Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Team—Maxmin Equilibrium: Efficiency Bounds and Algorithms

Nicola Basilico
University of Milan
Via Comelico, 39/41
Milano, Italy
nicola.basilico@unimi.it

Abstract

The Team-maxmin equilibrium prescribes the optimal strate-
gies for a team of rational players sharing the same goal
and without the capability of correlating their strategies in
strategic games against an adversary. This solution concept
can capture situations in which an agent controls multiple
resources—corresponding to the team members—that cannot
communicate. It is known that such equilibrium always exists
and it is unique (except degenerate cases) and these properties
make it a credible solution concept to be used in real-world
applications, especially in security scenarios. Nevertheless,
to the best of our knowledge, the Team—maxmin equilib-
rium is almost completely unexplored in the literature. In this
paper, we investigate bounds of (in)efficiency of the Team—
maxmin equilibrium w.r.t. the Nash equilibria and w.r.t. the
Maxmin equilibrium when the team members can play cor-
related strategies. Furthermore, we study a number of algo-
rithms to find and/or approximate an equilibrium, discussing
their theoretical guarantees and evaluating their performance
by using a standard testbed of game instances.

Introduction

The computational study of game-theoretic solutions con-
cepts is among the most important challenges addressed
in the last decade of Computer Science (Deng, Papadim-
itriou, and Safra 2002). These problems acquired particu-
lar relevance in Artificial Intelligence, where the goal is
to design physical or software agents that must behave
optimally in strategic situations. In addition to the well—
known Nash equilibrium (Nash 1951), other solution con-
cepts received attention in the Artificial Intelligence litera-
ture thanks to their application in security domains. Exam-
ples include Maxmin equilibrium for zero—sum games un-
der various forms of constraints over the actions of the play-
ers (Jain et al. 2010) and Stackelberg (a.k.a. leader—follower)
equilibrium (Conitzer and Sandholm 2006).

While a large part of the literature focuses on 2—player
games, few results are known about games with more
players—except for games with a very specific structure, for
example, congestion games (Nisan et al. 2007). In this pa-
per, we focus on the Team—maxmin equilibrium proposed
by (von Stengel and Koller 1997). It applies to zero—sum
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games between a team and an adversary. The team is de-
fined as a set of players with the same utility function U
and without the capability of synchronizing their actions.
The adversary is a single player with utility function —Ur.
These games can model many realistic security scenarios,
for example those where multiple non—coordinating agents
share the common objective of defending an environment
against a malicious attacker. In (Jiang et al. 2013), a security
setting of such type is studied and an analysis of the price
of mis—coordination in the proposed security games is con-
ducted. The Team—maxmin equilibrium plays a crucial role
also in infinitely repeated games and role assignment prob-
lems (Moon and Conitzer 2016), where it is necessary to
compute threat points. The current approach to tackle these
problems, in games with more than two players, is consid-
ering the correlated threat point (Kontogiannis and Spirakis
2008) or employing approximation algorithms to avoid the
use of mathematical programming (Andersen and Conitzer
2013). Our techniques allow the computation of punishment
strategies (leading to the threat points) in the general sce-
nario in which players, other than the defector, cannot coor-
dinate strategy execution.

The study of Team—maxmin equilibrium is almost com-
pletely unexplored. It is known that it always exists, it is
unique except for degeneracies, and it is the best Nash equi-
librium for the team, but, to the best of our knowledge, only
two computational works deal with this solution concept.
(Borgs et al. 2010) show that the Minmax value (equiva-
lently the Team—maxmin value) is inapproximable in addi-
tive sense within % even in 3—-player games with m ac-
tions per player and binary payoffs (but nothing is known
about the membership to the APX class or some super class);
(Hansen et al. 2008) strengthen the previous complexity re-
sult and provide a quasi—polynomial time e—approximation
(in additive sense) algorithm. Only (Lim 1997; Alpern and
Lim 1998) deal with the mathematical derivation for a spe-
cific class of games with an adversary, i.e., rendezvous—
evasion games. Instead, a number of works deal with team
games without adversary. We just cite a few for the sake
of completeness. Team games were first proposed in (Pal-
frey and Rosenthal 1983) as voting games, then studied in
repeated and absorbing games to understand the interac-
tion among the players (Bornstein, Erev, and Goren 1994;
Solan 2000) and more recently in Markov games with noisy



payoffs (Wang and Sandholm 2002).

Original contributions We provide two main contribu-
tions. First, we study the relationship, in terms of effi-
ciency for the team, between Nash equilibrium (i.e., when
players are not teammates), Team—maxmin equilibrium,
and Correlated—team maxmin equilibrium (i.e., the Maxmin
equilibrium when all the team members can play in corre-
lated strategies and therefore can synchronize the execution
of their actions). We show that, even in the same instances
with binary payoffs, the worst Nash equilibrium may be ar-
bitrarily worse than the Team—maxmin equilibrium that, in
its turn, may be arbitrarily worse (in this case only asymp-
totically) than the Correlated—team maxmin equilibrium.
We provide exact bounds for the inefficiency and we de-
sign an algorithm that, given a correlated strategy of the
team, returns in polynomial time a mixed strategy of the
team minimizing the worst—case ratio between the utility
given by the correlated strategy and the utility given by the
mixed strategy. Second, we provide some algorithms to find
and/or approximate the Team—maxmin equilibrium, we dis-
cuss their theoretical guarantees and evaluate them in prac-
tice by means of a standard testbed (Nudelman et al. 2004).
We also identify the limits of such algorithms and discuss
which ones are the best to be adopted depending on the in-
stance to be solved. For the sake of presentation, the proofs
of the theorems are presented in (Basilico et al. 2016).

Preliminaries

A normal-form game is a tuple (N, A,U) where: N =
{1,2,...,n} is the set of players; A = X,_y A; is the
set of player ’s actions, where A; = {a1,a2,...,am,};
U = {Uy,Us,...,Upy} is the utility function of player ¢,
where U; : A — R. A strategy profile is defined as s =
(s1,82,...,8n), where s; € A(A;) is player i’s mixed strat-
egy and A(A;) is the set of all the probability distributions
over A;. As customary, —i denotes the set containing all the
players except player i. We study games in which the set
of players T' = {1,2,...,n — 1} constitutes a team whose
members have the same utility function Ur. Player n is an
adversary of the team and her utility function is —Ur.
When the teammates cannot coordinate since, for exam-
ple, there is no communication, and each player takes deci-
sions independently, the appropriate solution concept is the
Nash equilibrium, which prescribes a strategy profile where
each player ¢’s strategy s; is a best response to s_;. In 2—
player zero—sum games, a Nash equilibrium is a pair of
Maxmin/Minmax strategies and can be computed in poly-
nomial time. In arbitrary games, the computation of a Nash
equilibrium is PPAD—complete even when the number of
players is fixed (Daskalakis, Goldberg, and Papadimitriou
2009). Instead, when the teammates can coordinate, we dis-
tinguish two forms of coordinations: correlated, in which
a correlating device decides a joint action (i.e., an action
profile specifying one action per teammate) and then com-
municates each teammate her action, and non—correlated, in
which each player plays independently from the others.
When the coordination is non—correlated, players are sub-
ject to the inability of correlating their actions, and their
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strategy s; is mixed, as defined above for a generic normal—
form game. In other words, teammates can jointly decide
their strategies, but they cannot synchronize their actions,
which must be drawn independently. The appropriate solu-
tion concept in such cases is the Team—maxmin equilibrium.

A Team—maxmin equilibrium is a Nash equilibrium with
the properties of being unique (except for degeneracies) and
the best one for the team. These properties are very appeal-
ing in real-world settings, since they allow one to avoid the
equilibrium selection problem which affects the Nash equi-
librium. In security applications, for instance, the equilib-
rium uniqueness allows one to perfectly forecast the behav-
ior of the attacker (adversary). When the number of play-
ers is given, finding a Team—maxmin equilibrium is FNP-
hard and the Team-maxmin value is inapproximable in ad-
ditive sense even when the payoffs are binary (Hansen et
al. 2008)!. In (Hansen et al. 2008), the authors provide a
quasi—polynomial-time e—approximation (in additive sense)
algorithm. Furthermore, a Team—maxmin equilibrium may
contain irrational probabilities even with 2 teammates and
3 different values of payoffs®. To the best of our knowl-
edge, no experimental evaluation of algorithms for finding
the Team—maxmin equilibrium is present in literature.

When players can synchronize their actions, the team
strategy is said to be correlated. Given the set of team ac-
tion profiles defined as A7 = X, A;, a correlated team
strategy is defined as p € A(Ar). In other words, team-
mates can jointly decide and execute their strategy. The team
is then equivalent to a single player whose actions are the
joint team action profiles. In such case, the appropriate so-
Iution concept for the team and the adversary is a pair of
Maxmin/Minmax strategies that, for the sake of clarity, we
call Correlated—team maxmin equilibrium. This equilibrium
can be found by means of linear programming since it can be
formulated as a maxmin problem in which the max player’s
action space is given by the Cartesian product of the action
space of each teammate. Notice that the size of the input
is exponential in the number of teammates and therefore ap-
proximation algorithms for games with many team members
are necessary in practice.

Furthermore, it is not known the price—in terms of
inefficiency—paid by a team due to the inability of synchro-
nizing the execution of their actions. This would allow one
to understand how the Team—maxmin equilibrium is inef-
ficient w.r.t. the Correlated—team maxmin equilibrium, or
equivalently, how well the Team-maxmin equilibrium ap-
proximates the Correlated-team maxmin equilibrium. An-
other open problem is studying the gain a set of players
sharing the same goal would have in forming a team and
coordinating their mixed strategies (i.e., how the Nash equi-
librium is inefficient w.r.t. the Team-maxmin equilibrium, or

IRigorously speaking, (Hansen et al. 2008) studies the Minmax
strategy when there is a single max player and multiple min players.
The problem of finding the Team—maxmin equilibrium in zero—
sum adversarial team games can be formulated as the problem of
finding such Minmax strategy and vice versa.

’The proof, provided in (Hansen et al. 2008), contains a minor
flaw. In (Basilico et al. 2016), we provide a correct revision of the
proof with all the calculations, omitted in the original proof.



equivalently, how well the Nash equilibrium approximates
the Team-maxmin equilibrium).

Nash, Team-maxmin, and
Correlated—team maxmin equilibria

We study the relationships between Nash equilibrium and
Team—maxmin equilibrium in terms of efficiency for the
team. In our analysis, we resort to the concept of Price of
Anarchy (POA), showing that Nash equilibrium—precisely,
the worst case Nash equilibrium—may be arbitrarily ineffi-
cient w.r.t. the Team—maxmin equilibrium—corresponding
to the best Nash equilibrium for the team. In this case the
POA provides a measure about the inefficiency that a group
of players with the same goal would have if they do not
form a team. To have coherent results with the definition
of POA, we consider games with payoffs in the range [0, 1].
We observe that our results will hold without loss of gen-
erality since, given any arbitrary game, we can produce an
equivalent game in which the payoffs are in such a range by
using an affine transformation. Furthermore, for the sake of
presentation, we consider only games in whichm; = ... =
m, = m. The generalization of our results when players
may have different numbers of actions is straightforward.

Theorem 1 The Price of Anarchy (POA) of the Nash equi-
librium w.r.t. the Team—maxmin equilibrium may be POA =
o even in games with 3 players (2 teammates), 2 actions per
player, and binary payoffs.

In order to evaluate the inefficiency of the Team—maxmin
equilibrium w.r.t. the Correlated—team maxmin equilibrium,
we introduce a new index similar to the mediation value pro-
posed in (Ashlagi, Monderer, and Tennenholtz 2008) and
following the same rationale of the POA. We call such an
index Price of Uncorrelation (POU) and we define it as the
ratio between the team’s utility provided by the Correlated—
team maxmin equilibrium and that provided by the Team—
maxmin equilibrium. POU provides a measure of the inef-
ficiency due to the impossibility, for the teammates, of syn-
chronizing the execution of their strategies.

Definition 1 Let us consider an n—player game. The Price
of Uncorrelation (POU) is defined as POU = ‘¢ > 1

,Uleam
am s the Correlated—team maxmin value of the

where v§
team and vi™" is the Team—maxmin value of the team.

We initially provide a lower bound over the worst—case
PoU.

Theorem 2 The PoU of the Team—maxmin equilibrium
w.rt. the Correlated—team maxmin equilibrium may be
PoU= m"~2 even in games with binary payoffs.

Now, we provide an upper bound over the worst—case
PoU.

Theorem 3 Given any n—player game and a Correlated—
team maxmin equilibrium providing the team a utility of v, it
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is always possible to find in polynomial time a mixed strat-
egy profile providing a utility of at least —*— to the team

mn—‘z
and therefore POU is never larger than m

n—2

We observe that Theorem 2 shows that the upper bound
of POU is at least m™ 2, while Theorem 3 shows that POU
cannot be larger than m™~2. Therefore, POU is arbitrarily
large only asymptotically. In other words, POU = o0 only
when m or n go to co®. More importantly, the proof of Theo-
rem 3 provides a polynomial-time algorithm to find a mixed
strategy of the team given a correlated strategy and this al-
gorithm is the best possible one in terms of worst—case min-
imization of POU. The algorithm computes mixed strategies
for the team members as follows. Given the Correlated—
team maxmin equilibrium p € A(A; x ... x A,_1), the
mixed strategy of player 1 (s1) is such that each action a;
is played with the probability that a; is chosen in p, that is
si(a1) = 2, ea_, P(a1,a_1). Every other team member

1 € N\{1, n} plays uniformly over the actions she plays with
strictly positive probability in p. Since the computation of a
Correlated—team maxmin equilibrium can be done in poly-
nomial time, such an algorithm is a polynomial-time ap-
proximation algorithm for the Team—maxmin equilibrium.

Furthermore, notice that POU rises polynomially in the
number of actions m and exponentially in the number of
players n. Interestingly, the instances used in the proof of
Theorem 2 generalize the instances used in the proof of The-
orem 1. Indeed, it can be observed that the POA of the Nash
equilibrium w.r.t. the Team—maxmin equilibrium is oo in the
instances used in the proof of Theorem 2. Therefore, there
are instances in which the worst Nash equilibrium is arbi-
trarily worse than the Team—maxmin equilibrium and, in
its turn, the Team—maxmin equilibrium is arbitrarily worse
(in this case only asymptotically) than the Correlated—team
maxmin equilibrium.

For the sake of completeness, we state the following re-
sult, showing the lower bound of POU.

Theorem 4 The POU of the Team—maxmin equilibrium
w.rt. the Correlated—team maxmin equilibrium may be
PoU= 1 even in games with binary payoffs.

Algorithms to find and/or approximate a
Team-maxmin equilibrium

In the following, we describe four algorithms to

find/approximate the Team—maxmin equilibrium.

Global optimization The problem of finding the Team—
maxmin equilibrium can be formulated as a non—linear non—
convex mathematical program as follows:

3 A more accurate bound can be obtained by substituting m with
the size of the equilibrium support, showing that the inefficiency
increases as the equilibrium support increases.



Algorithm 1 SupportEnumeration

Algorithm 2 TteratedLP

1: v* = 400
2: foralli € T do

30 Pi={(Vi',ml), (V2 m3),... |V, V] € Ai, 3 mi(a) =T}
a€eVy

4: C = X,eq P

5: for all ((Vl,ml), (VQ,mQ),. . (Vn_l,mn_l)) e Cdo

6:  forall i e T do

.. miled - ifa, e v,

0 otherwise

si(ai) = {

v¥ = max{v¥* min Ur(s1, s2, . . .
Sn

7Sn—1)}

9: return v*
max v
V855
st v — Z Ur(ar,an) H si(a;) <0 Ya, € A,
ap€A €T
> osi(ai) =1 VieT
a;€A;
S,L(Gq)ZO VieT,a; € A;

In order to find an exact (within a given accuracy) Team—
maxmin equilibrium, we resort to global optimization tools.
Global optimization obviously requires exponential time.
In particular, we use BARON (Tawarmalani and Sahinidis
2005) solver, since it is the best performing solver for com-
pletely continuous problems among all the existing global
optimization solvers (Neumaier et al. 2005). Most impor-
tantly, BARON, if terminated prematurely, returns a lower
bound, corresponding to the value of the best solution found
so far, and an upper bound, corresponding to the tightest up-
per bound over the Team—maxmin value found so far.

Reconstruction from correlated strategies We approxi-
mate the Team—maxmin equilibrium by using a simple vari-
ation of the algorithm described previously to find a mixed
strategy from a correlated one. First, the algorithm finds a
Correlated—team maxmin by means of linear programming.
Second, we derive the mixed strategy. The algorithm can
be parametrized by exchanging player 1 with each player
of the team. This leads to n — 1 different mixed strategies
from the same correlated strategy. The algorithm returns the
best one for the team. Since the Correlated—team maxmin
equilibrium is always better than the Team—maxmin equi-
librium, this algorithm assures an approximation factor of at
least —— showing that the problem is in Poly—APX when
n is given.

Support enumeration In (Hansen et al. 2008), the authors
show how in n—players finite strategic games the minmax
value of a player can be approximated (from above) within
an arbitrary additive error € > 0. The algorithmic approach
to guarantee such approximation leverages the concept of
simple strategies as introduced in (Lipton and Young 1994)
and can be exploited to approximate the Team—maxmin
value, as we fully report in Algorithm 1.

The algorithm enumerates joint action multi—sets (speci-
fying, for each player 7, a subset of actions that can contain

359

1: vieT, s — 8

2: repeat
3:  forallie T do
1;1* = max v;
vi < Y %, Ur(ar,an) [ s5%7(a;) Van € An
4, ap€Ap jeT\{i}
> Za; =1 Va; € A; :
a; €A,
Ta;, =0
5: i’ = argmax v¥
arg el
* e gt
ur xr ifi =1
6: s§UT(a;) = ‘“T )
si""(a;) otherwise

7: until convergence or timeout

8: return s°“"

duplicate elements) of cardinality I' = [24:]. In Algo-
rithm 1, we denote a multiset with the pair {Vi, m,;) where
v; € A; and m(a;) returns the multiplicy of a; € A;. The
strategy for each player is then obtained from an uniform
distribution over the considered multi-set (for example, if
action a; has k duplicates it will be selected with probabil-
ity k/I"). The adversary’s best response and the correspond-
ing value for the team is then computed. The algorithm re-
turns the joint support maximizing the value of the team. By
adapting the analysis made in (Hansen et al. 2008), it can
be easily shown that Algorithm 1 approximates the Team—
maxmin value with additive error ?f at most € with a number
of iterations equal to ("”F*l)n_

In the table below we report, for some m, the number of
iterations required by the algorithm to assure a given approx-
imation with additive error not larger than e.

m 5 5 5 10 10 10
€ 0.9 0.5 0.1 0.9 0.5 0.1
iterations >21 | > 212 | > 21t | 5ol | 5021 | 5 987

Iterated linear programming In Algorithm 2 we propose
amethod we call IteratedLP based on solving iteratively
a Maxmin problem between 2 players (a member of the team
and the adversary) by linear programming.

It works by maintaining a current solution s““” which
specifies a strategy for each team member. It is initialized
(Line 1) with a starting solution § which, in principle, can
prescribe an arbitrary set of strategies for the team (e.g.,
uniform randomizations). Then for each team member i
(Line 3), we instantiate and solve the specified linear pro-
gram (Line 4). The decision variables of this LP are v; and,
for each action a; of player ¢, x,,. We maximize v; subject
to the upper bound given by the first constraint, where we
assumed that the strategy of player 7 (relabeled with x to dis-
tinguish it) is a variable while the strategies of the other team
members are constants, set to the associated value specified
by the current solution. (Notice that, in the LP, a; is the ac-
tion that team member j plays in the team action profile ar).
The optimal solution of the LP is given by v} and x*, rep-
resenting the Maxmin strategy of team member ¢ once the
strategies of teammates have been fixed to the current solu-
tion. Once the LP has been solved for each 7, the algorithm
updates the current solution in the following way (Line 6):



the strategy of the team member that obtained the best LP
optimal solution is replaced with the corresponding strategy
from the LP. This process continuously iterates until con-
vergence or until some timeout is met. At each iteration of
the algorithm, the value of the game increases (non—strictly)
monotonically. We run it using multiple random restarts, i.e.,
generating a set of different initial assignments § (Line 1).
Once convergence is achieved, we pass to the next random
restart generating a new strategy profile for the team.

A crucial question is whether there are initializations that
are better or worse than others. We can prove the following.

Theorem 5 When the algorithm is initialized with a uni-
form strategy for every player, the worst—case approxima-
tion factor of Algorithm 2 is at least mi_l and at most ﬁ
When instead the algorithm is initialized with a pure strat-

egy, the worst—case approximation factor is 0.

We leave open the problem of studying how the worst—
case approximation factor varies for other initializations.

Experimental evaluation
Experimental setting

Our experimental setting is based on instances of the
RandomGames class generated by GAMUT (Nudelman et
al. 2004). Specifically, once a game instance is generated,
we extract the utility function of player 1 and assign it to all
the team members. Furthermore, in each generated game in-
stance, the payoffs are between 0 and 1. We use 100 game in-
stances for each combination of n and m where n € {3,4, 5}
and m is as follows:

5 to 40, step = 5, n=3

50 to 150, step =10, n =3
m =

5 to 50, step = 5, n=4

5 to 30, step = 5, n=>5

Algorithms are implemented in Python 2.7.6, adopting
GUROBI 6.5.0 (Gurobi Optimization 2015) for linear math-
ematical programs, AMPL 20160310 (Fourer, Gay, and
Kernighan 1989) and BARON 14.4.0 (Tawarmalani and
Sahinidis 2005; Sahinidis 2014) for global optimization pro-
grams. We set a timeout of 60 minutes for the resolution of
each instance. All the algorithms are executed on a UNIX
computer with 2.33GHz CPU and 128 GB RAM.

Experimental results

Global optimization The average quality of the solutions
is reported in Fig. 1 in terms of ratio between the lower
(ak.a. primal) bound and the upper (a.k.a. dual) bound re-
turned by BARON once terminated. When BARON finds
the optimal solution (up to an accuracy of 10~?), the lower
bound equals the upper bound achieving a ratio of 1. This
happens with n = 3 up to m = 15 (except for some out-
liers), with n € {4, 5} and m = 5. For larger instances with
n = 3uptom = 130, withn = 4 up to m = 45 and
with n = 5 up to m = 20, BARON returns an approximate
solution with a ratio always larger than 0.7. With n = 3
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and m € {140,150}, BARON returns a very high upper
bound such that the ratio is close to zero. With larger in-
stances, BARON does not run due to memory limits. Hence,
BARON demonstrates to be an excellent tool to approximate
the Team—maxmin equilibrium especially with n = 3 (note
that, with n = 3 and m = 130, the number of outcomes is
larger than 2 millions).

o
3

=)
]
a

Number of players:
-3

4

5

Ratio (BARON lower bound / BARON upper bound)
S a
& S

o
o
3

0 50 100 150
Number of actions

Figure 1: Average (empiric) approximation ratio (lower
bound / upper bound) of the solutions returned by BARON.

Other algorithms We report in Fig. 2 the average perfor-
mance of the other three algorithms described in the pre-
vious section in terms of ratio between team value of the
strategy returned by each single algorithm and the lower
bound returned by BARON. A ratio smaller than 1 means
that the given algorithm provides a solution with a quality
worse than the solution returned by BARON.

Let us focus on the reconstruction from correlated strate-
gies. This algorithm solves all the instances of our exper-
imental settings, including also the instances that BARON
does not solve due to memory limits. However, the quality
of the solutions is always worse than the solutions returned
by BARON. More precisely, we notice that the ratio is al-
ways larger than 0.6 and, with n = 3, it is larger than 0.8.
Hence, the quality of the solutions w.r.t. the upper bound of
BARON is always larger than 0.5, thus achieving at least
1/2 of the Team-maxmin value. As expected, the quality
decreases as the number of players increases. Instead, sur-
prisingly, the quality increases as the number of actions per
player increases (we provide a motivation for that below).

Let us focus on the support enumeration algorithm.
We report the performance of the algorithm for ¢ €
{0.10,0.25,0.50,0.75,1.00}. As expected, the algorithm
does not scale. Indeed, when € is set < 1, the algorithm ter-
minates only for m < 20 with n = 3, and only for m = 5
with n € {4, 5}. This shows that the algorithm can be practi-
cally applied only when ¢ = 1, but this amounts to not pro-
viding any theoretical bound (indeed, since all the payoffs
are between 0 and 1, any strategy profile has an additive gap
no larger than 1). However, even when € = 1, the algorithm
terminates only for m < 50 with n = 3, for m < 15 with
n = 4, and for m = 5 with n = 5, that is a strictly smaller
subset of instances than the subset solved by BARON. The
quality of the solutions returned by the algorithm is rather
good, but it is always worse than the solutions returned by
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construction / BARON)

Ratio (Support enumeration / BARON)

Ratio (Mixed R

10 20 30 40 10
Number of actions

(d) 4-players Reconstruction from correlated
strategies.

20 £
Number of actions

(e) 4-players Support enumeration.

Restarts:
<1
=10
20
30
<40
50
60
70
80
%
100

o1

025
05
075

Ratio (Herated LP / BARON)

40 10 4o

20 E)
Number of actions

(f) 4-players Iterating linear programming.
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(i) S—players Iterating linear programming.

Figure 2: Average approximation performance of the proposed algorithms w.r.t. global optimization.

BARON. Finally, notice that, differently from the previous
algorithm, in the case of n = 3, the quality of the solution
decreases as the number of action increases.

Let us focus on the iterated linear programming. We
report the performance of the algorithm for a number of
random restarts in {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
This algorithm solves all the instances of our experimental
settings, including also the instances that BARON does not
solve due to memory limits. Also in this case, the quality of
the solutions is always worse than the solutions returned by
BARON. Notice that the ratio is very high and very close
to 1 for n = 3. Interestingly, the number of restarts affects
the solution quality essentially only when m is small. Obvi-
ously, when m is large, the number of restarts performed by
the algorithm reduces, but, surprisingly, the solution qual-
ity increases and it is almost the same for every number of
restarts. We observe that the number of restarts performed
with the largest instances is 30 with n € {3,4} and 10 with
n = 5. This algorithm provides the best approximation w.r.t.
the previous two algorithms.

Summary Global optimization (BARON) provides the
best approximate solutions, but it does not solve all the in-
stances of the experimental setting due to memory limits.
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The algorithm based on the iterated linear programming al-
lows one to solve larger instances with a relatively small loss
in terms of utility. Furthermore, approximating the Team—
maxmin equilibrium gets easier as the number of actions per
player increases. We observe that this may happen because,
as the number of actions per player increases, the probabil-
ity that the Team—maxmin equilibrium has a small support
increases and small supported equilibria should be easier to
be found.

Price of Uncorrelation Finally, we empirically evaluate
PoU in our experimental setting. We do that by calculating
the ratio between the value of the Correlated—team maxmin
equilibrium—computed exactly—and the lower bound re-
tuned by BARON, which is the algorithm returning always
the best approximation of the Team—maxmin equilibrium.
This ratio is obviously an upper bound of the actual POU.
In Fig. 3, we report the average ratio (for statistical signif-
icance, see (Basilico et al. 2016)). Surprisingly, the ratio is
very close to 1 even for n = 5, while, we recall, the worst—
case ratio is m™ 2. It can be observed that the ratio is mono-
tonically increasing in n, while the dependency on m is not
monotone: there is a maximum small values of m and then
the ratio decreases as m increases. For instance, in 3—players



games, the ratio goes asymptotically to about 1.15, showing
that the loss is very small empirically. Unexpectedly, this
shows that, on average, the loss due to the inability for a
team of correlating their strategies is rather small.

1.30

1.25

Number of players:

—-3

1.20

PoU

4
5

AR

0 50 100 150
Number of actions

Figure 3: Empiric Price of Uncorrelation.

In (Basilico et al. 2016), we report additional experiments
for other specific game classes assessing, analogously to
what done in this section with RandomGames, empirical
approximation performances and Price of Uncorrelation.

Conclusions

The Team-maxmin equilibrium is an important solution
concept requiring deep algorithmic studies. In this work,
we studied its efficiency w.r.t. Nash equilibrium and the
Maxmin equilibrium with correlated team strategies. More-
over, we proposed algorithms to compute/approximate it,
deriving theoretical guarantees and empirical evaluations.

In future, we will deal with Team—maxmin equilibrium
in specific games like polymatrix games and congestion
games.
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