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ABSTRACT

Intelligent farming as part of the green revolution is advancing the world of agriculture in such a way 
that farms become dynamic, with the overall scope being the optimization of animal production in 
an eco-friendly way. In this direction, this study proposes exploiting the acoustic modality for farm 
monitoring. Such information could be used in a stand-alone or complimentary mode to monitor 
the farm constantly at a great level of detail. To this end, the authors designed a scheme classifying 
the vocalizations produced by farm animals. More precisely, a directed acyclic graph was proposed, 
where each node carries out a binary classification task using hidden Markov models. The topological 
ordering follows a criterion derived from the Kullback-Leibler divergence. In addition, a transfer 
learning-based module for handling concept drifts was proposed. During the experimental phase, 
the authors employed a publicly available dataset including vocalizations of seven animals typically 
encountered in farms, where promising recognition rates were reported.
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INTRODUCTION

The area of Computational Bioacoustic Scene Analysis has received increasing attention by the 
scientific community in the last decades (Stowell, 2018; Blumstein et al., 2011; Towsey, Truskinger, 
& Roe, 2015; Dong, Towsey, Zhang, & Roe, 2015; Li, Zhou, Zou, & Li, 2012). Such interest is 
motivated by the potential benefits that can be acquired towards addressing major environmental 
challenges including invasive species, infectious diseases, climate and land-use change, etc. 
Availability of accurate information regarding range, population size and trends is crucial for 
quantifying the conservation status of the species of interest. Such information can be obtained via 
classical observer-based survey techniques; however, these are becoming inadequate since they are 
a) expensive, b) subject to weather conditions, c) cover a limited amount of time and space, etc. To 
this end, autonomous recording units (ARUs) are extensively employed by biologists (Grill & Schlter, 
2017; Ntalampiras, 2018a). This is also motivated by the cost of the involved acoustic sensors which 
is constantly decreasing due to the advancements in the field of electronics.

One of the first approaches employed for classifying animal vocalizations is described in (Mitrovic, 
Zeppelzauer, & Breiteneder, 2006). The authors extracted Linear predictive coding coefficients, 
cepstral coefficients based on the Mel and Bark scale, along with time-domain features describing the 
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peaks and silence parts of the waveform. The classifier was a Support Vector Machine, while three 
kernels were considered, i.e. polynomial, radial basis function, and sigmoid. These were compared 
with nearest neighbor and linear vector quantization schemes. The specific dataset included sounds of 
four animal classes, i.e. birds, cats, cows, and dogs. The literature further includes several approaches 
which concentrate on specific species, classification of Australian anurans (Han, Muniandy, & 
Dayou, 2011), interpretation of chicken embryo sounds (Exadaktylos, Silva, & Berckmans, 2014), 
classification of insects (Noda, Travieso, Snchez-Rodrguez, Dutta, & Singh, 2016), etc. However, a 
systematic approach addressing the specific case of farm monitoring, is not present in the literature. 
This work wishes to cover exactly this gap (Figure 1).

Indeed, the acoustic modality could provide complementary information to monitor the health 
as well as population of animals. For example, it could be used in combination with solutions such 
as (Kumar & Hancke, 2015; Nagpal & Manojkumar, 2016; Anu, Deepika, & Gladance, 2015) which 
record physiological parameters of the animals, such as rumination, body temperature, and heart 
rate with surrounding temperature and humidity. The valuable information that can be obtained via 
the acoustic modality could assist an overall assessment of the current status of the animals as well 
as the farm in general. More precisely, acoustic farm environment monitoring could assist in the 
following applications:

•	 Tracking of similar breed animals and parturitions
•	 Identification of specific animal(s) for several reasons (vaccination, medication, diseases, diet, 

etc.)
•	 Animal health monitoring
•	 Population monitoring
•	 Detect animals missing from the farm
•	 Intruder detection and identification

Of course, this is a non-exhaustive list of the potential applications, while the overall aim is 
to optimize animal production in an eco-friendly way. The specific area is an emerging new topic 
comprising an intersection of several disciplines starting from fundamental biology all the way to 
the current trends in computer science including internet of things, signal processing over networks 
and advanced fault diagnosis methods. Towards an integrated solution, the operation of each of these 
components should be recognized by the rest as it directly influences the stability and efficacy of 
the overall system.

Figure 1. The logical flow of the proposed method encompassing a) signal windowing, b) feature extraction, c) concept drift 
detection, d) statistical affinity calculation, e) ESN-based transfer learning, and f) update of the classification scheme



International Journal of Embedded and Real-Time Communication Systems
Volume 11 • Issue 1 • January-March 2020

64

This works is an extension of (Ntalampiras, 2018b) while the aim is to construct a comprehensive 
classification scheme, the operation of which does not follow the black-box logic, i.e. where one is 
able to ‘open’ the classifier, and by inspecting the misclassifications, obtain clear insights on how 
its performance can be boosted. At the same time, the proposed system is designed keeping in mind 
that it may have to operate under non-stationary conditions (Ditzler, Roveri, Alippi, & Polikar, 2015; 
Dargie, 2009), where distributions followed by the known classes may evolve over time (e.g. due 
to noise, reverberation effects, etc.), new classes may appear (e.g. new species), etc. Such obstacles 
require a scheme able to incorporate changes during its operation and address the evolving phenomena 
by appropriately altering its structure.

Keeping these in mind, we employed a well-known feature set (Dargie, 2009) in combination with 
a classification scheme adopting a directed acyclic graph structure. There, the topological ordering 
problem is addressed by means of an approach based on the Kullback-Leibler divergence measured 
among the different sound classes. During the experimentations, we used part of the dataset called 
Environmental Sound Classification-10 described in (Piczak, 2015b) which includes the animals 
typically encountered in a farm environment, i.e. dog, rooster, pig, cow, cat, hen, and sheep. There, a 
preliminary classification analysis on the entire dataset provided a recognition rate of 72.7%, while 
a more recent effort (Piczak, 2015a) based on convolutional neural networks achieved approximately 
80%. Moreover, we performed a comparison with other classification schemes (echo state network, 
class-specific and universal hidden Markov models, support vector machines, and random forest) and 
feature sets (MPEG-7 audio standard and perceptual wavelet packets), a process which demonstrated 
the superiority of the proposed approach.

Importantly, the directed acyclic graph is accompanied by the framework responsible for 
handling concept drifts, i.e. the appearance of novel audio data emitted from sources not existing in 
the available database. To this end, we employ the existing HMM-based concept drift detection test 
described in (Ntalampiras, 2016) complemented by a data augmentation module based on transfer 
learning. We argue that the main problem in addressing concept drifts is the unavailability of data 
coming from the new source. Towards addressing this point, we propose to find statistically similar 
data in the available corpus and transform them to represent the new source. The specific module 
was evaluated by keeping out of the available set, data belonging to a class representing the novel 
one. This procedure was carried out for all available classes in a rotational manner.

The rest of this article is organized as follows: section 2 formulates the problem, while section 3 
details the proposed sound classification framework including the formalization of the DAG-HMM 
and its topological ordering. Section 4 provides information on the dataset we employed, the contrasted 
approaches, and presents and analyzes the experimental results. Finally, section 5 concludes this work.

PROBLEM FORMULATION

In this paper we suppose a single channel audio datastream, yt the duration of which is unknown. y 
may be emitted by various sources which are known only to an extent, i.e. C={C1, . . ., Cm}, where 
m is the number of known sources. It is further assumed that each source follows a consistent, yet 
unknown probability density function Pi in stationary conditions, while at a specific time instance 
one sound source dominates (operating for example after a source separation framework e.g. (Gao, 
Woo, & Dlay, 2011)).

However, in the concept drift environment several obstacles might be encountered, e.g. change 
of the recording conditions, reverberation, appearance of sound events produced by sources which 
are not a-priori known, yt might be corrupted by non-stationary noise, alterations in the realization of 
known sound events, etc. Thus, yt becomes yt’ at time t*, where t* is the starting time instance of the 
concept drift. Such obstacles change the data generation process Pi, thus either a new classification 
method should be designed or the already constructed system should be adapted.
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We assume that an initial training sequence TS = yt, t ∈ [1, T0] is available characterized by 
stationary conditions and containing supervised pairs (yt, Ci), where t is the time instant and i ∈ [1, 
m]. No assumptions are made with respect to the way the probability density functions (pdf) Pi’s 
might alter for t > T0.

THE PROPOSED SOUND CLASSIFICATION FRAMEWORK

The proposed framework relies on the Directed Acyclic Graph logic (Ntalampiras, 2014), i.e. the 
classification scheme is a graph denoted as G = {N, L}, where N = {n1, …, nm} represents the nodes and 
L = {l1, …, lk} the links associating the nodes. Each node in N is responsible for a binary classification 
task conducted via a set of hidden Markov models (HMM) which fit well the specifications of audio 
pattern recognition tasks, thus the DAG-HMM notation.

The motivation behind creating such a graph-based classification system is that in this way, one is 
able to limit the problem space and design classification algorithms for two mutually exclusive classes 
than having to deal with the entirety of the different classes at the same time. Essentially, the proposed 
methodology breaks any Cm-class classification problem to a series of 2-class classification problems.

DAGs can be seen as a generalization of the class of Decision Trees, while the redundancies and 
repetitions that may occur in different branches of the tree can be observed more efficiently since 
different decision paths might be merged. In addition, DAGs are able to collect and conduct a series 
of tasks in an ordered manner, subject to constraints that certain tasks must be performed earlier than 
others. The sequential execution of tasks is particularly important and directly related to the efficacy 
with which the overall task is addressed (VanderWeele & Robins, 2010).

The DAG-HMM architecture used in this paper includes m (m − 1)/2 nodes, each one associated 
with a two-class classification problem. The connections between the different nodes in G have only 
one orientation without any kind of loop(s). As a result, each node of a such a so-called rooted DAG 
has either 0 or 2 leaving arcs.

The following subsections provide a detailed analysis of the way the DAG-HMM is constructed 
and subsequently operates. The principal issue associated with the design of every DAG is the 
topological ordering, i.e. ordering the nodes in a way that the starting endpoints of every edge occur 
earlier than the corresponding ending endpoints. In the following, we describe how such a topological 
ordering is discovered based on the Kullback-Leibler divergence.

Figure 2. The determination of the topological ordering (for simplicity, only four classes are considered)
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Determining the Topological Ordering of the DAG-HMM
Naturally, one would expect that the performance of the DAG-HMM depends on the order in which 
the different classification tasks are conducted. This was also evident from early experimentations. 
This observation motivated the construction of the DAG-HMM so that “simple” tasks are executed 
earlier in the graph. In other words, these are placed in the top nodes of the DAG-HMM, in a way 
that classes responsible for a high number of misclassifications are discarded early in the graph 
operation. In order to get an early indication of the degree of difficulty of a classification task, we 
employed the metric representing the distance of the involved classes in the probabilistic space, i.e. 
the Kullback-Leibler Divergence (KLD). The basic motivation is to place early in the DAG-HMM 
tasks concerning the classification of classes with large KLD, as they could be completed with high 
accuracy. The scheme determining the topological ordering is illustrated in Figure 2. The KLD between 
two J-dimensional probability distributions A and B is defined as in (Taylor, 2006).

It should be noted the KLD between HMMs was not used since computing distances between 
HMMs of unequal lengths, which might be common in this work as HMMs representing different 
classes might have different number of states, can be significantly more computationally demanding 
without a corresponding gain in modeling accuracy (Zhao, Zhang, Soong, Chu, & Xiao, 2007; Liu, 
Soong, & Zhou, 2007).

After computing the KLD for the different pairs of classes, i.e. reach the second stage depicted 
in Figure 2, the KLD distances are sorted in a decreasing manner. This way the topological ordering 
of the DAG-HMM is revealed placing the classification tasks of low difficulty on its top. Each node 
removes a class from the candidate list until there is only one class left, which comprises the DAG-
HMM prediction. The elements of the distance matrix could be seen as early performance indicators 
of the task carried out by the corresponding node. The proposed topological ordering places tasks 
likely to produce misclassifications at the bottom of the graph. This process outputs a unique solution 
for the topological sorting problem, as it is usually met in the graph theory literature (Cook, 1985).

The DAG-HMM Operation
The operation of the proposed DAG-HMM scheme is the following: after extracting the features of 
the unknown audio signal, the first/root node is activated. More precisely, the feature sequence is fed 
to the HMMs, which produce two log-likelihoods showing the degree of resemblance between the 
training data of each HMM and the unknown one. These are compared and the graph flow continues 
on the larger log-likelihood path. It should be stressed out that the HMMs are optimized (in terms 
of number of states and Gaussian components) so that they address the task of each node optimally. 

Figure 3. An example of a DAG-HMM addressing a problem with four classes along with operation carried out by each node
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That said, it is possible that a specific class is represented by HMMs with different parameters when 
it comes to different nodes of the DAG-HMM.

An example of a DAG-HMM addressing a problem with four classes is illustrated in Figure 3. 
The remaining classes for testing are mentioned beside each node. Digging inside each node, Figure 
3 shows the HMM-based sound classifier responsible for activating the path of the maximum log-
likelihood.

The operation of the DAG-HMM may be parallelized with that of investigating a list of classes, 
where each level eliminates one class from the list. More in detail, in the beginning the list includes 
all the potential audio classes. At each node the feature sequence is matched against the respective 
HMMs and the model with the lowest log-likelihood is erased from the list, while the DAG-HMM 
proceeds to the part of the topology without the discarded class. This process terminates when only 
one class remains in the list, which comprises the system’s prediction. Hence, in case the problem 
deals with m different classes, the DAG’s decision will be made after the evaluation of m-1 nodes.

1. 	 Input: Novel sound Su after concept drift detection (Ntalampiras, 2016), parameter k;
2. 	 Partition the dataset into TS and VS;
3. 	 Build GMM Gu and find the k closest models in TS;
4. 	 Majority voting in k and discover the class c closest to Su;
5. 	 Employ TS of class c to learn and optimize the transformation T: TSc − > Su based on the minimum 

reconstruction error on VS;
6. 	 Apply T on VSc and augment TSu;

Algorithm 1: The algorithm for dataset augmentation based on Transfer Learning.

The Feature Set
This feature set is composed of the first thirteen Mel frequency cepstral coefficients including the 
0-th coefficient which reflects upon the energy of each frame. For MFCC’s derivation we compute 
the power of the short time Fourier transform with respect to every frame and pass them through a 
triangular Mel scale filterbank. Subsequently, the log operator is applied and the energy compaction 
properties of discrete cosine transform are exploited in order to decorrelate and represent the majority 
of each energy band with just a few coefficients. Lastly, a thirteen-dimension vector is formed by 
the most important coefficients. Three derivatives of the initial vector are appended resulting to 
52 dimensions. The processing stage was based on the openSMILE feature extraction tool (Eyben, 
Weninger, Gross, & Schuller, 2013).

Data Augmentation Based on Transfer Learning
Unlike deformation-based efforts, e.g. time stretching, pitch shifting, etc. (Salamon & Bello, 2017), 
we propose to transfer knowledge existing in the available dataset to augment the data of the novel 
sound source. The proposed algorithm first finds statistically close recordings included in the assumed 
to be known dataset, and subsequently selects the closest class.

Let the novel sound source, after concept drift detection as described in (Ntalampiras, 2016), be 
Su (line 1, Algorithm 1). After portioning the dataset into training TS and validation VS sets (line 2, 
Algorithm 1), the algorithm creates Gu and finds the k closet models in TS using Equation 3 (line 3, 
Algorithm 1). Subsequently, we discover the class c closest to Su based on majority voting (line 4, 
Algorithm 1). Finally, the algorithm learns the transformation T by employing TSc (line 5, Algorithm 
1), and augments TSu by applying T on VSc (line 6, Algorithm 1).
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The Proposed ESN Transfer Learning Module
In this work, the transfer learning transformation T is a multiple-input multiple-output Echo State 
Network. ESN modeling, and in particular Reservoir Network (RN), was employed at this stage as 
it is able to capture the non-linear relationships existing in the data (Lukosevicius & Jaeger, 2009; 
Verstraeten, Schrauwen, & Stroobandt, 2006; Jalalvand, Triefenbach, Verstraeten, & Martens, 2011).

The typical topology of an RN is demonstrated in Figure 4. In is composed of neurons including 
non-linear activation functions with two possibilities: a) connection with the input data (so-called 
input connections), and b) connection to each other (so-called recurrent connections). Both of them 
are assigned randomly generated weights during the learning stage and remain constant during the 
operation of the RN. Lastly, each output node holds a connection to a linear function.

The basic motivation behind reservoir computing lies behind the computational complexity of 
the back-propagation algorithm. During its application, the internal layers are not altered significantly, 
thus it is not included in RN learning. On the other hand, the output layer is associated with a linear 
problem and as such, of relatively low degree of perplexity. Nonetheless, the stability of the network 
is ensured by constraining the weights of the internal layers. Linear regression is employed to learn 
output weights, so-called read-outs in the literature. A detailed analysis of this process is out of the 
scope of this work, while the interested reader is directed at (Lukosevicius & Jaeger, 2009; Jaeger & 
Haas, 2004) for more information.

EXPERIMENTAL EVALUATION

In this section, we analyze the: a) dataset used to acoustically simulate a farm environment, b) 
parametrization of both DAG-HMM and feature extraction module, c) contrasted approaches, and 
d) we present and comment the achieved results.

Figure 4. The Echo State Network used for feature space transformation
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Dataset
We collected data associated with the following typical farm animals: dog, rooster, pig, cow, cat, hen, 
and sheep. These are taken from the Environmental Sound Classification-10 described in (Piczak, 
2015b), while they are sampled at 44.1 KHz. Each class includes 40 recordings, each one with a 
duration of 5 seconds.

System Parametrization
Following the MPEG-7 standard recommendation, the low-level feature extraction window is 30 
ms with 10 ms overlap, so that the system is robust against possible misalignments. The sampled 
data are hamming windowed to smooth potential discontinuities while the FFT size is 512. Standard 
normalization techniques, i.e. mean removal and variance scaling, were applied.

The HMMs of each node are optimized in terms of number of states and nodes following the 
Expectation-Maximization and Baum Welch algorithms (Rabiner, 1989). As the considered sound 
events are characterized by a distinct time evolution, we employed HMMs with left-right topology, 
i.e. only left to right states transitions are permitted. Moreover, the distribution of each state is 
approximated by a Gaussian mixture model of diagonal covariance, which may be equally effective 
to a full one at a much lower computational cost (Reynolds & Rose, 1995).

The maximum number of k-means iterations for cluster initialization was set to 50 while the 
Baum-Welch algorithm used to estimate the transition matrix was bounded to 25 iterations with a 
threshold of 0.001 between subsequent iterations. The number of explored states ranges from 3 to 7 
while the number of Gaussian components used to build the GMM belongs to the {2, 4, 8, 16, 32, 
64, 128, 256, and 512} set. The final parameters were selected based on the maximum recognition 
rate criterion. The machine learning package Torch (freely available at http://torch.ch/) was used to 
construct and evaluate GMMs and HMMs.

Contrasted Approaches
The proposed approach was contrasted to the following ones: class-specific HMM (Kim & Sikora, 
2004), universal HMM with a KLD based data selection scheme (Ntalampiras, 2013), support vector 
machine (SVM) with radial basis function kernel (Chen, Gunduz, & Ozsu, 2006), random forest 
(Al-Maathidi & Li, 2015), and echo state network (Scardapane & Uncini, 2017). The parameters 
of these classification schemes were optimized on TS. As for the feature set, we experimented with 
the descriptors from the MPEG-7 audio protocol (Casey, 2001) and the Perceptual Wavelet Packets 
(Ntalampiras, Potamitis, & Fakotakis, 2009), which have shown encouraging performance in 
generalized sound recognition tasks. The ESN implementation is based on the Echo State Network 

Table 1. The recognition rates achieved by the proposed and contrasted approaches. The approach providing the highest rate 
is emboldened.

Classifier Average recognition rate (%)

DAG-HMM 93.1

DAG-HMM (concept drift) 90.8

Class-specific HMMs 77.1

Universal HMM 68.6

SVM 52.3

ESN 60

RF 54.3
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toolbox (freely available at https://sourceforge.net/projects/esnbox/) and the SVM on the libsvm 
library (Chang & Lin, 2011).

As far as the transfer learning module is concerned, we performed a comparison with Stacked 
AutoEncoders (SAE) which have been used for analyzing emotion manifestations across music and 
speech signals (Coutinho, Deng, & Schuller, 2014). The experiment was conducted as described in 
Algorithms 1 and 2 while the log-likelihood is the evaluation metric.

1. 	 Input: Augmented TSu
t  from Algorithm 1

2. 	 Learn HMMs H, where states s ∈ {3, 4, 5, 6} and components g ∈ {2, 4, 8, 16, 32, 64, 128, 256}
3. 	 Compute the log-likelihoods L = P(VSu |H)
4. 	 Find the maximum log-likelihood in L
5. 	 Identify the HMM providing the highest modeling accuracy of Su

Algorithm 2: The algorithm for evaluating the augmented feature set and selecting the optimum 
HMM to represent the novel class.

Experimental Results
Algorithm 2 is designed to assess the performance of the transfer learning-based dataset augmentation 
explained in Algorithm 1. The distribution of the augmented feature set TSu

t  (line 1, Algorithm 2) 
is learnt by means of HMM H constructed using states s ∈ {3, 4, 5, 6} and components g ∈ {2, 4, 8, 
16, 32, 64, 128, 256} (line 2, Algorithm 2). In assessing the constructed models we compute the 
log-likelihoods on VSu (line 3, Algorithm 2) and discovering the highest one (line 4, Algorithm 2). 
The respective HMM is identified and stored, while the associated log-likelihood constitutes a measure 
of compatibility between the augmented feature set TSu

t  and the actual data of the novel class VSu.
Figure 5 demonstrates the comparative results w.r.t the transfer learning capabilities of ESN and 

SAE. As we can see, the proposed ESN-based scheme outperforms the SAE one across all categories 
as it provides more accurate modeling as evaluated by the log-likelihoods produced on the VS (see 
Algorithm 1). As the log-likelihoods demonstrate significantly larger values, we argue that the ESN 
shows relevant ability in capturing the non-linear relationship existing in associating the features 
extracted from sound Su and the features in TS.

Then, Table 1 includes the results achieved by the proposed DAG-HMM as well as the contrasted 
approaches. The data division protocol is the ten-fold cross validation one. Identically selected folds 
were used during the training and testing processes of all approaches, enabling a reliable comparison. 
A first observation is on the difficulty of the task which is relatively high since many classifications 

Table 2. The confusion matrix (in %) with respect to the DAG-HMM. The average classification rate is 93.1%.

Responded 
Presented

Dog Rooster Pig Cow Cat Hen Sheep

Dog 99.4 - - - - - 0.6

Rooster - 99.7 - - - 0.3 -

Pig 14.4 - 85.6 - - -

Cow - - - 99.8 0.2 - -

Cat 13.9 - - - 86.1 - -

Hen - 0.9 - - - 99.1 -

Sheep - - - - - 17.7 82.3
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schemes fail to provide a satisfactory recognition rate. Then, as we can see, the proposed DAG-HMM 
outperforms the rest of the approaches. The second one is based on class specific HMMs, while the 
ESN achieved the third best recognition rate. The UBM logic provides lower rate that the class-specific 
one showing the high degree of diversity characterizing the common feature space. Same conclusions 
can be derived for the SVM, which cannot find reliable boundaries between the classes and the RF, the 
rules of which do not classify the feature space in a reliable manner. It is worth to note the satisfactory 
recognition rate achieved by the DAG-HMM (90.8%) in the concept drift environment, i.e. when one 
class was unknown to the classifier. In the specific set of experiments only 5s of the novel class were 
presented to the system, while the corresponding feature space was augmented via the ESN-based 
transfer learning module. This experiment was performed for all recordings and classes in TS, and 
we report the averaged recognition rate.

We conclude that limiting the problem space using a DAG-HMM is particularly beneficial in 
the specific application scenario providing encouraging recognition rates. In a subsequent step, we 
experimented with the MPEG-7 and PWP feature sets: the DAG-HMM provides recognition rates 
of 75.7% and 68.9% respectively. As in (Kim & Sikora, 2004), the superiority of the MFCCs in a 
generalized sound recognition task, was confirmed.

The confusion matrix achieved by the DAG-HMM is tabulated in Table 2. We observe that the 
class recognized with the highest accuracy is cow one (99.8%), while the one presenting the worst 
rate is the sheep one (82.3%). The misclassifications’ source is the great variability among sound 
samples of the same class as it is assessed by a human listener. Several sound clips are acoustically 
similar even though they belong to different categories. This is particularly evident in the cases of 
sheep-hen, cat-dog, and pig-dog pairs. We conclude that the DAG-HMM classification approach 
provides promising performance; even though the associated computational cost of the training phase 
is rather high, it is to be conducted only once and offline. At the same time, the testing phase includes 
simple log-likelihood comparisons and estimations carried out using the Viterbi algorithm, which is 
computationally inexpensive as it is based on recursive dynamic programming.

Figure 5. The comparative results of the transfer learning module when using ESN and SAE
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CONCLUSION

This paper presented a classification scheme addressing the novel scientific area of acoustic farm 
monitoring. We outlined a classification scheme based on a DAG composed of HMMs trained on and 
MFCCs feature set. The superiority of the proposed scheme over state-of-the-art classifiers was proven 
on a publicly available dataset encompassing vocalizations of seven farm animals. Importantly, the 
present framework is able to operate in a concept drift environment, i.e. being able to online evolve 
itself and increase the dictionary of animal vocalizations.

In the future work, we plan to enhance the proposed system so that it is able to operate under 
noisy conditions, and especially non-stationary noise, and evaluate it using real-world recordings.
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