nanocellulosic materials 
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produced significant cytotoxic effects based on 50 % inhibition concentration 

(Lam et al., 2012). It was assessed by using standard ecotoxicological and 

mammalian test protocols and have, to date, been shown to be practically 

nontoxic in each of the individual tests. In addition, CNCs have recently 

obtained regulatory approval under Canada’s New Substances Notification 

Regulations (NSNR) for unrestricted use in Canada and is the first organic 

nanomaterial to be added to Canada’s domestic substance list. 

4. Chemical functionalization of cellulose nanocrystals 

Modifications of the cellulose nanocrystals can be grouped into 3 different 

categories: 

i) Interaction between surface hydroxyl groups with small molecules to 

provide carboxyl, esters, amides, urea, and silyl groups on the cellulose 

nanocrystals surface 

ii) Polymer surface modification by the “grafting onto” with coupling agents. 

iii)  Polymer surface modification by the “grafting from” with radical 

polymerization. 
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Figure 9. Grafting agents used for physical and chemical functionalization of cellulose 

nanocrystals (Dufresne, 2013) 

 

4.1. Functionalization by adsorption 

Cellulose nanocrystals can be modified by adsorption of surfactants or 

cationic agents on the cellulose nanocrystals through electrostatic 

phenomena to improve their dispersion in organic media. Negative charges of 

the cellulose nanocrystals such as carboxylate or sulfate half esters can 

interact with cationic agents through an electrostatic mechanism. The most 

important advantage is the preservation of the crystalline core of the CNCs. 

Recently, quaternary ammonium salts (c18 alkyl, phenyl, glycidyl and allyl) 

was successfully adsorbed onto the tempo-oxidized CNCs surface (Salajkova 

et al. 2012) keeping the birefringence properties intact. The performance of 
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the CNCs as filler in composite based on polylactide (PLA) was improved after 

the exchange of the counterions between the cetyltrimethylammonium 

bromide (CTAB) and the sulfate half ester groups (Abitbol et al. 2014).  The 

main drawback of the adsorption is the possibility of adsorbed molecules to 

leach out during dilution, processing (coating, extrusion, laminating) or 

storage. 

4.2. Functionalization by covalent linkage 

It can be allowed to CNCs to react with single molecules or polymers chain. 

Molecules such as isocyanates, epoxides, acid anhydride, carboxylic acid, 

amines interact with the hydroxyl groups or carboxylic groups present on the 

CNCs surfaces. 

4.2.1. Reaction with single molecules 
 

Esterification& Acetylation 

The esterification of the cellulose nanocrystals has been extensively 

discussed. The ester compounds are formed when the carboxylic acid or acyl 

halides react with the alcohol. When CNCs are subjected to oxidation by APS 

o Tempo, carboxylated cellulose nanocrystals (CNCs-COOH) are obtained. 

CNCs-COOH groups interact with a hydroxyl group (–OH) to form the ester 

groups. Parameters to take under control in order to provide high degree of 

substitution during the esterification are the temperature, the pH, the 

concentration of the reagents and the duration of the reaction (Eyley and 

Thielemans, 2014). Braun and Dorgan, (2008) implemented the first 

esterification of the CNCs in situ during the hydrolysis by applying the 12 

principles of the green chemistry. Although a very high degree of conversion 

can be detrimental to the crystallinity of the modified CNCs due to the 

unavailability of the hydrogen because most reactive hydroxyl groups at C2 

and C6 are involved in the interchain hydrogen bonds. Converted ester groups 

can be revealed and quantified through FTIR spectra at a wavelength between 
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1735 and 1746 cm-1. The efficiency of the graftingcan be also monitored by 

the evaluation of the increase in C-C/C-O peak in XPS analysis, to obtain high 

dispersibility of esterified CNCs in acetone and ethanol compared with the 

unmodified CNCs.The single-step was developed by the presence of mixed 

acids such as acetic and butyric acid (90 wt%) in HCl hydrolysis; about half of 

hydroxyl was converted into esters and the dispersion in organic solvents was 

improved (Huang et al., 2015). Sulfation and phosphorylation are examples of 

esterification reactions but the only examples of in-situ functionalization which 

occurs during the hydrolysis is the acetylation and the butyration of the CNCs 

by one-step acid-catalyzed Fischer esterification in presence of the 

hydrochloric acid. Acetylated cellulose nanocrystals can also be performed by 

the use of acetic anhydride in pyridine (reactive solvent); in addition, Sassi 

and Chanzy, (1995) perfomed the acetylation of cellulose using mixture of 

acetic acid and acetic anhydride in toluene to stop swelling and dissolution of 

acetylated nanocrystals which have reduced diameter but unchanged length 

(Peng et al., 2011; Sassi and Chanzy, 2015).Recently, Jasmani et al.(2013) 

used p-toluenesulfonyl chloride to form mixed anhydrides with 4-(1-
bromomethyl)benzoic acid in situ for a one step reaction (esterification and 

nucleophilic substitution) with pyridine to produce high level of modified CNCs 

(cationic cellulose nanocrystals) with the crystallinity unmodified. 

Transesterification is one of the recent reactions which has been used to 

modify the nanocrystals in the so-called “grafting from” approach to modify the 

cellulose nanocrystals with poly(ε-caprolactone) or poly(lactide) by ring-

opening polymerization (Eyley and Thielemans, 2014; Habibi et al., 2008; 

Labet and Thielemans, 2011). 
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Figure 10. One pot esterification cationization of cellulose nanocrystals as performed by 

Jasmani et al. (2013) 

Oxidation of cellulose nanocrystals 

Substitution of hydroxyl groups with carboxylic acid or aldehyde 

functionalitiesoccurs when uncharged CNCs obtained by hydrochloric acid 

(HCl) hydrolysis are treated with the Ammonium persulfate(APS) or 2,2,6,6-

Tetramethylpiperidinyloxyl radical (TEMPO) and the nitric acid (Xiong et al., 

2012). Generally, oxidation is performed with a catalytic amount of TEMPO 

with a secondary oxidant such as sodium hypochlorite or sodium chlorite to 

recycle TEMPO (Saito et al., 2007). Sodium bromide is quite often used to 

increase the degree of substitution, during the oxidation process, through the 

formation of sodium hypobromite in situ.At pH <8 the reaction proceeds slowly 

and the selectivity between primary and secondary alcohols is not as relevant 

as at 9 <pH <11 where the reaction shows a good selectivity for primary 

alcohols due to hindered transition state in alkaline conditions(Eyley and 

Thielemans, 2014) as the figure below shows (Bailey et al., 2007).After the 

oxidation, negative charges are imparted to the surface of cellulose 

nanocrystals that then increase the stability of aqueous suspensions. The 
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APS isanother strong oxidizing agent thatis used directly on the cellulosic raw 

materials even on those containing aromatic rings. In fact, the APS provide 

carboxilated CNCs from a simultaneous hydrolysis and oxidation of the 

cellulose (Castro-Guerrero and Gray, 2014). In addition, Periodate oxidation 

was implemented by a selective cleavage of vicinal diols, in the case of cellulose, 

the 2,3-diol breaking the glucopyranose ring and forming two aldehyde 

functionalities (Lin et al., 2009). 

 

Figure 11.  (a) Oxidant formation from Tempo radicals and (b) Catalytic cycle of TEMPO oxidation 

using sodium hypochlorite and sodium bromide as stoichiometric oxidant. 

 

Figure 12. Mechanism of periodate oxidation of cyclic 2,3-diols 

 

Amidation 

One of the most common modifications consists of the use of coupling agents 

with Tempo or APS oxidized cellulose nanocrystals as a starting structure with 

the goal of implementing the amidation of the CNCs.The mechanism of 

amidation is formedby the involvement of the carboxylic acid reacting with a 
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primary amine. Araki et al. (2001) were the first to apply the technique of 

amidation of the CNCs by usingof a combination of 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS), 

therefore, carboxyl groups were partly substituted by amides carried out 

specifically at the C6 position of the cellulose. 

Etherification 

Etherification of the cellulose nanocrystals is one of the most ubiquitous 

approach actually performed by many workers. The common way of 

etherification of CNCs is the application of Glycidyltrimethylammonium 

chloride (GTMAC) or derivatives to cationize the CNCs surface. The GTMAC 

is added to suspended CNCs in 1.75 M NaOH solution and heated at 60°Cfor 

several hoursto favor the modification and the modified cotton derived CNCs 

have DS=0.02 and DS=0.04 for modified wood derived CNCs. By using NMR, 

O3 and O6 positions appeared to be the most substituted compared to O3 

position during the etherification process of the CNCs. Due to the hydrolysis 

of Dimethyl GTMAC which has a negative effect on the etherification, CNCs 

were first suspended in a mixture of Dimethyl sulfoxide (DMSO) and water 

prior to enacting the reaction with GTMAC (Hasani et al., 2008). The same 

method was adopted withone epoxide reagent to modify the cellulose 

nanocrystals with epichlorohydrin. The very first modification to attach the 

fluorophores to CNCs for bioimaging with this approach was successfully 

carried out and reported by Dong and Roman, (2007). Epichlorohydrin was 

also usedrecently for the attachment of β-cyclodextrin to the surface of 

cellulose nanocrystals (Tang et al., 2017). Before the addition of the desired 

amount of epichlorohydrin, nanocrystals were first suspended in 2.5 M NaOH 

with β-cyclodextrin. The surface chemical modification of the CNCs was 

demonstrated by 1D and 2D NMR spectroscopy; moreover, z potential 

analysis was used for assessing the colloidal stability modified by the 

cationization of the CNCs during the etherification. The pitch of the grafting 

was assessed by gravimetric analysis and photometric titration as 16.9% 
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weight which corresponds to DSsurf = 0.13–0.25 (considering cross-section 

of 10–20 nm) (Dong and Roman, 2017). 

 

Carbamination 

The carbaminationhas been implemented by the reaction of isocyanates with 

the hydroxyl groups of the cellulose nanocrystals providing them a 

hydrophobic behavior. Theoluene-2,4-diisocyanate (TDI) was used to attach 

polymers and molecules while non-polar isocyanates were used to modify the 

nanocrystals properties. The first modification with the grafting of 

polycaprolactone (PCL) to cellulose nanocrystals using TDI. The reaction was 

performed in toluene with triethylamine as a catalyst and reacting for 7 days 

at 90 °C, a method previously employed on starch nanocrystals. The PCL was 

first endcapped with phenyl isocyanate at one end, then reacted in 1:1 

stoichiometry with TDI to form a monoisocyanate which was subsequently 

reacted with cellulose to avoid cross-linking of the nanocrystals. The CNCs 

modification was proved by the means of the spectroscopy techniques (IR, 
13C NMR and XPS). It was reported by Siquiera et al.2008 the reaction of sisal 

cellulose nanocrystals with n-octadecyl isocyanate without any catalysts, the 

authors noted that only 3.7% of accessible hydroxyl groups reacted with 

DS=0.7 (Siqueira et al., 2008). It was also reported the hydrophobization of 

the cellulose nanocrystals by using isocyanates and grafting with 

phenylisocyanates through TDI and trimethylamine in catalyzed conditions 

(Abushammala, 2019). The level of modification was found to be 21% mass 

determined by elemental analysis of the change in carbon content of the 

modified structure leading to an increase of hydrophobicity from 45° to 9° in 

water contact angle measurements. Another covalent bond CNCs networking 

interaction was performed by Rueda et al. in 2011 using 1,6-hexamethylene 

diisocyanate (HDI). The grafting occurred in dry DMF at 80°C with various 

molar ratios of HDI in accordance with the number of hydroxyl groups present 
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in a given mass of CNCs (1:1 and 1:5). The 13C NMR and IR spectroscopy 

was used to characterize the modified CNCs and their incorporation in 

polyurethane matrix allows to assess their reinforcing character (Rueda et al., 

2011). 

4.2.2.  Modification by polymer chain 

In this type of functionalization, the polymerization can be distinguished in two 

main categories: “the grafting” onto which derives from the direct interaction 

between the end functional preformed and characterized polymer and the 

functional group of the CNCs surface. On the other hand, the “grafting from” 

approach is based on the growth of the polymer chains, which takes place 

from the activation or initiation of the functional groups of the CNCs obtaining 

the grafting before the polymerization with a huge advantage of achieving a 

higher grating percentage, due to the easy accessibility of active groups of the 

CNCs, which is characterized only at the end of the modification. 

Polymerization and ring opening polymerization are examples of grafting from 

routes actually used (Habibi et al., 2008). 

“Grafting onto” mechanism 

One of the first grafting occurred by the development of the malted 

polypropylene grafted cellulose nanocrystals. After the grafting, it resulted a 

significant reinforcement of the atactic polypropylene while the layer of the 

grafted CNCs showed a significant decrease of mechanical properties 

(Ljungberg et al., 2005). Another modified structure was built up 

polycaprolactone diol (PCLD) polymerization with carboxylic groups along the 

polymeric chain to make it waterbone and isocyanate as end groups for further 

reaction with the hydroxyl groups present on the CNCs surface. Subsequently, 

the diisocyanate was added after the reaction between the PCLD and the 

dimethyllol propionic acid in order produce the waterborne polyurethane by 

the neutralization with the trimethyl amine. (Krouit et al., 2008). The 

polymerized structure was finally grafted onto the cellulose nanocrystals 
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surface. The modification of the CNCs was confirmed by the high increase of 

the C1 signal in XPS scans and the grafted chains were found crystalline on 

the CNCs allowing the crystallization of the polymer matrix (Cao et al., 2009). 

“Grafting from” mechanism 

It can be divided in the graft polymerization, the ring opening and the radical 

polymerization. 

Ring-opening polymerization (ROP) is a chemical route to open   cyclic 

monomers such as lactones, dilactones, lactams, cyclic carbonates, cyclic 

ethers, and oxazolines to produce long chain of polymers (Coulembier et al., 

2009; Dechy-Cabaretet al., 2009; Yu et al., 2008). The ROP can be initiated 

by −OH groups for some monomers allowing their reaction with CNCs as they 

exhibit a density of -OH (Labet and Thielemans, 2011). When the cellulosic 

substrate acts as a macro-initiator, the polymerization process is referred to 

as SI-ROP (surface initiated); noting that the most important parameters are 

the initiator and the catalyst. For the preparation of SI-ROP from CNCs, the 

nanocrystals act as the initiator and the mechanism depends only on the 

catalyst; therefore, the water has to be completely removed from the 

dispersed CNCs before the reaction (Namazi and Dadkhah, 2008). 

 

 

Figure 13.  Chemical compounds for ”grafting mechanism” of CNCs 

The surface-initiated free radical polymerization (SI-FRP) represents one of 

the most common techniques for developing the grafting of vinyl polymers. 

The polymer was allowed to grow at the CNCs surface when the initiaror 
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species is activated first via hydrogen abstraction generating a reactive radical 

on the CNCs surface to be reacted with monomers to form polymers 

(Wohlhauser et al., 2018). Among initiators, potassium persulfate (KPS) is a 

thermal initiator widely used to graft CNCs surfaces with polymer chains, due 

to the stability of free radicals and compatibility with aqueous solutions. The 

radical formation occurs in the aqueous phase by the thermal homolytic 

dissociation of the KPS peroxide bond, at a temperature between 60 and 70 

°C (Hebeish et al., 2014). An example performed is reported below. The 

monomer called acrylic acid (AA) was used and grafted poly(acrylic acid) 

(PAA) chains offered CNC-based hydrogels excellent water retention 

properties with a swelling ratio of 323 g/g in distilled water versus 33 g/g in 

sodium chloride (NaCl) solution (Liu et al., 2018; Yang et al., 2012). 

 

Figure 14. Surface-initiated free radical polymerization using potassium persulfate for grafting 

polymers from CNCs (Wohlhauser et al., 2018). 
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5. Cellulose nanocrystals applications in Food packaging 

 

5.1. Forms of cellulose nanocrystals 

Cellulose nanocrystals can be used in various forms. After the preparation, 

the aqueous dispersed CNCS is obtained forming a stable colloidal 

suspension. CNCs can be wet or dried: 

 

 

 

 

 

The forms of the CNCs have an important relevance for the organization, 

morphology, conformation and crystallinity. CNCs powder or whiskers should 

be stored under lower temperature and humidity while wet CNCs in the 

refrigerator (4°C). For instance, Multi-scale crystalline network is obtained 

from the freeze-drying and supercritical-drying, while industrially spray-drying 

technique is more employed at the industrial level (Beck et al., 2012). It is 

important to note that after the drying process, residue of water and counter 

ion remain on the cellulose nanocrystals surface which ultimately play a very 

important role in the redispersibility and the stability of the colloidal 

suspension. Well-dispersed sodium-salt nanocellulose is fully dispersible in 

water (Missoum et al., 2012) and freeze-dried CNCs can be stored and 

incorporated into other materials. CNCs obtained from HCl resulted not to be 

redispersible even with intense sonication because of van der walls 

interactions and hydrogen bonding present. Freeze-dried CNCs are flake-like 

and iridescent appearance particles which stem from the liquid crystal before 

the drying and that makes more difficult the redispersibility of the CNCs. 

Oven-Dried CNCs 

CNCs colloidal suspension  

Spray-dried CNCs Freeze-dried CNCs 

Supercritically dried CNCs 
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Spray-dried CNCs are redispersed in water by adding a small amount under 

vigorous agitation. 

5.2. Coating of cellulose nanocrystals 

There are many intrinsic and extrinsic factors which influence the efficiency of 

cellulose nanocrystals coating onto paper or plastic films. After the coating of 

the cellulose nanocrystals, the gas barrier properties are significantly 

improved. Howeverany lack of the accuracy is critical on the performance of 

gas barrier of coated materials. 

 

 

 

 

 

 

 

 
 

 

Figure 15. Extrinsic and intrinsicfactors for high performance gas barrier coatings. 

When the plastic films and papersare coated with cellulose nanocrystals, the 

gas barrier is significantly improved. However, the preparation of the cellulose 

nanocrystals dispersion and the process of their coating on the polymers are 

very critical operations, because any lack of accuracy results in an abrupt 

increase in the permeation of the gases. CNCs are obtained chemically either 

by hydrolysis acid (HCl, H2SO4, H3PO4…) or oxidative hydrolysis (Tempo, 

APS). Generally, CNCs have hydroxyl groups located on their surfacewhile 

some are polymerized into carboxylic groups (-COOH) for CNCs obtained 
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from APS and Tempo while CNCs, by using sulfuric and phosphoric acids, 

CNCs obtained contain sulfate and phosphate half ester groups on their 

surface respectively. CNCs might be at various formats such as wet, freeze-

dried, spray-dried. Therefore, prior to proceeding with the coating step, it may 

be necessary to re-disperse the CNCs in water. When redispersed sprayed-

dried CNCs in water, it is strongly recommended to put them gradually (small 

amount added little by little) and maybe in presence of sodum chlorite under 

vigorous stirring and let it sit down for at least 1h till all the aggregates are 

dispersed followed by the sonication. CNCs-APS dispersion must be brought 

to pH> 7 and CNCs-H2SO4 to pH> 4.3 to allow a complete re-suspension of 

CNCs in water as a result of deprotonation of-COOH and -HSO3 groups 

respectively, which contributes to obtain a stable and uniform colloidal 

suspension. The suspension concentration of the cellulose nanocrystals for 

the coating shall be between 6% and 10wt%. A lower concentration requires 

several layers of dispersed CNCs for a complete coverage of the plastic films 

and a higher concentration relative up to the critical level causes the 

brittleness of the dried substrate of CNCs (a plasticizer such as sorbitol can 

be required). Due to the hydrophilic character of the CNCs, Plastic polymers 

to be completely covered during the coating must be subjected to corona, 

plasma, UV treatment for increasing their surface energy and adhesion with 

the aqueous CNCs suspension. The intensity of the treatment (power and 

time) to set depends on the initial hydrophobicity of the substrate and the type 

of the polymers. After the coating, the coated plastic films are suspended and 

dried under lower humidity and temperature conditions (30 ° C to 40 ° C) for 

about 48 hours. 

5.3. Layer-by-layer (LbL) assembly  

LdL assembly has been long employed for the deposition of a very thin layer 

of functional substances onto surfaces. Dispersions of cellulose nanocrystals 

are coated several timeson solid substrates (several layers) till the thickness 

reached is sufficient to provide gas barrier properties and wet-strength 
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required (Ankerfors et al., 2016; Aulin et al., 2013). Layers of muticomponents 

films can be coated on polymers or papers to form a complex mosaic of multi-

structures useful to preserve properties that are important in food packaging. 

It worth mentioning that the electrostatic interaction between polyanion and 

polycation or hydrogen bonds formed between layers can be exploited to 

obtain denser and ultra-thin layers in some cases (Jean et al., 2009). Other 

researchers and co-authors have implemented LbL by alternating the 

nanocellulose with the chitosan (Li et al., 2015) or poly-(etheneimine) (Aulin 

et al., 2013), cationic starch, cationic polyelectrolytes such as poly-

(ethyleneimine), poly (allylamine hydrochloride and poly-

(diallyldimethylammonium chloride) (Marais et al., 2013) or polyamido-amine 

wet-strength resin (Ankerfors et al., 2016). The combination of multiple layers 

showshigh versatility as the coating of containers, trays, bottles and objects is 

possible and easy, high density and strength between layers due to good 

affinity and gas barrier improvements. 

5.4. Nanocomposite extrusion 

Extrusion is a very simple process of transforming solid materials into a liquid 

state at a desired thickness. However, the incorporation of nanocellulose into 

plastic polymers is a challenge due to the lack of compatibility between both 

materialsMiao and Hamad (2013). Recently, nanocellulose was used as 

nanofiller reinforce of adhesives and polymers such as PLA taking advantage 

of the very high aspect ratio and specific surface area of the nanocellulose (Li 

et al., 2015). 

5.5. Electrospinning 

Electrospinning (ES) is a technology that utilizes electrical forces for 

electrostatic fiber formation to produce polymers fibers with diameters ranging 

from 2 nm to macrometric scale (Bhardwaj and Kundu, 2010). The viscous 

flow of the natural and synthetic polymers makes possible the alignment of 

individual polymer chains (Park et al., 2017). That type of process helps to 



52 
  

overcome problems of compatibility of the nanocellulose and polymers. ES 

technique was successfully used to incorporate microfibrils into poly (ethylene 

oxide) improving the thermal and mechanical properties through crystallinity 

change and nanocellulose alignment along the fiber length (Fortunat et al., 

2012). Peresin et al., (2010) achieved electrospun poly(vinylalcohol) with 

CNCs providing reinforced nanofibers (Peresin et al., 2010). 

5.6. Casting and evaporation 

Redispersing the nanocellulose into aqueous and non-aqueous media is 

challenging. Subsequently, this technique is used to control the nanocellulose 

concentration at moderate temperatures (Lu et al., 2014; Li et al., 2015). Not 

really common in packaging, casting process was used by the combination 

between nanocellulose and amylopectin-glycerol. More recently, cellulose 

nanocrystals were dispersed from an aqueous solution containing chitosan 

(Svagan et al., 2007, 2009). 

For example, etherification reaction can be promoted with hydroxyl groups 

while ester groups are the resulting reaction between carboxyl and hydroxyl 

groups. Amidation mechanism is also possible with the reaction between 

amines and carboxyl groups. Adsorption of chemical compounds onto the 

cellulose nanocrystals surface can be either by “affinity” or by “electrostatic 

interaction” with surfactants or positive charges. 

6. Conclusions and approach of the thesis 

From the findings of many scientists, it is clear that cellulose nanocrystals 

have a bright future and the many huge assets of these crystals will be soon 

exploited in several fields of applications. Cellulose nanocrystals can find 

application in many sectors packaging, electronics, Medecine, etc. In 

particular, cellulose nanocrystals can be used in food packaging as coatings 

to set up more advanced gas barrier packaging. The oxidation of foods 

remains one of the major problems actually faced by scientists and 

manufacturers. In the same context, environmental concerns are stimulating 



53 
  

the world to seek alternative resources to synthetic polymers which are not 

safe for the living being. Cellulose nanocrystals display extraordinary 

capabilities such gas gas barrier and mechanical properties required in food 

packaging. Furthermore, cellulose nanocrystals are obtained from the 

cellulose, which is the most abundant biopolymer on Earth. However, the 

water sensitivity of the coatings-based cellulose nanocrystals is a major 

obstacle for their implementation in food packaging. It was found out that, gas 

barrier properties of cellulose nanocrystals are destroyed in conditions of high 

humidity. Therefore, my thesis will be divided into 3 sections: 

A- Investigation on water sensitivity of coatings-based cellulose 

nanocrystals in relation with barrier to oxygen and carbon dioxide  

 

B- Research and implementation of solutions to overcome the drawback 

 
 

C- Effective application of cellulose nanocrystals in food packaging and food 

shelf-life assessment. 
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Chapter 2. Aims and objectives 

The main objective of the PhD was to implement multi-layer structures (bio-

sed and fully compostable) based on cellulose nanocrystals produced from 

natural resources to achieve excellent oxygen and water vapor barrier 

properties for food shelf-life extension. The Project stemmed from the idea 

that abundant natural resources such as cellulose, which bear exceptional 

potential, could be exploited to create more advanced and bio-based 

laminates in replacement of conventional-based laminates (EVOH, PVDC). 

From the cellulose, cellulose nanocrystals can be obtained through a “top-

down” process. Nanocrystals are intended as tiny crystals whose at least one 

dimension is equal to or less than 100 nm. CNCs are biodegradable and 

crystalline materials based on 100% cellulose and they are obtained either by 

oxidative or acid hydrolysis of the amorphous regions of the cellulose to 

release the crystalline regions intact. CNCs display extraordinary gas barrier 

and mechanical properties which meet all the needed requirements to be 

incorporated into food packaging. This project will contribute to sort out two 

major challenges such food waste and environmental concerns actually faced 

and targeted by the world. Not only that, the use of cellulose nanocrystals in 

packaging will help to alleviate the dependency on oil-based materials 

(plastics) which are unhealthy for the environment, but it will further reduce 

the food loss caused by the oxidation phenomenon. In addition, the possibility 

of employing by-products and biomass to produce cellulose nanocrystals will 

surely make the novel food packaging compliant with requirements of eco-

compatible applications. At the end of this project, 4 µm thick of synthetic 

oxygen barrier currently used in laminates (EVOH, PVDC) for oxidation-

sensitive food products will be replaced with bio-based laminates containing 

only 1 µm CNCs.  The figure 1 below best illustrates the first target of my PhD 

project. 
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(a)                                                                                                                                      (b)                                                                                                      

Figure 1. (a) Laminates based on synthetic gas barrier [EVOH/PVDC] (b) Bio-based 

Laminates blended with CNCs 

In parallel, the second objective of my PhD work was an interdisciplinary 

project called BIOCOMPLACK with the purpose of using those nanoparticles 

to create a fully compostable packaging in order to extend the food shelf-life 

(figure 2b). BIOCOMPLACK is a project granted from UE in 

the European framework project HORIZON 2020. BIOCOMPLACK is a food 

biopackaging with three main points of innovation:  

1. The production and use of cellulose nanocrystals (CNCs) 

2. The multilayer structure lamination 

3.   Development of a reinforced PLA   
 

 

     (a)                                                                                                            (b) 

     Figure 2. (a) synthetic laminates based on EVOH, (b) fully compostable laminates based   
on CNCs. 

 

Polymer 
EVOH - 
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These three innovations will enhance the barrier properties to oxygen (more 

than 100 times compared with common biopackaging) and water vapour as 

well as will improve the shelf-life of food. BIOCOMPLACK is an alternative to 

common bio-packaging products that enhances 300% the shelf-life of food. 

This international project is born in a consortium integrated by two large 

enterprises (Sapici and Goglio), two small-medium enterprises (SMEs) 

(NaturePlast and Tecnopackaging) and a research institution (Packlab, 

University of Milan) from four different countries which together cover the 

supply chain of the food packaging industry. BIOCOMPLACK will have strong 

impact in the society and in the environment. BIOCOMPLACK will be an eco-

friendly packaging from natural renewable sources instead of fossil fuels, will 

reduce the plastic packaging waste thanks to its biodegradability in the nature 

and will generate at the end of its useful life an added value product, the 

compost (to improve the quality of soils and provide nutrients). Our 

BIOCOMPLACK solution will provide a loop cycle of sustainability.  

 

SAPICI 

Sapici S.p.a, coordinator of this proposal, will provide to BIOCOMPLACK the 

adhesive of polyurethane with the cellulose nanocrystals (CNCs) dispersed 

on it. Established in Italy in 1936, Sapici is a global innovation and full-quality 

driven developer and manufacturer of advanced and high-performance 

polyurethane products for such applications as Coating, Flexible Packaging, 

Industrial Adhesives, Prepolymers, and Inks. 

NATUREPLAST 
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NaturePlast is a SMEs enterprise specialized in accompanying plastic 

converters or outsourcers who want to develop and integrate products or 

packaging into bioplastics. Nature Plast directly manages the supply of raw 

materials and additives from various suppliers around the world. We certainly 

now have the broadest portfolio in Europe. The materials that we sell have all 

been tested by our technical centre (Biopolynov) and have been approved on 

industrial equipment. Our suppliers have been chosen by several criteria: 

quality, price, production volumes, availability and certificates of 

biodegradation and food contact. We will provide the PLA polymer (raw 

material) to Tecnopackaging for the BIOCOMPLACK project. 

TECNOPACKAGING 

Located in Zaragoza, Tecnopackaging´s main purpose is conducting R-D-i on 

advanced polymeric materials and their transformation processes for 

packaging and industrial plastic applications, targeting companies which 

operate directly or indirectly in the agri-food, cosmetic, pharmaceutical and 

industrial sectors.Tecnopackaging integrates the capabilities and skills of 

various researchers and has the necessary technical equipment for providing 

customers a comprehensive design of new products, from concept to 

prototype, validation and development of the first series. In addition, 

Tecnopackaging develops all its activities keeping in mind an eco-innovative 

perspective, analysing in each case the different alternatives that would 

reduce the environmental impact of both their products and/or their processes. 

The company role in the project will be to supply the PLA film to 

BIOCOMPLACK project. 



72 
  

 UNIMI 

The Food Packaging Laboratory (Packlab) of the Department of Food, 

Environmental and Nutritional Sciences (DeFENS) of the University of Milan 

has been established since 1985 and it is a laboratory exclusively devoted to 

packaging research. In these almost 25 years several collaborations have 

been established with companies in the food as well as in the packaging sector 

and many relationships have been instituted with other Universities and 

Research Centers in Italy and abroad. Packlab has an important role in the 

BIOCOMPLACK project. Packlab will provide the characterization tests 

needed for the nanocellulose crystals and/or the coated layer and for the final 

laminated before the scale-up. Packlab also will carry out trials of shelf life 

studies of target foods and the test to control the food contact compliance of 

the final product. 

GOGLIO NE 

Goglio North Europe BV will be the converter of the BIOCOMPLACK food 

biopackaging. Goglio will manufacture the biobased, biodegradable and 

compostable packaging, safe for food with long-term preservation thanks to 

the multilayer structure of PLA film (supplied by Tecnopackaging) and the 

adhesive of polyurethane with CNCs dispersed on it (supplied by Sapici). 

Goglio was founded in Milan in 1850, today Goglio is leader in flexible 

packaging, rigid plastic accessories such as valves and spouts, and 

packaging machines. 
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PhD challenges  

Unlike the enormous capabilities displayed and highlighted above, cellulose 

nanocrystals behave as most biodegradable materials, they are sensitive to 

water, that compromises their gas barrier properties, and subsequently, this 

makes them inappropriate for use in wet ambient and/or for fresh foods 

applications. To overcome that drawback, two solutions were considered valid 

and plausible, modifying the cellulose nanocrystals to impart them 

hydrophobic nature or incorporating CNCs in multi-layer laminates to protect 

them against the humid surrounding.  The PhD project was divided into 5 

stages as the table below illustrates very clearly. 

 

Table 1. Five stages of PhD project 

Throughout the reading of the content of this thesis, it will be discovered that 

apart from the life cycle assessment, the purpose of the project was 

completely achieved either for the implementation of the bio-based packaging 

or that of the fully compostable packaging, with great possibility to overstep 

the lab scale and shift at the industrial scale. 
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Abstract 

Cellulose nanocrystals (CNCs) exhibit outstanding gas barrier properties, 

which positionthemselves as biobased and biodegradable barrier coating on 

flexible food packaging materials. However, CNCs have a strong sensitivity 

to water that can be detrimental to gas barrier properties. In this work, the 

oxygen and water vapor permeability of polyethylene terephthalate (PET) 

films coated with CNCs obtained from cotton linters were measured at 

various relative humidities and the diffusion and solubility coefficients were 

estimated. The CNCs’ moisture absorption and desorption isotherms at 25 
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°C were collected in the range of relative humidity 0%–97% and analyzed 

through GAB (Guggenheim-Anderson-de Boer) and Oswin models. The 

effects of moisture, following the freezable water index, and on the crystal 

structure of CNCs were investigated by Differential Scanning Calorimetry 

and by X-ray Powder Diffraction, respectively. These findings provide 

solutions of coupling CNCs with hydrophobic materials in order to boost their 

capabilities as barrier packaging materials.  

Keywords: cellulose nanocrystals; flexible packaging materials; oxygen 

barrier; moisture effects. 

1.  Introduction 
In any cellulosic material, the water content and interactions with the material's 

components have a great influence on its final properties. In particular, the 

way in which water molecules interact with cellulose and their distribution 

within the often complex and heterogeneous system of cellulosic materials are 

critical to their applications. In fact, the manufacturing processes developed 

for paper, board and regenerated cellulose (cellophane films) include specific 

operations aimed at the careful removal of water added or present, and 

several hydrophobic protective layers and ingredients for providing moisture 

resistance are extensively used nowadays (Biermann, 1996). Sorption 

isotherms interpretation, particularly through FTIR spectroscopy studies, led 

to the idea that water molecules are adsorbed to specific sites, both as layered 

adsorption or as cluster formation. The main potential adsorption sites are the 

hydroxyl groups and their possible oxidation forms such as the carboxyl 

groups (Olsson et al., 2004). For specific cellulosic materials, even at relative 

humidity (RH) values below 100%, it was possible to establish the number 

(1.0–1.3) of water molecules that adsorb to a single hydroxyl group (Hodge et 

al., 1996; Peemoeller et al., 1985; Pin et al., 2001). Studies of the diffusion of 

water molecules in cellulosic materials led to the conclusion that cellulose 

wetting can be related to acid-base interactions, weak hydrogen bonding and 

van der Waals forces (dipole-dipole and dispersion forces) (Gardner et al., 
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2008). Therefore, the extent of water sorption in cellulosic materials can also 

depend on the surface free energy of the solid-liquid interface. 

At a larger scale, bulk amorphous regions have been pointed out, from as 

early as 1949, as a favorable place for water adsorption, and the relationship 

between availability of surface hydroxyl groups and crystallinity of cellulose is 

well established (Howsmon, 1949; Mihranyan et al., 2004). As a result of the 

heterogeneous and complex morphology of cellulosic materials, the state of 

water in cellulose was classified in three different types: free water (type I), 

freezing bound water (type II) and non-freezing bound water (type III) (Agrawal 

et al., 2004; Nakamura et al.,1981) 

When cellulose based materials are used in packaging applications, water 

adsorption and desorption phenomena during the commercial life are of great 

importance because they are able to affect fundamental performance, such 

as mechanical and diffusional properties. Mechanical resistance, for instance, 

can be strongly reduced by moisture adsorption leading to the dissolution of 

the hydrogen bonds which produces tight fibers in papers and boards. This 

bonding occurs as the wetted fibers can dry in contact with each other, 

requiring close proximity between adjacent hydroxyl groups (0.25–0.35 nm) 

(Gardner et al., 2008). At least in paper, this bonding seems more important 

than the mechanical interlocking of cellulose fibers. Furthermore, the 

adsorption of hydrophobic components on cellulose fibers during paper 

manufacturing greatly decreases fiber bonding and can affect the weakness 

and adhesion as well (Bikerman, 1967), leading to the risk of failure and 

unsuitability. 

The effects of water sorption on the diffusional properties of cellulose, that is 

gas and water vapor permeability, have been often overlooked in the past, 

since most cellulosic materials employed in paper and board do not require 

outstanding barrier properties towards gases and water. Several papers 

demonstrated the high gas barrier properties provided by the use of cellulose 

nanocrystals (CNCs) and cellulose nanofibers (CNFs) as coatings applied 
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onto common plastic films, as well as fillers of common polymers (Aulin et al., 

2010; Frounchi and Dourbash, 2009;Fukuya et al., 2014; Gicquel et al., 2017; 

Li et al., 2013; Minelli et al., 2010). At the same time, moisture can be seriously 

detrimental to the gas barrier properties of CNC coated films (Belbekhouche 

et al., 2011; Rampazzo et al., 2017). In general, synthetic or bio-based 

polymers with hydrophilic behavior and high polarity, show low oxygen and 

gas permeability when dry, but lose such properties when water molecules 

plasticize and swell their native structure.These behaviors are well known and 

widely investigated in polyamide, polyesters, polyvinyl alcohols and bio-

polymers (Aulin et al., 2009; Aulin et al., 2010; Auras et al., 2004; 

Belbekhouche et al., 2011; Lagaron et al., 2001), while less knowledge is 

available for the effects of moisture on the gas barrier properties of CNCs 

when used as coatings applied onto conventional plastic films intended for 

food packaging applications, which is the main goal of this chapter. 

 

2. Materials and Methods  
2.1. Materials 

The cotton linters used as raw material to produce CNCs were kindly supplied 

by Innovhub (Milano, Italy). All the chemicals used were purchased from 

Sigma-Aldrich (Milano, Italy). Polyethylene terephthalate (PET) film, with a 

thickness of 12 ± 0.5 μm, was provided by Sapici spa, Cernusco sul Naviglio, 

Italy. 

 

2.2. CNCs Extraction by Ammonium Persulfate Treatment and Coating 
Process 

The CNCs were obtained by the hydrolyzing-oxidative method proposed by 

Leung and coworkers in 2011 (Leung et al., 2011). The procedure for the 

obtainment of the CNCs, the purification steps and the coating process onto 

PET film have been described in our previous works (Li et al., 2015) and 
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strictly followed in this paper. The yield of CNC production (%) was evaluated 

from the weight of the freeze-dried products by comparing them with the mass 

of cellulosic raw materials treated. The thickness of the coating applied onto 

the film was assessed by a gravimetric method. Four samples (10 × 10 cm2) 
were weighed (m1, g), then the coating was removed by running hot water 

(~70 °C) and the resulting uncoated film was dried and weighed (m2, g). The 

coating thickness (L, cm) was estimated by equation (1):  

L= (m1-m2 )/(ρ × 100), (1) 

where ρ = 1.58 g cm−3 is assumed as the density of the CNCs. 

2.3. Characterization of cellulose nanocrystals and coated PET film 

2.3.1.  Characterization of cellulose nanocrystals 

By dynamic light scattering (DLS) measures (mod. Litesizer 500, Anton Paar, 

Graz, Austria), the equivalent hydrodynamic diameters of the CNCs were 

determined, as well as the polydispersity index and intensity and particle 

number distributions (data not shown). The measurements were performed at 

25.0 ± 0.1 °C with a 35 mW laser diode light (λ = 658 nm) and collecting the 

scattered light at 90°. Before measurements, the samples were diluted to 
1:500 (w/w) with distilled water adjusted to pH 8 and maintained at 25 °C 

through stirring until measurement. The diluted solutions were poured in the 

measurement cell after 30 s homogenization by an ultrasonic water bath. The 

actual dimensions of the CNCs were evaluated via Transmission Electron 

Microscopy (TEM). Drops of aqueous dispersions of CNC (1 wt %) were 

deposited on carbon-coated electron microscope grids, negatively stained 

with uranyl acetate and allowed to dry. Samples were analyzed with a Hitachi 

Jeol-10084 TEM operated (Hitachi, Brugherio, Italy) at an accelerating voltage 

of 80 kV. 

Zeta-potential and Conductivity of the CNCs. 



85 
  

Zeta potential (mV) and conductivity (mS cm−1) of the CNCs in the diluted 

suspension at pH 8 were determined by electrophoretic light scattering (ELS), 

using the PALS technology (mod. Litesizer 500, Anton Paar, Graz, Austria). 

Measures were replicated 5 times, at 25.0 ± 0.1 °C, by means of a 35 mW 

diode laser (λ = 658 nm) and at 15° detection angle. 

X-ray Powder Diffraction (XRPD) 

X-ray diffraction measurements were performed at the beamline ID15A of the 

ESRF synchrotron facility (Grenoble, France). The sample for X-ray diffraction 

was a 13 mm-diameter, 0.5 mm thick pellet obtained by pressing uniaxially 45 

mg of CNC flakes. The pellet was mounted on a goniometric head and aligned 

normal to the incident X-ray beam at a distance of 260.5 mm from the detector, 

a Pilatus 2M CdTe (Dectris, Baden-Daettwil, Switzerland). Each dataset 

consists of 50 2D diffraction images recorded by exposing the sample for 5 s. 

First, the sample was measured in the dry state, i.e., as mounted. Then, 100 

mg of water were pipetted on one face of the pellet and allowed to absorb 

immediately before collecting the second dataset. The injection of 100 mg 

water and the subsequent diffraction measurement were repeated 60 and 120 

minutes after the first measurement. The X-ray wavelength was 0.17712 Å. 

The wavelength, sample-detector distance, detector tilt, and beam position 

were calibrated based on the diffraction pattern of CeO2. Raw diffraction 

images were scaled, averaged and finally subtracted by the air background 

before being radially integrated and corrected for the polarization of the 

incident X-ray beam. Calibration, image processing and radial integration 

were performed using Python 2.7 and the libraries pyFAI and FabIO (Ashiotis 

et al., 2015; Knudsen et al., 2013). For each measurement, the Pair 

Distribution Function (PDF) was calculated as the G(r) described by Keen, 

2001 (Keen, 2001) using the program PDFgetX3 (company, city, country) 

(Juhás et al., 2013). The PDF is a function in real space representing the 

distribution of interatomic distances in the bulk material and is obtained by 

Fourier-transforming the total scattering intensity after proper normalisation 
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and correction (Fischer et al., 2005). The maximum value of momentum 

transfer used for PDF calculation was Qmax = 27 Å−1. The diffraction pattern of 

the dry CNC sample was fitted via the Rietveld method (Rietveld, 1969) using 

the program Topas 5.0 (Bruker AXS, Karlsruhe, Germany.). 

Freezable Water Content (DSC) 

The freezable water content of CNCs at various humidity (HU% = g H2O/g 

sample) was assessed through differential scanning calorimetry (DSC) 

(Alamprese et al., 2017). The DSC calorimeter 2920 (TA Instruments, 

Vimodrone, Italy), operating with 60 microliter sealed cells, was used. The 

typical sample mass was 30 mg; the reference cell was empty and Indium was 

used for calibration. Measures were carried out from −60 to 30 °C with 1.0 

°C/min scanning rate. This relatively low scanning rate was selected in order 

to enhance maximum crystallization during cooling. Two cooling-heating 

cycles were performed. The transitions were reversible in the heating mode 

(super-cooling effects were observed in the cooling step) and the first cycle 

heating curves were taken into account. The output signal in mW units was 

divided by the product of sample mass per heating rate in order to be 

converted into apparent specific heat and it was scaled with respect to the 

baseline to obtain the excess (with respect to the water solid state) specific 

heat trace, Cpexc (J K−1 g−1
water). The heat capacity change during the solid-

liquid water transition, ΔfusCp, was scaled across the signal and was therefore 

not taken into account in the present work. Thanks to this treatment, the area 

beneath the recorded peaks directly corresponds to the relevant transition 

enthalpy ΔfusH. The freezable water content was assessed according the ratio 

ΔfusH/ΔfusH°, ΔfusH° being the pure (free) water enthalpy (333.59 J g−1 at 0 °C). 

Errors were evaluated based on at least three replicates and were under 5%. 

Water Sorption Isotherm 

The water adsorption and desorption isotherms (at 25 - 1 °C) of CNCs were 

roughly determined by the standard static gravimetric method developed by 
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the European Cooperation Project COST 90 (Tsami et al., 1990), in triplicate, 

using saturated salt solutions to establish the RH values of 20.9%, 27.3%, 

35.1%, 51.3%, 59.9%, 66.1%, 79.0% and 85.6%. In the desorption mode the 

Knudsen thermogravimetry approach was also used. Details of the method 

are reported elsewhere (Alamprese et al., 2017). This method is continuous 

and each measurement produces the overall desorption isotherm with high 

reproducibility also in the low water activity ranges but can be applied only in 

the desorption mode (Fessas and Schiraldi, 2005; Schiraldi et al., 2013). A 

TG-DSC instrument (TG-DSC 111, SETARAM, Caluire, France) operating 

with a typical sample mass of 30 mg was used. The GAB (Van den Berg, 

1981, 1984) and Oswin (Oswin, 1946) Equations (2) and (3) respectively, 

were tentatively applied to data for the adsorption and desorption of water by 

CNCs and shown in the following equation: 

m = Mo CKaw/[(1 – K aw)(1 – K aw - CK aw)], (2) 

where m is moisture content (g H2O/g d.m.), aw is the water activity. Mo, K, 

C describe the sorption properties of the structure. Mo is the monolayer water 

content; the parameters K and C are the degree of freedom of water content 

and difference between layers (upper and monolayer) respectively and they 

depend on the temperature. 

m = c1 (aw/(1-aw)) c2, where c1 and c2 are empirical constants. 

 

2.3.2. Characterization of CNCs-coated PET film Optical Properties 
of Coated Film 

The transparency of the CNCs coated PET was measured at 550 nm, according 
to the ASTM D 1746-70, by means of a UV-VIS spectro-photometer (mod. L650, 

Perkin-Elmer, Milano, Italy). The haze (%) of the same samples was measured 

according to ASTM D 1003-61 with the same instrument equipped with a 150 mm 

integrating sphere. Each sample was replicated three times, analyzing at least 

four spots on each replicate 

(3) 
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Water Contact Angles  

Static contact angles of the coated film were determined after conditioning the 

samples at three different RH values (57%, 81% and 97%). The sessile drop 

method was used by gently dropping a droplet of 4.0 ± 0.5 μL of water onto 

the film. The measurements were performed at room temperature (RH about 

40%) on five different positions for each sample. The equilibrium angle was 

achieved in 2–3 seconds and remained constant for at least 10–15 seconds; 

due to the short time of the measurement, we assumed that the CNCs coating 

did not change its original activity water value. The instrument used was an 

OCA 15 Plus angle goniometer (Data Physics Instruments GmbH, Filderstadt, 

Germany), equipped with a high-resolution CCD camera, a high-performance 

digitizing adapter (Data Physics Instruments GmbH, Filderstadt, Germany) 

and SCA20 software (Data Physics Instruments GmbH, Filderstadt, Germany) 

for contact angle measurements. 

Gas and Water Vapour Permeability  

All the oxygen and water vapor permeability measures were performed by an 

isostatic permeabilimeter (mod. Multiperm, PERMTECH S.r.l., Pieve 

Fosciana, Italy) according to ASTM standard methods (D-3985 and F-1249 

respectively). The oxygen permeability (PO2, cm3 m−2 d−1 bar−1) of CNCs 

coated PET film was measured at 25 °C under 80%, 70%, 50%, 30%, 20% 

and 10% RH on the coated side of the film, both increasing and decreasing 

the RH value. The water vapor transmission rates (WVTR, g m−2 d−1) were 

measured at 25 °C under 90%, 80%, 70%, 60%, 50% and 40% RH on the 

coated side of the film (being at 0% RH on the other side). The oxygen 

permeability coefficients of the CNCs coating alone (KPO2, cm3 µm m−2 d−1 

bar−1) were assessed using equation (4) (Krank, 1979), assuming that the PET 

surface did not interact with the coating layer above with thickness L (µm), 

and that the interface between them negligibly affected the permeation 

measure. 
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L/[KPO2 (CNCs coating)] = [1/PO2 (coated PET film)] − [1/PO2 (uncoated PET film)]. (4) 

From the isostatic permeation curves obtained, the oxygen diffusion 

coefficients (D, cm2 s−1) in the coating at each RH value were estimated 

according to equation (5) (Hernandez el., 1999; Lee et al., 2008); 

D = L2/(7.2 × t(1/2)), (5) 

where L is the thickness (cm) and t1/2 (s) is the time required to reach half of 

the maximum permeability value. From the permeability and diffusion 

coefficients (KPO2 and D), the oxygen solubility in the CNCs coating (S, bar−1) 

were estimated at each RH value, based on equation (6): 

S = KPO2/D (6) 

3. Results 

3.1. CNCs Production and Coating onto PET Film 

Cellulose nanocrystals were obtained from cotton linters by the hydrolyzing-

oxidative method, already used in previous works (Mascheroni et al., 2016; 

Rampazza et al., 2017), with a yield of about 50%; the morphological and main 

chemical characteristics of the CNCs were identical to the ones already 

described and are recalled in Table 1. As mentioned in the Materials and 

Methods section, the dimensions of cellulose nanocrystals were determined 

via transmission electron microscopy and confirmed the values obtained 

previously (Table 1). A TEM image of CNCs is reported in Figure 1. The 

coating process was also the same as described in previous papers and the 

tests carried out confirmed the continuity and the uniformity of the CNCs layer 

coated onto the PET substrate. Therefore, only a few characteristics of the 

coated film are reported in Table 1. 
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Property of CNCs Value1 

Hydrodynamic diameter (nm) 101.15 ± 3.65 

Average dimensions (length, L) from TEM measures 139 ± 33 

Average dimensions (diameter, D) from TEM measures 16 ± 5 

Aspect ratio (L/D) 9 ± 4 

Zeta potential (mV) -44.40 ± 4.12 

Conductivity (mS cm-1) 0.095 ± 0.024 

Polydispersity index 22.95 ± 0.63 

aw after freeze drying  0.26 ± 0.01 

Property of CNCs coated PET film  

aw after coating and drying  0.46 ± 0.05 

Thickness of PET film (µm) 12.0 ± 1 

Thickness of CNCs coating (nm) 756.3 ± 22.3 

Transparency (T% at 550 nm) 85.67 ± 0.3 

Haze (%) 1.89 ± 0.1 

Optical contact angle (water) at 57% RH 11.23 ± 0.41 

Optical contact angle (water) at 81% RH 9.33 ± 0.56 

Optical contact angle (water) at 97% RH 8.05 ± 0.31 

Table 1. Main characteristics of cellulose nanocrystals and of the CNCs coated PET 
film. 

1 Mean values of at least 3 replicates - standard deviations. 
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Figure 1. TEM micrograph of the CNCs (cellulose nanocrystals) obtained. 

It is worth underlining that the water optical contact angles measured on 

coated film decreased linearly (R2 = 1.0) from 57% to 97% RH, showing a 

clear growth of hydrophilic behavior of the CNCs surface. Previous measures 

(Rampazzo et al., 2017) on the same CNCs coated film at 35% RH, had 

shown a much higher value of 23.6 ± 4.9—not linearly correlated to the contact 

angles measured in these trials—as preliminary evidence of a dramatic 

change of the structure, occurring above a threshold of humidity content. 

In general, the CNCs coated film obtained had an appearance and 

performance very similar to the previously obtained films and to many 

common flexible packaging materials. 

3.2. Water and Gas Permeability of Coated PET Film 

The water vapor transmission rates (WVTR, g m−2 d−1) were measured in 

duplicate at 25 °C, decreasing the RH on the coated side from 90% to 40% 

for each sample. The inset of Figure 2 shows the progressive and linear 

decrease of water transmission across the coated film, according to the water 

vapor pressure established by the conditions of the measures (temperature 

and ΔRH). Figure 2 depicts the superimposed isostatic curves of water 

diffusion at the different driving forces, from which it should be possible to 

estimate the diffusion coefficient (D), once t1/2 (the time required to reach half 
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of the maximum diffusion) has been estimated. The vertical black bar shows 

that the t1/2 of all the curves are reached at the same time, denoting the same 

diffusion coefficient of water permeating through the coated film at the various 

driving forces considered. 

 

Figure 2. Isostatic curves of water diffusion at 25 °C under different driving forces 
through the CNCs coated PET film. 

The oxygen permeability of the CNCs coated PET film was also measured at 

various RH values in triplicate and at 25 °C, progressively changing the 

relative humidity on the coated side of the films from 7.7% up to 80% and then 

going back from 80% to 7.7% on each sample. Figure 3 reports the average 

values (± relative standard deviation) of oxygen permeability during the 

adsorption run (blue curve) and the desorption run (orange curve). Significant 

differences are present along the range 40%−80% between the two behaviors 

(in adsorption and desorption) and the values increase more than 90 times 

from the minimum to the maximum RH value. 
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Figure 3. Oxygen permeability at 25 °C under different relative humidity (RH) values, 

both in adsorption and desorption, through the CNCs coated PET film. 

The isostatic permeabilimeter used has provided—also for oxygen 

permeability measures—sharp curves of diffusion (oxygen transmission rate 

versus time, data not shown) which permitted us to estimate, from the oxygen 

permeability coefficient of the CNCs coating layer alone (excluding the PET 

contribution), the diffusion (D) and solubility (S) coefficients (Equations 

(4)/(6)). 

These fundamental parameters of the diffusional behavior of oxygen inside 

the cellulose nanocrystals (mean values ± standard deviation) are proposed 

in Figures 4 and 5, as function of relative humidity values, showing large 

differences. 
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Figura 4. Oxygen diffusion coefficients under different RH values, both in adsorption and 
desorption, through the CNCs coated PET film. 

While the diffusion coefficients are quite different when measured in 

adsorption and desorption, with the largest and statistically significant 

differences between 40 and 60% RH values, the solubility coefficients remain 

quite constant until 70% and show much lower differences between 

adsorption and desorption which, however, are significant (p< 0.05%) at 70% 

RH only. 
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Figure 5. Oxygen solubility coefficients under different RH values, both in adsorption 

and desorption, through the CNCs coated PET film. 

3.3. Characterization of isolated cellulose nanocrystals 

CNCs Freezable Water Content 

In Figure 6 the DSC measurements are presented in order to assess the 

freezable water amount in the CNCs samples. We observe a typical 

behavior for water engaged in polysaccharide substrates (shift of fusion 

temperature due to colligative effects etc.) (Fessas and schiraldi, 2001). 

The profiles also indicate that the water crystal size distribution (the width 

of the peaks almost follow their height) is almost uniform. The freezable 

water results obtained following the relative enthalpies (see Materials and 

Methods) are reported in Table 2. 
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CNCs Humidity % (g H2O/g sample)·100 
Freezable water 

(%) 
 ± 5% 

85 100 

75 100 

52 75 

46 65 

8 0 

Table 2. CNCs freezable water content assessed by DSC. 

 

Figure 6.DSC measurements of CNCs at different humidity values. 

 

CNCs Water Sorption Isotherms 

In Figure 7 we can observe the sorption isotherms of CNCs. The static 

gravimetric method used for roughly estimating the sorption behavior of CNCs 

gave satisfactory results in the middle-high region of water activity aw (or 

relative humidity RH) values, with low standard deviations. It is very likely that 
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the values collected at lower RH were less accurate; on the other hand, the 

desorption isotherms obtained with the Knudsen thermogravimetry method 

fulfilled this gap. Indeed, we observed that these curves were highly 

reproducible and in agreement with the static method in the middle-high region 

of aw. In Figure 7 we also report the adsorption data obtained with the static 

method. Despite the uncertainties, it is interesting to highlight the hysteresis 

observed by the two static method curves which denotes a different behavior 

in adsorption and desorption steps than usually observed for similar systems. 

In order to be compared, the GAB equation was tentatively applied to these 

experimental data (excluding the points with high uncertainty, R2, respectively 

= 0.989, 0.810) both for the adsorption and desorption of water by CNCs. For 

the validation of the GAB model, K should be between 0 and 1, and C between 

0 and 2 or higher for an isotherm of type III, as in this case. The OSWIN model 

also fitted well with the experimental data but, is less useful for the 

interpretation of the water-CNCs interaction. The coefficients are reported in 

Table 3. 

Coefficient Adsorption Desorption 

 GAB equation 

R2 0.989 0.810 

k 1.27 1.95 

C 0.14 0.35 

Mo 0.45 0.08 

 OSWIN equation 

c1 1.3 1.23 

c2 1.57 1.90 

R2 0.97 0,90 

Table 3. Empirical coefficients of GAB and OSWIN models fitting the experimental 

isotherms. 
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Figure 7. CNCs adsorption and desorption isotherm at 25 °C according to the standard static 

gravimetric method, and desorption isotherms according the Knudsen thermogravimetry 
method. 

X-ray Diffraction Patterns 

In Figure 8 the panel (a) illustrates the diffraction pattern of the dry CNC 

sample. Panel (b) in the same figure shows the meltdown of the diffraction 

peaks of the CNC pellet between the four different hydration stages. Finally, 

the panel (c) shows the decay of the amplitude of the PDF, which directly 

represents the distribution of atom pairs through space in the bulk material as 

a function of their interatomic distance. 
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Figure 8. Raw XRPD (X-Ray Powder Diffraction) patterns of CNCs in the dry state 

and after successive exposures to 100% RH (a), breakdown of the XRPD pattern 
of the dry CNCs sample into the constituent crystalline phases (b), The PDF curves 

of the dry sample and of the wet sample at the second and third hydration (c) and 

a view of the crystal structure of CNC along the crystallographic directions {001} 
and {100} (d). 

4. Discussion 

4.1. Permeability of CNCs Coated Film 

The water vapor transmission rate measures were carried out starting from 

90% of RH and then decreasing the humidity on the coated side, step by step 

until 40%, and a very linear relationship between water transmission and 

driving force occurred (inset of Figure 2). It is noticeable that each previous 

measure did not affect the following one at a lower humidity. Thus, it is 
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reasonable to assume that the water molecules adsorbed by the coating layer 

of CNCs were effectively removed by the conditioning steps applied by the 

instrument between measures, and that each permeability measure has been 

conducted in the expected conditions. Otherwise, it would not have been 

possible to obtain such a linear relationship. 

This assumption contributes to the interpretation of the results obtained for 

oxygen permeability assessment at various RH values. As proved in our 

previous papers (Mascheroni et al., 2016; Rampazzo et al., 2017), at RH value 

close to zero, the oxygen permeability of very thin CNCs coating is much lower 

than the PET substrate. To get the same permeability, a PET thicker than 8.0 

mm would be necessary. 

The determinations, carried out in triplicate on different samples of coated 

films, were performed increasing at first and then decreasing the relative 

humidity, i.e. in an adsorption and desorption way. As expected, the oxygen 

permeability increased exponentially during the increase of RH values, 

reaching values which are no longer of interest for CNCs application as a 

barrier layer of flexible packaging materials for perishable food products. The 

most interesting and novel results deal with the measures carried out in 

desorption, after the achievement of 80% of RH and going back to dry 

conditions (7.7%). The relative standard deviations of the measures confirm 

that the oxygen transmission in desorption is different from that in adsorption; 

especially in the range between 70 and 50%. The calculation of diffusion 

coefficients (in Figure 4) is further confirmation of this behavior, showing the 

largest differences in the range 60%–40% of RH whereas, below and above 

these limits, the uncertainties of the measure exclude statistical differences. 

Moreover, since the solubility of oxygen in CNCs seems slightly affected by 

RH values of up to 70% (in Figure 5), with negligible discrepancies between 

adsorption and desorption (except at 70% RH), it is reasonable to conclude 

that moisture has a different effect on oxygen solubility and oxygen diffusion 

along the cellulose nanocrystals layer.  
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Generally, polymer crystallization influences diffusivity more than solubility 

(Pollyakova et al., 2001; Weinkauf et al., 1990). This is in accordance with the 

concepts of free-volume, as well as cooperative movement of gas molecules 

and polymer chains (Mokwena et al., 2012), in which diffusion of small gas 

molecules through a semicrystalline polymer, is viewed as a movement 

through the amorphous regions, with an increased tortuosity given by platelet-

like crystallites. Obviously, a higher thickness would increase the barrier effect 

even more. In bio-polymers, however, the negative correlation between 

crystallinity and diffusion coefficient is not always confirmed. Guinault et al. 

(2012) showed that oxygen diffusion coefficient was accelerated upon 

crystallization of poly (lactic acid), while the solubility coefficient decreased, 

remaining constant in the amorphous phase. This phenomenon was attributed 

to the presence of a rigid amorphous fraction, which holds larger free volume. 

The experimental evidence and the, somehow, contradictory literature 

analysis suggested the focus should be kept as much as possible on 

understanding the interactions between CNCs and water molecules. 

4.2. Freezable Water and Water Sorption Isotherms 

The above observations are in line with the DSC and the sorption data. 

Indeed, we observed that the amount of freezable water increases 

considerably with respect to the sample humidity. For instance, for sample 

humidity of 46%—that corresponds to about 85% in terms of water/dry matter 

ratio—the freezable water is 65%, i.e. 35% of water is strongly engaged in 

interactions with the substrate. Taking into account the sorption picture (see 

Figure 7) that is in an upper range of 25% in terms of water/dry matter ratio 

we argue that the majority of the water is strongly engaged in interactions in 

all the experimental RH ranges of the water vapor transmission rate 

measures. In this strong interaction environment, the RH variation 

corresponds in water/dry ratio variation sufficiently to affect the oxygen 

permeability. Furthermore, looking at the desorption profile, the variation of 
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water/dry ratio is enhanced to the RH 90%–40% range, while for lower RH 

becomes modest (flat part of the desorption curve). This is coherent with the 

results showed in Figure 3 (oxygen permeability vs RH). Finally, the hysteresis 

effects observed (see Figure 7) are also in line with the above considerations. 

The GAB model obtained has 0 <C< 2 which means that the isotherm of the 

CNCs may be of the type III and the OSWIN model actually fitted sharply the 

relationship between the moisture content and the water activity, sustaining 

the experimental results. 

4.3. Crystallinity by WAXD Analyses 

X-ray diffraction measurements explained the hydration behaviour of CNCs at 

the crystal structure level at 100% RH and, particularly, the changes in short-

range and long-range interactions that make the cellulose nanocrystals 

(whiskers) accommodate a large amount of absorbed water. 

The diffraction pattern of the dry CNCs sample shows a highly crystalline 

phase corresponding to the Iβ polymorph of cellulose (space group P1121), 

which consists of chains of pyranosidic rings directed along the c-axis (panel 

(d) in Figure 8), and in which the sharp reflections (012) and (102) point to the 

random orientation of the crystallites in the sample (French, 2014). In addition 

to the cellulose phase, the dry CNCs sample contains 22% wt of Na2SO4, as 

evidenced by the diffraction pattern showing two different Na2SO4 polymorphs 

with space groups Cmcm and Fddd (Tanaka et al., 1991; Zachariasen, et al., 

1932). Panel (a) in Figure 8 illustrates the contribution of each of the three 

phases to the experimental powder pattern of the dry CNCs sample. 

Panel (b) in the same figure shows the meltdown of the diffraction peaks of 

the CNCs pellet between the four different hydration stages, each of them 

exposed the CNCs pellet to 100% RH by absorption of 100 mg of water. 

Immediately after the first hydration (blue line, second from top), the sharp 

Bragg peaks of the Iβ phase are retained, while a higher background around 

scattering angle 2θ = 4° signals the partial amorphisation of cellulose; 
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predictably, embedded Na2SO4 was dispersed upon contact with the 

absorbed water, as evidenced by the drop in the intensity of the peaks at 2θ 

~ 2.20°, 3.60°. Upon swelling the pellet again by absorbing another 100 mg of 

water after 60 minutes (red curve, third from top), the amorphous regions in 

the sample expanded at the expense of the crystalline part; the most intense 

Bragg peaks of cellulose are still visible but the large amorphous bump now 

dominates the diffraction pattern. After the third and last exposure to water 

(green curve, bottom), all the Bragg peaks vanished and the diffraction pattern 

only showed a broad, amorphous feature. 

The loss of structural coherence can be evidenced even more clearly by the 

decay of the amplitude of the PDF (panel (c) in Figure 8), which directly 

represents the distribution of atom pairs through space in the bulk material as 

a function of their interatomic distance.  

While the PDF curves relative to the dry sample (orange line, top) and after 

60 minutes (blue line, middle) have discernible peaks up to r = 40 Å, the PDF 

collected after 120 minutes (red line, bottom) is flat for every interatomic 

distance above r = 12 Å. The smearing of the interatomic distances at the 

nanometer scale is indicative of the broad distribution of inter-chain distances 

in the cellulose crystallites brought about by hydration. At the same time, 

several intra-chain interatomic distances within 10 Å are preserved but show 

crucial changes that are directly relatable to structural changes in CNCs upon 

hydration. At the second hydration, after 60 minutes (blue line, middle), the 

peak at r = 2.50 Å becomes broader and weaker than in the dry sample: 

besides the disappearance of the underlying Na–O distances as Na2SO4 is 

dispersed in water, this suggests a broader distribution of the distances 

between neighbouring pyranosidic rings; the sharp peak at 2.87 Å, on the 

other hand, is specific to intra-ring interatomic distances and changes only 

slightly with respect to dry CNCs. The disappearance of the peak at r = 3.17 

Å suggests that the benzyl alcohol moieties engage in different H-interactions 

and they no longer sit in the same plane as the C-alpha (see the {100} 
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projection in panel (d)). The third hydration, after 120 minutes, results in the 

general broadening of the PDF features which broaden even within r = 10 Å; 

beyond this distance, corresponding to two pyranosidic rings, the PDF is then 

completely flat and corresponds to the complete loss of structural coherence. 

5. Conclusions 

The multidisciplinary approach to understanding the water-cellulose 

nanocrystals interaction resulted in a complex scenario, leading to a unique 

conclusion about the importance of preserving the gas barrier properties 

exhibited by CNCs, by limiting as much as possible the moisture adsorption. 

In the case of practical applications such as food-packaging materials, the 

presence of a hydrophobic and sealable polymeric layer protecting the CNCs 

coating seems essential. However, an identical issue concerns synthetic 

polymers, like polyvinyl alcohol (PVOH) or ethylene vinyl alcohol copolymer 

(EVOH), which are even less of a barrier than CNCs. 

We observed that at low humidity the amount of freezable water decreases 

considerably indicating relevant interaction with the substrate, despite the 

accessible surface area being limited by the crystallinity of cellulose 

nanoparticles. The freezable water, however, seems not strictly related to the 

oxygen barrier, since we measured very low permeability values up to about 

40% RH, where the freezable point appears higher than 50%. 

The water adsorption by CNCs is relevant and continues to follow an isotherm 

of type III. This phenomenon provokes the loss of structural coherence, as 

clearly evidenced by the X-Ray diffraction patterns, and the sharp increase of 

oxygen diffusion and solubility, leading to permeability values of no interest for 

packaging applications. 
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Figure 1. TEM micrograph of the CNCs (cellulose nanocrystals) 

obtained.                                                                                                91 

Figure 2. Isostatic curves of water diffusion at 25 °C under different 

driving forces through the CNCs coated PET film.                                92 

Figure 3. Oxygen permeability at 25 °C under different relative humidity 

(RH) values, both in adsorption and desorption, through the CNCs 

coated PET film.                                                                                    93 

Figura 4. Oxygen diffusion coefficients under different RH values, both in 

adsorption and desorption, through the CNCs coated PET film.           94 

Figure 5. Oxygen solubility coefficients under different RH values, both 

in adsorption and desorption, through the CNCs coated PET film.       95      

Figure 6. DSC measurements of CNCs at different humidity values.   96 

Figure 7. CNCs adsorption and desorption isotherm at 25 °C according 

to the standard static gravimetric method, and desorption isotherms 

according the Knudsen thermogravimetry method.                               98 

Figure 8. Raw XRPD (X-Ray Powder Diffraction) patterns of CNCs in 

the dry state and after successive exposures to 100% RH (a), 

breakdown of the XRPD pattern of the dry CNCs sample into the 

constituent crystalline phases (b), The PDF curves of the dry sample 

and of the wet sample at the second and third hydration (c) and a view 

of the crystal structure of CNC along the crystallographic directions 
{001} and {100} (d).                                                                               99 
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Table 1. Main characteristics of cellulose nanocrystals and of the CNCs 
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Table 2. CNCs freezable water content assessed by DSC.                 96 
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Table 3. Empirical coefficients of GAB and OSWIN models fitting 

theexperimentalisotherms.                                                                     97 
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Abstract  

In this paper, the investigation was focused on the CO2 permeability through 

CNCs coating at various RH values, comparing with the O2 one, aiming to 

evaluate the potential usage in all the applications of modified atmosphere 

packaging for intermediate-low moisture foods where the role of carbon 

dioxide is essential for shelf life extension. For this purpose, PET films were 

coated with characterized CNCs, obtained from cotton linters, and the CO2 

permeance was measured as a function of increasing RH values (from 0% to 

80%). After calculating the diffusion and solubility coefficients, and estimating 

the CO2/O2 selectivity, the possible evolution of different modified 

atmospheres has been theoretically calculated. The results obtained, let 

hypothesize that, in consequence of a very high CO2/O2 permeability 

selectivity, the CNCs coated films can be useful in some modified atmosphere 

packaging applications, in a range of RH typical of many medium-high RH 

food products. 

Keywords: cellulose nanocrystals; carbon dioxide barrier; moisture effects; 

modified atmosphere packaging. 
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1.  Introduction 

An intensive research and a general wide interest in the cellulose 

nanomaterials (CNM) have greatly increased over the last years, up to the 

point that the “ISO Technical Committee (ISO/TC 229) for Nanotechnologies” 

recently published a standard vocabulary, (ISO, 2017) for cellulose 

nanomaterials, whose indications are strictly followed in this paper. CNMs are 

anticipated to have significant commercial impact because for their renewable 

nature and unique properties. They are believed to have potential applications 

in a wide range of products including those that currently use non-renewable, 

oil-based materials or ingredients. In particular, the interest in possible 

packaging applications of cellulose nano-crystals (CNCs) and cellulose nano-

fibrils (CNFs) is continuously and very rapidly growing all around the world 

(Hubbe et al., 2017; Johansson et al., 2012; Li et al., 2015; Rebouillat and Pla, 

2013; Reig and Ballester, 2014; Riedl and Lacroix, 2014). In addition to the 

biodegradability and their origin in renewable sources, there is a strong 

interest in the potential for activating feasible paradigms of circular economy, 

related to the chance of producing CNCs and CNFs from cellulose-containing 

biomasses of food companies or by-products of packaging materials 

industries. 

Actually, very attractive properties can be detected when the size of cellulose 

molecules is broken down into the nanoscale (Dufresne, 2017). Extraordinary 

gas barrier functionalities and improved mechanical properties, differently 

expressed by CNCs and CNFs, lead to very promising applications in bio-

based flexible packaging and cellulosic materials for food products. The 

perspective of optimizing diffusional properties with the purpose of packaging 

material minimization and possible shelf life extension seems, in particular, a 

very interesting and current strategy for food packaging innovation, and for 

high sustainability targets. Several researches have been carried out on the 

gas barrier properties of cellulose nano-crystals and cellulose nano-fibrils 

(Aulin et al., 2010; Gicquel et al., 2017; Li et al., 2013; Minelli et al., 2010). 
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In all our previous works, which were carried out on CNCs, obtained from 

different raw materials and coated onto conventional and bio-based films for 

food packaging, we always found permeance values much lower than those 

of conventional synthetic barrier layers, even if very thin coatings were applied 

(less than 1 µm) (Fotie at al., 2017; Li et al., 2013a; Li et al., 2013b; 

Mascheroni et al., 2016; Rampazzo et al., 2017). 

These peculiar and interesting barrier properties of CNCs coatings are not 

totally surprising, taking into account the main requirements for getting low 

gas permeability through polymers (Ashley, 1985; Freeman and Stewart, 

2002; McKeen, 2017; Siracusa, 2012; Yam, 2010). In fact, it is well known that 

highly polar polymers have low gas permeability; having high cohesive energy 

and strong chain-to-chain attractions, their void volume is small and diffusional 

phenomena are limited (Salame, 1986) at low humidity. Cellulose can be 

defined a polar polymer since it has many polar oxygen–hydrogen (−OH) 

groups, with small differences in whatever crystalline forms (Gardiner & Sarko, 

1985), even if net dipoles, i.e. a result of opposite charges, are absent. 

Un-saturations which lead to a greater ease of chains rotation and 

consequently to high gas diffusion, are completely absent in cellulose 

molecules. Short lateral chains which hinder the close packing of 

macromolecules, increasing free volume and enhancing permeability, as well, 

are absent in the linear polymers such as cellulose. On the contrary, the 

crosslinking that restrains the segmental mobility of the polymer and makes 

the diffusion process slower is extensively possible due to the crystalline 

conformation of cellulose, through hydrogen bonds between chains alongside 

and intramolecular. The crystallinity degree that in whatever polymer leads to 

tortuous path in the diffusion pathway of permeants is always high in cellulose 

nanocrystals: depending on the different source and preparation process 

used, the crystallinity index reaches even 80-90% (McKeen, 2017). Finally, 

the glass transition temperature, which when higher than service temperature 

is consistent with very stiff chains and gives relatively better barrier properties, 
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is well above 200 °C in the cellulose biopolymers (Fakhraai et., 2005; Gajdoš 

et al., 2000). 

All that is currently known about morphology and chemical properties of 

polymers, which positively affect high barrier performance, is noticeable in 

cellulose and, particularly in cellulose nano-crystals. 

At the same time, however, it has been noted that the lack of intramolecular 

hydrogen bonding in the surface chains of cellulose makes possible extensive 

interactions with water molecules. Various studies dealing with these kind of 

phenomena showed that the water content and interactions with the material’s 

components have a great influence on final properties of cellulosic materials 

(Engelund et al., 2013; Froix and Nelson, 1975; Ioelovich and Leykin, 2010). 

For more than 70 years, bulk amorphous regions have been indicated to be 

an ideal place for water adsorption, and the relationship between the 

availability of surface hydroxyl groups and crystallinity of cellulose is well 

established (Howsmon, 1949; Mihranyan et al., 2004).  

The moisture sensitivity is a serious critical point for preserving the 

outstanding gas barrier properties of CNCs coatings, particularly if they are 

expected to be used in food packaging applications. Actually, we always 

observed a strong reduction of oxygen barrier properties at medium-high 

relative humidity values (Fotie et al., 2017; Rampazzo et al., 2017) and 

recently (Fotie et al., 2017), by a multidisciplinary approach, we tried to better 

understand the basics and the entity of water-cellulose nanocrystals 

interaction. Starting from about 40% of equilibrium relative humidity (RH), we 

assessed a 65% of freezable water in the CNCs and the XRPD (X-Ray 

Powder Diffraction) patterns gave clear indications of loss of structural 

coherence in the increasing of the RH values, and that the amorphous regions 

in the sample expanded at the expense of the crystalline part. 

In this paper, the investigation was continued and focused on both the O2 and 

CO2 permeability of CNCs coatings at various relative humidity values. A 
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potential application for such a high barrier material is in fact, the modified 

atmosphere packaging of food products, where the role of carbon dioxide is 

essential for shelf life extension of perishable foods that have medium or high 

relative humidity values. 

2. Materials and Methods  

2.1. Materials 

The cotton linters used for CNCs production were obtained from Innovhub 

(Milan, Italy), the chemical reagents were purchased from Sigma-Aldrich 

(Milan, Italy) and the 12 μm thick polyethylene terephthalate (PET) film, used 

as coating substrate, was achieved by Sapici spa (Cernusco sul Naviglio, 

Italy). 

2.2. CNCs Obtainment and Coating Deposition 

The Leung and co-workers’ method was followed for the CNCs preparation, 

throughout the oxidative hydrolysis process by ammonium persulfate (APS) 1 

molar, in the ratio APS (cm3)/cotton linters (g) 100:1 (Leung et al., 2011). The 

yield of CNCs production (%) was calculated as the ratio of freeze-dried CNCs 

weight (g) and cellulosic content of 100g of raw materials. The steps of CNCs 

purification and the coating application on PET films, were followed as 

described in previous works (Mascheroni et al., 2016; Rampazzo et al., 2017); 

the coating suspension was a CNCs 4% (m/m), adjusted at pH 8 with NaOH 

1M. For the thickness assessment of CNCs coating, a gravimetric method was 

used. After weighing 4 samples (M1, g) of 100 cm2, the coating was washed 

out under hot water (~70 °C) and the resulting uncoated PET films were dried 

and weighed (M2, g). The coating thickness (L, cm) was estimated by 

equation (1): L= (M1-M2)/ (ρ× 100) (1) 

where ρ = 1.58 g cm−3 is assumed as the density of the CNCs (Mazeau and 

Heux, 2003).  
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2.3. Characterization of CNCs morphology and coating uniformity  

Either equivalent hydrodynamic diameters of the dispersed CNCs, and 

particle number distributions were determined by dynamic light scattering 

(DLS) measurements (mod. Litesizer500, Anton Paar, Graz, Austria). The 

measurements were performed at 25.0 ± 0.1 °C with a 35 mW laser diode light 

(λ = 658 nm) and collecting the scattered light at 15°and 90°. Prior to 

proceeding with the measurements, the samples were diluted at 3 different 

concentrations with distilled water adjusted to pH 8 and maintained at 25 °C 

through stirring until measurement. The diluted solutions were flowed in the 

measurement cell after 30 s homogenization by ultrasonic (UP 200St, 

Hielscher ultrasonics GMBH, Teltow, Germany) in a cool water bath to prevent 

overheating. The dimensions of the CNCs were next evaluated via 

Transmission Electron Microscopy (TEM). Drops of aqueous dispersions of 

CNCs (1%) were settled on carbon-coated electron microscope grids, 

negatively stained with uranyl acetate and left to dry. Samples were analysed 

with a Hitachi Jeol-10084 TEM operated (Brugherio, Italy) at an accelerating 

voltage of 80 kV.  

Surface structure of the PET coated films was also evaluated by Atomic Force 

Microscope. Three different samples were measured with Tosca™400 AFM 

(Anton Paar, Graz, Austria) in tapping mode. Three randomly selected 

positions were measured for each sample. All images were recorded with the 

same scan size of 5 x 5 μm and resolution 500 x 500. Surface roughness (Sq, 

root mean square) has been calculated from AFM images following standard 

procedure (ISO 25178). The transparency of the CNCs coated PET was also 

measured at 550 nm, according to the ASTM D 1746-70, by means of a UV-

VIS spectro-photometer (mod. L650, Perkin-Elmer, Milano, Italy). Each 

sample was replicated three times, analyzing at least four spots on each 

replicate. 
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2.4. CNCs Zeta potential and Conductivity. 

Zeta potential (mV) and conductivity (mS cm−1) of the CNCs in the diluted 

suspension at 3 different concentrations at pH 8 were performed by 

electrophoretic light scattering (ELS), using the PALS technology (mod. 

Litesizer 500, Anton Paar, Graz, Austria). Measures were replicated 5 times, 

at 25.0 ± 0.1 °C, by means of a 35 mW diode laser (λ = 658 nm) and at 15° 

detection angle. 

2.5.  O2 and CO2 Permeance at various Relative Humidities 

Oxygen and Carbon dioxide permeance measures were performed by an 

isostatic permeabilimeter (mod. Multiperm, PERMTECH S.r.l., Pieve 

Fosciana, Italy) according to ASTM standard method D-3985. The gasses’ 

permeance (PG, cm3 m−2 d−1 bar−1) of CNCs coated and uncoated PET films 

were measured at 25 °C under 80%, 70%, 60%,40%, 20% and 0% RH on the 

coated side of the film, both increasing and decreasing the RH values for CO2 

and just increasing RH for O2 and uncoated PET film. The CO2 permeability 

coefficients at different RH (KPCO2/CNCs, cm3 µm m−2 d−1 bar−1) of the CNCs 

coating alone were estimated from the average values of both increasing and 

decreasing RH, using equation (2) (Crank, 1979), and assuming that the PET 

surface did not interact with the CNCs coating layer of thickness L (µm) and 

considering that the interface PET-CNCs minimally affected the carbon 

dioxide permeation. 

L / [KPCO2/CNCs (CNCs coating)] = [1 / PCO2 (coated PET film)] − [1 / PCO2 

(uncoated PET film)] (2) 

From the isostatic CO2 permeation curves obtained from the permeance 

measures, the apparent diffusion coefficients (DCO2/CNCs, cm2 s−1) in the 

coating, at each RH value were evaluated by using this equation (3) 

(Hernandez & Gavara, 1999; Rampazzo et al., 2017): 

DCO2/CNCs = L2/ (7.2 × t(1/2)) (3) 
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where L is the thickness (cm) and t(1/2) (s) is the time required to reach half of 

the maximum permeance value. Actually, this lag-time was measured on the 

coated film, not on the coating alone. However, we know that the limiting factor 

for CO2 permeation is the CNCs coating and assumed as meaningless the 

barrier contribution of the bare (uncoated) substrate. From eq. (2), in fact, we 

estimated that the CO2permeance of the uncoated PET is 125-1500 times 

higher than the coating (see Table 2). Therefore, we assumed eq. (3) as a 

reliable estimation of apparent CO2 diffusion coefficient of the CNCs coating. 

From the permeability and diffusion coefficients (KPCO2/CNCs and DCO2/CNCs), the 

gases solubility in the CNCs coating (SCO2/CNCs, bar−1) were also calculated at 

each RH value as follows (eq. 4):  

SCO2/CNCs = KPCO2/CNCs / DCO2/CNCs (4) 

 For determining the selectivity parameter (PCO2/ PO2) at different RH values, 

the average permeance values obtained increasing and decreasing RH, were 

used.  

3. Results and Discussion 

3.1. CNCs Production and Coating onto PET Film 

The cellulose nanocrystals obtained resulted very similar to the ones already 

described in previous works (Mascheroni et al., 2016; Rampazzo et al., 2017), 

for their morphological and main chemical characteristics, which are reported 

in Table 1 and in the TEM image of Figure 1a. The coating process, carried 

out with a 4% CNCs suspension in water at pH 8, were very similar as reported 

in previous papers. The roughness, assessed by AFM, and the transmittance 

measured at 550 nm, confirmed the uniformity of the CNCs layer coated onto 

the PET film, for a thickness lower than 1 µm. In Table 1 and in the AFM image 

of Figure 1b these results are summarized. 
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Hydrodynamic diameter (nm), by DLS 101.15 ± 3.65 (n=3) 

Zeta potential (mV), by ELS −44.40 ± 4.12 (n=3) 

Conductivity (mS cm-1), by ELS 0.095 ± 0.024(n=3) 

Thickness of CNCs coating (nm) 756.3 ± 22.3 (n=3) 

Transparency of the CNCs coated PET film (T% at 550 nm) 85.67 ± 0.3 (n=2) 

Roughness of the CNCs coated PET film (Sq) 14.5±4.9 (n=9) 

 

Table 1. Main characteristics of cellulose nanocrystals and CNCs coated PET film (- s.d.) 

 

 
 

Figure 1.TEM picture of cellulose nanocrystals in the suspension used for coating (a) and 

AFM picture of the coating applied onto PET film (b) 

 

3.2. O2 and CO2 Permeance of the coated film, at various Relative 
Humidities 

The oxygen and carbon dioxide permeance of PET film, as a function of RH, 

is state of the art (Zhang et al., 2001; Auras et al., 2004). In our previous paper 

(Fotie et al. 2017) we have already shown the negligible differences, observed 

in measuring the oxygen permeance of the CNCs coated PET film, increasing 
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and decreasing the relative humidity. Therefore, in this case we assessed the 

carbon dioxide permeance, both increasing (ads) and decreasing (des) the 

RH value, for CNCs coated PET film only. The overall results are reported in 

Table 2, as average values - standard deviation, and also in this case the 

permeance values in adsorption and desorption are quite similar, so in Figure 

2 the global averages values are shown. 

 
0% RH 20% RH 

40% 
RH 

60% 
RH 

70% RH 
80% 
RH 

Uncoated PET O2 
permeance (ads) 

128.5* - 
6.4 (n=3) 

123.4 - 
6.2 (n=3) 

115.2 - 

5.8 

(n=3) 

109.7 - 

5.5 

(n=3) 

107.1 - 
5.4 (n=3) 

104.9 - 

5.2 

(n=3) 

Uncoated PET CO2 
permeance (ads) 

597.7 -
29.9 (n=3) 

541.1 -

27.0 

(n=3) 

514.1 -

25.7 

(n=3) 

500.0 -

25.0 

(n=3) 

500.1 -

25.0 

(n=3) 

501.1 -

25.0 

(n=3) 

CNCs Coated PET 
O2 permeance (ads) 

0.38 - 0.4 
(n=2) 

1.03 - 

0.07 

(n=2) 

2.05 - 

0.14 

(n=2) 

23.07 - 

3.1 

(n=2) 

56.41 - 
5.1 (n=2) 

83.97 - 

2.9 

(n=2) 

CNCs Coated PET 
CO2permeance 

(ads) 

4,75-4.6 

(n=3) 

338,83 - 
152.1 

(n=3) 

474,53 
- 54.0 

(n=3) 

494,74 
- 14.8 

(n=3) 

494,2 -
14.7 

(n=3) 

494,21 
- 13.4 

(n=3) 

CNCs Coated PET 
CO2permeance 

(des) 

4,82 - 4.2 

(n=3) 

244,281 - 
73.5 

(n=3) 

480,68 
-24.0 

(n=3) 

491,65 
-14.7 

(n=3) 

492,10- 
12.8 

(n=3) 

494,21 
-13.4 

(n=3) 

Table 2. Oxygen and Carbon dioxide permeance at 25 °C under different relative humidity 
(RH) values, through the CNCs-coated and uncoated PET film (cm3 m−2 d−1 bar−1, average - 

s.d.) (ads): increasing RH from 0 to 80 %; (des): decreasing RH from 80 to 0 %; * RH = 8% 
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Figure 2. Global average values of O2 and CO2 permeability for CNCs-coated and uncoated 

PET film. 

The carbon dioxide barrier of the CNCs coating decreases very greatly with 

increasing the relative humidity, much faster than the oxygen barrier. At 

around 50% RH the resistance to carbon dioxide permeance is meaningless 

and the permeance values is very close to the one of uncoated PET. The 

same phenomenon appears for oxygen just above 80% RH.  

This unexpected and quite peculiar behaviour of CO2 permeability throughout 

the cellulose nanocrystals coating, obviously affects the so-called “selectivity”, 

the ratio between the permeance of CO2 and O2 (Van Krevelen and Nijenhuis, 

2009), which increases more than 55 times from 0 to about 25% relative 

humidity, slowly decreasing thereafter, and going back to typical values (about 

6-7) just for RH above 70%. This trend is reported in Figure 3, showing the 

peak in selectivity at approximately 25% RH. 
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Figure 3. Trend of PCO2/PO2 ratio (selectivity) according to relative humidity 

Herreraet al. (2014) investigatedvarious gases permeability and selectivity of 

cellulose nanocrystals films (layers) deposited by spin coating and obtained 

by acid hydrolysis using both sulphuric and hydrochloric acid. For the 

PCO2/PO2 ratio, they found values in the range 2.4 - 11.2, presumably at 0% 

RH (temperature and RH of measure not published).  

In order to better understand the role of RH on the carbon dioxide transmission 

across the CNCs coating, and thereafter on selectivity, the permeability 

(KPCO2/CNCs), diffusion (DCO2/CNCs) and solubility (SCO2/CNCs) apparent 

coefficients, in the cellulose nanocrystals thickness only, were assessed at 

relative humidity from 0 to 80%. According to the gas permeation theory, in 

fact, permeability is influenced by these two main factors: diffusion and 

solubility of gases, which are mostly related respectively to the crystallinity of 

the structure and to the nature of the gas (Barrer and Rideal 1939; Hernandez 

and Gavara 1999). 
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The related values are reported in Table 3 as average - standard deviation, 

while in Figures 4a and 4b, the trends of apparent diffusion and solubility 

coefficients (average values) are shown as function of RH values. 

 

 

Figure 4. Trends of apparent diffusion (a) and solubility (b) coefficients of carbon dioxide in 
CNCs at 25°C, as function of RH values 
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 0% 

RH 

20% 

RH 

40% 

RH 

60% 

RH 

70% 

RH 

80% RH 

Apparent 

permeability 

coefficient 

(KPCO2/CNCs, 

cm3 µm m−2 

d−1 bar−1) 

3.18 ±        

2.9 

(n=6) 

397.3 

±    

272 

(n=6) 

10219 

± 8590 

(n=6) 

17141 

± 8234 

(n=6) 

20137 

± 

10119 

(n=6) 

21663 ± 

4814 (n=3) 

Apparent 

diffusion 

coefficient 

(DCO2/CNCs, 

cm2 s−1) 

4.32 

E-13 ± 

5.1 E-

14 

(n=6) 

6.39 

E-13 ± 

1.1 E-

13 

(n=6) 

6.69 E-

13 ± 

9.2 E-

14 

(n=6) 

7.84 E-

13 ± 

1.6 E-

14 

(n=6) 

8.04 E-

13 ± 

9.0 E-

15 

(n=6) 

8.07 E-13 ± 

6.2 E-15 

(n=6) 

Apparent 

solubility 

coefficient 

(SCO2/CNCs, 

bar−1) 

1.01 ±        

0.9 

(n=5) 

78.2 ±      

42.9 

(n=5) 

1555 ±   

1070 

(n=3) 

4714 ±    

3779 

(n=5) 

7596 ±    

6717 

(n=5) 

219640 ± 

236151(n=3) 

Table 3. Permeability (KPCO2/CNCs), diffusion (DCO2/CNCs) and solubility (SCO2/CNCs) apparent 

coefficients of carbon dioxide in the CNCs coating at 25 °C, under different relative humidity 
(RH) values. 

From the overall data presented, is quite evident the huge increase in CO2 

permeability of CNCs layer, from 0 to 70-80% relative humidity. In the same 

range of RH values, diffusion and solubility show different trends: the increase 

of DCO2/CNCs is less than double and it seems to be terminated around 50-60 

%RH, while the apparent solubility coefficient SCO2/CNCs increases more than 

1000 times and in an exponential way approximately. 

When the evaluation of gas permeability is performed on very hydrophilic 

coatings such as CNCs, in presence of the humidity, it is appropriate to 
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consider a three-dimensional interaction profile that is configured between 

water, cellulose nanocrystals and gas. 

In the absence of water (0% RH), we only have the CNCs-gas interaction; 

therefore, it can be assumed that the permeance of CO2 is faster than that of 

O2, due to the smaller kinetic diameter (Mehio et al., 2014) and higher 

condensability of CO2 which facilitate its transmission through any polymer; 

the value of common selectivity is around 6-7.In the presence of moisture, it 

can be hypothesized that there would be an interaction between the gas and 

water and between water and cellulose nanocrystals, i.e. the water could 

affect the CNCs structure.  

At low humidity, since the CNCs shape has not yet been modified, a part of 

the water will occupy the free volume of the CNCs network, probably 

assuming a pH value close to the one at which the coating suspension has 

been dried (pH 8), and affecting the permeability due to the gas solubility in 

the media. Since the pH value, before coating, was adjusted with sodium 

hydroxide, it is reasonable to presume a residual of anions, able to affect the 

pH value of the media, even upon a small hydration.  Increasing the RH value, 

we can assume that the water also swells the coating, increasing the distance 

among the nanocrystals chains and, progressively, changes and modifies the 

conformational organization of the crystalline network. 

The observed increase in the apparent diffusion coefficient (DCO2/CNCs) from 0 

to 40-50% RH is consistent with this interpretation and might be related to a 

moderate and initial swelling of CNCs network, while the fast increase of 

apparent solubility SCO2/CNCs explains the very high value of the selectivity 

parameter. In fact, carbon dioxide is much more soluble in water than oxygen, 

especially at high pH values, leading to a very high permeability of CO2. About 

this, it is advisable to report that the pH value of the CNCs suspension can be 

modulated in a certain range; therefore, this seems a useful chance for 

modulating permeability and selectivity of the coated film in real packaging 

applications. 
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The further increase of RH, however, is certainly related to a progressive loss 

of coherence of the structure, already observed in previous work (Fotie et al., 

2017), which equally, and significantly affects both the O2 and the CO2 

permeability that increase, reaching the PET permeability that acts as limiting 

factor and decreases the selectivity ratio to standard values of uncoated PET. 

In fact, at 50% RH for carbon dioxide and above 80% RH for oxygen, the gas 

barrier of CNCs coating is completely lost. It is worth noting, however, that the 

barrier properties of CNCs coating are always completely recovered by the 

drying phase of the coated film, without any defect in the original performance.  

In any case, the opportunity of having such a high ratio between carbon 

dioxide and oxygen permeation, might be useful in many circumstances, 

where respiring or fermented or toasted food products are packaged. Although 

carbon dioxide is useful in various modified-atmosphere packaging 

applications, a residual CO2 accumulation in some packages can be 

detrimental to the quality or the integrity of the package (Lee, 2016). 

 

3.3.  Modified atmosphere evolution modelling 

Taking into account the potential interest in having such high selectivity 

values, the possible evolution of various modified atmospheres has been 

theoretically calculated. The volume concentrations (%) of oxygen, carbon 

dioxide and nitrogen were forecasted on the basis of gas volumes 

transmission expected, every 30 minutes, by the permeance data at 4 different 

relative humidity, and for 3 different atmospheres. All the variables taken into 

account for the computing are proposed in Table 4 (PN2 figures are estimations 

based on common selectivity values).  The expected gas volumes 

transmission was estimated taking into account 600 cm2 of permeable 

surface, 1L of initial unfilled volume (UFV) and the initial relative 

concentrations of oxygen, nitrogen and carbon dioxide, as from MAP1, MAP2 

and MAP3. We have also assumed that the gas volumes permeated inside the 
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ideal package did not change during time for phenomena different from 

permeability.  By iterative calculation, the permeated amounts, new UFV value 

and corresponding gas concentrations every 30 minutes were accounted as 

follows: 

UFVn = - vO2
n- vN2

n- vCO2
n- UFVn-1 

%O2
n= 100 x (vO2

n- vO2
n-1)/ UFVn 

%N2
n= 100 x (vN2

n- vN2
n-1)/ UFVn 

%CO2
n= 100 x (vCO2

n- vCO2
n-1)/ UFVn 

Where vO2
n, vN2

n , vCO2
n are the volumes of O2 , N2 and  CO2, respectively, 

permeated in the time of iterative forecasting interval (30 minutes), positive (-

) for gas volume permeated inside, while negative (–) for gas permeated 

outside.  This theoretical-iterative approach was experimentally verified in a 

previous work (Piergiovanni et al., 1993). 

 

In Figures 5 the speculative atmosphere changes are reported during a 

possible 24 hours’ storage at 25 °C, assuming that the coating immediately 

equilibrates with the environmental humidity, and no interaction between the 

gases and a food product inside, take place during the storage time. The 

relative humidity values have been selected as central point of the common 

classes of intermediate (IMF, aw = 0.90 – 0.60), low moisture (LMF, aw = 0.60 

– 0), and for dry foods (aw ≈ 0), while the three different modified atmospheres 

tested were representative of high (MAP1), low carbon content (MAP3), and 

assuming a possible residue of oxygen (MAP2). 
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Permeable surface (cm2) 600 

Unfilled volume (cm3) 1000 

Time of iterative forecasting 

(min) 

30 

MAP1 

CO2(%) 60 

RH 0% 

PCO2* 4.7 

O2(%) 0 PO2* 0.4 

N2(%) 40 PN2* 0.1 

MAP2 

CO2(%) 60 

RH35% 

PCO2* 474 

O2(%) 5 PO2* 2.4 

N2(%) 35 PN2* 0.5 

MAP3 

CO2(%) 20 

RH70% 

PCO2* 494 

O2(%) 0 PO2* 59.4 

N2(%) 80 PN2* 13.5 

 

Table 4. Parameters used for forecasting the modified atmosphere evolution *(cm3 m-2 d-1 
bar-1, at 25°C) 
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Figure 5. Theoretical evolution of three different modified atmospheres [a) MAP1; b) MAP2; c) 
MAP3] compositions, according to different relative humidity values (0, 35 and 70% RH). 

 

It is quite evident how selectivity can affect the modified atmosphere evolution, 

at different relative humidity and in different way depending on the atmosphere 

composition. The influence of the food relative humidity, as well as the 

environmental conditions, is thus quite important both for the carbon dioxide 

exit and for the oxygen entrance. These results, which need an experimental 

confirmation in real packaging applications or in reliable model systems, might 

be useful for a smart design of modified atmosphere food packaging 

applications, aimed at targeted shelf life for different food products. 

4. Conclusions 

A deep investigation on the oxygen and carbon dioxide permeability at 

different relative humidity values, revealed a huge sensitivity of the CO2 

diffusion through the cellulose nanocrystals coated onto a PET film, already 

at RH values around 20% and above. Increasing the relative humidity, the 
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carbon dioxide permeance greatly increased, much more than oxygen 

permeance and well before any indication of loss of structural coherence of 

the CNCs layer. Because of this behaviour, the permeability selectivity (the 

ratio of CO2 and O2 permeance) reached very, very high values in a range of 

RH, which are typical of many low and intermediate moisture food products. 

The solubility of CO2 and the pH of the coating used, have been assumed as 

the main explications of this unexpected behaviour of the coated film. The 

carbon dioxide solubility, in particular, is strongly dependent on the pH of 

permeated matrix and the pH of the coating preparations is adjustable in a 

certain range, evoking a potential tool for O2/CO2 selectivity and CO2 

permeance design. This lead to the hypothesis that such CNCs coated films 

can be useful in some active or passive modified atmosphere packaging 

applications. Several commodities, like fruits, lettuce, potato, artichoke and 

many others are sensitive to relatively low CO2 concentrations, leading to 

symptoms of CO2 injury, including off-flavour development, discoloration and 

internal tissue breakdown. In such cases, as well as for some fermented or 

toasted products, the application of a CNCs coatings may be beneficial for 

preserving the food quality. 
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III. Green functionalization and characterization of cellulose 
nanocrystals  

 

Abstract 

The functionalization of the cellulose nanocrystals occurred by adsorption and 

esterification forming non-covalent and covalent bonds on the CNCs surface 

through the grafting of chemical coumpounds. A reported method called 

Solreact was used for a solvent-free esterification of cellulose nanocrystals by 

using citric and sorbic acids which acted not only as a grafting agent but also 

as a solvent during the covalent grafting process. The esterification of the 

CNCs was driven by the in-situ solvent exchange by water evaporation.  

 

 

Figure 1. Esterification of cellulose nanocristals with citric and sorbic acid by solreact 

technique. 

Through the characterization of modified CNCs, FTIR analysis revealed the 

ester groups formed on the CNCs after the adsorption and esterification which 

confirmed the effectiveness of the functionalization. Oxygen permeability of 

coated plastic films with modified and unmodified CNCs were assessed as 

well.   
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1.  Introduction 

In recent years, nanocellulose (nanocrystals of cellulose and cellulose 

nanofibrillated) has garnered a lot of scientists’ attention all over the world. 

This interest in nanocellulose is related to its exceptional and unique 

properties that could find applications in various sectors (automotive, 

aeronautics, packaging) (Kim et al., 2015). In fact, the nanocellulose derives 

from the hydrolysis of cellulose since, is the most abundant natural polymer 

on the planet (Dufresne et al., 2013). Cellulose is made up of chains of glucose 

units connected by 1-4 beta-glucoside bonds sand with a structure made of 

amorphous and crystalline regions. That crystalline part when isolated, has a 

rod-like shape and more importantly, displays an extraordinary barrier to 

gases (O2, CO2...) and grease and improved mechanical properties (rigidity 

and tensile strength) when a very thin layer of it is coated onto plastic films (Li 

et al., 2013). Furthermore, the nanocellulose is biodegradable-

biocompostable, renewable and moreover it can be extracted from natural 

matrices (cotton linter, wood pulp...) and by-products (soy hulls, rice husks, 

etc). Nowadays, an "ideal food package" must tie all the criteria required for 

food quality and safety in a fair manner, meeting concomitantly environmental 

and safety requirements in a circular economy (Geissdoerfer et al., 2017). 

However, the hydrophilic nature of the CNCs is an obstacle for their 

incorporation in complex matrices containing hydrophobic materials and also 

hampers their use as fillers for polymer nanocomposites (Oksman et al., 

2006). The humid ambient provokes the conformational change of the 

crystalline network of the CNCs which is detrimental to gas barrier and 

mechanical properties (Fotie et al., 2017). One of the effective strategies to 

alleviate the effect of the humidity on the CNCs organization is that to resort 

to the functionalization. Recently, it was reported several successful attempts 

of modifications such as adsorption of single molecules, covalent grafting of 

molecules, covalent grafting of chain of polymers on the cellulose 

nanocrystals surface. The adsorption can be electrostatic interaction 
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(Kaboorani and Riedl, 2015) or interaction by affinity of surfactants (OH…OH) 

(Tardy et al., 2017). The covalent grafting of single molecules can be 

esterification, silylation, isocyanate derivatives coupling and succinic 

anhydride (Braun and Dorgan, 2008; Braun et al., 2012, Pei et al., 2010, 

Siqueira et al., 2009); moreover, the covalent grafting of polymers chain can 

occur through radical and ring opening polymerization (Habibi et al., 2008). In 

this chapter, it was demonstrated the possibility of using food additives for 

novel functionalizationto confer a hydrophobic character to the CNCs surface 

through esterification and adsorption while keeping the integrity of their 

crystalline core in the strict consideration of the 12 principles of green 

chemistry (Poliakoff et al., 2002). 

2.  Materials and Methods 

Preparation and production of cellulose nanocrystals (CNCs) 

CNCs used in my work were wood-based CNCs (-OH and –SO3H content) 

provided by the Canadian company called CelluForce. Glycerol 

monostearate, citric and sorbic acids, ethanol were all bought from Sigma 

Aldrich, France. 

Modification by adsorption onto cellulose nanocrystals surface 

3g of wood CNCs and 3g of GMS were added in ethanol at 3 wt% and the 

latter solution was brought at pH 7then stirred at room temperature for 3h. As 

the reaction takes place, GMS particles are adsorbed on the CNCs surface 

irreversibly. Afterwards, the residual part of GMS was washed out in ethanol 

at 30°Cx15 min and 10000 rpm for 4 times and the purified GMS-CNCs were 

obtained. 

Modification by esterification of cellulose nanocrystals surface 

The method called Solreact was used for a solvent-free esterification of 

cellulose nanocrystals by using citric and sorbic acid not only as a grafting 

agent above their melting point. Sol-react technique was performed with 
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wood-based CNCs and citric-sorbic acid (CNCs-Cit-Sorb). 3g of wood CNCs 

were dispersed in 100 mL of water (Sonication 2min, 50%, 5) in a 500mL 

round-bottom flask and the pH was adjusted to 4. After, the solution was 

heated and maintained at 150°C under hot oil bath then, 31g of sorbic acid 

and 53g of citric acid were added in the dispersed CNCs and placed in the 

distillation system for promoting the chemical absorption. The latter solution 

was stirred for 8 hours, and the water evaporated. At the end of the reaction, 

the product obtained was purified from unreacted acid by 5 times dispersion-

centrifugation with a large excess of ethanol (10000 rpm, 30°C, 15’). 

CNCs Hydrodynamic diameter and Z potential-conductivity 

Hydrodynamic diameter of the dispersed CNCs was determined by dynamic 

light scattering (DLS) measurements (mod. Litesizer500, Anton Paar, Graz, 

Austria). The measurements were assessed at 25.0 ± 0.1 °C with a 35 mW 

laser diode light (λ = 658 nm) and collecting the scattered light at 15°and 90°. 

Before any measurements, the samples were diluted at 3 different 

concentrations with distilled water adjusted to pH 8 and maintained at 25 °C. 

Zeta potential (mV) and conductivity (mS cm-1) of the CNCs in the diluted 

suspension at 3 different concentrations at pH 8 were performed by 

electrophoretic light scattering (ELS), using the PALS technology (mod. 

Litesizer 500, Anton Paar, Graz, Austria). Data were obtained through 5 time- 

replication, at 25.0 ± 0.1 °C, by means of a 35 mW diode laser (λ = 658 nm) 

and at 15° detection angle. Contact angle assessment of coated PLA with 

CNCs Static contact angles of the coated film were determined after the 

conditioning of the CNCs coated PLAfilms at 30°C. The sessile drop method 

was used by precisely dropping a droplet of 4.0 ± 0.5 μL of water onto the film. 

The measurements were performed at room temperature (RH about 40%) on 

five different positions for each sample. The instrument used was an OCA 15 

Plus angle goniometer (Data Physics Instruments GmbH, Filderstadt, 

Germany), equipped with a high-resolution CCD camera, a high performance 

digitizing adapter (Data Physics Instruments GmbH, Filderstadt, Germany) 
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and SCA20 software (Data Physics Instruments GmbH, Filderstadt, Germany) 

for contact angle measurements. 

FTIR spectroscopy analysis 

FTIR spectroscopy was performed on oven-dried CNCs by Perkin Elmer 264 

instrument (Spectrum 100), equipped with ATR, at room temperature. The 

data were collected over 64 scans with a resolution of 4 cm-1.  

Elemental analysis 

Elemental analysis was carried out by the “service Central d’Analyse of the 

“Centre Ntional de la Recherché Scientifique” (Vernaison, France). Carbon, 

hydrogen and oxygen contents of modified and unmodified CNCs were 

evaluated with the precision of the measurement higher than the standard 

deviation, therefore, it is ± 0.2 wt% at maximum. From the collected data, the 

degree of the substitution that corresponds to the number of grafted hydroxyl 

groups per glucose unit was calculated by the following equation: 

 
=

Cglu − Xc ∗ PMglu
∗ −

 

 

Where Cglu is the carbon mass of 1 glucose unit (72g/mol) and PM glu is the 

total mass of the carboxylic acid (162 g/mol), Ca is total mass of the carboxylic 

acid and Cca is the carbon mass of the carboxylic acid. The analyses were 

performed twice to obtain the average result. 

Assessment of the CNCs coatings thickness 

The thickness of the coating applied onto the film was assessed by a 

gravimetric method. Four samples (10 ×10 cm2) were weighed (m1, g), then 

the coating was removed by running hot water (~70 °C) and the resulting 
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uncoated film was dried and weighed (m2, g). The coating thickness (L, cm) 

was estimated by Equation (1): L = ∆m/ (ρ × 100), 

Where ρ = 1.58 g cm-3 is assumed as the density of the CNCs and ∆m=m1-

m2. 

O2 and WVTR permeability measurements 

Both oxygen and water vapor permeabilities were performed by an isostatic 

permeabilimeter (mod. Multiperm, PERMTECH S.r.l., Pieve Fosciana, Italy) 

according to ASTM standard methods (D-3985 and F-1249 respectively). The 

oxygen and water permeation of coated and uncoated PLA films were 

measured at 25 °C and 50 & 80% RH. 

3. Results and discussion 

FTIR spectra of modified and neat CNCs 

The FTIR results are illustrated by the graph 1 and the proof of the chemical 

modification is easily identifiable with the presence of ester groups (-COOR) 

at the peak of wavelength 1746.21 cm-1 

 

Figure 2. FTIR spectra of neat and modified cellulose nanocrystals 
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FTIR spectra of CNCs clearly show the typical absorption band of ester groups 

for modified CNCs (CNCs-GMS and CNCs-Cit-Sorb), which is absent in the 

standard CNCs spectra. The peak recognizable in the inset of graph 1 is 

referable, according to Lam (Lam et al. 2013), to C=O stretching peaks of the 

ester group (1746.21 cm-1). 

 

Hydrodynamic diameter and z-potential 

The table shows similar values of the hydrodynamic diameter however; their 

respective z-potential is different from each other. The Z potential of the neat 

CNCs (unmodified) is much higher because of the negative charges called 

sulfate half esters (-SO3H) groups present on their surface while modified 

CNCs have a part of their negative charges occupied (covered) by grafting 

compounds and that justifies the reduction in the absolute Z potential. 

Cellulose 
nanocrystals 

Hydrodyna
mic 

diameter 
(µm) 

Z-potential 
(mV) 

Conductivity 

(mS cm−1) 

Wood 
CNCs(unmodified) 

0.28±0.01 -45±1.2 0.07±0.01 

CNCs-GMS(modified) 0.22±0.08 -38±1.1 0.24±0.03 

CNCs-Cit-
Sorb(modified) 

0.25±0.06 -25±1.1 0.14±0.03 

Table 1. Hydrodynamic diameter, Z potential and conductivity of unmodified and modified 

CNCs 

Elemental Analysis 

After the esterification of the cellulose nanocrystals with citric acid and sorbic 

acid, the % of the sulfur (S) decreased because of the occupation of its site 
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by the grafting structure. That is another proof of the effectiveness of the 

functionalization. 

Atoms Neat 
CNCs 

CNCs-Cit-Sorb 

C 39.77% 41.4% 

O 50.48% 50.12% 

H 6.29% 6.13% 

S 0.80% < 0.20% 

 

Table 2. Percentage of atoms (C, O, H, S) in unmodified and modified CNCs 

The table 2 below shows the oxygen and water permeabilities results 

performed on coated-CNCs (neat and modified) PLA at 25°C in 2 different 

relative humidities (RH). The automatic coating was performed by the green 

bar to provide 1µm thickness of 2.8 wt% CNCs onto the corona-treated PLA 

polymers (25 µm thick).  

Oxygen and water vapor transmission rate of coated PLA film 

 

Table 3. Water vapor transmission rate and oxygen permeability of coated and uncoated PLA 

film 

RH 
(%) 

 

PO2 (cm3 m−2 d−1 bar−1) WVTR(g m2 d-1) 

PLA-
CNCs 

PLA-
CNCs-
GMS 

PLA-
CNCs-

Cit-Sorb 

PLA-
CNCs 

PLA-
CNCs-
GMS 

PLA-
CNCs-

Cit-Sorb 

50 279.6±5.2 359.10±2.2 178.8±2.1 32.01±2 33.7±2 31.4±1.2 

80 519±4 508.94±3.4 478.1±3.2 62.2±3.1 65.2±1. 61.49±1.2 
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After the esterification, coated polymers with esterified CNCs resulted to be 

improved in oxygen barrier at around 40% but the WVTR did not gain any 

improvements. Modified CNCs obtained by the adsorption of GMS did not 

obtain higher gas barrier on PLA in comparison with the unmodified ones. 

Grammage and water contact angle of coated PLA 

The water contact angle slightly increased in PLA films coated with modified 

CNCs, about 40% increase for both types of modified CNCs compared to the 

neat ones. 

 

Table 4. Water contact angle and grammage of uncoated and coated PLA film 

4.  Conclusions 

From the data, the chemical modifications of the cellulose nanocrystals 

through adsorption and esterification were successfully implemented and the 

oxygen barrier properties were significantly improved for polymers coated with 

modified cellulose nanocrystals (CNCs-Cit-Sorb). 

 

 

Coated and 
uncoated PLA 

PLA 
Thickness 

(µm) 

Coating 
deposition 

(g/m²) 

CNCs 
concentration 

solution   (%) 

Water 
contact 
angle (°) 

PLA 25 - - 74±2 

PLA-CNCs-GMS 25 1 2.8 17±1 

PLA-CNCs-Cit-
Sorb 

25 1 2.8 14±1 

PLA-CNCS 25 1 2.8 8.8±1.1 
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Abstract 

A wide family of cellulose-based additives are authorized worldwide as fillers 

and thickening agents in foods, pills and tablets, and microcrystalline cellulose 

(MCC) is, among these, the most importantone. Since MCC manufacturing is 

similar to the main production route of cellulose nanocrystals (CNCs), it is 

reasonable to wonder whether the MCC would contain CNCs as minor 

components. In this Short Communication we provided first results about the 

occurrence of CNCs in MCC, observed by dynamic light scattering and 

transmission electron microscopy after serial filtrations of MCC suspensions. 

The incidence of cellulose nanoparticles has been proved in several different 

trials in our ongoing works on diverse MCC samples and the nanoparticles 

isolated showed shape and dimensions similar to those commonly produced 

by acidic hydrolysis at laboratory level. Therefore, the presence of CNCs in 

many products is considered as a certainty. The foods and the 

pharmaceuticals we have been consuming so far, do indeed contain traces of 

CNCs to such an extent that this wide presence in consumed products should 

be taken into account when considering possiblelimitations of the use of these 

nanoparticles infood contact materials manufacture. 
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1. Introduction 
A general, strong prejudice on the use of nanomaterials in food contact 

materials (FCM) persists all around the world and the European legislation, 

since 2011, established that in the manufacture of FCM “substances in nano-

form should be used only if explicitly authorized” even ignoring for these 

applications the functional barrier concept (Commission Regulation EU, 

2011).It is worth reminding that according to EU Recommendation 2011/696, 
nanomaterial means a natural, incidental or manufactured material containing 

particles, in an unbound state or as an aggregate or as an agglomerate and 

where, for 50 % or more of the particles in the number size distribution, one 

or more external dimensions is in the size range 1 nm - 100 nm (Commission 

Recommendation, 2011). 

Even though a precautionary policy may be understandable when considering 

novel substances or inorganic/metallic species, these limitations definitely 

affect the possible development of innovative, more sustainable and high 

performance packaging materialsthat include cellulose nanoparticles. On the 

other side, fundamental and applied research has already demonstrated the 

great potential of cellulose nanoparticles, both cellulose nanocrystals (CNCs) 

and microfibrillated cellulose (MFC), in the improvement of fundamental 

properties of FCM (Dufresne, 2017; Hubbe et al., 2017; Li et al., 2015). In 

particular, CNCs have been shown to be very interesting barrier coatings, 

capable of further reducing the gas permeability than synthetic polymers (e.g. 

EVOH) to a much thinner thickness (Fotie et al., 2017; Li et al., 2013).In 

addition, no studies to date have demonstrated any dangerousness of the 

CNCs (Li et al., 2015; Seabra et al., 2018) and recent results suggested that 

cellulose nanoparticles might potentially beused as useful antimicrobial 

packaging materials as well as regulators of lipid absorption; in particular,used 

as food additives or supplement,they might provide a safe and non-chemical 

means of reducing fat absorption, thus allowing weight loss (DeLoyd et al., 

2018; Silva et al., 2019). 
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CNCs are nanoparticles whose shape and dimensions are largely influenced 

by the type of cellulosic sources and processes used for their fragmentation. 

However, they are generally reported as rod-like particles, with length of 100-

200 nm and width of 5-10 nm (Li et al., 2015). Such dimensions are practically 

excluded from any diffusional migration phenomena. It has been 

demonstrated, in fact, that measurable migration may occur only for 

nanoparticles up to approximately 3.5 nm in diameter. For 10 nm diameter 
particles, an apparent diffusion coefficient (D) of 1.1E-35 cm2 s-1was 

theoretically calculated in a LDPE host matrix. Such extremely low D results 

in almost null mobility of the migrants and undeterminable risk of migration 

(Bott et al., 2014). In this context, the only real risk is that cutting, breaking, or 

similar mechanical stresses of the packaging materials containing CNCs, can 

lead to a release of nanocellulose in the food. 

In foods and in pharmaceutical products (pills and tablets), the presence of 

cellulose is very common because a wide group of cellulose-based additives 

is authorized worldwide as thickening, filler and functional agents.Recently, 

European Food Safety Authority (EFSA) has re-evaluated 10 different 

chemically modified and unmodified celluloses as food additives, concluding 

that there was no need for a numerical Admitted Daily Intake (ADI) and that 

there would be no safety concern about the reported uses (Younes et al., 

2018). Among all these additives, microcrystalline cellulose (MCC)is certainly 

the most important. MCC is a cellulose-based, powder-like product, known 

since the ‘50s, whose global annual production is currently around 120,000 

tonnes (Battista and Smith, 1962; Vanhatalo, 2017). In general, wood and 

cotton powder are common sources for the production of MCC, although other 

biomasses have been proposed for its production (Yusrina et al., 2018). In 

any cases, MCC manufacturing is quite similar to the main route for CNCs 

production and generally consists of a chemical acidic hydrolysis, possibly 

followed by ultra-sonication. 
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Therefore, it is reasonable to wonder whether the MCC would containCNCs 

as minor components. The aim of this short communication is 

reportingfirstresults obtained seeking for the presence of CNCs in different 

types of MCC, focusing also on the needs for more extended and deeper 

investigation in this field. 

2.  Materials and Methods 

Two different types of cellulose microcrystalline were used: MCC for column 

chromatography, Merck KGaA, Darmstad Germany and MCC, USP (United 

State Pharmacopeia) approved, Blackburn Distribution, Nelson UK. Ultrapure 

Milli-Q® water, 0,22 µm filtered, 18.2 Mcm, 3ppb TOC (MilliporeMerckKGaA, 

Darmstad Germany), was used in all the steps of suspensions preparation 

and filtration. 

To check the possible CNCs presence in MCC, 7 water suspensions of the 

two MCC, in the concentrations ranging from0 to 9% (m/v), were submitted to 

a serial filtrations protocol. Paper filters with nominal cut-off 8-12, 5-8 and 1 

µm (Sartorius Stedim, Varedo Italy) and Polyvinylidene Fluoride (PVDF) 

hydrophilic membranes filters (Durapore®MilliporeMerckKGaA, Darmstad 

Germany) with nominal cut-off 0.22 µm were used in the serial filtrations. The 

last filtered supernatants were analysed by dynamic light scattering (DLS) for 

equivalent hydrodynamic diameters, polydispersity and light scattering 

intensities using a Litesizer500, Anton Paar, Graz, Austria; the DLS 

measurements were performed at 25.0 ± 0.1 °C, with a 35 mW laser diode 

light (λ = 658 nm) and collecting the scattered light at 90° (side scattering 

angle). The last supernatants, possibly containing particles with expected 

dimensions lower than 0.22 µm, were freeze-dried for transmission electron 

microscopy (TEM) observations (LEO 912AB, Zeiss, Oberkochen, Germany) 

at an accelerating voltage of 80 kV, in order to characterize the morphology 

and the dimensions of the isolated particles. 
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3. Results and Discussion 

Whatever the MCC concentrations in the different water suspensions filtered, 

it was always detected, by DLS measurements, equivalent hydrodynamic 

diameters around 100-150 nm in the supernatants obtained after the last 

filtration under the 0.22 µm cut-off, as it is shown in Figure 1, with a relatively 

low level of polydispersity around 20%. In order to confirm the presence of 

nanoparticles in MCC only, i.e. excluding the presence in the water or due to 

the procedure used, the filtered Milli-Q® water (MCC concentration 0%) was 

also tested. The diameters recorded in this case are inconsistent and not 

reliable values because of the cumulant fit error very high (poor fitting of the 

correlation function), the high number of runs needed to get a result and the 

very low mean intensity was recorded (Figure 2). Moreover, the presence of 

nanoparticles appeared roughly proportional to the initial MCC concentration 

as it is shown by the increasing scattering intensity (DLS, kcounts/s), at least 

in the range shown in Figure 2. 

 

Figure 1. Particle  size, equivalent hydrodynamic diameters, measured by DLS for different  

MCC concentrations, after the serial filtration protocol (n=3). 
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Figure 2. Scattering intensity from DLS measurements for different MCC concentrations, after 

the serial filtration protocol (n=3). 

TEM observations, carried out on the freeze dried supernatants from the last 

filtration (0.22 µm cut-off), confirmed both the presence of CNCs in MCC, and 

the dimensions estimated by DLS. Also the typical spindle shape of the 

cellulose nanocrystals was revealed through TEM observations; the 

dimensions estimated from Figure 3 are approximately 150-250 nm in length 

and 20-50 nm in width; dimensions and aspect ratio are consistent with those, 

commonly measured on CNCs obtained by acidic hydrolysis. 

The freeze-dried material obtained through the serial filtration has been also 

analysed by Fourier-transform infrared (FTIR) spectroscopy with a Perkin 

Elmer instrument (Spectrum 100), equipped with attenuated total reflectance 

(ATR) accessory, and the results (data not shown) confirmed the cellulosic 

nature of the isolated. First results, to be confirmed, revealed a concentration 

in the order of parts per million (ppm) of cellulose nanocrystals in the MCC 

samples tested. 
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Figure 3.A representative 500 nm scale TEM imageof primary size and morphology of CNCs 
revealed after serial filtration of MCC suspension. 

Works are currently in progress in order to verify the possibility that additional 

amounts of nanocrystals might be produced from MCC by pH, time and 

temperature values, typical of gastric digestion. Moreover, a further 

fundamental undergoing research program isto find out an accurate procedure 

to estimate the CNCs amount in different media. In fact, it is worth reminding 

that a reliable procedure to assess quantitatively the CNCs, is an essential 

pre-requisite for planning migration tests of possible FCM which contain, as 

fillers or coatings, cellulose nanocrystals. 

4. Conclusion 

In conclusion, itshould be considered the presence of CNCs in many foods 

and pharmaceutical products as a certainty; the foods we have been 

consuming so far contain traces of CNCs, to suchan extent that this wide 

presence in consumed products should be taken into account when 
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considering possible limitations of the use of these nanoparticles in FCM 

manufacture. 

A thorough investigation is in progressin order to set up a reliable procedure 

able to quantify the concentration of the cellulosenanoparticles by means of a 

combination of electron microscopy, imaging techniques and other 

appropriate methodologies based on dynamic light scattering. The 

physicochemical characterization of such organic nanocrystals in terms of 

shape, dimensions and especially concentration and stability in different 

media represents a fundamental and challenging stage of the scientific 

assessment of the risk for the application of nanotechnologies in food and 

feed chain. 
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6. Figure captions                                                                                page 

Figure 1. Particle size, equivalent hydrodynamic diameters, measured by DLS 

for different MCC concentrations, after the serial filtration protocol (n=3). 
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Figure 2. Scattering intensity from DLS measurements for different MCC 

concentrations, after the serial filtration protocol (n=3).                             161 

Figure 3. A representative 500 nm scale TEM image of primary size and 

morphology of CNCs revealed after serial filtration of MCC suspension. 

                                                                                                                  162 
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V. Implementation of biocomposites by 
lamination cellulose nanocrystals 
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V. Implementation of biocomposites by lamination cellulose 
nanocrystals 

 

Abstract 

In this work, cellulose nanocrystals (CNCs) used were CNCso3h extracted 

from wood pulp by sulfuric acid (H2SO4), CNCcooh extracted from cotton 

linters by ammonium persulfate (APS) and CNCcoor obtained by esterification 

between cellulose nanocrystals. When coated onto plastic polymers, these 

CNCs greatly enhance the gases barrier properties at 0% RH. However, in 

humid conditions, CNCs capabilities to block diffusion paths in a polymer 

matrix are lost; therefore, the chemical modification of cellulose nanocrystals 

and lamination are required to protect the coatings from the wet environment. 

PLA, PET, PE, PP, OPP and OPA filmswere selected, coated with CNCs and 

finally laminated. Coated (CNCs-P) and laminated (P-CNC-P) polymers were 

characterized by gas permeability measurements at 23°C and 50%&80%. It 

is worth noting that significant improvements of gas barrier were achieved 

after the lamination. This paper provides insights on the choice of cellulosic 

nanomaterials for the design and development of advanced and sustainable 

food packaging. 

Key words: Cellulose Nanocrystals, Food Packaging, Cellulose 

Nanomaterials Coatings, Plastic Polymers 
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1. Introduction 

Cellulose nanocrystals (CNCs) surface chemistry and shape may be utterly 

different depending on the type of the extraction and the raw materials used. 

Generally, CNCs extraction consists of an acidic or oxidative hydrolysis of 

cellulosic sources (cotton linters, by-products, wood pulp…). As reported in 

many papers, CNCs extracted by hydrochloric acid (HCl) are uncharged 

(Araki et al., 2001) while those obtained by sulfuric acid (H2SO4) contain 

sulfate half ester charges (Beck-Candanedo et al., 2005; Cherhal et al.,2015; 

Reid et al., 2016) and those extracted by 2,2,6,6-Tetramethylpiperidin-1-

yloxyl(TEMPO)and ammonium persulfate (APS) contain carboxylic charges 

on their surface (Leung et al., 2011; Habibi et al., 2006). It is worth mentioning 

that, the superficial chemical charges dictate the dispersibility of the CNCs in 

solvent or water (Reid et al., 2016; Shimizu et al., 2014) and the strength of 

adhesion during the interaction CNCs/polymer (Cheng et al., 2015). Due to 

their many aspects, tiny size and high crystallinity, CNCs may be implemented 

in food packaging in particular as coatings onto polymers with a consequent 

enhancement of gas barrier properties.  Li et al., (2015) achieved 

extraordinary reduction in oxygen permeability at 0% RH of several plastic 

films coated with water-dispersed CNCs while keeping their transparency 

unchanged.In addition, it has been shown that in dry conditions, with a 

thickness of about 1 μm, CNCs coatings show gas barrier higher than those 

obtained from 3-4 μm thickness of common synthetic barriers; such 

asEthylene vinyl alcoholcopolymer (EVOH) and Polyvinylidene 

chloridehomoplymer(PVDC) currently used for extension of oxidation 

sensitive foods (Li et al., 2015; Rampazzo et al., 2017). However, it was also 

revealed that the interaction polymer/CNCs is not similar and therefore, further 

investigation must be conducted to have a broad knowledge on the polymers 

and CNCs chemistry for being ascertained by their chemical affinity and 

adhesionthroughout the coating process. In recent studies, it has been 

demonstratedthe relevance of the CNCs barrier against gases was 
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compromised in humid atmosphere with a subsequent increase in permeation 

gases. From the reported findings, CNCs being very biodegradable and 

hydrophilic materials tend to integrate waterfollowed by a gradual 

disentanglement of their crystalline lattice, which then facilitates the gases to 

cross the coated plastic films even dramatically (Fotie et al., 2017). Several 

attempts have been made in order to alleviate that inconvenienceby producing 

more hydrophobic CNCs through their surface chemical modifications such as 

esterification, carbamation, sylation, amidation and surfactant absorption 

(Eyley and Thielemans, 2014; George and Sabapathi, 2015; Lam et al., 2012; 

Bendahou et al., 2015). Although, some researchers successfully 

implemented hydrophobic CNCs, however, the gas barrier properties of the 

coated polymers with those modified crystals were improved but not at 

acceptable and relevant standards for being implemented in packaging 

(Arrieta et al., 2014; Fortunati et al., 2012; Ferrer et al., 2012). In food 

packaging, the lamination technique has long been used to blend various 

materials of different properties in order to obtain complex multi-layers’ 

structures which comply with all the requirements in terms of gas barrier 

(oxygen, carbon dioxide, water vapor), grease barrier and sealable-

mechanical properties. As mentioned above, one of the common synthetic 

laminated polymers currently used for shelf-life extension is the EVOH whose 

structure is strongly sensitive to water and behavior similar to CNCs in wet 

environment (Zhang et al., 2001). For overcoming that drawbak, the 

lamination technique has been adopted to protect EVOH layers from 

surrounding environment and promoted their use in more today’s food 

packaging applications (Shah et al., 2012). In this work, laminated multi-

layers’ plastics based on the CNCs were successfully implemented by the 

confinement of the CNCs coating between water-repellent and sealable 

materials. The combination of modified cellulose nanocrystals and the 

lamination is likely the best strategy of alleviating the water sensitivity of CNCs 

coatings and to favor their applications in food packaging. The application of 
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such bio-based polymers will bring a huge contribution in developing more 

advanced and sustainable food packaging by making our environment healthy 

and promoting a circular economy. 

 

2. Materials and Methods 

Materials 

Plastic films such as 12 µm PET (polyethylene-terephthalate), 75 µm PE 

(polyethylene), 40 µm PP (polypropylene), 15 µm OPA (oriented polyamide), 

30 µm OPP (oriented polypropylene), 25µm PLA and POLURFLEX 2644/ 58-

01: two-component polyurethane solvent based adhesive system [mixing ratio 

100:10:83 (OH: NCO: Solvent)] and 13 sec viscosity 25°C were all provided 

by Sapici spa, Cernusco sul Naviglio, Italy.Cellulose nanocrystals (CNCs) 

obtained by acid hydrolysis of the wood pulp were bought from CelluForce 

609, Rang 12C.P.1010 Windsor (Quebec).  

Methods 

Charges density assessment 

Both Z potential and conductometric titration were used to characterize water-

suspended cellulose nanocrystals in terms of charges density and colloidal 

stability. Zeta potential (mV) and conductivity (mS cm−1) of the CNCs in the 

diluted suspension at pH 8 were determined by electrophoretic light scattering 

(ELS), using the PALS technology (mod. Litesizer 500, Anton Paar, Graz, 

Austria). Measures were replicated 5 times, at 25.0 ± 0.1 °C, by means of a 

35 mW diode laser (λ = 658 nm) and at 15° detection angle. Conductometric 

titration was used to evaluate weak and strong acids in the three suspended 

samples: CNCcooh, CNCcoor, CNCso3h. 15 mg of CNCs were suspended in 

200 mL of distilled water and sonicated for 5 min. The pH of the the 

suspension was then brought to 3 with HCl 0.1 M before the titration. The 

handheld apparatus was constituted of a pHmeter and conductivity meter 
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(Multi 3620 IDS) and a titrator (Si Analytics Model Titronic 300).  100 mL 

increments of NaOH 0.01 M were dispensed in diluted CNCs and stirred for 1 

min before collecting the electric conductivity (µS/cm). While the sodium 

hydroxide is added through the titration, the conductivity first decreases to 

reach a constant and stable plateau for a moment and after, it increases to 

reach a constant value of electric conductimetric. 

CNCs morphology assessment 
Apparent dynamic diameter of water-dispersed CNCs 1 wt% at pH 5.5 was 

measured by using the PALS technology (mod. Litesizer 500, Anton Paar, 

Graz, Austria). Measures read at 90° detection angle by dynamic light 

scattering (DLS) (90° and 25.0 ± 0.1 °C, by means of a 35 mW diode laser (λ 

= 658 nm) were replicated 5 times. The actual dimensions of the CNCs were 

evaluated via Transmission Electron Microscopy (TEM).  

FTIR Analysis  

The FTIR spectroscopy was performed with a Perkin Elmer instrument 

(Spectrum 782 Cellulose (2016) 23:779–793 123 100), equipped with ATR 

accessory, at room temperature. The analysis was performed on oven-dried 

cellulose initially brought to pH 7 and on CNCs-coated polymers (P-CNC) as 

well. The data were collected over 64 scans with resolutions of 4 cm-1. The 

three types of cellulose nanocrystals were analyzed (CNCcooh, CNCcoor and 

CNCso3h). 

CNCs coatings of polymers (P-CNC) 

All Polymers were previously treated by corona treatment to increase their 

surface energy and promote their blending with CNCs. Polymers were then 

coated with water-dispersed CNCs at 6 wt%.  Coated polymers were dried in 

dried conditions for 48 h and the thickness of the coating applied onto the film 

was assessed by a gravimetric method. Four samples (10 × 10 cm2) were 

weighed (m1, g), then the coating was removed by flowing hot water (~70 °C) 

and the resulting uncoated film was dried and weighed (m2, g).  
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The coating thickness (L, cm) was estimated by Equation (1): L = (m1 − m2)/ 

(ρ ×100) 

Z potential of uncoated and CNCs-coated polymers 

The potential Z of coated and uncoated PET film was measured by Surpass 

(model, Surpass TM 3, Anton Paar, Graz, Australia). Streaming potential and 

current are measured while 0.01M KCl solution flows through a chamber of a 

parallelepiped shape. A double-sided tape adhesive was previously cut 

around the holder to make sure the tape was exactly as large as the holder. 

The holder was stuck on the sample with the side of the sample to be 

measured at the bottom and pieces of uncoated and coated PET film were 

cut. Finally, the spins were hand-rotated for parallel adjustments of the sample 

holders clockwise and with dynamometric screwdriver to be sure that the cell 

was leak proof. The sample holder was finally mounted in the right position 

and blocked with safe levers. The Knob was used to adjust the gap which had 

to be around 100 μm. The pH was changed during the measurement with the 

solution of 0.05 M NaOH and 0.05M HCl. Prior to performing the 

measurements, the calibration of pHmeter and conductivity meter was 

required. It might also be useful to remove air bubbles and rinse the samples 

with the solution to collect reliable data. Furthermore, the temperature of 

solution has to be taken under control because of intense turbulences which 

occur during the measurements. For each pH, the Z potential was measured 

4 times in 3 replications 

Optical Properties of Coated Film 

The transparency of the CNCs coated polymers was measured at 550 nm, 

according to the ASTM D 1746-70, by means of a UV-VIS spectro-photometer 

(mod. L650, Perkin-Elmer, Milano, Italy). The haze (%) of the coated polymers 

was measured according to ASTM D 1003-61 with the same instrument 

equipped with a 150 mm integrating sphere. Each sample was replicated three 

times, analyzing at least four spots on each replicate. 
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Contact Angles Assessment  

Dynamic contact angles of the plastic film coated the 3 types of cellulose 

nanocrystals were determined. The sessile drop method was used by gently 

dropping a droplet of 4.0 ± 0.5 μL of liquid onto the coated film. Two liquids 

such as the water and formammide were used to measure the contact angle. 

Measurements were run at room temperature (40%RH) on five different 

positions for each sample for about 200 sec. The instrument used was an 

OCA 15 Plus angle goniometer (Data Physics Instruments GmbH, Filderstadt, 

Germany), equipped with a high-resolution CCD camera, a high-performance 

digitizing adapter (Data Physics Instruments GmbH, Filderstadt, Germany) 

and SCA20 software (Data Physics Instruments GmbH, Filderstadt, Germany) 

for contact angle measurements. 

 

Gas Permeability Measurement  

All the oxygen and carbon dioxide permeability measurements of coated and 

laminated polymers were performed by an isostatic permeabilimeter (mod. 

Multiperm, PERMTECH S.r.l., Pieve Fosciana, Italy) according to ASTM 

standard methods (D-3985 and F-1249 respectively). The oxygen and carbon 

dioxide permeability (PO2, cm3 m−2 d−1 bar−1) of CNCs coated and 

laminated polymers were measured at 25 °C under 50% and 80% RH on the 

coated side of the film. 

 

Corona-treatment of CNCs-coated polymers and lamination 

Prior to proceeding with the lamination, coated polymers with the three types 

of cellulose nanocrystals were subjected to corona-discharge to promote the 

oxidation of cellulose nanocrystals surface to improve the grafting of 

adhesives during the lamination. Two-component polyurethane solvent based 

adhesive system [mixing ratio 100:10:83 (OH: NCO: Solvent)] and 13 sec 

viscosity 25°C. 
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3. Results and Discussion 

3.1.  Cellulose nanocrystals 

Cellulose nanocrystals dimensions were all simiar but the hydrodynamic 

diameter of CNCso3h were slightly smaller than those oxidized and esterified.  

 

 

CNCs properties 

 

CNCso3h 

 

CNCcooh 

 

CNCcoor 

 

Hydrodynamic diameter 

(nm) 

 

130,55±2,35 

 

176,78±3,52 

 

175,02±0,53 

 

Z potential 

 

-29,6±0,71 

 

-35,65±0,21 

 

-36,3±0,42 

 

Conductivity (mS cm-1) 

 

1,31±0,05 

 

0,82±0,04 

 

1,37±0,07 

 

Polydispersity index (%) 

 

27,53 

 

25,24 

 

25,3 

 

Table 1. Properties of dispersed cellulose nanocrystals 

 

FTIR results of dried cellulose nanocrystals 

From the figure 1, it can be noticed very easily the presence of peak at 

wavelength 1746 cm-1 which, can be attributed to esters groups present on 

the esterified CNCcoor, that is a strong proof of the functionalization of the 

cellulose nanocrystals during the chemical modification between cellulose 

nanocrystals. 
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Figure 1.  FTIR spectra of the types of cellulose nanocrystals 

Z potential versus pH of dispersed cellulose nanocrystals 

From the figure 2, it can be noted that independently on the pH, the Z potential 

values of the esterified CNC (CNCcoor) are the highest ones but are constant 

from pH 6 to 10. In constrast, Z potential values of CNCso3h are the lowest 

and constant while those of CNCcooh are fluctuatingwith pH change. That 

behavior, was expected since the CNCcooh deprotonate to CNCcoo-while, 

ester and hydroxyl are more stable with pH change. As a result of that, the pH 

of the CNCcooh dispersion must be brought to 8 before the coating processto 

obtain a good stability in water and strong adhesion with plastic polymers. 
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Figure 2. Z potential values versus pH of CNC with carboxylic (CNCcooh), sulfate half ester 

(CNCso3h) and ester groups (CNCcoor). 

Charges density by conductometric titration 

The concentration of strong and weak acid derived from the conductometric 

titration was 0,27 and 0,52 mmol/kg-1for the CNCcooh, 0,24 and 0,30 

mmol/kg-1 for CNCso3h and 0,31 and 0,63 mmol/kg-1 (table 1). It can be 

confirmed that the esterified CNC (CNCcoor) have the highest charges 

density that contribute to their functionalization with polymers. 

Samples (n=3) Strong acid 
(mmol/kg-1) 

Weak acid  

(mmol/kg-1) 

CNCso3h 0,24±0,02 0,30±0,04 

CNCcooh 0,27±0,02 0,52±0,07 

CNCcoor 0,31±0,04 0,63±0,06 

 

Table 2. Strong and weak acids of the three types of cellulose nanocrystals 
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3.2. CNCs-coated PET films (P-CNC) 

Z potential of CNCs coated and uncoated PET film versus pH 

 

Figure 3. Z potential values versus pH of PET film coated with the three types of cellulose 
nanocrystals (n= 3) 

Z potential and contact angle were employed to assess the hydrophobicity 

uncoated and CNCs-coated PET fim. From the data, PET films coated with 

the 3 types of cellulose nanocrystals showed similar threshold, z potential 

increases with the increase in pH. Uncoated PET film has its isoelectric point 

at pH 4 while PET films coated with CNCso3h, CNCcooh and CNCcoor have 

their isoelectric point at pH 1.6, 2.08 and 2.7 respectively. Potential z close to 

4 indicates that the material is more hydrophobic and apolar.  

In contrast, the hydrodynamic water contact showed a different threshold. 

There is an immediate decay in water contact angle of PET films coated with 

esterified CNCs. PET films coated with CNCso3h and CNCcooh have similar 

trends and decay rate over measurement time. 
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Figure 4. Water contact angle values versus time of PET film coated with the 
three types of cellulose nanocrystals. 

FTIR results of Corona-treated and untreated CNCs-coated PET film 

From the figures 5, 6 and 7, the peaks formed during the corona-reatment 

can be observed. The ozone treatment usually oxidizes the chemical 

groups of the cellulose nanocrystals surface. However, the oxidation is 

less pronounced for the already-oxidized cellulose nanocrystals 

(CNCcooh) while the chemical modification of esterified CNCs (CNCcoor) 

and CNCso3h surface are much more visible on esterified CNCs. After the 

corona treatment of coated polymers, the lamination was implemented 

with solvent-based polyurethanic adhesive at room temperature and the 

layers were blended and left dried for 7 days before the delamination test 

and the gas permeability measurements.   
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Figure 5. PET-CNCcooh (green) and corona treated PET-CNCcooh (black) 

 

 
Figure 6. PET-CNCcoor (green) and corona treated PET-CNCcoor (violet) 

 

 
Figure7. PET-CNCso3h (green) and corona treated PET-CNCso3h (red) 
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Oxygen Permeability of coated polymers (P-CNC)  
 
When comparing the oxygen permeability of coated polymers with the 

three types of cellulose nanocrystals, the difference is evident at both RH 

(50% and 80%). The improvements of the oxygen barrier properties are 

much higher on polymers coated CNCcoor, following by those coated with 

CNCcooh and CNCso3h. This elucidates the relevance of the 

esterification of cellulose nanocrystals which allowed to create structures 

less sensitive to water without modifying the crystallinity or compromising 

the integrity of the crystals. Although the oxygen barrier was enhanced in 

the three cases, the oxygen permeability of the coated polymers showed 

a significant loss of barrier properties at high relative humidity (80%), due 

to strong affinity between CNCs coatings and water. 

P- CNCso3h RH 50% RH 80% 
PET- CNCso3h 55,06±1,5 96,73±2,5 

PLA- CNCso3h 158,71±1,5 484,18±2,5 

OPP- CNCso3h 127,91±1,5 756,06±1,5 

PP- CNCso3h 113,09±1,5 652,68±2,5 

PE- CNCso3h 71,38±1,5 1388,29±1,5 

P-CNCcooh RH 50% RH 80% 
PET- CNCcooh 36,23±3,5 108,94±3,5 

PLA- CNCcooh 107,17±3,5 409,91±3,5 

OPP- CNCcooh 46,27±3,5 367,02±3,5 

PP- CNCcooh 53,36±3,5 657,65±3,5 

PE- CNCcooh 89,91±3,5 1035,71±3,5 

P-CNCcoor RH 50% RH 80% 
PET- CNCcoor 12,16 ±3,5 90,7±3,5 

PLA- CNCcoor 43,99±3,5 339,82±3,5 

OPP- CNCcoor 46,74±3,5 626,32±3,5 

PP- CNCcoor 32,41±3,5 665,66±3,5 

PE- CNCcoor 47,59±3,5 999,12±3,5 

 

Table 3. Oxygen permeability of poymers coated with the three types of CNCs (50-80% RH) 
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Figure 8. Oxygen permeability of coated polymers with CNCso3h at 50% (red) and 80% 
RH (brown) 

 

 

Figure 9. Oxygen permeability of coated polymers with CNCcooh at 50% (red) and 80% 
RH (brown) 
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Figure 10. Oxygen permeability of coated polymers with CNCcoor at 50% (red) and 80% 

RH (brown) 

Haze and transparency of coated and uncoated polymers 

Uncoated and CNCs-coated polymers (P-CNC) showed similar values of haze 

and transparency. It proved that the coating of polymers with the three types 

of polymers has not affected the optical properties the standard polymers. 

 

Figure 11. Haze (red) and transparency (blu) of uncoated polymers  
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Figure 12.  Haze (brown) and transparency (red) of polymers coated CNCso3h 

 

 

 

Figure 13. Haze (brown) and transparency (red) of polymers coated CNCcooh 
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Figure 14. Haze (brown) and transparency (red) of polymers coated CNCcoor 
 
 
 

3.3. Laminated CNCs-coated PET films (P-CNC-P) 
 

Delamination Test 

In light of the data of peeling test of laminated polymers collected according 

to ATM-D882-09, Stiffness and Elastic modulus were all acceptable. It has to 

be pointed out that the laminated based on esterified cellulose nanocrystas 

displayed the best performance in terms of mechanical properties. In addition, 

it can be confirmed that the corona-treatment of coated polymers before the 

lamination has definetly contributed to reinforce the adhesion between the 

cellulose nanocrystals and the adhesive. 
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Table 5. Delamination test of CNCcooh-coated and laminated poymers 
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Table 6. Delamination test of CNCcoor-coated and laminated polymers. 

 
Oxygen Permeability of laminated polymers (P-CNC-P) 

 

The lamination of coated polymers furtherly improved the gas barrier and that 

for all the three types of cellulose nanocrystals. This technique that implies 

protection of cellulose nanocrystals coatings against the surrounding 
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environment was very effective in blocking water to disrupt or modify the 

crystallinity network. The combination of both ways of controllong the swelling 

of the coatings through the chemical modification of cellulose nanocrystals 

surface and subsequent lamination was by far the most effective way to 

strongly enhance the gas barrier properties even at higher relative humidities.   

P-CNCso3h 50% RH 80% RH 
OPP- CNCso3h /OPP 4,56±3,5 9,78±3,5 

PET- CNCso3h /OPP <0,06 0,29±3,5 

PET- CNCso3h /PP <0,06 <0,06 

PET- CNCso3h /PE 0,25±015 1,107±1,5 

PE- CNCso3h /PE- CNCco3h 2,29±3,5 5,49±1,5 

P-CNCcooh 50% RH 80% RH 
PP- CNCcooh /PET 9,66±0,5 9,23±1,5 

OPP- CNCcooh /PE- CNCcooh <0,06 4,69±0,5 

PE- CNCcooh /PE 4,29±0,5 13,45±3,5 

OPP- CNCcooh /PLA- CNCcooh 12,41±3,5 201,11±3,5 

P-CNCcoor      50% RH       80% RH 
PP- CNCcoor /PET- CNCcoor 7,06 6,88±1,5 

OPP- CNCcoor /PE- CNCcoor <0,06 <0,06 

PE-CNCcoor /PE <0,06 <0,06 

PET- CNCcoor /PE <0,06 <0,06 

OPP- CNCcoor /PLA- CNCcoor 3,78±3,5 103,55±3,5 

 

Table 7. Oxygen permeability of coated and laminated poymers at RH 50-80%, the Standard 
dev. are calcolated from the mean (n=3) 
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Figure 15. Oxygen permeability of laminated polymers with CNCcooh at 50% (bred) and 

80% RH (brown) 
 
 

 
 

Figure 16. Oxygen permeability of laminated polymers with CNCcoor at 50% (red) and 
80% RH (brown) 

 

 

0

50

100

150

200

250
PO

2 
[c

m
3/

(m
2 

da
y 

ba
r)]

Oxygen Permeability of  P-CNCcooh-P

-20

0

20

40

60

80

100

120

PO
2 

[c
m

3/
(m

2 
da

y 
ba

r)]

Oxygen Permeability of  P-CNCcoor-P



190 
  

 
 
Figure 17. Oxygen permeability of laminated polymers with CNCso3h at 50% (red) and 

80% RH 
(brown) 

4. Conclusions 

The main problem to be sorted out was the sensibility of the cellulose 

nanocrystals to moisture that hampered their incorporation into food 

packaging. It was mentioning that the barrier gas properties of cellulose 

nanocrystals are effective in absence of humidity but are compromised in 

humid environment. The chemical modification of cellulose nanocrystals has 

improved the gas barrier compared to the unmodified ones. Oxygen 

permeability of laminated polymers showed very low values even in high 

relative humidity, which is the confirmation that the lamination has definitely 

isolated the CNCs coatings from the moisture and can be used for food shelf-

life extension. From the results of the delamination test, it can be observed 

that the stiffness, elastic modulus and elongation at the end are relevant for 

any delamination test of polymers. It is very important to point out that the 

lamination of polymers coated with esterified cellulose nanocrystals were the 

best in terms of reducing the gas permeability even in higher relative humidity. 

This opens up a new gate for effective development of advanced materials 
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suitable for food shelf-life extension, taking care of environmental protection 

and circular economy principles 
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VI. Food shelf-life extension by use of the laminates based on cellulose 
nanocrystals in comparison with oil-based laminates  

 

Abstract 

The scope of this paper was to use the cellulose nanocrystals (CNCs) 

coatings with extraordinary gas barrier properties to implement fully 

compostable laminates (LAMCNC), structured of “Cellophane 

(19µm)/Aluminum metallization (<1 µm)/Tie (2µm)/CNCs (1µm)/Tie 

(3µm)/PLA (55µm)” in replacement of synthetic laminates (LAMEVOH) “PET 

(28µm)/Tie (1.2µm)/EVOH (3.3µm)/Tie (1.2µm) PET (25µm)/Tie (1.2µm)/PE 

(12.25µm)” currently used for oxidation-sensitive food products. And 

subsequently, a comparative two-month food shelf-life assessment was 

designed by using the two types of laminates to fabricate identical-sized 

pouches and filled with ground coffee and grated cheese then, sealed under 

100% N2 to be finally stored at 23°C/30°C/40°C and 5°C/23°C respectively. 

From the findings, Laminates-based CNCs were the better ones in the shelf-

life extension of food products. 

Keywords: cellulose nanocrystals (CNCs), food oxidation, food shelf-life, 
fully compostable and synthetic laminates. 

 
1. Introduction 

In recent years, oxidation has been one of the major challenges for the 

scientific and manufacturing community in terms of food quality decay, 

economic losses and environmental concerns. All foods containing lipids can 

undergo oxidation compromising their quality with adverse physicochemical 

changes (Labuza and Dugan, 1971). Although the level of oxidation depends 

on the chemical composition of the food and the storage environment, the 

packaging plays an essential role in protecting the foods. Nowadays, to 

prevent food spoilage from oxidation, vacuum, modified atmosphere 
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packaging (MAP) and oxygen-barrier synthetic laminates containing EVOH 

copolymer (Ethylene vinyl alcohol), Nylon 6,6 or PVDC (Polyvinylidene 

chloride) are employed (Barlow and Morgan, 2013). However, with the 

growing awareness of the environmental impact of these non-renewable oil-

based materials, the search for more sustainable alternatives has recently 

been scientists’ focus (Li et al., 2015). Bio-polymers such as PLA (Polylactic 

acid) and PHAs (Polyhydroxyalkanoates) might be a valid option; however, 

they lack gas barrier properties (Farah et al., 2016). Nowadays, 

nanotechnology has become a very captivating field because it allows 

materials to be manipulated on a nanometric scale by providing new 

properties useful for the development of more advanced materials (Rashidi et 

al., 2011). As a matter of fact, cellulose nanocrystals (CNCs) which are 

synthesized either by acidic or oxidative hydrolysis of cellulosic sources 

actually exhibit extraordinary gas barrier properties (Mascheroni et al., 2016). 

Cellulose is the most abundant natural polymer that consists of millions of 

glucoses linked by glicosidic bonds forming a hierarchical organization 

containing amorphous and crystalline (yang et al., 2007). As stated in several 

articles, CNCs have been isolated from cellulosic matrices such as wood pulp 

and cotton linters by sulfuric acid and ammonium persulfate (Mascheroni et 

al., 2016). By obtaining an oxygen permeability of 0.06 cm3*24h-1*m-2*bar-1 at 

0% RH of PET (Polyethylene terephthalate) films coated with less than 1 µm 

thick CNCs, Li et al. confirmed the better improvement in gas barrier 

properties of the materials coated with CNCs in comparison with 3-4µm thick 

EVOH (Mokwena and Tang, 2012). Generally, gas diffusion through any 

materials broadly depends on direct factors such as crystallinity index, 

permeant solubility and concentration gradient. Other extrinsic factors such as 

temperature and relative humidity may also have a significant influence on the 

permeation of the gas (Piringer et al., 2008). Henceforth, CNCs being very 

hydrophilic by nature due to the presence of many hydrogen bonds and polar 

groups on their surface tend to swell in high relative humidity (from 40% to 
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100%), which then causes a gradual disentanglement of the crystalline lattice 

and causes a dramatic permeation of gases through the coated materials 

(Fotie et al., 2017; Fotie et al., 2018). In this paper, it was demonstrated that 

one of the best solutions to alleviate the water sensitivity of the CNCs, was to 

concur to the insulation of CNCs coatings through their lamination between 

two layers such as a water-repellent structure like the metalized cellophane 

and a sealable polymer like PLA to set up fully compostable laminates.  

2.  Materials and Methods 

Materials 

Fully compostable laminates implementation, 55µm PLA and 19 µm metalized 

cellophane films and 72 µm synthetic laminates (LAMEVOH) constituted of PET 

(28µm)/Tie (1.2µm)/EVOH (3.3µm)/Tie (1.2µm) PET (25µm)/Tie (1.2µm)/PE 

(12.25µm) were provided by Goglio spa, Italy. Solvent-based adhesive was 

procured from Sapici spa, Italy and the cellulose nanocrystals obtained by acid 

hydrolysis (sulfuric acid) from wood pulp (Sacui et al., 2014) were bought from 

CelluForce, Canada. For food shelf-life assessment, grated cheese with 28% 

fat content of which 68% saturated and ground coffee with 46% of linolenic 

acid content, Sodium Thiosulfate, n-hexane, ethanol, starch, 1-decanol, 

NaOH 0.1M bought from SIGMA.  

Methods 

CNCs morphology assessment 

Apparent dynanamic diameter of water-dispersed CNCs 1wt% at pH 5.5 was 

measured by using the PALS technology (mod. Litesizer 500, Anton Paar, 

Graz, Austria). Measures read at 90° detection angle by dynamic light 

scattering (DLS) (90° and 25.0 ± 0.1 °C, by means of a 35 mW diode laser (λ= 

658 nm) were replicated 5 times. The actual dimensions of the CNCs were 

evaluated via Transmission Electron Microscopy (TEM).  

Evaluation of CNCs charges density  
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 Z potential of water-dispersed CNCs 1wt% at pH 5.5 was measured at 15° 

detection angle by electrophorectic light(ELS) by using the PALS technology 

(mod. Litesizer 500, Anton Paar, Graz, Austria) replicated 5 times, at 25.0 ± 

0.1 °C, by means of a 35 mW diode laser (λ = 658 nm). Strong acid (-OSO3H) 

and weak acid (-OH) concentrations were calculated through the 

conductometric titration. 

PLA coating with CNCs and   fully composites lamination 

PLA films were coated with water-dispersed CNCs 4wt% through rotating roll 

then dried in tunnel at 70°C. Subsequently, coated PLA films (1st web unwind) 

were coupled with metalized cellophane (2nd web unwind) through the 

laminating process by rotating roll filled of solvent-based polyurethanic liquid 

adhesives. The lamination was set up at room temperature and the fully 

compostable laminated (LAMCNC) were stored at the drying oven to allow the 

solvent to evaporate.   

Thickness assessment of CNCs and adhesive layers 

For the evaluation of the CNCs layer’s thickness, the gravimetric method was 
adopted. Four samples of coated PLA (10 × 10 cm2) were weighed (m1, g), 

then the coating was removed by washing out the coating hot water (~70 °C) 
and the uncoated film obtained was dried and weighed (m2, g). The coating 

thickness (L, cm) was estimated by Equation: L = (m1 − m2)/100ρ, where ρ = 

1.58 g cm−3 is assumed as the density of the CNCs. The thickness of the 

adhesive in LAMCNCwas calculated by the difference between the total 

thickness of the laminated and the thickness of other constituents. 

 

Gas permeability measurements of LAMCNC and LAMEVOH 

All the carbon dioxide, oxygen and water vapor permeability measures were 

performed by an isostatic permeabilimeter (mod. Multiperm, PERMTECH 

S.r.l., Pieve Fosciana, Italy) according to ASTM standard methods (D-3985 
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and F-1249 respectively). Oxygen (PO2) and carbon dioxide (PCO2) 

permeability of both laminates measured at 23 °C under 35% RH as for the 

water vapor transmission rate (WVTR) which was measured at 38°C and 80% 

RH.    

Pouches fabrication, storage and sampling 

Pouches (20.5 x 12 cm) were fabricated with the two different laminates, filled 

with 80 g of ground coffee and 60 g of grated cheese and sealed under 100% 

of N2. Subsequently, both types of pouches were stored in dark conditions, at 

23, 30 and 40 °C for ground coffee and at 5 and 23 °C for grated cheese at 

35% RH. The pouches withdrawal in triplicate was at time 0 and then 14, 39, 

53 and 67 days to perform headspace gas composition, chemical (color, 

conjugated dienes and trienes…), microbiological (total mesophilic bacterial 

counts) and sensory changes. 

3. Results and Discussion 

CNCs dimensions and charges density 

Apparent hydrodynamic diameter of CNCs was confirmed by TEM and the 

CNCs length was found to be 115±4 nm moreover, the Z potential measured 

was -40 ±1 mV and the concentration of strong and weak acids were 0.28 

mmol/kg and 0.35 mmol/kg respectively. The size obtained confirms the 

nanometric scale of the CNCs and the high z potential demonstrates the 

stability of the water-dispersed CNCs and strong charges residues derive from 

the sulfuric acid reaction with the cellulose.  
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Oxygen, carbon dioxide and water permeability 

Table 1. Permeability values measured on the two laminates used in the Shelf 

Life tests 

It is clearly evident that at 23°C the oxygen and carbon dioxide permeability  

of the two materials are quite similar. This behavior suggested to assess the 

activation energy of the diffusional phenomena in the two different laminates. 

The Ea (activation energy, kJ/ml) estimated were 21.6 and 24.24 respectively, 

for O2 and CO2 for the fully compostable laminate, while they were 77.0 and 

87.5 respectively for O2 and CO2, in the standard laminate, which confirmed 

that compostable laminates are less sensitive to the temperature. 

Headspace gas composition 

 

Laminates 

T 

(°C) 

GTR at 35% RH 

(cm3d-1bar-1m-2) 
CO2TR/OTR 

Gas Selectivity 

WVTR at 

80% ΔRH 

(g m-2 d-1)  OTR CO2TR 

      

Compostable 

(CNCs) 

23 0.47 1.33 2.83 - 

30 0.60 1.92 3.20 - 

38 - - - 6.31 

40 0.77 2.21 2.90 - 

 

23 0.67 1.38 2.00 - 

30 1.50 3.15 2.16 - 

38 - - - 3.84 

40 3.70 9.55 2.58 - 
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Gas composition was evaluated by GC-TCD and the selectivity (CO2/O2) 

was then calculated in the pouches containing the ground coffee (figure2). 

 

Figure 1. Gas evolution in the pouches containing ground coffee 

Moreover, the two laminates tested did not show relevant discrepancies in gas 

permeability, at least at 23°C and partially at 30°C, a bigger difference 

however, was observed at 40 °C, with a better barrier offered by the 

compostable laminate. Less than 1% of O2 was found in the pouches with 

grated cheese during the entire shelf-life.  

Food Colour Changes 

Colour difference was estimated according to CIE-LAB 1976 by the equation 

dE = [(L2-L1)2- (a2-a1)2- (b2-b1)2]1/2, where ‘L’ is the Lightness, ‘a’ the Redness 

and ‘b’ the Yellowness of the product colour. A colour difference detectable by 

human eye is generally considered when dE is higher than 1.8 but this value 

was never reached in our experiments as Figure 2a and 2b clearly indicate.  
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Figure 2a. Color difference of grated cheese over time 

 

Figure 2b. Color difference of ground coffe over time 
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Microbiological analysis 

Themicrobiological control was carried out, obviously, only on grated cheese. 

 

Figure 3. Mesophilic total bacterial count of grated cheese at two different temperatures and 

in the two different laminates (standard) with EVOH and compostable with CNCs 

Sensory analysis 

A panel of 20 tasters evaluated five different attributes of sensory quality of 

the ground coffee: overall odour intensity, overall acceptability, greasiness, 

rancid odour, odour persistence. 

 

Figure 4. Sensory analysis of ground coffee in the two different pouches at three different 

temperatures. 
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11 different sensory attributes were evaluated by the same panel for the 

grated cheese in the two types of laminates and at two different temperatures, 

as shown in Figure 8. In no case, it was possible to observe a significant 

difference between the two different pouches. 

 

 

 

Figure 5. Sensory analysis of grated cheese in the two different pouches at two different 

temperatures. 

4. Conclusions 

The Shelf Life test was carried out taking into account also other quality 

attributes not described in this report. In particular, parameters of detecting 

oxidation phenomena or microbiological decay due to the possible oxygen 

inlet and loss of modified atmosphere have been measured during the test. 

No significant difference was found between samples packed in different 

pouches after more than two months at different temperatures.   
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Chapter 4. General conclusions, implications and future perspectives 

 

My research doctorate whose main goal was to create innovative food 

packaging using cellulose nanocrystals has been completely achieved. 

The cellulose nanocrystals (CNCs) that are chemically extracted from 

cellulosic sources such as biomass and by-products exhibit excellent 

gas and mechanical barrier properties required in food packaging for 

extending the shelf life of foodstuffs sensitive to oxidation. Today 

synthetic polymers such as EVOH (ethylene vinyl alcohol) and PVDC 

(polyvinylidene chloride) are used in laminates to mitigate the 

degradation of foods derived from oxidation. However, synthetic 

polymers are not biodegradable-friendly for the environment and are 

not absolutely safe for living beings. With increasing awareness and 

concern for the environment, scientists have been involved in the 

search for more sustainable applications. The cellulose nanocrystals 

are biodegradable and ecological materials can be positioned as a solid 

and valid alternative to oil-based materials. However, a serious pitfall 

has to be faced to make the integration of CNCs into packaging 

possible. Like most biodegradable materials, CNCs are very sensitive 

to water and this is detrimental to the oxygen barrier properties. In fact, 

in the absence of water, the CNCs coatings have almost no oxygen 

permeation, however, there is a sharp increase in oxygen diffusion 

when the relative humidity increases. The PhD project helped to 

discover tangible and successful solutions. Accurate strategies for 

alleviating the water sensitivity of cellulose nanocrystals were either by 

making the CNCs more hydrophobic through functionalization or by 

laminating the CNCs coatings to protect them from the wet 

environment. The best strategy that certainly worked was the blending 
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of functionalized (esterified) CNCs in multi-layer laminates, therefore, 

the combination of both techniques functionalization and lamination 

showed a significant improvement in the oxygen barrier properties even 

in conditions of higher relative humidity to such an extent that their 

applications in food packaging could be scaled-up immediately. In fact, 

the BIOCOMPLACK project financed by European Union (EU), which 

consisted of creating a fully compostable food package using cellulose 

nanocrystals was successfully achieved and used for food shelf-life 

assessement. Laminated polymers, including cellulose nanocrystals, 

were created and used with respect to EVOH-based laminates to 

extend the shelf life of foods with high content of polyunsaturated fatty 

acids such as grated cheese and ground coffee. Subsequently, the 

products were packaged in small bags manufactured and kept in the 

same storage conditions and time. The results of food shelf-life 

evaluation showed that the packages based on cellulose nanocrystals 

were the best laminates in the extension of food products compared to 

the existing ones based on the EVOH copolymer. Prior to implementing 

and commercializing a food packaging based on cellulose nanocrystals 

in Europe and in particular in Italy, the approval of EFSA (European 

Food Safety and Authority) of such nanoparticles as Food Contact 

Materials (FCM) is needed.  Although many scientists proved through 

their findings the non-toxicity and non-harzardousness of CNCs, 

consumers still show strong scepticism and negative judgment about 

such tiny particles that they fear for their health. My PhD project has 

shown (chapter III) that there is nothing to worry about cellulose 

nanocrystals since, they are not used in direct contact with foods. 

Based on the facts, my work has proved that a minor quantity of 

cellulose nanocrystals is already present in the microcrystalline 
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cellulose (MCC), a food additive long approved by EFSA and granted 

the number E460(i) and has long been used as texturizer, anti-caking 

agent, emulsifier and coatings in food and pharmaceutical applications. 

In addition, scientists have already shown that particles of such 

dimensions cannot migrate through polymers and papers. In light of all 

these findings, the approval process has been implemented, and the 

expectations are such that, the exceptional advantages of the CNCs 

must be fully exploited for creating more advanced and sustainable food 

packaging with natural resources and cellulosic by-products. Finally, 

the approval of cellulose nanocrystals will encourage Italian and foreign 

companies to invest in a large production of cellulose nanocrystals to 

be marketed and used in other sectors in Italy.  
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