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Abstract. 

Mobilization of the L-cysteine sulfur for the persulfuration of the rhodanese of Azotobacter 

vinelandii, RhdA, can be mediated by the A. vinelandii cysteine desulfurases, IscS and NifS. The 

amount of cysteine is higher in mutant strains lacking rhdA (MV474) than in wild type. The 

diazotrophic growth of MV474 is impaired. Taking into account the functional results about 

rhodanese-like proteins and RhdA itself, it is suggested that RhdA-dependent modulation of L-

cysteine amount must deal with a redox-related process. 

Manuscript
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Introduction. 

Numerous cellular processes require the mobilization of elemental sulfur from L-cysteine. Among 

these are included the assembly of Fe-S cluster (Johnson et al. 2005) as well as the synthesis of 

molybdopterin, thiamine, biotin and thionucleosides in tRNA (Mihara and Esaki 2002). The initial 

step in sulfur mobilization is catalyzed by a cysteine desulfurase (CD) that converts L-cysteine to 

sulfane sulfur and L-alanine in a process that uses pyridoxal-5’-phosphate as a cofactor (Zheng et al. 

1993). The sulfane sulfur, present as persulfide intermediate on the active site cysteine of the 

desulfurase, is then transferred to sulfur acceptors on various physiological pathways. The work by 

Dean and co-workers defined the mechanism for L-cysteine desulfuration by Azotobacter vinelandii 

NifS, a prototype for CDs (Zheng et al. 1994). In this mechanism the formation of the persulfide 

intermediate is also recognized in all CDs. 

In addition to NifS, A. vinelandii contains also another CD, IscS, which is involved in Fe-S 

cluster assembly in enzymes other than nitrogenase (Zheng et al. 1998). Among the CDs, IscS is 

highly conserved among Gram-negative bacteria and eukaryotes and it is the major cellular catalyst 

for the mobilization and distribution of sulfur from cysteine for a number of different biosynthetic 

pathways (Kambampati and Lauhon 1999; Kato et al. 2002; Ikeuchi et al. 2006). It is generally 

recognized that mobilization of sulfur necessary for the synthesis and modification of these 

fundamental biomolecules is a process that requires a strict control to protect the cells from the 

formation of toxic sulfur species. The S
0
 bound on the CD could, in principle, be reductively 

released as sulfide prior to incorporation into the cofactors or could undergo direct covalent transfer 

to accessory proteins. It has been demonstrated that NifS may transfer the persulfide sulfur to NifU 

(Smith et al. 2001), and IscS to IscU and ThiI proteins (Kambampati and Lauhon 2000; Urbina et 

al. 2001). The exact pathway and mechanism of sulfur transfer for the eventual incorporation of 

sulfur into biomolecules remains still unclear. However, trafficking sulfur as persulfide 

intermediates has been recognized as a cellular strategy to bypass the toxicity of free sulfide 

(Beinert 2000; Mueller 2006). Specifically, sulfur incorporation systems that rely on persulfide 

chemistry often involve rhodanese homology domain proteins. It was, indeed, shown that the 

catalytically essential Cys456 in the rhodanese homology domain of Escherichia coli ThiI was a 

recipient of the terminal sulfur of the persulfide form of IscS in the biosynthesis of 4-thiouridine in 

tRNA (Palenchar et al. 2000), and that the rhodanese homology domain of the human enzyme 

MOCS3 transiently bears a persulfide group on the pathway of sulfur incorporation into 

molybdopterin (Matthies et al. 2004; Matthies et al. 2005). 

A. vinelandii expresses a unique rhodanese called RhdA (Colnaghi et al. 1996). The RhdA 

active site cysteine (Cys230) is located at a structural loop (Bordo et al. 2000; Pagani et al. 2000; 
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Bordo et al. 2001) that appears to be properly designed to stabilize persulfide bond on its catalytic 

residue. Moreover, in E. coli recombinant RhdA is expressed either in the persulfurated form 

(RhdA-SSH) or in the sulfane sulfur-deprived form (RhdA-SH), depending on the sulfur source 

present during growth. We reported that L-cysteine was the effective sulfur source of RhdA 

persulfuration, and that the CD IscS present in E. coli promoted the production of RhdA in the 

persulfurated form (Forlani et al. 2005). 

Considering that RhdA’s active site favours the stabilization of its persulfurated form, we 

sought to determine if RhdA-SSH could function as “escort” protein during sulfur mobilization 

processes. In order to frame RhdA-SSH functions in a cellular context, we first investigated direct 

transfer of S
0
 from the A. vinelandii CDs NifS, and IscS to RhdA. In the present study, we report 

the effect of RhdA inactivation on the levels of cysteine and on diazotrophic growth of A. 

vinelandii. 

 

 

Materials and methods. 

 

Bacterial Strains and Growth Conditions. 

The A. vinelandii strains used in this study were UW136, a derivative of UW136 (MV474) in which 

disruption of the rhdA gene was achieved by the insertion of a KIXX cassette, following deletion of 

584 bp as described in Colnaghi et al. (1996). Cells were grown aerobically in Burk’s medium for 

24 h at 30°C, supplemented with 15 mM ammonium acetate and 1 % sucrose. For diazotrophic 

growth, ammonium acetate was omitted and culture time was 48 h. Cells were spun down at 3800 g 

for 10 min, and stored at –80°C. For protein overexpression, the E. coli strains, BL21[pRep4] (for 

RhdA and RhdAC230A) and BL21(DE3) (for E. coli IscS, A. vinelandii IscS and NifS) were grown in 

Luria-Bertani medium (containing 100 µg/ml ampicillin and, only for BL21[pRep4], 25 µg/ml 

kanamycin) at 37°C and, when absorbance at 600 nm was 0.4, 1 mM IPTG was added. After further 

4 h-growth cells were collected and used for protein purification. 

 

Protein preparations. 

In the RhdA mutant (RhdAC230A) the catalytic Cys230 residue was replaced by an alanine residue. 

Site directed mutagenesis of rhdA generated the plasmid pQER1MP and was performed using 

pQER1 plasmid as template (Pagani et al. 2000), and the mutagenic primers 5’-CCG GAC AAG 

GAA ATC GTC ACg CAt gcg CAG ACC CAT CAC CGC TCC-3’ (FMP1) and 5’-GGA GCG 

GTG ATG GGT CTG cgc aTG cGT GAC GAT TTC CTT GTC CGG-3’ (RMP1) where lower case 
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letters indicate the mutated bases and italic letters indicate the SphI restriction site introduced for 

quick verification of mutagenesis. The accuracy of mutagenesis was checked by DNA sequencing. 

His-tagged RhdA and RhdAC230A were overespressed in E. coli strains (BL21[pRep4]) harbouring 

pQER1 and pQER1MP, respectively. Overexpressed proteins were purified by Ni-NTA affinity 

chromatography (Forlani et al. 2003), and gelfiltered using a G25 column equilibrated in 50 mM 

Tris–HCl, 100 mM NaCl (pH 8). Sulfane sulfur-deprived RhdA and recombinant E. coli IscS were 

prepared as described in Forlani et al. (2005). E. coli IscSC328A was obtained courtesy of Prof. L.E. 

Vickery (UC Irvine, CA, USA). 

The plasmids pDB943 (Zheng et al. 1998) and pDB551 (Zheng et al. 1993) were used for E. 

coli heterologous expression of A. vinelandii IscS and NifS, respectively. Purification of 

recombinant A. vinelandii IscS and NifS were performed as described previously (Zheng et al. 

1993), except that after the ammonium-sulfate-fractionation the material was solubilised in 25 mM 

Tris-HCl (pH 7.5) and desalted by gel-filtration chromatography on G25-sephadex. Gel-filtrated 

protein fraction was submitted to anion exchange chromatography that was carried out in the same 

buffer on Mono Q Sepharose (5/50 GL; Tricorn
TM

), in the case of IscS, or on DEAE 15 HR (16/100 

Protein-Pak
TM

, Water
TM

), in the case of NifS, in a HPLC system (Waters
TM

 600S). Protein elution 

was achieved with a 0-1 M NaCl gradient (A. vinelandii IscS and NifS eluted at ~ 0.3 M NaCl). To 

complete NifS purification, the eluted protein was concentrated using ultrafiltration devices 

(Amicon Ultra 5K) and submitted to Superose 12 (10/300 GL, Tricorn
TM

) HPLC chromatography 

in 25 mM Tris-HCl 0.1 M NaCl (pH 8). Purification of A. vinelandii IscS and NifS was 

continuously monitored by the determination of the ratio OD425/OD280 and assessed by SDS-PAGE 

analyses. Purified proteins were fractionated and stored at –30°C until used. 

 

Analytical Procedures. 

 Cell-free extracts of A. vinelandii were prepared by sonication (five 30 s pulses with intermitted 1 

min cooling periods in Soniprep 150; UK) in 10 mM Tris-HCl, 100 mM NaCl (pH 8), and cell 

debris was removed by centrifugation (30 min at 10000 g). Protein concentration was determined 

by the Bradford assay (Bradford 1976) using bovine serum albumin as standard. 

Thiosulfate:cyanide sulfurtransferase (TST) activity was tested by the discontinuous method 

described in Sorbo (1953) that quantitates the product thiocyanate. One unit of TST activity is 

defined as the amount of enzyme that produces 1 mol thiocyanate/min at 37°C. Persulfide 

formation in CDs was tested as cyanolizable sulfur that was revealed as thiocyanate (Sorbo 1953). 

In particular, for thiocyanate quantification, to 0.65 ml of assay mixtures, 0.1 ml 37% formaldehyde 

and 0.25 ml Sorbo’s reagent (10% ferric nitrate in 13% nitric acid) were added sequentially before 
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the spectrophotometric determination of the absorbance of the ferric-thiocyanate complex at 460 nm 

( = 2890 M
-1

 cm
-1

). Detection of cysteine and thiosulfate was carried out by a monobromobimane 

HPLC method (Riemenschneider et al. 2005) that was applied to 50 mg (f. wt.) cell samples. 

 

Spectroscopic Determinations. 

Fluorescence measurements were carried out in a Perkin–Elmer LS-50 instrument, and data were 

analyzed as previously described (Pagani et al. 2000). Time-course fluorescence experiments were 

carried out at 25°C in 50 mM Tris–HCl, 100 mM NaCl (pH 8) in the presence of 4 mM L–cysteine, 

10 µM pyridoxal phosphate and 0.5-3 µM sulfane-sulfur deprived RhdA (RhdA-SH). For the 

evaluation of the formation rates of RhdA-SSH, the intrinsic fluorescence (exc = 280 nm, em = 340 

nm) change, obtained after the addition of CD (0.4 µM), was converted in RhdA-SSH 

concentration. For conversion, the value of total fluorescence change obtained after the final 

addition of 0.5 mM Na2S2O3 was used as quantitative standard. Time-course data of RhdA-SSH 

concentration were fitted to an exponential-rise function in order to approximate the initial rate. 

 

 

Results. 

 

L-cysteine:RhdA sulfurtransferase activity of E. coli IscS. 

In our previous studies (Forlani et al. 2005), we identified the distinct fluorescence of both RhdA 

forms (RhdA-SH and RhdA-SSH). In this work, we developed a time-scale fluorescence assay for 

monitoring the production of RhdA-SSH. The formation of the stable RhdA-SSH form is an 

intrinsic property of this rhodanese-like protein due to the particular environment of its catalytic 

loop (Bordo et al. 2000). To gain insight into the molecular mechanism of sulfur transfer, we 

develop a kinetic fluorescence assay to monitor the formation of RhdA-SSH via CD activity. 

Typical runs of fluorescence changes are shown in Fig. 1 (panel A) where effects of L-cysteine (i.e. 

the substrate of CD) and the importance of the intermediate persulfurated form of the CD for 

effective sulfur transfer to RhdA are investigated. No fluorescence change was recorded when L-

cysteine was added to RhdA-SH alone indicating that L-cysteine alone was not a direct sulfur donor 

to RhdA (not shown). The addition of purified E. coli IscS to a mixture containing 5-fold molar 

excess RhdA-SH and L-cysteine decreased the recorded fluorescence (full line, Fig. 1, panel A) 

showing that RhdA-SSH was produced and that sulfur was mobilized from L-cysteine in a reaction 

mediated by IscS. When wild type IscS was replaced with the mutant IscSC328A no fluorescence 

change was observed (dashed-dotted line, Fig. 1, panel A) thus demonstrating that the Cys328 
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residue of IscS is mandatory for the IscS-catalyzed RhdA persulfuration (L-cysteine:RhdA 

sulfurtransferase activity). According to the proposed mechanism for CDs, the Cys328 residue of 

IscS is the site where enzyme-bound persulfide is formed (Zheng et al. 1994). Therefore IscS-

mediated production of RhdA-SSH must be the result of a transpersulfuration reaction involving the 

IscS Cys328 and the RhdA Cys230, being this last the RhdA catalytic residue properly designed to 

bear a stable persulfide sulfur. 

Intrinsic fluorescence of RhdA-SSH is not affected by the addition of 60-fold molar excess 

of L-cysteine (Fig. 2) showing that the monothiol L-cysteine does not behave as an acceptor of the 

sulfane sulfur held on RhdA Cys230. This latter evidence is in line with previous results (Cereda et 

al. 2003) showing that sulfane sulfur removal from RhdA-SSH, giving rise to the unloaded form 

(RhdA-SH), occurred in the presence of the dithiol dithiothreitol (DTT), but not in the presence of 

the monothiol -mercaptoethanol. The RhdA-SSH formation, monitored by the fluorescence assay, 

is not affected by the presence of L-cysteine, and can be used to measure the rate of 

transpersulfuration between IscS and RhdA. Since this reaction is achieved by multiple cycles 

according to the stoichiometry of our system, we were prompted to define apparent kinetic 

parameters of transpersulfuration reaction between the two proteins. 

Runs monitoring fluorescence changes of RhdA were carried out in the presence of different 

substrate concentrations (i.e. the sulfane sulfur acceptor RhdA-SH), and the curves were analyzed to 

calculate initial velocity of the transpersulfuration reaction as exemplified (Fig.1, panel B). The 

transpersulfuration reaction catalyzed by E. coli IscS (Fig.1, panel C) exhibited Michaelis-Menten 

behavior, suggesting interaction between the persulfide form of IscS and RhdA. In the used 

conditions (4 mM L-cysteine), the Km for RhdA-SH is 1.21 ± 0.43 µM, and turnover number is 1.71 

± 0.09 min
1

 (IscS monomer).  

To our knowledge, kinetic parameters of an enzyme-catalyzed reaction where sulfane sulfur 

is transferred from an enzyme-bound persulfide to a cysteine residue of another protein (i.e. protein-

protein transpersulfuration) were never calculated. The Km figure for RhdA-SH in the IscS-

catalyzed transpersulfuration is in the same magnitude to that estimated (2.7 µM; Urbina et al. 

2001) for L-cysteine in the E. coli-IscS-catalyzed desulfuration reaction achieved in the presence of 

5 mM DTT as reductant for the decomposition of the enzyme-bound persulfide. It is worth noting 

that DTT is always present in a molar excess with respect to the substrate L-cysteine when cysteine 

desulfuration catalyzed by CDs was monitored (Flint 1996; Urbina et al. 2001; Lauhon et al. 2004). 

The evidence that the A. vinelandii RhdA is a stable acceptor of sulfane sulfur held on the 

catalytic cysteine residue of E. coli IscS, prompted us to investigate whether it could promote sulfur 

transfer from A. vinelandii CDs. 
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RhdA is an acceptor of sulfur mobilized by A. vinelandii cysteine desulfurases NifS and IscS. 

Most of the ability of A. vinelandii RhdA to be an acceptor of the sulfur generated by the E. coli 

IscS might be inferred by its peculiar active-site structure and environment (Bordo et al. 2000). No 

one of the rhodanese-like proteins present in E. coli, indeed, contains the same active-site structure 

of A. vinelandii RhdA. Aiming to identify the role of RhdA as sulfur mediator in sulfur transfer 

processes of physiological relevance, we studied the transpersulfuration process in the presence of 

the A. vinelandii CDs, NifS and IscS. 

Transpersulfuration reaction to RhdA occurred with both A. vinelandii CDs, but their 

efficiency to produce RhdA-SSH was different (Fig. 3, panel A). After 5 min reaction, 55% of the 

RhdA-SH present in the mixture was converted into RhdA-SSH when sulfur of L-cysteine was 

mobilized by NifS, and 33% in the case of IscS. The observed L-cysteine:RhdA sulfurtransferase 

activity of NifS and IscS were, respectively, 0.025 ± 0.006 and 0.014 ± 0.003 µmol min
-1

 mg
-1

. 

Lineweaver-burk plot of sulfur transfer from NifS to RdhA (Fig. 3, panel B), suggests a productive 

interaction between the persulfide form of NifS and RhdA. In the conditions used for fluorescence 

change measurements, that allows detection of transpersulfuration activity by a continuous-type 

enzyme assay, the NifS apparent (4 mM L-cysteine) Km for RhdA-SH was 1.88 ± 0.49 μM, and the 

NifS turnover number was 1.05 ± 0.35 min
-1

.  

As before stated, also A. vinelandii IscS showed L-cysteine:RhdA sulfurtransferase activity 

(Fig. 3, panel A), but the data did not yield straight lines in double reciprocal plot analyses in the 

same range of substrate-RhdA-SH concentrations used for determining kinetic parameters of the 

NifS-mediated reaction. These results indicated that transpersulfuration reaction to produce RhdA-

SSH in the presence of A. vinelandii IscS apparently did not exhibit a linear Lineweaver-Burk plot 

indicating. The IscS-catalyzed transpersulfuration rate of catalysis is roughly around the same order 

of magnitude of NifS. 

In A. vinelandii NifS-catalyzed desulfuration of L-cysteine the apparent Km for L-cysteine is 

about 75 μM (Zheng et al. 1994), whereas no figure of Km for L-cysteine in the A. vinelandii IscS-

catalyzed desulfuration of cysteine was reported. 

 

Effects of RhdA on persulfide formation ability of the Azotobacter vinelandii cysteine 

desulfurases, NifS and IscS.  

The formation of persulfide on Cys328 (E. coli IscS numbering) residue of CDs is an essential 

prerequisite for transpersulfuration to RhdA. The relative efficiency of the transpersulfuration 

reaction paralleled the CD activity figures of 0.124 and 0.168 µmol min
-1

 mg
-1

 determined for A. 
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vinelandii IscS and NifS, respectively (Zheng et al. 1998). Since in those determinations persulfide 

was reductively cleaved to generate sulfide in the presence of DTT, we raised the question of 

whether the observed sulfur transfer to RhdA reflects the turnover number of generation of the IscS- 

and NifS-bound persulfide forms. Persulfide (sulfane sulfur) can be identified by its reactivity with 

cyanide (Beinert 2000) to produce thiocyanate in the cyanolysis reaction. In this work, cyanolysis 

assay was used to detect persulfide formation in A. vinelandii IscS and NifS in the presence of L-

cysteine (4 mM) and in the absence of DTT. Persulfide formation rate in A. vinelandii IscS and 

NifS were similar (Fig. 4, panel A; black bars). When catalytic amounts of RhdA are added in the 

latter described assay, persulfide formation rates increased 1.6-fold in A. vinelandii IscS and 2.0-

fold in A. vinelandii NifS (Fig. 4, panel A; grey bars). The replacement of RhdA by an RhdA 

variant (RhdA-mBBr), where the C230 thiol was chemically blocked by monobromobimane (data 

not shown), or by an RhdA mutant (RhdAC230A), where the Cys230 residue was replaced by alanine, 

caused a similar increase (Fig. 4, panel A; white bars). Such increase is not observed by the addition 

of bovine serum albumin (data not shown). This indicates that Cys230, the catalytic residue of RhdA, 

is not responsible for the RhdA-achieved increase of the persulfide formation rates in IscS and NifS. 

The RhdA-mediated increase of the persulfide formation in NifS shows a saturation behaviour with 

a maximum reached at about 1:1 RhdA:NifS (monomer) ratio (Fig. 4, panel B). These data supports 

the idea that RhdA interacts with NifS leading to an increase in the persulfide formation rate. 

 

Diazotrophic growth of A. vinelandii strain lacking a functional RhdA. 

NifS was suggested to be required for full activation of A. vinelandii nitrogenase and it is partially 

essential for diazotrophic growth (Jacobson et al. 1989; Zheng et al. 1993). Since data presented 

here suggested an interaction of RhdA with NifS, the aerobic growth of A. vinelandii strain MV474, 

lacking a functional RhdA, was carried out in diazotrophic conditions and compared to the growth 

of the wild type strain (UW136). The aerobic growth rate in diazotrophic conditions (BS medium) 

of MV474 was lower respect to that of the wild type strain, whereas in the presence of ammonia in 

the medium (BSN) the growth rates of both strains were comparable (Fig. 5, panel A).  

 

Thiosulfate:cyanide sulfurtransferase activity and NifS expression in A. vinelandii. 

A. vinelandii crude extracts prepared from the wild type strain (UW136) and the mutant strain 

lacking a functional RhdA (MV474) were assayed for thiosulfate:cyanide sulfurtransferase (TST) 

activity. Furthermore the effect of diazotrophic growth (BS medium) on TST activity was 

evaluated. The strain lacking RhdA retains only a residual TST activity with respect to that revealed 

in UW136, and most part (94 %) of the TST activity of UW136 is assignable to the expressed RhdA 
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(Fig. 5, panel B). Under these conditions RhdA is not immunodetectable in MV474 by anti-RhdA 

antibodies (Cereda et al. 2007). Thus the basal TST activity could be due to the redundancy of 

rhodanese-like genes in the A. vinelandii genome and is not modulated by the tested growth 

conditions (Fig. 5, panel B). The detected TST activity of wild type strain is 1.5-fold higher in BS 

than in BSN. Since NifS is expressed in diazotrophic conditions (Dos Santos et al. 2007) it can be 

argued that TST activity paralleled NifS expression. Considering TST activity as a probe for RhdA 

functionality, it appeared to be dependent on NifS expression probably as a consequence of a 

functional/physiological relationship between the cellular processes in which RhdA and NifS are 

involved. 

 

Cysteine amount in A. vinelandii. 

L-Cysteine and thiosulfate were identified as the most effective sulfur sources in producing RhdA-

SSH during E. coli heterologous expression of RhdA (Forlani et al. 2005). Whereas thiosulfate is 

the sulfane sulfur donor to RhdA in the in vitro catalyzed reaction, L-cysteine can be used as sulfur 

source for RhdA-SSH formation only in the presence of CDs (this work; Forlani et al. 2005).  

In order to assess if loss of the RhdA function can affect the intracellular levels of cysteine 

and thiosulfate, they were determined in UW136 and in MV474 A. vinelandii strains (Table 1). In 

the absence of RhdA (MV474), cysteine is 2.1-fold higher than that revealed in wild type (UW136). 

No important accumulation of thiosulfate can be observed in A. vinelandii strain lacking RhdA. 

When A. vinelandii is grown in the absence of ammonia (BS) a much more prominent effect of the 

RhdA lack was observed on cysteine level, being it 7.1-fold more accumulated than wild type. On 

the other hand thiosulfate levels do not show a clear trend. These analyses evidenced that, in vivo, 

RhdA affects the cysteine metabolism, whereas thiosulfate does not appear to be metabolically-

related to RhdA though it is a good in vitro sulfur donor in the RhdA-catalyzed sulfurtransferase 

reaction. 

 

 

Discussion. 

In this study we showed that the A. vinelandii CDs, IscS and NifS, can mobilize sulfur from L-

cysteine for RhdA persulfuration by a transpersulfuration reaction. Peculiar fluorescence features of 

RhdA allowed us to develop a continuous enzyme assay for defining apparent kinetic parameters of 

the protein-protein transpersulfuration. Apparent velocity of the transpersulfuration reaction is 

higher for NifS than IscS, however persulfuration of RhdA can be achieved by both the A. 

vinelandii CDs. Therefore there is not a preferential functional relationship of RhdA with NifS or 
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IscS. The ability of IscS and NifS to produce cyanide-detectable sulfur (i.e. sulfane sulfur) from L-

cysteine is increased in the presence of RhdA by a mechanism that does not involve the only thiol in 

RhdA (Cys230). The observation that this increase has a saturation behaviour with a maximum when 

RhdA and NifS are equimolar led us to consider that this effect is in agreement with an interaction 

between RhdA and NifS. Probably RhdA interacts with NifS (or IscS) inducing some 

conformational changes which favours the formation of the persulfide on the catalytic cysteine 

residue of NifS (or IscS). It cannot be excluded that the interaction of RhdA protects the persulfide 

by the excess of free L-cysteine which was shown to be competitive respect to DTT in the CD 

reaction when it is assayed probing the labile sulfur (Behshad et al. 2004). Considering that CDs are 

involved in many pathways for the biogenesis of sulfur-containing compounds (Mihara and Esaki, 

2002), the RhdA modulation of NifS/IscS-mediated persulfide production could have the regulatory 

purpose to address the sulfane sulfur flow toward the cellular pathway in which RhdA is involved. 

Ikeuchi et al. (2006) suggested that the activity of IscS and its paralogs is regulated by specific 

partner proteins in order to control sulfur flow into various cellular pathways. 

Evaluating the ratio of L-cysteine:RhdA sulfurtransferase activity over persulfide production 

achieved by A. vinelandii CDs, the transpersulfuration efficiency is about 1.6-fold higher in NifS 

than in IscS. Loss of NifS function drastically impairs diazotrophic growth (Dos Santos et al. 2007; 

Jacobson et al. 1989) of A. vinelandii, whereas IscS has been shown to be essential under standard 

culture conditions (Johnson et al. 2006). For these reasons only the NifS/RhdA relationship was 

further deepened, though relationship of RhdA with any of the putative CD coded by the other, at 

least two, not-yet-characterized instances of nifS-like genes (Johnson et al. 2005; Setubal et al. 

2009) cannot be ruled out. In A. vinelandii, TST (rhodanese) activity can used as a probe of the 

RhdA expression/functionality. It is higher in conditions in which gene nifS is functional (i.e. 

diazotrophic growth). These and the importance of rhdA for diazotrophic aerobic growth of A. 

vinelandii, altogether support for a role of RhdA in a cellular process shared with NifS. 

Our data show that RhdA contributes to the homeostasis of cysteine concentration avoiding 

its increases especially under diazotrophic growth conditions where also TST activity, that is RhdA 

function, is higher respect to that detected under standard growth conditions. This means that RhdA 

function is demanded in conditions in which a more stringent control of the cysteine concentration 

is required. It could be envisaged that RhdA affects the cysteine amount leading to the formation of 

the persulfurated form of RhdA (RhdA-SSH). According to our in vitro results, this process could 

require the mediation of the CD NifS. The importance of cysteine for the NifS function is witnessed 

by the presence of a nifS-cotranscribed cysE gene coding for a putative serine transacetylase which 

catalyzes the rate-limiting step in cysteine biosynthesis in bacteria (Johnson et al. 2005). It was 
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shown (Park and Imlay 2003) that, in E. coli, supernormal levels of intracellular cysteine cause 

sensitivity to oxidative DNA damage. In mammalians, cysteine dioxygenase plays a critical and 

highly regulated role in the homeostasis of cysteine level (Stipanuk et al. 2009). In bacteria, 

cysteine catabolic pathways are not fully explored (Sekowska et al. 2000) and systems involved in 

the regulation of cysteine levels are not described. L-Cysteine is used as a central building block for 

the synthesis of several sulfur-containing biomolecules (Kessler 2006). Data reported here, about 

cysteine accumulation, indicate that RhdA, in concert with NifS, is involved, mainly under 

diazotrophic conditions, in a process that needs cysteine. 

A number of proteomic studies evidenced that proteins bearing the same rhodanese-like 

domain architecture of RhdA, as well as oxidative stress-related proteins, are overexpressed in the 

mitochondria of liver ethanol-exposed rats (Venkatraman et al. 2004), in phenol-growth 

Pseudomonas putida KT2440 cells (Santos et al. 2004), in pyrene-growth Mycobacterium sp. cells 

(Krivobok et al. 2003), in “standed” Mycobacterium bovis BCG cells (Florczyk et al. 2001). 

Exposition of Leishmania major promastigotes to the oxidant cumene hydroperoxide caused 

overproduction of its 3-mercaptopyruvate sulfurtransferase (Williams et al. 2003). Reduced form of 

thioredoxin was shown to be a good sulfur acceptor substrate in the in vitro sulfurtransferase 

catalysed by the bacterial single-domain rhodaneses, Aq-477 (Giuliani et al. 2007) and GlpE (Ray 

et al. 2000), the bovine liver rhodanese (Nandi and Westley, 1998), the leishmanial 

mercaptopyruvate sulfurtransferases LmajMST and LmexMST (Williams et al. 2003), and the 

Trichomonas vaginalis mercaptopyruvate sulfurtransferase TvMST (Westrop et al. 2009). 

Enzymatic activity of the rat MST is regulated according to a thioredoxin-dependent redox-sensing 

molecular switch (Nagahara 2008), and an isoform of bovine liver mitochondrial rhodanese was 

shown to catalyze the direct oxidation of reduced thioredoxin (Nandi et al. 2000). Thioredoxin is a 

key intermediate in cellular redox reactions (Winyard et al. 2005). In A. vinelandii, it was found that 

RhdA triggered protection from oxidants (Cereda et al. 2007) and the possible functionality of 

RhdA as a redox switch was suggested by using an in vitro model system that demonstrated 

reversible chemical modifications in the highly reactive RhdA Cys230 thiol (Cereda et al. 2009). 

Taking into account altogether the above reported functional results about rhodanese-like proteins 

and RhdA itself, it is suggested that RhdA-dependent modulation of cysteine amount must deal with 

a redox-related process. 
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Legends to figures. 

Fig. 1 Fluorescence kinetic measurements of RhdA persulfuration mediated by Escherichia coli 

IscS. A) Representative time-course fluorescence traces show the intrinsic fluorescence changes 

(exc = 280 nm, em = 340 nm) following the addition of 0.4 µM purified E. coli IscS (full line) were 

monitored in 1 ml of 50 mM Tris–HCl, 100 mM NaCl, pH 8, containing: 2 µM sulfane sulfur-

deprived RhdA, 4 mM L-cysteine, and 10 µM PLP. Trace obtained omitting L-cysteine is reported 

as a dotted line. As a control: 0.4 µM IscSC328A (dashed-dotted line) replaced IscS, or 2 µM RhdA 

variant having the catalytic cysteine chemically blocked by monobromobimane (RhdA-mBBr; 

dashed line) replaced RhdA. The arrow denotes the addition of 0.5 mM Na2S2O3. B) Example of 

initial rate determination of IscS-mediated persulfuration of RhdA. Values of time-scale 

fluorescence changes following the addition of 0.4 µM IscS to a mixture of 2 µM RhdA-SH, 4 mM 

L-cysteine, and 10 µM PLP in 50 mM Tris–HCl, 100 mM NaCl, pH 8, were converted to RhdA-

SSH concentration values (full circle) using as quantitative standard the value of total fluorescence 

change obtained after addition of 0.5 mM Na2S2O3, and were fitted to the exponential-rise function 

(full line) in order to approximate the initial rate (dashed line). C) Double-reciprocal plot of the 

initial rates of IscS-mediated persulfuration of RhdA determined at different concentrations of 

RhdA-SH. Values are means  standard deviations for three separate experiments  

 

Fig. 2 Effect of L-cysteine on RhdA fluorescence. To 2 µM sulfane-sulfur loaded RhdA (full line) 

in 50 mM Tris–HCl, 100 mM NaCl, pH 8, was added either L-cysteine (0.12 mM; dashed line) or 

KCN (0.25 mM; dotted line) 

 

Fig. 3 RhdA persulfuration mediated by Azotobacter vinelandii IscS and NifS. A) Intrinsic 

fluorescence changes (exc = 280 nm, em = 340 nm) following the addition of 0.4 µM purified A. 

vinelandii IscS (empty circles) or NifS (full circles) were monitored in 1 ml of 50 mM Tris–HCl, 

100 mM NaCl, pH 8, containing: 2 µM sulfane sulfur-deprived RhdA, 4 mM L-cysteine, and 10 µM 

PLP. B) Double-reciprocal plot of the initial rates of NifS-mediated persulfuration of RhdA 

determined at different concentrations of RhdA-SH. Values are means  standard deviations for 

three separate experiments 

 

Fig. 4. Effect of RhdA on the production of sulfane sulfur of A. vinelandii IscS and NifS. A) The 

absorbance at 460 nm due to the production of thiocyanate (Sorbo, 1953) in mixtures (0.65 ml) of 

50 mM Tris-HCl, 100 mM NaCl (pH 8) containing 4 mM L-cysteine, 10 µM pyridoxal phosphate, 

0.4 M cysteine desulfurase, 30 mM KCN was measured after incubation (60 min at 25°C) in the 
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absence of RhdA (black), in the presence of 2 M RhdA (grey) or 2 M RhdAC230A (white). B) 

Production of sulfane sulfur of NifS in the presence of different concentrations of RhdA is reported 

relative to that obtained in the absence of RhdA. A.U., arbitrary units. Bars indicate standard 

deviation from three independent experiments 

 

Fig. 5 Functional relationship between RhdA and NifS. A) Determinations of growth rates of wild 

type (UW136; triangles) and MV474 (circles) were carried out in the presence (empty symbols) or 

in the absence (full symbols) of 15 mM ammonium acetate in the medium. B) Thiosulfate:cyanide 

sulfurtransferase (TST) activity measured in crude extracts prepared from UW136 (black) and 

MV474 (white) A. vinelandii strains grown in the presence (BSN) or in the absence (BS) of 15 mM 

ammonium acetate. Bars indicate standard deviation from three independent experiments 

 

 

Tables. 

Table 1 Cysteine and thiosulfate amount in A. vinelandii strains grown under standard or 

diazotrophic conditions. Means  standard deviation from three independent experiments 

Strain growth medium cysteine 

pmol/mg cell f. wt.* 

thiosulfate 

pmol/mg cell f. wt.* 

UW136 
BSN 10.3  1.4 42.5  1.1 

BS 5.1  1.0 58.9  2.6 

MV474 
BSN 22.0  1.8 44.9  1.4 

BS 36.0  2.1 51.5  1.1 

* f. wt.: fresh weight. 
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