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Abstract
An extensive investigation via simulation is carried out with the aim of comparing
three nonparametric, single imputation methods in the presence of multiple data
patterns. The ultimate goal is to provide useful hints for users needing to quickly
pick the most effective imputation method among the following: Forward Imputation
(ForImp), considered in the two variants of ForImp with the Principal Component
Analysis (PCA), which alternates the use of PCA and the Nearest-Neighbour Im-
putation (NNI) method in a forward, sequential procedure, and ForImp with the
Mahalanobis distance, which involves the use of the Mahalanobis distance when
performing NNI; the iterative PCA technique, which imputes missing values simul-
taneously via PCA; the missForest method, which is based on random forests and
is developed for mixed-type data. Performance of these methods is compared under
several data patterns characterized by different levels of kurtosis or skewness and
correlation structures.
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1. Introduction

’Thinking the unthinkable’: in this way Bradley Efron in 1979 used to define the new
role of simulation techniques in the improvement of statistical science [1]. He reckoned
at a very early stage that the advent of high-speed computers would have opened new
frontiers for the development of statistical theory. His side message was that, with this
possibility, simulated solutions would have been even better than analytical solutions,
and the fast spread of Monte Carlo methods subsequent to the availability of increas-
ingly powerful computers would have later testified the rightness of Efron’s intuition.
Needless to say, in many fields of statistics simulation has become the primary way, or
even the unique way, to proceed. For instance, analytical solutions might not exist or
be not easily attainable, or, even if available, might not be adequate for application
to real situations because grounded on assumptions valid in theory but not exactly in
practice.
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Evaluation of properties of advanced statistical techniques is no exception. One of
the problems that usually requires simulation analyses is the appraisal of the perform-
ance of missing data imputation methods. A missing datum is missing by definition.
It is therefore impossible to assess if a certain method is capable of recovering that
very datum well. But it might be possible to simulate data with characteristics similar
to the real data from which the missing datum comes and create missingness artifi-
cially according to a specific generating mechanism. In this way, evaluation is made
by assessing the closeness, according to several criteria, of the imputed data to the
simulated ones, which should represent the actual data as best as possible. Moreover,
in general, it should be strongly recommended analysing and comparing the perform-
ance of the methods under a multitude of different simulation scenarios, and then of
data structures, since the goodness of a method may greatly depend on the situation
at hand.

Many strategies for dealing with the problem of missing data have been proposed
over the years, while research is still advancing on this matter. Statistical literat-
ure is incredibly rich of contributions. One needs only think to the recurrent distinc-
tions among different approaches, i.e. between parametric and nonparametric methods,
single and multiple imputations, deterministic and random imputations, imputation-
based and model-based procedures. Classical theoretical references are provided by
Little and Rubin [2] and Schafer [3], while e.g. Molenberghs and Kenward [4] treat
missing data handling in clinical studies and Haziza [5] in sample surveys.

Nonetheless, to our knowledge, in literature there are still few contributions ad-
dressed to comparing the performance of different imputation methods. A pioneering
study was that by Bello [6] who compared five methods, namely the mean substitution
method, the EM algorithm, the Dear’s principal component method, the general iter-
ative principal component method and the singular value decomposition method. The
same author [7] performed a simulation study of imputation techniques in the frame-
work of discriminant analysis. More recently, Marella et al. [8] have evaluated the
matching noise, i.e. the discrepancy between the actual and the imputed data, in the
important class of K -Nearest Neighbour imputation methods, dealing with different
settings of this class. Ning and Cheng [9] have performed a comparison analysis, with
an extensive simulation study and an empirical study on real data, on the difference
between the nearest-neighbour imputation method and the kernel-weighted regression
method in estimating a population mean of incomplete responses and also in classifying
the incomplete responses that are missing at random depending on some covariates.
In a similar framework, Tutz and Ramzan [10] considered weighted nearest-neighbour
imputation methods using distances for selected covariates.

Motivated by several practical problems concerning missing data handling that we
faced in a pure nonparametric perspective, we carried out an extensive investigation via
simulation for inspecting and comparing the performance of three different nonpara-
metric methods for single imputation of missing data, i.e. the Forward Imputation
(ForImp) [11,12], the Iterative Principal Component Analysis method (IPCA) [13–
15] and Stekhoven and Bühlmann’s missForest method [16]. ForImp is a sequential,
distance-based, distribution-free imputation procedure that is based on the nearest-
neighbour imputation method and can exploit a multivariate data analysis technique
to synthesise the information of the complete part of the data [11,12]. The IPCA
method is an algorithmic-type technique that imputes missing values simultaneously
by the iterative use of principal component analysis, recently rearranged by Josse et
al. [15] in the more general context of multiple imputation with factorial methods.
The missForest method is a nonparametric imputation technique for continuous and
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categorical data based on a random forest, i.e. a random classifier introduced in the
context of machine learning [17].

The organization of this paper is as follows. Section 2 summarizes the three com-
pared methods in their main characteristics and algorithmic presentation. Section 3
presents the general simulation settings and data structures considered. Section 4
presents in details four main simulation studies and some other supplementary simu-
lation studies, highlighting the main results from each of them and providing a final
discussion with practical hints for users. Section 5 concludes the paper.

2. Imputing quantitative missing data: The considered methods

We focus on nonparametric methods that carry out single imputation of missing data
according to different theoretical grounds. The first method is Forward Imputation
(ForImp) [11,12], considered here in the two variants developed for quantitative data,
i.e. ForImp with the Mahalanobis distance (ForImpMahalanobis – FIM in short) and
ForImp with the Principal Component Analysis (ForImpPCA – FIP in short) [12]. The
second method is the Iterative Principal Component Analysis (IPCA) [13,14], which
has recently been employed in a more general multiple imputation methodology based
on factorial methods [15]. The third method is missForest [16], which is a random-
forests-based imputation method designed specifically for mixed-type data.

In what follows, the main aspects of these methods will be described in short.
As previously stated, we confine our investigation to quantitative data because, to
our knowledge, in literature there are still few contributions aimed at comparing
different imputation approaches for quantitative data. We start by assuming that
X = [x1,x2, . . . ,xp] is a (n × p)-dimensional data matrix, referred to n units and p
quantitative variables, which contains missing values in its rows.

2.1. The ForImp approach with PCA or the Mahalanobis distance

The ForImp approach is a sequential distance-based procedure that exploits the
complete part of the data in a step-by-step, forward process involving the Nearest-
Neighbour Imputation (NNI) method. Regarding the two ForImp methods for quant-
itative data, the main difference between FIM and FIP is that FIM uses NNI with
the Mahalanobis distance to detect donors for incomplete units, while FIP alternates
the NNI method (applied with a weighted Minkowski distance) with PCA to extract
information instrumental in searching for donors from the complete part. The process
begins with the complete submatrix X0 of X having no missing entry. Initialization of
missing data is therefore not required. At each subsequent step, the complete part is
updated and enlarged with further completed rows according to the algorithm resumed
in Table 1.

2.2. The IPCA algorithm

IPCA is an algorithmic-type technique that imputes missing values simultaneously by
an iterative use of the PCA method. As such, IPCA is part of the iterative imputa-
tion methods that involve exploratory multivariate data analysis techniques [13,14].
It is based on the well-known property of minimization in the least-squares sense of
PCA. According to this, IPCA imputes missing values by minimizing a squared loss
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function of the difference between the original, centred data matrix X (previously ini-

tialized) and the fitted matrix X̂ obtained as product of the two matrices containing
the component scores and the loadings, respectively. As an alternative, the minimiza-
tion process could be replaced by an iterative use of the singular value decomposition or
the alternating least-squares procedure [15]. The IPCA algorithm was proved to have
a series of good properties, by virtue of which its extension to a multiple imputation
perspective by Josse et al. [15] was justified.

IPCA starts from the entire matrix X fulfilled with initial values and carries out
imputation according to the main steps summarized in Table 2.

2.3. The missForest algorithm

The missForest algorithm [16], developed for mixed-type data (quantitative and cat-
egorical variables jointly observed), uses a random forest (RF) [17] trained on the
observed part of matrix X to predict the missing values. Within the scope of our
investigation, we confine the use of missForest to quantitative data, although we are
aware this procedure was developed for a more general usage. Nonetheless, we are in-
terested in exploring how a RF-based imputation method could perform in a situation
seemingly less complicated than mixed-type data, as may be the case of quantitative
data.

The missForest algorithm is described in short in Table 3. For simplicity, the main
quantities involved are defined here. Let Xj be a variable with entries in the column-

vector xj of X and with missing values corresponding to the set of indices: i
(j)
miss ⊆

{1, 2, . . . , n}. Then, let the following vectors and matrices be defined:

- xobsj : the sub-vector of xj with the observed values of Xj ;

- xmissj : the sub-vector of xj with the missing entries of Xj ;

- Xobs
−j : the matrix of the other variables Xl, (l 6= j), with observations corres-

ponding to the set of indices: i
(j)
obs = {1, 2, . . . , n} \ i

(j)
miss. Since this set depends

on the observed values of Xj , matrix Xobs
−j might be not completely observed;

- Xmiss
−j : the matrix of the other variables Xl, (l 6= j), with observations corres-

ponding to the set of indices i
(j)
miss. Since this set depends on the missing values

of Xj , matrix Xmiss
−j might indeed not contain missing values.

The algorithm in Table 3 proceeds until the stopping rule γ is reached. Confined to

quantitative variables, the difference between values x
(k)
ij,imp of matrix X

(k)
imp imputed

in the current iteration k and values x
(k−1)
ij,imp of matrix X

(k−1)
imp imputed in the previous

iteration k − 1 is evaluated through the formula:

∑p
j=1

∑
i∈i

(j)
miss

(
x

(k)
ij,imp − x

(k−1)
ij,imp

)2

∑p
j=1

∑
i∈i

(j)
miss

(
x

(k)
ij,imp

)2 , ∀k ≥ 1. (1)

The algorithm stops when the quantity (1) increases for the first time [16].
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3. Method for simulations

Given the algorithmic nature of FIM, FIP, IPCA and missForest, assessment of their
performance and comparisons among them were carried out through Monte Carlo
(MC) simulation. Experimental conditions were fixed such that they reproduced a
variety of data patterns frequently encountered in applications. In addition to the
number of units and variables, and percentages of MCAR (Missing Completely At
Random) values, experimental conditions also concerned the shape of data distribu-
tions (kurtosis and skewness) and correlation structures of variables, with the aim
of reproducing real data patterns in the most flexible way. To generate data having
the desired features we relied on the two families of Multivariate Exponential Power
(MEP) [18] and Multivariate Skew-Normal (MSN) distributions [19,20].

Main objective of the MC simulation studies was to examine the performance of the
four imputation methods and detect, if possible, the most effective method regarding
the considered data structures. A major aspect of concern was to restrain, as much as
possible, the total number of simulation scenarios to be run without losing any mean-
ingful information about the trends. Accordingly, we performed a range of exploratory
simulation studies at a first stage, followed by supplementary simulations at a second
stage addressed to look more thoroughly into several specific situations suggested by
the first kind of studies.

The simulation design is described across its main steps as follows. After briefly
mentioning MEP and MSN main results in Subsect. 3.1, experimental conditions, data
patterns and proper simulation settings are sketched in Subsect. 3.2. The simulation
procedure is described in Subsect. 3.3, while methods applied to synthesise simulation
results are the object of Subsect. 3.4.

3.1. Multivariate distributions for simulations

MEP and MSN families of distributions play an important role in the description of
real data. Their density functions are flexible enough to cover a wide spectrum of real
scenarios. In addition, both the families can be regarded as extensions of the mul-
tivariate normal (MVN ) distribution in terms of kurtosis (MEP) or skewness (MSN)
departures. To make clearer the role of their parameters in our simulation study, a
synthetic collection of their main theoretical results is given below. Let X be a p-
dimensional continuous random vector (r.v.). Then:

• X is MEPp(µ,Σ, κ) distributed if its density function (d.f.) can be expressed as:

f(x;µ,Σ, κ) =
pΓ(p/2)

πp/2Γ(1 + p/κ)21+p/κ|Σ|1/2
· exp{−1

2
[(x−µ)TΣ−1(x−µ)]κ/2},

(2)
(x ∈ Rp, κ > 0), where µ ∈ Rp is the mean vector and Σ is the “character-
istic matrix”, which is square, symmetric and positive-definite. The variance-
covariance matrix V(X) is linked to Σ by the relation: V(X) = c(κ, p)Σ, where
c(κ, p) = 22/κΓ((p+2)/κ)/(pΓ(p/κ)). Parameter κ expresses kurtosis departures
from the MVN distribution and is therefore regarded as the non-normality para-
meter. Specifically, if κ = 2 d.f. (2) reduces to the MVN distribution, while if
κ > 2 (κ < 2) a platykurtic (leptokurtic) distribution is obtained. The indicators
introduced by Mardia [21] to measure skewness and kurtosis are equal, respect-

ively, to: γ1MV = 0 (obviously), and: γ2MV = p2Γ(p/κ)Γ((p+4)/κ)
Γ2((p+2)/κ) − p(p + 2), where
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from this latter it is apparent that γ2MV depends only on the κ parameter and
the number p of variables [18].

As an illustration, contour plots for the bivariate exponential power distribu-
tion with µ = 0, σ12 = σ21 = 0.5, σ11 = σ22 = 1, and κ = 1; 2; 14 are displayed
in Figure 1.

• X is MSNp(Ω,α) distributed if its d.f. can be expressed as:

f(x; Ω,α) = 2φp(x; Ω)Φ(αTx), (x ∈ Rp,α ∈ Rp), (3)

where: φp(x; Ω) is the MVNp(0,Ω) d.f. with correlation matrix (or “association
matrix”) Ω of full rank, Φ(·) is the N(0, 1) distribution function, and α is a p-
dimensional parameter vector regulating the skewness. In particular, if: α = 0,
then the d.f. (3) reduces to: X ∼ MVNp(0,Ω) with Ω ≡ R. Expected value is

given by: E(X) = µ =
√

2/πδ, where: δ = Ωα√
1+αTΩα

, and variance-covariance

matrix by: V(X) = Σ = Ω − µµT . Correlation matrix R of X is therefore

given by: R = D−1ΣD−1, where D = diag
{√

1− 2π−1δ2
j

}
j=1,...,p

. Univariate

skewness index γ1 for variable Xj is defined as: γ1 = 4−π
2

E(Xj)3

Var(Xj)3/2
, and takes val-

ues in (−0.995,+0.995). Multivariate indices of skewness and kurtosis are given,

respectively, by: γ1MV =
(

4−π
2

)2
(µTΣ−1µ)3, with values in (−0.9905,+0.9905),

and: γ2MV = 2(π − 3)(µTΣ−1µ)2, with values in (−0.869,+0.869) [19,20]. Scale
and location parameters are not comprised in the d.f. (3), but they can be in-
troduced through proper linear transformations [19,20].

Contour plots for the bivariate skew-normal distribution with matrix Ω having
as elements: ω12 = ω21 = 0.8, ω11 = ω22 = 1, along with α = α12 with 12 =
(1, 1)T and α = 1; 4; 10, are displayed in Figure 2.

3.2. Experimental conditions, data patterns and simulation settings

Experimental conditions involved in the MC simulation studies referred to dimension-
ality of data (i.e. number of units and variables), seriousness of missingness (i.e. per-
centages of MCAR values) and data patterns. These latter were defined by combining
two items of shape, i.e. “Symmetry and Kurtosis” (labelled as SyKu) and “SKewness”
(SK), with three structures of correlation of variables, i.e. EquiCorrelations (ECor),
Positive-Negative Correlations (PNCor) and Unbalanced Correlations (UnbCor). Data
with the desired patterns were generated using the two families of multivariate distri-
butions described in Subsect. 3.1. Their parameters – κ and R in the MEP case, α
and Ω in the MSN case –, expressing the experimental conditions linked directly to
shape and correlation of the data to be generated, are denoted as input parameters.
These are distinguished from so-called output parameters, which refer instead to some
synthesis indices, and then some characteristics, of the generated data. This distinc-
tion will help mostly interpret the simulation results obtained in the presence of MSN
generated data (Subsects. 4.2–4.4). Simulation settings (or scenarios) were ultimately
given by the combinations of numbers of units and variables, percentages of MCAR
values and input parameters of the multivariate distributions. These scenarios will be
described study by study in the next Subsects. 4.1–4.4.

We generated patterns of the SyKu shape (Table 4) through MEP distributions
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using the transformation method described in Gómez et al. [18] and Solaro [22], and
fixing the output correlation matrix R rather than the input characteristic matrix
Σ of the MEP d.f. (2). For this reason, R assumes also the role of a matrix of in-
put parameters. On the other hand, patterns related to the SK shape (Table 4) were
generated through MSN distributions using the method implemented by Azzalini in
the R library “sn” [23], which is based on the input (α, ω)-parametrization of the
MSN d.f. (3). Generating data by fixing appropriate output parameters (e.g. correla-
tion coefficients ρ in R) instead of the input parameters α and Ω, would have been
impracticable in this case because of the various constraints among input–output para-
meters (Subsect. 3.1). Nonetheless, simulation results can be interpreted all the same
in connection with the output parameters, thanks to their strict relationships with the
input parameters (Subsects. 4.2–4.4).

After that, we introduced several criteria addressed to describing the generated
data patterns in terms of strength and structure of correlations of variables, as well
as (symmetric or skew) shape of data distributions. While kurtosis and skewness have
homonym univariate and multivariate indices as “natural” syntheses [21], summing
up correlation matrices in scalars was less straightforward. After having valued the
proposals known in the literature (see e.g. [24]), we relied on the following descriptive
indices, which we termed as correlation indices. Specifically, we have:

(1) Eigenvalue-based indices, used as measures of correlation strength. These are
given by the relative eigenvalues (RelEig), i.e. the eigenvalues: λmax = λ1 ≥
. . . ≥ λs ≥ . . . ≥ λmin = λp ≥ 0 of matrix R, with at least one strict inequality,
divided by the number p = tr(R) of variables:

RelEigs =
λs
p
, s = 1, . . . , p, (4)

where: 1
p ≤ RelEig1 ≤ 1 and: 0 ≤ RelEigs ≤ RelEig1, ∀s ≥ 2. RelEigs are

informative about the correlation structure. In case of uncorrelation (i.e. R =
I(p), with I(p) the identity matrix of order p), we have: RelEigs = 1

p for all

s = 1, . . . , p. In case of perfect positive correlations (i.e. ρjl = 1 for all j 6= l), we
have: RelEig1 = 1 and RelEigs = 0 for all s ≥ 2. The same occurs if R contains
any ρjl = −1 in a consistent manner. In addition, in case of equicorrelation
(i.e. ρjl = ρ, ∀j, l), R admits a unique eigenvalue: λ∗ = 1 + (p − 1)ρ, and
(p − 1) not distinct eigenvalues equal to: λ = 1 − ρ, [25]. Then, if ρ > 0, the
maximum eigenvalue is unique and is given by: λmax = λ∗ > λ, from which
we have: RelEig∗ > RelEig. Otherwise, if ρ < 0, the maximum eigenvalue is
no more unique and is given by: λmax = λ > λ∗, so that: RelEig > RelEig∗.
Moreover, given that the first p − 1 eigenvalues λs are equal to λ = 1 − ρ, it
holds: RelEig1 = . . . = RelEigp−1;

(2) Moment-based indices, which are given by:
– the minimum and maximum observed correlation coefficients:

ρmin = min
l>j=1,...,p

(ρjl) and: ρmax = max
l>j=1,...,p

(ρjl), (5)

where: −1 ≤ ρmin ≤ ρmax ≤ +1;
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– the mean absolute correlation:

ρ̄abs =
2

p(p− 1)

∑p

j=1

∑
l>j
|ρjl| , (6)

(ρ̄abs ≥ 0), which is a measure of the overall magnitude irrespective of the
sign of correlations;

– the absolute skewness index:

skewabs =

2
p(p−1)

∑p
j=1

∑
l>j(|ρjl| − ρ̄abs)

3

sd3
abs

, with: sdabs > 0, (7)

(skewabs ∈ (−∞,+∞)), where sdabs at the denominator in (7) is the abso-
lute standard deviation:

sdabs =

√
2

p(p− 1)

∑p

j=1

∑
l>j

(|ρjl| − ρ̄abs)2. (8)

skewabs is an indicator of the extent of unbalance among absolute correl-
ations, indicating whether absolute correlation coefficients are more con-
centrated on either lower absolute values (positive skewness), or higher ab-
solute values (negative skewness). Obviously, skewabs is not defined when
sdabs = 0, that is, in the case of absolute equicorrelation (i.e. |ρjl| = |ρ| for
all j 6= l).

3.3. Simulation procedure

For each simulation setting, we generated a complete n × p data matrix X∗ (n > p)
through an MEP or MSN distribution according to the data shape under study (SyKu
or SK, respectively). Subsequently, we set up T = 1000 incomplete matrices Xt from
X∗ by deleting 5%, 10%, or 20% of values completely at random, and applied FIM,
FIP, IPCA and missForest to impute missing values in each Xt, (t = 1, . . . , 1000),
using the following options:

• FIM and FIP (Table 1): We kept the default options of the R library ‘GenFor-
Imp’ [26], which are: (1) a proportion q = 0.1 of donors (Table 1, point 4); (2) as
for FIP only, extraction of the principal components (PCs) from the variance-
covariance matrix (i.e. option ‘cor=False’, see Remark 3, Sect. 2.1 in Solaro et al.
[12]), along with the Euclidean distance (r = 2 in Table 1, point 4) for donors’
detection;
• IPCA (Table 2): We used the function ‘imputePCA’ in the R library ‘miss-

MDA’ [27] with the default nonparametric ‘Regularized method’ [15], the max-
imum number of iterations fixed at 5000, and the number of extracted PCs set
at the largest possible value, i.e. p− 2, (p ≥ 3);
• missForest (Table 3): We increased the maximum number of iterations from 10

(the default value in the R library ‘missForest’ [28]) to 50. The other relevant
parameters ‘ntree’ – the number of trees grown in each forest – and ‘mtry’ –
the number of variables randomly sampled at each node of the trees – are kept
fixed at their default values, i.e. ntree = 100 and mtry = b√pc, where bxc is the
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largest integer not greater than x.

To limit the total number of simulation scenarios to be inspected without losing
any meaningful information, we initially tested the imputation performance under the
SyKu shape in the presence of the ECor structure only (Table 4). Supplementary MC
studies involving the PNCor and the UnbCor structures were performed at a later
stage, under the range of simulation settings suggested by the results obtained for
the SK shape. These latter were expected to give useful indications about the SyKu
shape because, roughly speaking, MSN distributions with α = 1 (situations of slighter
skewness) are quite close to MEP distributions with κ = 2 (normal distribution).

Finally, it is worth remarking that detecting, for each method, the best set of options
depending on the types of data structures was beyond our scopes. This would have
tremendously enlarged the number of simulation scenarios to be considered. We then
applied the four methods at their defaults, excepting the increase of both the number
of PCs extracted under IPCA (for a better comparability with FIP) and the maximum
number of iterations under IPCA and missForest.

3.4. Methods for summaries and comparisons

We carried out both descriptive and inferential analyses of simulation results accord-
ing to a twofold purpose: (1) to inspect the impact of the type of pattern (defined
by kurtosis or skewness along with correlation structure) on the imputation perform-
ance of FIM, FIP, IPCA and missForest, keeping the other experimental conditions
fixed (pattern-impact analysis); (2) to compare the imputation performance among
the four methods ceteris paribus (performance comparison analysis). As a measure
of the imputation performance, we used the Relative Mean Square Error (RMSE),
which is similar to the normalized root mean squared error adopted by Stekhoven
and Bühlmann [16]. For each method m and under each combination c of the levels
of the experimental conditions (said “experimental combination”), RMSE is given by
the values rt,c(m):

rt,c(m) =

p∑
j=1

1
nσ2

j
(x∗j − mx̃j,t)

T (x∗j − mx̃j,t), t = 1, . . . , 1000, (9)

where x∗j is column vector j of the known complete matrix X∗, mx̃j,t is column vector

j of matrix mX̃t with missing values imputed by method m at run t, and σ2
j is the

variance of variable Xj in X∗, (j = 1, . . . , p). For the procedure applied to gener-
ate the incomplete matrices Xt (Subsect. 3.3), RMSE values in (9) are independent
observations conditionally on the complete matrix X∗.

Descriptive analysis was based on usual synthesis measures (e.g. mean and standard
deviation) and graphs, in particular, dot plots of the RMSE mean values: r̄c(m) =
1
T

∑T
t=1 rt,c(m), computed for each method m under every experimental combination c,

(an ample collection of box plots can be found in [32]).
Methods for inference were chosen consistently with the type of analysis – pattern-

impact or performance comparison – to be fulfilled. Pattern-impact analysis was car-
ried out by using the procedure described in Hochberg and Tamhane [29] for comput-
ing Tukey uncertainty intervals (U.I.s) around sample means. This procedure, which
is based on Tukey’s multiple comparison method for balanced data [29], produces sim-
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ultaneous confidence intervals by which a plurality of means can be compared with
each other while preserving the overall nominal 1− α confidence level, (0 < α < 1).

With the aim of comparing the RMSE means referred to the same imputation
method across different experimental combinations, we re-adapted the above procedure
as follows. Let E = {E1, . . . Eh} be the set of h active experimental conditions, i.e.
conditions in regard to which we want to perform comparisons within each given
method. Set E depends on the type of simulation study considered. For instance,
under the SyKu-ECor pattern (Table 4), we have h = 2 active conditions given by
kurtosis (E1) and correlation structure (E2). The other h̄ conditions not included in
E, and forming the set Ē, are the inactive conditions. In all the considered simulation
studies, inactive conditions are given by the number of variables, the number of units
and percentage of MCAR values (so that: h̄ = 3), and are kept fixed at specific levels,
say, Ē = ē∗. Then, for every set: E∗ = {E | Ē = ē∗} of h active conditions considered
at the fixed levels ē∗ of Ē, we set up a h-way full ANOVA model for explaining RMSE
with the effects of the levels of the h conditions Ej in E∗:

R∗i1i2...ih,t(m) = mθ
∗+mτ

∗
1i1

+ . . .+mτ
∗
hih

+ . . .+m(τ1τ2 . . . τh)∗i1i2...ih+ε∗i1i2...ih,t(m), (10)

(ij = 1, . . . , Ij , j = 1, . . . , h, t = 1, . . . , 1000), where R∗i1i2...ih,t(m) is RMSE of method
m under the combination of levels (i1, i2, . . . , ih) of the h active conditions in the set
E∗ at the t-th simulation run, mθ

∗ is the overall RMSE mean of method m conditional
on the levels ē∗ of the h̄ inactive conditions in Ē, parameters mτ

∗ are fixed effects
associated to the single levels, or their combinations, of the h active conditions in E∗,
and εi1i2...ih,t(m) are i.i.d. N(0,mσ

2) random errors, with mσ
2 unknown.

Next, let I∗k = (i1, i2, . . . , ih | ē∗) be the k-th combination of levels of the h active

conditions in E∗, with: k = 1, . . . ,K, and: K =
∏h
j=1 Ij expressing the total number

of these combinations. As said before, we have T = 1000 observations for each I∗k . The

RMSE sample mean of method m under I∗k is given by: R̄I∗k (m) = 1
T

∑T
t=1R

∗
i1i2...ih,t

(m),

∀k. We have: E
[
R̄I∗k (m)

]
= θI∗k (m), and: Var

[
R̄I∗k (m)

]
= mσ

2

T , ∀k. Then, Tukey U.I.
around R̄I∗k (m) at the overall 1− α confidence level is given by:

R̄I∗k (m) ±Q(α)
K,ν

S(m)

2
√
T
, (11)

where Q
(α)
K,ν is the Studentized range, ν = K(T − 1) expresses the degrees of freedom

of the residual deviance ESS(m) of model (10), and S2(m) is the unbiased sample

variance estimator for mσ
2 given by: S2(m) = ESS(m)

K(T−1) .

Performance comparison analysis was carried out by means of the Jonckheere–
Terpstra (JT) test [30] for ordered alternatives, with the aim of appraising which
among the four imputation methods proves to have smaller imputation errors un-
der the various simulation scenarios. We regarded the best performing method as the
one that, in case of a significant result, has the smallest p-value, or, equivalently, the
highest absolute value on the reference asymptotic normal distribution of the JT test.
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4. Simulation studies and their results

In the ensuing subsections, simulation studies are described in terms of data patterns
(Table 4), simulation settings and main findings. Simulation results are discussed tak-
ing into account the relationships between input and output parameters of the MEP
and MSN distributions used for data generation (Subsects. 3.1 and 3.2). As already
pointed out, these relationships will help mostly understand the results related to the
SK shape.

Given the great number of the considered scenarios, simulation results presented
here exclusively concern 20% of MCAR values, since it better emphasizes differences
among FIM, FIP, IPCA and missForest [31], and mostly pertain to the case of p = 5
variables and n = 1000 units. Besides being tested in all the studies, this experimental
setting is representative of the trends observed under most of the other scenarios. An
ample collection of the omitted results can be found in the supplemental material (SM)
and in [32].

Results are displayed through graphs and numeric tables. Dot plots and tables
of RMSE mean values with 95%-Tukey U.I.s are part of the pattern-impact analysis
(Subsect. 3.4), addressed to discovering, for each method, potential effects of the active
conditions (i.e. correlation structure and shape of data distribution) on the imputation
performance under fixed levels of inactive conditions (i.e. number of variables, number
of units and percentage of MCAR values).

Figures and tables are built with a similar structure over all the simulation studies.
Figures are set up as matrices of panels of dot plots, whose column headers contain
the name of the imputation methods, and row headers the number of variables (e.g.
Figure 3) or the input parameters of the correlation structure (e.g. Figure 4). In
each panel, input kurtosis/skewness parameters are put on the horizontal axis, while
the vertical axis reports RMSE mean values. According to the procedure adopted to
compute Tukey U.I.s (Subsect. 3.4), comparisons among RMSE means can be made
simultaneously, at fixed levels of the inactive conditions, within every column in the
graphs (and in the tables), that is, with regard to a same method. Tukey U.I.s that
do not overlap in such comparisons pick out the RMSE means that are significantly
different at 0.05 level, as well as the active conditions (and their levels) under which
significant differences are observed for a specific imputation method.

JT test results pertain to the performance comparison analysis, addressed here to
detecting the most effective method from among FIM, FIP and IPCA under the various
simulation settings. Since by the descriptive analysis missForest showed a poor or not
readily understandable performance in many of the considered situations, we decided
to confine these comparisons to FIM, FIP and IPCA. In line with this, to detect the
best method from among these three, we carried out six separate one-sided JT tests
at the 0.05 significance level to test the null hypothesis:

H0 : FFIM (x) = FFIP (x) = FIPCA(x), ∀x ≥ 0, (12)

where Fm(·) in (12) denotes the empirical RMSE distribution function of method m,
against each of the following six ordered alternatives:
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1 = H1 : FFIM (x) ≤ FFIP (x) ≤ FIPCA(x)

2 = H1 : FFIP (x) ≤ FFIM (x) ≤ FIPCA(x)

3 = H1 : FIPCA(x) ≤ FFIP (x) ≤ FFIM (x)

4 = H1 : FFIM (x) ≤ FIPCA(x) ≤ FFIP (x)

5 = H1 : FFIP (x) ≤ FIPCA(x) ≤ FFIM (x)

6 = H1 : FIPCA(x) ≤ FFIM (x) ≤ FFIP (x),

(13)

with at least a strict inequality for any x. Tables regarding the JT test contain the num-
ber of the “most significant” ranking according to the numbering of hypotheses (13) if
the result is significant, or a “n.s.” label if the result is not significant. In addition, cells
in the tables are coloured differently depending on which method appears as the first
in the significant ranking, thus proving to have smaller imputation errors. Grey cells
denote rankings 1 and 4, where FIM proves to have the best performance. Light-grey
cells indicate rankings 2 and 5, where FIP is the best. Blank cells stand for rankings 3
and 6, with IPCA as the best.

The four exploratory studies listed in Table 4 are covered in Subsects. 4.1–4.4,
respectively, while results of supplementary studies are summarised in Subsect. 4.5.

4.1. Simulation study 1: Symmetry and kurtosis with equicorrelation

Table 5 reports experimental conditions and correlation indices for the SyKu-ECor
study (complete table in SM), whose data patterns were generated through MEP dis-
tributions in the presence of equicorrelation. Three different types of distributions were
involved, i.e. leptokurtic (κ = 1), normal (κ = 2) and platykurtic (κ = 14), in order
to study the effect of kurtosis on the imputation performance. Regarding the correla-
tion structure, equicorrelation matrices were considered with three different levels of
magnitude for ρ, i.e. uncorrelation (ρ = 0), positive low (ρ = 0.3) and positive high
(ρ = 0.7) correlations. In this study, correlation indices (Subsect. 3.2) are given basic-
ally by the relative eigenvalues (4), the first two and the last of which are displayed
in Table 5. For the fact that the ρs coincide, we have: sdabs = 0, so that the absolute
skewness index in (7) is undefined. Moreover, since the ρs are also positive, the max-
imum eigenvalue is unique, while the other p − 1 eigenvalues assume the same value
(Subsect. 3.2).

Figure 3 displays dot plots of RMSE mean values (with 95%-Tukey U.I.s) of FIM,
FIP, IPCA and missForest for each combination of levels (ρ, κ), with p = 5 (first row of
panels) and p = 10 variables (second row), and n = 1000 units, while Table 6 contains
the corresponding numeric results (all the omitted tables and figures are provided in
SM). IPCA shows the best performance because it has the lowest RMSE mean values
under almost all the simulation scenarios. Overall, FIM and FIP tend to have a similar
and intermediate performance between IPCA and missForest for small ρs (ρ = 0; 0.3).
When ρ = 0.7, their performance tends however to worsen, especially FIM with p = 10.

Pattern-impact analysis is based on the 2-way full ANOVA model that derives from
equation (10) by including correlation structure and kurtosis as active conditions, and
with the levels specified in Table 5 (input parameters). RMSE means can be compared
each other within every panel in Figure 3. The main results are summed up as follows:

– Correlation structure effect : It can be noticed that, for every value of κ with fixed
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p, Tukey U.I.s do not overlap in any of the panels in Figure 3. It means that
the RMSE mean values of all the methods tend to decrease as the correlation
level becomes stronger, or equivalently, as the first relative eigenvalue increases
(Table 5). This occurs whatever the value of the kurtosis parameter is, as the
number of variables and units varies (see SM also).

– Kurtosis effect : The four methods behave slightly differently. Specifically,
• when ρ = 0, FIM and FIP tend to have significantly smaller errors in the

presence of leptokurtic (κ = 1) rather than normal (κ = 2) or platykurtic
(κ = 14) data. With higher values of ρ, FIP tends to perform better under
normal data (although sometimes κ = 2 is not significantly different to
κ = 14), and FIM under platykurtic data, while both FIM and FIP seem
to perform worst in the presence of leptokurtic data (especially FIM when
ρ = 0.7). However, when either p = 3 or n = 500, other kinds of trends
occur. For instance, with p = 3 and n = 500, FIM and FIP always perform
better for κ = 14 (see SM).
• IPCA tends to have smaller RMSE mean values when data are normal,

although it proves to be less sensitive than the other methods to kurtosis
of data distribution when ρ is low. For instance, in the panel in the first
row (p = 5) and third column of Figure 3, Tukey U.I.s overlap when ρ = 0
and ρ = 0.3 (see also Table 6). Other trends can however be observed in
the presence of lower dimensionality of data (e.g. when p = 3 and n = 500
with ρ ≥ 0.3, results are better for platikurtic data).
• missForest has a less clear trend over the various simulation settings. Non-

etheless, mostly it appears to perform better with normal data as well as
to be more severely affected by platykurtic data (κ = 14) for higher values
of ρ and p.

Regarding the performance comparison analysis confined to FIM, FIP and IPCA,
JT test results are displayed, for all p and n with 20% of MCAR values, in Table 7.
With only two exceptions occurring when ρ = 0 and p = 10, IPCA is always the
best imputation method compared to FIM and FIP. In addition, the prevalence of
ranking 3, instead of ranking 6, reveals that FIM more frequently performs worse than
the other two methods. In the other omitted tables with 5% and 10% of MCAR values
reported in SM, IPCA proves to be the best method in almost all the scenarios.

4.2. Simulation study 2: Skewness and equicorrelation

Table 8 summarises experimental conditions and correlation indices of the SK-ECor
study (skewness with equicorrelation; complete table in SM). It is the first of the
three exploratory studies that involve data patterns generated by MSN distributions.
These studies mostly differ for the structure assigned to the input correlation matrix Ω
(Subsect. 3.1), and consequently for the structure taken over by the output correlation
matrix R. Regarding the shape of data distribution, the same four levels of skewness
parameter α are considered for every variable (i.e. αj = α, for all j = 1, . . . , p), and
range from slight skewness (α = 1) to stronger skewness (α = 30), passing through
two intermediate levels (α = 4 and α = 10).

As already pointed out (Subsect. 3.2), input and output parameters in the MSN
case are linked together by complex patterns of variations. For instance, values of
the output correlation coefficient ρ depend on both the input parameters ω and α
along with the number p of variables. With ω and p fixed, ρ varies, therefore, with
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α, although in general, such a variation is of small magnitude [32]. For this reason,
in the correspondence between the input and output correlations reported in Table 8,
an approximate value of ρ is provided for each pair (ω, p), thus meaning that a small
range of values of ρ corresponds to the set of values of α chosen for the study.

The SK-ECor pattern is characterised by having matrix Ω with the same non-
negative ω for all pairs of variables, and matrix R preserving the same equicorrelation
structure of Ω although with different values (Table 8). For α in the range [1, 30] and
p = 5, we thus have three levels of magnitude of ρ: Negative low ρs (≈ −0.1), resulting
from ω = 0; positive low ρs (≈ 0.2), corresponding to ω = 0.5; positive moderate ρs
(≈ 0.6), related to ω = 0.8, (Table 8). Moreover, in this case also, correlation indices
are substantially given by the relative eigenvalues (the first two and the last provided
in Table 8) because of the equicorrelation structure. In particular, in the presence of
negative low ρs (ω = 0), the maximum eigenvalue is no more unique (Subsect. 3.2),
and it coincides with the subsequent first p− 2 eigenvalues (Table 8). This is the main
difference between data built up with negative low ρs and those ones with positive ρs.

Dot plots of RMSE mean values with 95%-Tukey U.I.s are displayed in Figure 4,
with p = 5 variables, n = 1000 units and 20% of MCAR values. Panels in the rows
correspond to the three levels of input/output correlation described above. According
to the descriptive analysis, two different trends can be noticed. Whatever the value
of α, in the presence of negative low ρs (ω = 0), FIM has the smallest RMSE means,
followed by FIP, while IPCA and missForest perform poorly. In the case of positive
low ρs (ω = 0.5), FIM and FIP perform similarly, although FIP is slightly better
(α = 1 excepted, where IPCA is better). When ρ assumes moderate values (ω = 0.8),
the trend becomes opposite. FIM produces the worst results (apart from missForest
with α = 10), IPCA is the best, and FIP performs very similarly to IPCA.

Pattern-impact analysis is based on the 2-way full ANOVA model (10) with input
correlation ω and skewness α as active conditions, whose levels are specified in Table 8
(input parameters). RMSE means can be compared across the panels inside a same
column of Figure 4, or equivalently within the columns of Table 9. Regarding the
correlation structure effect, once again RMSE means tend to shrink in value as the
correlation level increases. Notably, for each α and each method, Tukey U.I.s of ω = 0
never overlap with those of ω = 0.8. Regarding the skewness effect, a sort of dichotomy
between α = 1 and α ≥ 4 appears in Figure 4, especially for FIM, FIP and IPCA. In
particular, when ω = 0 and ω = 0.8, Tukey U.I.s referred to α = 1 do not overlap with
those of α ≥ 4. In the case of negative low ρs (ω = 0), FIM, FIP and IPCA perform
better when data are more skew (α ≥ 4), while in the presence of higher values of ρ
(ω = 0.8), they tend to perform better for less skew data (α = 1).

The case of positive low ρs (ω = 0.5) represents an intermediate situation. FIM and
FIP prove to be less sensitive to skewness – their U.I.s overlap for every ω –, while
IPCA performs clearly better for α = 1. On the other hand, missForest has a relatively
strange performance. The skewness effect is evidently not monotone, especially for
ω = 0 and ω = 0.8.

Lastly, JT test results in Table 10 concern the performance comparison analysis
carried out for detecting the best method from among FIM, FIP and IPCA. Clearly
separated trends can be read. In the presence of negative low ρs (ω = 0), the best
method is FIM, followed by FIP (ranking 1 in (13)). Few exceptions are observed
when α = 1 and data dimensionality is low (p = 3 with n = 500; 1000, and p = 5 with
n = 500), where the best method is IPCA. As for positive low ρs (ω = 0.5), IPCA
has the best performance, although FIP turns out to be the best with p = 5 and more
skew data (α ≥ 4). Finally, in the presence of higher values of ρs (ω = 0.8), IPCA has
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always the best performance (tables concerning 5% and 10% of MCAR values in SM).

4.3. Simulation study 3: Skewness and positive–negative correlations

Experimental conditions, correspondence of input–output correlations and correlation
indices regarding the SK-PNCor study (skewness with positive and negative correla-
tions; complete table in SM) are reported in Table 11. Data under this pattern are
generated with matrix Ω containing the same ω in absolute value but with alternat-
ing sign. This produces an output matrix R having positive and negative correlations
(PNCor) of a very similar magnitude, according to the formal structure described in
Table 11. For example, with p = 5 and ω = 0.2 matrix Ω is:

Ω =


1 0.2 −0.2 0.2 −0.2

0.2 1 −0.2 0.2 −0.2
−0.2 −0.2 1 −0.2 0.2

0.2 0.2 −0.2 1 −0.2
−0.2 −0.2 0.2 −0.2 1

 .

Next, by setting: α = 1 the following matrix R is obtained:

R =


1 0.088 −0.299 0.088 −0.299

0.088 1 −0.299 0.088 −0.299
−0.299 −0.299 1 −0.299 0.163

0.088 0.088 −0.299 1 −0.299
−0.299 −0.299 0.163 −0.299 1

 ,

where, according to the notation of Table 11, ρ1 = −0.299, ρ2 = 0.088, and ρ3 = 0.163.
Overall, values of ρ remain quite stable as p and/or α vary, while they are mainly

sensitive to variations of ω. When p = 5, levels of output ρ derived from the values
chosen here for ω, i.e. ω = 0.2; 0.5; 0.8, are reported in Table 11 under the correspond-
ence of input-output correlations. The three correlation structures thus obtained (i.e.
PN low, PN moderate and PN high) differ both in magnitude and in the extent of un-
balance among absolute correlations. In particular, in the case of PN moderate ρs, cor-
relation coefficients are more concentrated on higher absolute values (skewabs ≈ −0.75)
than PN low ρs (skewabs ≈ −0.53) and PN high ρs (skewabs ≈ 0).

An excerpt of the results concerning the SK-PNCor study with p = 5 variables,
n = 1000 units and 20% of MCAR values is provided in Figure 5 and Table 12.
The three rows of panels in Figure 5 correspond to the three correlation structures
described above. Although most remarks would be very similar to those advanced for
the SK-ECor pattern (Subsect. 4.2), it is worth pointing out that: (a) in the presence
of PN low ρs (ω = 0.2), FIM has the smallest RMSE means, and missForest the
highest. On the other hand, IPCA shows the best performances with PN moderate-
high ρs (ω = 0.5; 0.8), while FIM performs very poorly in the presence of PN high ρs
(ω = 0.8); (b) FIP always shows intermediate performances between the best and the
worst methods; (c) missForest tends to improve its performance with the increasing
of correlation levels.

Pattern-impact analysis is based again on the 2-way full ANOVA model (10) hav-
ing input correlation ω and skewness α as active conditions with the levels given in
Table 11. Once again, as the correlation becomes stronger, or as the first relative ei-
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genvalue of R increases, RMSE means decrease for all the methods. In particular, for
each α, Tukey U.I.s of every method do not overlap over the different values of ω. As
for the skewness effect, again we have the dichotomy: α = 1 vs. α ≥ 4, just observed in
the SK-ECor study (Subsect. 4.2), and it is shared, more or less, by all the methods.
Specifically, (a) in the presence of PN low or moderate ρs (ω = 0.2; 0.5), all the meth-
ods tend to produce smaller errors for more skew data (α ≥ 4); (b) in the presence
of PN high ρs (ω = 0.8), they tend to perform better for less skew data (α = 1). In
most situations, with ω fixed, Tukey U.I.s overlap for α ≥ 4, but they do not in the
comparison between α = 1 and α ≥ 4.

JT test results referred to the performance comparison analysis are provided in
Table 13. In all the considered scenarios with PN moderate or PN high ρs (ω =
0.5; 0.8), IPCA performs better than FIM and FIP. In the presence of low ρs (ω = 0.2)
with p = 5, FIM is the best method, followed by FIP, whereas for p = 10, IPCA proves
to have the best performances (tables with 5% and 10% of MCAR values in SM).

4.4. Simulation study 4: Skewness and unbalanced correlations

Table 14 reports the basic features of the SK-UnbCor study (skewness and unbalanced
correlations), which is treated in short also in [12]. Input matrix Ω contains a same
negative value ω1 = −ω in the first column/row, and a same positive value ω2 = ω/c in
the other columns/rows (ω = 0.2; 0.5; 0.8, c = 1; 1.25; 1.5). Coefficient c thus regulates
the extent of unbalance among input correlations in Ω, which also reflects, yet not in
a linear way, among the output correlations in R. In this way, two distinct values of
ρ, i.e. ρ1 and ρ2, are obtained in connection with ω1 and ω2, respectively. As before,
values of ρ mostly vary with ω rather than α, so that from the various combinations
of values of ω and c we obtain the six different correlation structures of R provided in
Table 14 (see also [12]). They mainly differ in the overall magnitude of the absolute
correlations (measured by ρ̄abs), and in the extent of unbalance between ρmin and
ρmax, while, overall, correlation coefficients are more concentrated on low absolute
correlations (skewabs > 0).

From Figure 6 it can be observed that: (a) In the presence of the “negative low and
nearly null” ρs (ω = 0.2, first three rows of panels), FIM shows the smallest RMSE
mean values, followed by FIP, while IPCA and missForest have a worse performance;
(b) in the presence of the structures “negative moderate ρs” with positive low ρs
(ω = 0.5, c = 1; 1.25) and nearly null ρs (ω = 0.5, c = 1.5), FIP has the lowest RMSE
mean values with few exceptions (i.e. α = 1, c = 1, where IPCA performs better, and:
α ≥ 4, c = 1.5, where FIM performs better); (c) the three structures with negative
high ρs (ω = 0.8, last three rows of panels) highlight the main differences among the
methods. In particular, there is an inversion of trend moving from the “negative high
and positive high” ρs (c = 1), where IPCA has the smallest RMSE mean values and
FIM the highest, to the “negative high and positive low” ρs (c = 1.5), where FIM
performs best and IPCA worst. The row of panels related to the “negative high and
positive moderate” ρs (c = 1.25) displays an intermediate situation, where missForest,
FIM and FIP have a very similar good performance, while IPCA performs worst.

Pattern-impact analysis is based on the 3-way full ANOVA model derived from
equation (10) by including input correlation ω, coefficient c and skewness α as active
conditions with the levels specified in Table 14 (input parameters). Results of this
analysis are shown in Figure 6 in the form of 95%-Tukey U.I.s, and in Table 15.
Comparisons among RMSE mean values can be made within a same column of Figure 6
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(and Table 15), i.e. concerning a same method. As for the correlation structure effect,
once again smaller imputation errors are observed in the presence of higher levels of
correlation. Notably, Tukey U.I.s of every method do not overlap over the different
values of ω, for fixed c and α. Regarding the skewness effect, the dichotomy α = 1
vs. α ≥ 4 is still clearly visible. In particular, when ω = 0.2, missForest, FIM, and
FIP perform better for more skew data (α ≥ 4), while IPCA seems less sensitive to
variations of α, (its Tukey U.I.s overlap for every c). On the other hand, when ω = 0.8
all the methods tend to perform better for less skew (α = 1) than more skew (α ≥ 4)
data. The case ω = 0.5 looks intermediate. Both the trends are observed, in particular
the first (better for more skew data) when c = 1.5, and the second (better for less
skew data) when c = 1.

Finally, JT test results related to the performance comparison analysis are provided
in Table 16. FIM performs better than the other methods in almost all the considered
scenarios, especially when data are more skew-distributed and correlation coefficients
are more unbalanced (c = 1.5). IPCA works better with more balanced moderate or
high ρs (i.e. ω = 0.5; 0.8 with c = 1), with the only exceptions of n = 1000, α ≥ 4,
and ω = 0.5, where FIP, followed by FIM, performs better than IPCA.

4.5. Supplementary simulation studies and computational efficiency

As sketched before in Table 4, several supplementary studies were undertaken in order
to examine additional simulation scenarios. These latter were planned a posteriori, in
the light of the main findings resulted from the exploratory studies of Subsects. 4.1–4.4.

The SyKu shape was also considered in the presence of negative equicorrelations
(SyKu-NegECor pattern) with magnitude similar to the study 1 of the SK-ECor pat-
tern (Subsect. 4.2). Moreover, we introduced the SyKu-PNCor and SyKu-UnbCor pat-
terns with correlation matrices R having entries of magnitude similar to the output R
of the SK-PNCor and SK-UnbCor patterns, respectively (Tables 11 and 14). Finally,
the UnbCor structure was also set up with all positive correlations for both the SyKu
and SK shapes (i.e. SyKu-PosUnbCor and SK-PosUnbCor patterns). All the tables
and figures concerning these further experimental conditions and simulation results
are provided in SM. The main findings are summed up as follows:

• SyKu-NegECor pattern. To have consistent matrices R such that they were
positive-definite, values of ρ could not be less than nearly −0.2. We considered,
therefore, two levels of ρ, i.e. ρ = −0.1;−0.2. Once again, FIM and FIP tend to
have smaller errors in the presence of leptokurtic data (κ = 1) when absolute
correlation values are lower (i.e. when ρ = −0.1), otherwise imputation errors
are smaller when data are platykurtic (κ = 14). This same trend is shared also
by missForest, while IPCA performs better in both the cases when data are lep-
tokurtic. Finally, by the JT test, FIM always proves to be the best method in
all these additional scenarios, followed by FIP (see SM).
• SyKu-PNCor pattern. As regards the correlation effect, results obtained are very

similar to the SK-PNCor pattern. RMSE mean values tend to decrease as the
mean absolute correlation (or as the first relative eigenvalue) increases. Regard-
ing the kurtosis effect, FIM and FIP perform better in the presence of platykur-
tic data, while IPCA with normal data. Depending on the case, missForest may
perform better in the presence of either normal or platykurtic data (see SM).
Concerning the performance comparison analysis, JT test proves that FIM is
the best method in the presence of low mean absolute correlation values (i.e.
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ρ̄abs < 0.3), otherwise IPCA performs best.
• SyKu-UnbCor pattern. The correlation effect is similar as described above. As for

the kurtosis effect, results obtained evidence that FIM and FIP tend to perform
better in the presence of platykurtic data, especially for higher mean absolute
correlation values. On the other hand, IPCA performs better in the presence
of leptokurtic data, while missForest tends to perform better when data are
platykurtic with low mean absolute correlation values, or when data are normal
with higher mean absolute correlation values. Once again, JT test reveals that
overall FIM is the best method in the presence of lower correlation values, while
IPCA is the best in the presence of higher correlation values.
• SyKu-PosUnbCor pattern. Apart from few exceptions, both FIM and FIP tend

to perform better in the presence of normal or platykurtic data, missForest
with normal data and IPCA with leptokurtic data. Overall, by the JT test, FIM
confirms as the best method in the presence of lower correlation values, otherwise
IPCA is the best method.
• SK-PosUnbCor pattern. Results are very similar to those obtained under the

corresponding SK-UnbCor pattern (Subsect. 4.4). Therefore, it seems that it is
the extent of unbalance among correlations along with the magnitude of abso-
lute correlations, rather than the sign, to be the most important discriminant
elements among the imputation methods.

As a final result, Table 17 reports a general indication of the average times (in
seconds) and standard deviations of the four methods under each combination of the
number of variables (p) and units (n), and percentages of MCAR values. Times were
recorded in 1000 simulation runs carried out by a PC with Windows 8.1 Pro 64-bit
operating system, i7-4500U CPU processor, 1.80 GHz clock frequency, and 8.00 GB
RAM. The type of distribution (MEP or MSN) and their parameters (e.g., correlations
of variables) turned out to be substantially uninfluential. For simplicity, we have then
collapsed all the times recorded in the various exploratory studies by computing overall
averages within each triple (p, n,% MCAR values). The fastest method is IPCA, while
the slowest is missForest. As expected, execution times tend to grow with the increase
of dimensionality of data and percentages of MCAR values, but for missForest this
trend appears to be not monotonic.

4.6. Discussion

Taking into account the previous descriptive and inferential analyses that concerned
FIM, FIP and IPCA, the main impressive findings of the simulation studies are now
provided in the form of practical hints for users pertaining to the considered data
structures:

• Equicorrelation patterns. We have seen that if data have a symmetric distribution
and correlation coefficients are positive, IPCA is the method with the smallest
imputation errors. Otherwise, if correlation coefficients are negative, FIM turns
out to be the best one. On the other hand, if data are skew-distributed, FIM tends
to perform better in the presence of negative low correlations and IPCA in the
presence of positive moderate-high correlations, while FIP has an intermediate
performance. Besides the mean absolute correlation ρ̄abs, the relative eigenvalues
are the other measures used to synthesize the output correlation matrices R.
Regardless the symmetric or skew shape of the data, we have noticed that the
second relative eigenvalue RelEig2 can be used as a criteria helpful in choosing
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a method rather than another. In line with this, FIM has proved overall to
perform better than FIP and IPCA when: RelEig2 >

1
p , where p is the number

of variables. On the other hand, if RelEig2 ≈ 1
p , FIP tends to perform better

than FIM and IPCA, or as well as the best method between these two, while
IPCA is the best method when RelEig2 <

1
p . Nonetheless, if data are skew, the

above condition concerning RelEig2 may be relaxed, e.g. FIP might again be
the best method even if RelEig2 is slightly under the threshold of 1

p . This means
that for FIM and FIP skewness of data implies better results also in the presence
of slightly higher positive correlations. Finally, as RelEig1 approaches to 1 and
RelEig2 to 0, that is, with the increasing of the correlation magnitude, IPCA
tends to produce the best results.
• Positive-negative correlation patterns. Data generated with these patterns

present output correlation matrices having both positive and negative entries
of a similar magnitude along with a more or less marked extent of unbalance
among them. The performance of FIM, FIP and IPCA have now to be related
to a plurality of correlation indices, in particular RelEig2 along with ρ̄abs and
skewabs. Overall, FIM has shown better performances than FIP and IPCA when
RelEig2 ≥ 1

p and ρ̄abs ≤ 0.2. In any case, even if RelEig2 is slightly below the

threshold of 1
p and ρ̄abs > 0.2, FIM might still be the best method, provided that

the correlation coefficients are not too much unbalanced towards higher abso-
lute values. As a rule of thumb we refer to: skewabs > −0.6, although it would
require to be validated in more general contexts. In its turn, FIP has proved
in most scenarios to have an intermediate performance between FIM and IPCA
(e.g. rankings 1 and 3 of the hypotheses (13)). We argue, therefore, that under
a wider spectrum of graduated levels of the correlation coefficients FIP might
result as the best performing method. On the other hand, IPCA confirms to
certainly have the best performances in the presence of lower values of RelEig2

(< 1
p), especially when ρ̄abs ≥ 0.4 and skewabs ≤ −0.6 (i.e. stronger unbalance

towards higher absolute correlations).
• Unbalanced correlation patterns. Remarks similar to the positive-negative cor-

relation patterns can be advanced. Once again, the performance of the meth-
ods seems mostly tied to the values assumed by RelEig2, ρ̄abs and skewabs

jointly considered. In particular, FIM performs better than FIP and IPCA when
RelEig2 ≥ 1

p , or when: ρ̄abs < 0.4 with correlation coefficients unbalanced to-

wards lower absolute values (skewabs > 0). That is to say that a low/moderate
magnitude of the mean absolute correlation is not sufficient for FIM to perform
better than the other two methods, because unbalance among the correlation
coefficients has to be towards lower absolute correlations. A counterexample is
provided by the scenario with: ρ1 = 0.18 and ρ2 = 0.50 under both the SyKu-
PosUnbCor (Table S81 in SM) and SK-PosUnbCor (Table S84 in SM) patterns.
Here we have: ρ̄abs = 0.37, i.e. a moderate average magnitude, but correlations
are unbalanced towards the highest value of 0.5 (skewabs < 0). In this case,
neither FIM nor FIP perform well. Moreover, FIP proves to perform better than
the others when the above considered indices are very close to those thresholds,
or slightly overcome them. Finally, IPCA shows a performance better than FIM
and FIP in the presence of higher magnitudes of correlations (ρ̄abs ≥ 0.6, say),
with a stronger unbalance towards absolute larger values (skewabs < 0).

As a final remark, under the considered experimental conditions we have noticed
that the reference values given for RelEig2 and ρ̄abs might be relaxed depending on the
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shape of the data (i.e. symmetric or skew distributions). For instance, as just observed,
FIM and FIP tend to improve their performance in the presence of skew data, while
IPCA with symmetric data.

5. Conclusions

In the presence of such a vast literature concerning the imputation methods, one of the
main problem to cope with is how to choose the best performing method depending
on the real situation at hand. Within the scope of our work, we have tried to address
this point by comparing, under several distinct data patterns, the three nonparametric
methods: ForImp (in the two variants FIM and FIP), IPCA and missForest, which
we have described in short in Sect. 2. We have then confined the performance com-
parison analysis to the methods that have shown the most convincing results in the
descriptive analyses, namely FIM, FIP and IPCA. In this regard, we have decided
not to take missForest into account because it did not show satisfactory or readily
understandable results in many of the considered simulation scenarios. However, it is
worth pointing out that missForest is an imputation method designed for mixed-type
data, and this aspect could explain its lacking effectiveness for quantitative data under
the experimental conditions considered here.

A crucial point in our simulation comparison was the choice of how to simulate ar-
tificial data such that they were representative of real situations as much as possible.
To this end, we set up a variety of data patterns that differed in shape as well as
in the correlation structure of variables. To obtain different items of shape we relied
on two families of multivariate distributions,i.e. the multivariate exponential power
(MEP) and the multivariate skew-normal (MSN), respectively, both of which include
the multivariate normal distribution as a special case. In such a way, we could set
up either symmetric leptokurtic or platykurtic data (the SyKu shape, generated with
MEP) or asymmetric data (the SK shape, generated with MSN). As for the correla-
tion of variables, we considered the three different structures given by equicorrelation
(the ECor structure), positive-negative correlations (the PNCor structure) and unbal-
anced correlations (the UnbCor structure). Data patterns were then provided by the
combinations of the two items of shape with these three correlation structures.

We argue that the simulation method we have designed to analyse the performance
in an imputation problem could have a more general application scope, e.g. concerning
other kinds of statistical techniques and investigations. In our case, the extensive
simulation comparison studies we have undertaken permitted us to give some useful
indications to the potential users about the choice of the most performing imputation
method, among the ones considered, in a nonparametric, single imputation perspective
and with respect to multiple data patterns close to real situations.
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Table 1. The ForImp algorithm with the FIM and FIP methods.

1. Step k = 0: Split X into a (n0 × p)-dimensional submatrix X0 free of missing data (p ≤ n0 < n), and
K submatrices Xk of dimension (nk × p), with k < p the number of missing values in each row (it is not
necessary that nk > 0 for all k = 1, . . . ,K, and nk > p for all k = 0, 1, . . . ,K. See [12]).

2. Step k ≥ 1:

If FIP = True: Perform a PCA on Xk−1 (i.e. the complete submatrix available up to the (k− 1)-th step)

to obtain eigenvalues λ
(k−1)
s and eigenvectors ω

(k−1)
s with generic loading ω

(k−1)
js , (j, s = 1, . . . , p).

PCA input matrix can be either the variance-covariance matrix or the correlation matrix of Xk−1.

3. If FIP = True: Compute Pseudo-Principal Components (PPCs), denoted with C̃s, for the incomplete units
in Xk (i.e. the submatrix with k missing entries in its row) and the complete units in Xk−1 involving only
common complete variables Xl, with l /∈ ιk and ιk the set formed by the k-combinations of the p indices
of variables that present missing values in the rows of Xk. PPCs are then given by:

C̃
(k)
s(ιk)

=
∑p

l=1
l/∈ιk

ω
(k−1)
ls X

(k)
l for the incomplete units in Xk, and:

C̃
(k−1)
s(ιk)

=
∑p

l=1
l/∈ιk

ω
(k−1)
ls X

(k−1)
l for the complete units in Xk−1, (s = 1, . . . , p).

4a. If FIP = True: Compute the weighted Minkowski distance dr of order r, r ≥ 1, (with weights given by

the square root of the eigenvalues λ
(k−1)
s divided by their total sum), between each incomplete unit in Xk

and each complete unit in Xk−1 using their PPC scores computed as above.

4b. Else if FIM = True: Compute the Mahalanobis distance dM between each incomplete unit in Xk and each
complete unit in Xk−1 using the values of the common complete variables Xl, (l /∈ ιk). The variance-
covariance matrix involved in the formula of dM is computed using the common complete variables Xl.

4c. If FIP or FIM = True: The set of donors for the incomplete unit u
(k)
i is formed by the first q100% of

the complete units, available up to the (k − 1)-th step, that correspond to the q-th quantile dq,i of the
Minkowski (FIP) or Mahalanobis (FIM) distances (0 < q < 1; i = 1, . . . , nk).

5. For each incomplete unit u
(k)
i , the missing value xij on variable Xj is imputed with the weighted mean:

x̃
(k)
ij =

∑nδ
δ=1

x
(k−1)
δj

1
dδi∑nδ

δ=1
1
dδi

, ∀j ∈ ιk, where nδ is the total number of donors for u
(k)
i and dδi is the distance

between the δ-th donor and unit u
(k)
i .

Repeat the imputation for each i = 1, . . . , nk to obtain the imputed matrix X̃k.

6. Set up the new complete matrix Xk by stacking Xk−1 with the imputed X̃k.

−→ Repeat points 2 to 6 for FIP (4b excepted), or points 4b to 6 for FIM, until matrix X is completely
imputed.
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Table 2. The IPCA imputation algorithm.

1. Step k = 0: Initialize matrix X by substituting the missing values with values opportunely assigned (e.g.

variable means). Call X(0) the matrix imputed in this way and set up matrix M(0) with the mean vector
in its rows.

2. Step k ≥ 1:

An (n×S) matrix of PC scores F̂(k) along with a (p×S) loading matrix Û(k) (with columns orthogonal and

of unit norm), S < p < n, are found such that the reconstruction error: E = ‖X(k−1) −M(k−1) −FUT ‖2F
is minimized, where ‖·‖F is the Frobenius norm of a matrix (i.e. ‖A‖F =

√
tr (AAT ), with A an (n× p)-

dimensional matrix).

3. Compute the matrix: X̂
(k)

= F̂(k)Û(k)T + M(k−1), and replace the missing entries in X with the corres-

ponding fitted values in X̂
(k)

to obtain the completed imputed matrix: X(k) = W ∗X + (J−W) ∗ X̂
(k)

,
where ∗ is the element-wise (or Hadamard) product, J is the unit matrix containing all 1s, and W is the
matrix with elements wij = 0 if xij is missing and wij = 1 otherwise.

4. Compute matrix M(k) with the updated mean vector in its rows using the completed imputed X(k).

−→ Repeat points 2 to 4 until a convergence criterion is met.
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Table 3. The missForest imputation algorithm (case of quantitative variables only).

1. Step k = 0: Initialize matrix X by substituting the missing values with values opportunely assigned (e.g.
variable means). Set up vector s with the p indices of variables sorted according to the increasing number
of missing values.

2. Step k ≥ 1, with previous results stored in matrix X
(k−1)
imp :

Fit a random forest (RF) using Xobs
−j as matrix of predictors and xobsj as response to have a trained RF.

3. Predict xmissj by using the trained RF on Xmiss
−j .

4. Update matrix X
(k)
imp with the new predictions of missing values in xmissj .

5. Repeat points 2 to 4 for all j in s.

−→ Restart from point 2 until the stopping rule γ in (1) is reached.
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Table 4. Synoptic table of the data patterns considered in both the exploratory and supplementary simulation studies.

Pattern label Description MV distrib. Type of study

SyKu-ECor Symmetry and kurtosis with equicorrelations MEP exploratory
SyKu-NegECor Symmetry and kurtosis with negative equicorrelations MEP supplementary
SyKu-PNCor Symmetry and kurtosis with positive-negative correlations MEP supplementary
SyKu-UnbCor Symmetry and kurtosis with unbalanced correlations MEP supplementary
SyKu-PosUnbCor Symmetry and kurtosis with positive unbalanced correlations MEP supplementary

SK-ECor Skewness with equicorrelations MSN exploratory
SK-PNCor Skewness with positive-negative correlations MSN exploratory
SK-UnbCor Skewness with unbalanced correlations MSN exploratory
SK-PosUnbCor Skewness with positive unbalanced correlations MSN supplementary
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Table 5. SyKu-ECor pattern: Experimental conditions, input–output parameters and correlation indices.

Data dimensionality and percentage of MCAR values:
− Number of variables in X∗ p = 3; 5; 10
− Number of units in X∗ n = 500; 1000
− Percentage of MCAR values 5%; 10%; 20%

Generation of SyKu-ECor pattern from MEPp(0,Σ, κ) with Σ = c−1(κ, p)R and

c(κ, p) = 22/κΓ((p+ 2)/κ)/(pΓ(p/κ)):

→ Input parameters: → Output parameters:

− Kurtosis parameter: κ = 1; 2; 14 − Output correlation coefficients in R:

− Input correlation coefficients in R: ρlj = ρ = 0; 0.3; 0.7 for l 6= j
ρlj = ρ = 0; 0.3; 0.7 for l 6= j = 1, . . . , p

Correspondence between input and output kurtosis for each p = 5; 10:

Input kurtosis: Output MV kurtosis index: Type:

κ = 1 → γ2MV = 11.67 (p = 5), 21.82 (p = 10) positive excess kurtosis
κ = 2 → γ2MV = 0 for all p mesokurtic

κ = 14 → γ2MV = −7.25 (p = 5), −15.65 (p = 10) negative excess kurtosis

Correlation indices computed for the output R matrices with p = 5; 10:

− p = 5 variables

Output ρ RelEig1 RelEig2 RelEig5 ρmin ρmax ρ̄abs
ρ = 0 0.20 0.20 0.20 0 0 0
ρ = 0.3 0.44 0.14 0.14 0.3 0.3 0.3

ρ = 0.7 0.76 0.06 0.06 0.7 0.7 0.7

− p = 10 variables

Output ρ RelEig1 RelEig2 RelEig10 ρmin ρmax ρ̄abs
ρ = 0 0.10 0.10 0.10 0 0 0

ρ = 0.3 0.37 0.07 0.07 0.3 0.3 0.3

ρ = 0.7 0.73 0.03 0.03 0.7 0.7 0.7
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Table 6. SyKu-ECor pattern: 95%-Tukey uncertainty intervals around RMSE mean values of FIM, FIP, IPCA and
missForest, with p = 5; 10 variables, n = 1000 units and 20% of MCAR values.

ForImpMahalanobis ForImpPCA IPCA missForest
ρ κ mean lower upper mean lower upper mean lower upper mean lower upper

p = 5 variables

ρ = 0 κ = 1 1.024 1.021 1.026 1.024 1.021 1.026 1.012 1.010 1.015 1.093 1.091 1.096
κ = 2 1.033 1.031 1.036 1.033 1.031 1.035 1.014 1.012 1.016 1.095 1.093 1.098
κ = 14 1.037 1.034 1.039 1.037 1.034 1.039 1.012 1.010 1.014 1.125 1.123 1.128

ρ = 0.3 κ = 1 0.869 0.867 0.872 0.859 0.857 0.862 0.834 0.831 0.836 0.907 0.904 0.909
κ = 2 0.862 0.859 0.864 0.853 0.850 0.855 0.829 0.827 0.831 0.901 0.898 0.903
κ = 14 0.863 0.861 0.865 0.857 0.855 0.859 0.831 0.829 0.833 0.913 0.910 0.916

ρ = 0.7 κ = 1 0.486 0.483 0.488 0.434 0.432 0.437 0.379 0.377 0.381 0.414 0.411 0.416
κ = 2 0.447 0.445 0.450 0.406 0.404 0.408 0.373 0.371 0.376 0.406 0.404 0.409
κ = 14 0.436 0.434 0.438 0.409 0.407 0.412 0.387 0.385 0.390 0.425 0.423 0.428

p = 10 variables

ρ = 0 κ = 1 2.047 2.044 2.051 2.047 2.043 2.050 2.055 2.052 2.058 2.146 2.143 2.150
κ = 2 2.057 2.054 2.061 2.058 2.054 2.061 2.040 2.037 2.043 2.148 2.145 2.152
κ = 14 2.069 2.066 2.073 2.070 2.066 2.073 2.045 2.042 2.048 2.140 2.136 2.143

ρ = 0.3 κ = 1 1.747 1.743 1.750 1.650 1.647 1.653 1.594 1.591 1.598 1.668 1.665 1.671
κ = 2 1.727 1.723 1.730 1.637 1.634 1.640 1.581 1.578 1.584 1.671 1.667 1.674
κ = 14 1.704 1.701 1.708 1.631 1.628 1.634 1.590 1.587 1.593 1.682 1.679 1.685

ρ = 0.7 κ = 1 1.161 1.157 1.164 0.783 0.780 0.787 0.682 0.679 0.685 0.724 0.720 0.727
κ = 2 1.089 1.086 1.093 0.753 0.750 0.756 0.682 0.679 0.685 0.723 0.720 0.726
κ = 14 1.034 1.031 1.038 0.763 0.760 0.766 0.713 0.710 0.716 0.760 0.756 0.763
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Table 7. SyKu-ECor pattern: JT test for detection of the best im-

putation method among FIM, FIP and IPCA, with 20% of MCAR
values.

p = 3 p = 5 p = 10

n 500 1000 500 1000 500 1000

ρ = 0 κ = 1 3 6 6 3 1 2

κ = 2 3 3 6 3 3 6

κ = 14 6 6 3 6 3 6

ρ = 0.3 κ = 1 6 3 3 3 3 3

κ = 2 3 3 3 3 3 3

κ = 14 3 6 3 3 3 3

ρ = 0.7 κ = 1, 2, 14 3 3 3 3 3 3

Legend. Numbers in the cells refer to the hypotheses (13): 1: FIM
the best; 2: FIP the best; 3, 6: IPCA the best.
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Table 8. SK-ECor pattern: Experimental conditions, correspondence of input–output correlations and correlation
indices.

Data dimensionality and percentage of MCAR values:
− Number of variables in X∗ p = 3; 5; 10
− Number of units in X∗ n = 500; 1000
− Percentage of MCAR values 5%; 10%; 20%

Generation of SK-ECor pattern from MSNp(Ω,α) with Ω =
[
ωlj
]
l6=j=1,...,p

and α = [αj ]j=1,...,p:

→ Input parameters: → Output parameters:

− Skewness parameter: αj = α = 1; 4; 10; 30, ∀j − Output correlation coefficients in R:

− Input correlation coefficients in Ω: ρlj = ρ, for l 6= j = 1, . . . , p

ω = 0; 0.5; 0.8 for l 6= j = 1, . . . , p with approximate ρ values given below

Correspondence between input and output skewness for p = 5:

Input skewness: Output MV skewness index: Strength:

α = 1 (with: ω = 0; 0.5; 0.8) → γ1MV ∈ (0.26, 0.68) moderate-medium skewness

α ≥ 4 (with: ω = 0; 0.5; 0.8) → γ1MV ∈ (0.89, 0.99) strong skewness

Input–output correlation correspondence for p = 5 variables and α ∈ [1, 30]:

Input correlations in Ω: Output correlations in R: Correlation structure:

(1) ω = 0 and p = 5 → ρ ≈ −0.14 negative low ρs

(2) ω = 0.5 and p = 5 → ρ ≈ 0.20 positive low ρs
(3) ω = 0.8 and p = 5 → ρ ≈ 0.58 positive moderate ρs

Correlation indices computed for the output R matrices with the structures (1)–(3):

RelEig1 RelEig2 RelEig5 ρmin ρmax ρ̄abs skewabs

(1) ≈ 0.23 ≈ 0.23 ≈ 0.09 ≈ −0.14 ≈ −0.14 ≈ 0.14 —
(2) ≈ 0.36 ≈ 0.16 ≈ 0.16 ≈ 0.20 ≈ 0.20 ≈ 0.20 —

(3) ≈ 0.66 ≈ 0.09 ≈ 0.09 ≈ 0.58 ≈ 0.58 ≈ 0.58 —
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Table 9. SK-ECor pattern: 95%-Tukey uncertainty intervals around RMSE mean values of FIM, FIP, IPCA and missForest,

with p = 5 variables, n = 1000 units and 20% of MCAR values.

ForImpMahalanobis ForImpPCA IPCA missForest
ω α mean lower upper mean lower upper mean lower upper mean lower upper

ω = 0 α = 1 0.948 0.946 0.951 0.956 0.953 0.958 0.993 0.991 0.996 1.023 1.020 1.025
α = 4 0.904 0.902 0.907 0.922 0.920 0.925 0.988 0.985 0.990 0.980 0.977 0.983
α = 10 0.899 0.897 0.902 0.918 0.916 0.921 0.985 0.983 0.988 0.974 0.971 0.977
α = 30 0.898 0.896 0.901 0.918 0.916 0.921 0.986 0.984 0.989 1.016 1.013 1.019

ω = 0.5 α = 1 0.941 0.938 0.944 0.936 0.934 0.939 0.931 0.929 0.934 0.992 0.990 0.995
α = 4 0.944 0.942 0.947 0.938 0.936 0.941 0.954 0.952 0.957 0.990 0.987 0.993
α = 10 0.944 0.942 0.947 0.938 0.936 0.941 0.956 0.954 0.959 0.992 0.989 0.995
α = 30 0.942 0.939 0.945 0.935 0.933 0.938 0.953 0.951 0.956 1.023 1.021 1.026

ω = 0.8 α = 1 0.611 0.608 0.614 0.582 0.579 0.585 0.559 0.556 0.561 0.603 0.600 0.605
α = 4 0.620 0.617 0.622 0.596 0.593 0.598 0.592 0.590 0.595 0.616 0.613 0.619
α = 10 0.620 0.618 0.623 0.596 0.593 0.598 0.594 0.591 0.596 0.641 0.638 0.644
α = 30 0.619 0.616 0.622 0.595 0.593 0.598 0.593 0.591 0.596 0.614 0.612 0.617
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Table 10. SK-ECor pattern: JT test for detection of the best imputa-
tion method among FIM, FIP and IPCA, with 20% of MCAR values.

p = 3 p = 5 p = 10

n 500 1000 500 1000 500 1000

ω = 0 α = 1 6 6 6 1 1 1

α = 4, 10, 30 1 1 1 1 1 1

ω = 0.5 α = 1 3 3 3 3 3 3

α = 4, 10, 30 3 3 5 2 3 3

ω = 0.8 α = 1, 4, 10, 30 3 3 3 3 3 3

Legend. Numbers in the cells refer to the hypotheses (13): 1: FIM the
best; 2, 5: FIP the best; 3, 6: IPCA the best.
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Table 11. SK-PNCor pattern: Experimental conditions, correspondence of input–output correlations and correl-
ation indices.

Data dimensionality and percentage of MCAR values:
− Number of variables in X∗ p = 5; 10
− Number of units in X∗ n = 500; 1000
− Percentage of MCAR values 5%; 10%; 20%

Generation of SK-PNCor pattern from MSNp(Ω,α) with Ω =
[
ωlj
]
l6=j=1,...,p

and α = [αj ]j=1,...,p:

→ Input parameters: → Output parameters:

− Skewness parameter: αj = α = 1; 4; 10; 30, ∀j − Output correlation coefficients in R:

For odd (even) p, set: m = p− 1, (m = p− 2).
− For j = 2, . . . , p and ω = 0.2; 0.5; 0.8: Then, for each j (# is “number”):


ω1j = ωj1 = (−1)jω

ωjv = ω if sign(ωlj) = sign(ωlv)

ωjv = −ω if sign(ωlj) 6= sign(ωlv),

(l, v = 1, . . . , p, l 6= v 6= j)



ρjv = ρ1 if ωjv = −ω and #neg. ωjl = m
2

ρjv = ρ2 if ωjv = ω and:

for odd p : #pos. ωjl = m
2

for even p : #pos. ωjl = m
2

+ 1

ρjv = ρ3 otherwise,

(l, v = 1, . . . , p, l 6= v 6= j)

Correspondence between input and output skewness for p = 5:

Input skewness: Output MV skewness index: Strength:

α = 1 (with: ω = 0.2; 0.5; 0.8) → γ1MV ∈ (0.06, 0.22) moderate skewness

α ≥ 4 (with: ω = 0.2; 0.5; 0.8) → γ1MV ∈ (0.98, 0.99) strong skewness

Input–output correlation correspondence for p = 5 variables and α ∈ [1, 30]:

Input corr. in Ω: Output correlations in R: Correlation structure:

(1) ω = 0.2 and p = 5 → ρ1 ≈ −0.30, ρ2 ≈ 0.06, ρ3 ≈ 0.15 positive-negative low ρs
(2) ω = 0.5 and p = 5 → ρ1 ≈ −0.56, ρ2 ≈ 0.37, ρ3 ≈ 0.50 positive-negative moderate ρs
(3) ω = 0.8 and p = 5 → ρ1 ≈ −0.78, ρ2 ≈ 0.70, ρ3 ≈ 0.77 positive-negative high ρs

Correlation indices computed for the output R matrices with the structures (1)–(3):

RelEig1 RelEig2 RelEig5 ρmin ρmax ρ̄abs skewabs

(1) ≈ 0.38 ≈ 0.19 ≈ 0.07 ≈ −0.32 ≈ 0.16 ≈ 0.23 ≈ −0.53
(2) ≈ 0.60 ≈ 0.13 ≈ 0.05 ≈ −0.56 ≈ 0.50 ≈ 0.50 ≈ −0.75

(3) ≈ 0.81 ≈ 0.06 ≈ 0.03 ≈ −0.78 ≈ 0.78 ≈ 0.76 ≈ 0
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Table 12. SK-PNCor pattern: 95%-Tukey uncertainty intervals around RMSE mean values of FIM, FIP, IPCA and

missForest, with p = 5 variables, n = 1000 units and 20% of MCAR values.

ForImpMahalanobis ForImpPCA IPCA missForest
ω α mean lower upper mean lower upper mean lower upper mean lower upper

ω = 0.2 α = 1 0.875 0.873 0.878 0.882 0.880 0.884 0.892 0.890 0.894 0.932 0.930 0.934
α = 4 0.829 0.826 0.831 0.846 0.844 0.848 0.875 0.873 0.877 0.888 0.886 0.891
α = 10 0.822 0.820 0.824 0.841 0.839 0.843 0.870 0.868 0.872 0.882 0.880 0.885
α = 30 0.821 0.819 0.823 0.841 0.839 0.843 0.871 0.869 0.873 0.879 0.877 0.881

ω = 0.5 α = 1 0.665 0.663 0.667 0.649 0.647 0.651 0.626 0.624 0.628 0.695 0.693 0.697
α = 4 0.634 0.632 0.636 0.631 0.629 0.633 0.612 0.610 0.614 0.663 0.661 0.665
α = 10 0.631 0.629 0.633 0.629 0.627 0.631 0.611 0.609 0.613 0.662 0.660 0.665
α = 30 0.630 0.628 0.632 0.629 0.627 0.631 0.610 0.608 0.612 0.660 0.658 0.663

ω = 0.8 α = 1 0.387 0.384 0.389 0.339 0.337 0.341 0.301 0.299 0.303 0.342 0.340 0.344
α = 4 0.396 0.394 0.398 0.357 0.355 0.359 0.321 0.319 0.323 0.355 0.353 0.358
α = 10 0.395 0.393 0.397 0.358 0.355 0.360 0.323 0.321 0.325 0.355 0.353 0.357
α = 30 0.395 0.393 0.397 0.359 0.356 0.361 0.323 0.321 0.325 0.355 0.352 0.357
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Table 13. SK-PNCor pattern: JT test for detection of

the best imputation method among FIM, FIP and IPCA,
with 20% of MCAR values.

p = 5 p = 10

n 500 1000 500 1000

ω = 0.2 α = 1 3 1 3 3

α = 4, 10 4 1 3 6

α = 30 1 1 3 6

ω = 0.5 α = 1, 4, 10, 30 3 3 3 3

ω = 0.8 α = 1, 4, 10, 30 3 3 3 3

Legend. Numbers in the cells refer to the system of hy-
potheses (13): 1, 4: FIM the best; 3, 6: IPCA the best.
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Table 14. SK-UnbCor pattern: Experimental conditions, correspondence of input–output correlations and cor-
relation indices.

Data dimensionality and percentage of MCAR values:
− Number of variables in X∗ p = 5
− Number of units in X∗ n = 500; 1000
− Percentage of MCAR missing values 5%; 10%; 20%

Generation of SK-UnbCor pattern from MSNp(Ω,α) with Ω =
[
ωlj
]
l6=j=1,...,p

and α = [αj ]j=1,...,p:

→ Input parameters: → Output parameters:

− Skewness parameter: αj = α = 1; 4; 10; 30, ∀j − Output correlation coefficients in R:

− Input correlation coefficients in Ω: ρ1j = ρ1, j 6= 1

ω1j = ω1 = −ω, ω > 0, j 6= 1 ρlj = ρ2, for l, j 6= 1, l 6= j

ωlj = ω2 = ω/c, for l, j 6= 1, l 6= j,

with ω = 0.2; 0.5; 0.8 and c = 1; 1.25; 1.5

Correspondence between input and output skewness for each p = 5:

Input skewness: Output MV skewness index: Strength:

α = 1 (with: ω = 0.2; 0.5; 0.8) → γ1MV ∈ (0.27, 0.42) moderate skewness

α ≥ 4 (with: ω = 0.2; 0.5; 0.8) → γ1MV ∈ (0.89, 0.99) strong skewness

Input–output correlation correspondence for p = 5 variables and α ∈ [1, 30]:

Input correlations in Ω: Output correlations in R: Correlation structure:

(1) ω = 0.2 and c = 1; 1.25; 1.5 → ρ1 ≈ −0.25, ρ2 ≈ 0 negative low and nearly null ρs

(2) ω = 0.5 and c = 1; 1.25 → ρ1 ≈ −0.4, ρ2 ≈ 0.2 neg. moderate and pos. low ρs

(3) ω = 0.5 and c = 1.5 → ρ1 ≈ −0.4, ρ2 ≈ 0.1 neg. moderate and nearly null ρs
(4) ω = 0.8 and c = 1 → ρ1 ≈ −0.7, ρ2 ≈ 0.6 neg. high and pos. high ρs

(5) ω = 0.8 and c = 1.25 → ρ1 ≈ −0.7, ρ2 ≈ 0.35 neg. high and pos. moderate ρs

(6) ω = 0.8 and c = 1.5 → ρ1 ≈ −0.7, ρ2 ≈ 0.25 neg. high and pos. low ρs

Correlation indices computed for the output R matrices with the structures (1)–(6):

RelEig1 RelEig2 RelEig5 ρmin ρmax ρ̄abs skewabs

(1) ≈ 0.30 ≈ 0.20 ≈ 0.09 ≈ −0.25 ≈ −0.05 ≈ 0.12 ≈ 0.41

(2) ≈ 0.43 ≈ 0.16 ≈ 0.08 ≈ −0.42 ≈ 0.19 ≈ 0.26 ≈ 0.41
(3) ≈ 0.38 ≈ 0.18 ≈ 0.06 ≈ −0.40 ≈ 0.08 ≈ 0.20 ≈ 0.41

(4) ≈ 0.65 ≈ 0.09 ≈ 0.04 ≈ −0.66 ≈ 0.58 ≈ 0.62 ≈ 0.20
(5) ≈ 0.58 ≈ 0.12 ≈ 0.03 ≈ −0.63 ≈ 0.35 ≈ 0.46 ≈ 0.41
(6) ≈ 0.53 ≈ 0.16 ≈ 0.01 ≈ −0.63 ≈ 0.22 ≈ 0.39 ≈ 0.41
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Table 15. SK-UnbCor pattern: 95%-Tukey uncertainty intervals around RMSE mean values of FIM, FIP, IPCA and
missForest, with p = 5 variables, n = 1000 units and 20% of MCAR values.

ForImpMahalanobis ForImpPCA IPCA missForest
ρ, c α mean lower upper mean lower upper mean lower upper mean lower upper

ω = 0.2, α = 1 0.939 0.936 0.942 0.942 0.939 0.946 0.956 0.953 0.959 1.005 1.002 1.008
c = 1 α = 4 0.911 0.908 0.914 0.923 0.919 0.926 0.960 0.957 0.963 1.015 1.012 1.018

α = 10 0.909 0.906 0.912 0.921 0.918 0.925 0.962 0.959 0.965 0.977 0.974 0.981
α = 30 0.910 0.907 0.913 0.922 0.919 0.925 0.963 0.960 0.966 0.977 0.974 0.980

ω = 0.2, α = 1 0.936 0.933 0.939 0.941 0.938 0.945 0.962 0.959 0.965 1.002 0.999 1.006
c = 1.25 α = 4 0.898 0.895 0.901 0.913 0.909 0.916 0.961 0.958 0.964 1.004 1.000 1.007

α = 10 0.898 0.895 0.901 0.914 0.910 0.917 0.964 0.960 0.967 0.966 0.963 0.969
α = 30 0.896 0.893 0.899 0.912 0.909 0.915 0.963 0.960 0.966 0.963 0.960 0.966

ω = 0.2, α = 1 0.932 0.929 0.934 0.938 0.935 0.942 0.965 0.962 0.969 0.999 0.995 1.002
c = 1.5 α = 4 0.892 0.889 0.895 0.910 0.906 0.913 0.964 0.961 0.967 1.000 0.997 1.004

α = 10 0.889 0.886 0.892 0.908 0.904 0.911 0.966 0.962 0.969 0.958 0.955 0.961
α = 30 0.886 0.883 0.889 0.905 0.901 0.908 0.963 0.960 0.966 0.956 0.953 0.959

ω = 0.5, α = 1 0.836 0.833 0.839 0.825 0.822 0.828 0.818 0.815 0.821 0.895 0.892 0.899
c = 1 α = 4 0.839 0.836 0.842 0.834 0.830 0.837 0.847 0.844 0.850 0.899 0.896 0.902

α = 10 0.841 0.838 0.844 0.837 0.834 0.840 0.853 0.850 0.856 0.904 0.901 0.907
α = 30 0.840 0.837 0.843 0.836 0.833 0.840 0.853 0.850 0.856 0.901 0.898 0.904

ω = 0.5, α = 1 0.843 0.840 0.846 0.840 0.837 0.843 0.853 0.850 0.856 0.907 0.904 0.911
c = 1.25 α = 4 0.839 0.836 0.842 0.844 0.841 0.848 0.881 0.878 0.884 0.912 0.908 0.915

α = 10 0.838 0.835 0.841 0.846 0.842 0.849 0.884 0.881 0.887 0.911 0.908 0.914
α = 30 0.839 0.836 0.842 0.846 0.842 0.849 0.884 0.881 0.887 0.911 0.907 0.914

ω = 0.5, α = 1 0.837 0.834 0.840 0.842 0.839 0.846 0.872 0.869 0.875 0.908 0.905 0.911
c = 1.5 α = 4 0.830 0.827 0.833 0.846 0.843 0.849 0.899 0.896 0.902 0.907 0.904 0.910

α = 10 0.826 0.823 0.829 0.843 0.840 0.846 0.900 0.897 0.903 0.904 0.901 0.908
α = 30 0.826 0.823 0.829 0.842 0.839 0.845 0.901 0.898 0.904 0.903 0.900 0.906

ω = 0.8, α = 1 0.552 0.549 0.555 0.515 0.512 0.518 0.482 0.479 0.485 0.520 0.517 0.524
c = 1 α = 4 0.578 0.575 0.581 0.548 0.544 0.551 0.531 0.528 0.534 0.558 0.554 0.561

α = 10 0.579 0.576 0.582 0.550 0.547 0.553 0.536 0.533 0.539 0.558 0.555 0.562
α = 30 0.580 0.577 0.583 0.551 0.548 0.554 0.538 0.535 0.541 0.559 0.556 0.562

ω = 0.8, α = 1 0.621 0.618 0.624 0.628 0.625 0.632 0.648 0.644 0.651 0.615 0.611 0.618
c = 1.25 α = 4 0.649 0.646 0.652 0.667 0.664 0.670 0.716 0.713 0.719 0.656 0.653 0.659

α = 10 0.650 0.647 0.653 0.668 0.664 0.671 0.723 0.720 0.726 0.657 0.654 0.660
α = 30 0.650 0.647 0.653 0.667 0.664 0.670 0.722 0.719 0.725 0.658 0.654 0.661

ω = 0.8, α = 1 0.482 0.479 0.485 0.644 0.640 0.647 0.755 0.752 0.758 0.551 0.548 0.554
c = 1.5 α = 4 0.512 0.509 0.515 0.688 0.685 0.692 0.843 0.840 0.846 0.603 0.600 0.607

α = 10 0.515 0.512 0.518 0.689 0.686 0.692 0.855 0.852 0.858 0.607 0.604 0.610
α = 30 0.516 0.513 0.519 0.689 0.686 0.692 0.855 0.852 0.858 0.606 0.603 0.609
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Table 16. SK-UnbCor pattern: JT test for detection of the

best imputation method among FIM, FIP and IPCA, with 20%
of MCAR values.

p = 5

n = 500 n = 1000

c 1 1.25 1.5 1 1.25 1.5

ω = 0.2 α = 1 6 6 6 1 1 1

α = 4, 10, 30 4 1 1 1 1 1

ω = 0.5 α = 1 3 3 6 3 2 1

α = 4 3 6 1 2 1 1

α = 10 3 4 1 2 1 1

α = 30 3 1 1 2 1 1

ω = 0.8 α = 1, 4, 10, 30 3 1 1 3 1 1

Legend. Numbers in the cells refer to the hypotheses (13): 1, 4:
FIM the best; 2: FIP the best; 3, 6: IPCA the best.
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Table 17. Computational efficiency: Times in seconds (mean ± standard deviation) for each method

computed as an overall average over the exploratory studies with MEP and MSN distributions

p n % MCAR values ForImpMahalanobis ForImpPCA IPCA missForest

3 500 5% 0.44± 0.10 0.49± 0.12 0.01± 0.01 2.26± 0.61
10% 0.45± 0.09 0.56± 0.11 0.01± 0.01 2.05± 0.61
20% 0.78± 0.31 1.00± 0.39 0.02± 0.02 2.80± 1.47

1000 5% 1.69± 0.25 2.25± 0.38 0.02± 0.01 14.86± 4.71
10% 1.45± 0.60 2.16± 0.87 0.02± 0.02 9.57± 5.14
20% 1.67± 0.71 2.66± 1.12 0.04± 0.02 8.06± 4.18

5 500 5% 0.58± 0.19 0.68± 0.22 0.02± 0.01 5.48± 2.05
10% 0.77± 0.36 0.92± 0.46 0.02± 0.01 5.88± 3.78
20% 0.84± 0.42 1.02± 0.52 0.03± 0.02 4.98± 3.59

1000 5% 2.01± 0.70 2.76± 0.92 0.04± 0.03 31.94± 14.06
10% 2.30± 0.98 3.30± 1.33 0.05± 0.03 27.73± 13.91
20% 2.94± 0.93 4.26± 1.30 0.10± 0.06 28.28± 11.60

10 500 5% 1.31± 0.40 1.55± 0.46 0.06± 0.03 22.46± 8.44
10% 1.61± 0.61 1.87± 0.71 0.08± 0.04 20.34± 9.31
20% 3.15± 0.38 3.57± 0.44 0.27± 0.16 27.72± 5.93

1000 5% 3.17± 0.88 4.37± 1.17 0.10± 0.06 80.25± 29.72
10% 3.93± 1.26 5.36± 1.64 0.14± 0.09 74.42± 29.99
20% 5.68± 1.42 7.34± 1.78 0.37± 0.21 75.12± 25.98
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Figure 1. Contour plots for MEP distribution.
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Figure 3. SyKu-ECor pattern with p = 5; 10 variables, n = 1000 units and 20% of MCAR values – Dot plots

of RMSE mean values with 95%-Tukey uncertainty intervals concerning FIM, FIP, IPCA and missForest.
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Figure 4. SK-ECor pattern with p = 5 variables, n = 1000 units and 20% of MCAR values – Dot plots of
RMSE mean values with 95%-Tukey uncertainty intervals concerning FIM, FIP, IPCA and missForest.
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Figure 5. SK-PNCor pattern with p = 5 variables, n = 1000 units and 20% of MCAR values – Dot plots of

RMSE mean values with 95%-Tukey uncertainty intervals concerning FIM, FIP, IPCA and missForest.
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Figure 6. SK-UnbCor pattern with p = 5 variables, n = 1000 units and 20% of MCAR values – Dot plots of

RMSE mean values with 95%-Tukey uncertainty intervals concerning FIM, FIP, IPCA and missForest.
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