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Abstract 

Cutaneous melanoma is the most common skin cancer with an incidence that has been 

rapidly increasing in the past decades. Melanomas are among the most immunogenic tumors and, as 

such, have the greatest potential to respond favorably to immunotherapy. However, like many 

cancers, melanomas acquire various suppressive mechanisms, which generally act in concert, to 

escape innate and adaptive immune detection and destruction. Intense research into the cellular and 

molecular events associated with melanomagenesis, which ultimately lead to immune suppression, 

has resulted in the discovery of new therapeutic targets and synergistic combinations of 

immunotherapy, targeted therapy and chemotherapy. Tremendous effort to determine efficacy of 

single and combination therapies in pre-clinical and clinical phase I-III trials has led to FDA-

approval of several immunotherapeutic agents that could potentially be beneficial for aggressive, 

highly refractory, advanced and metastatic melanomas. The increasing availability of approved 

combination therapies for melanoma and more rapid assessment of patient tumors has increased the 

feasibility of personalized treatment to overcome patient and tumor heterogeneity and to achieve 

greater clinical benefit. Here, we review the evolution of the immune system during 

melanomagenesis, mechanisms exploited by melanoma to suppress anti-tumor immunity and 

methods that have been developed to restore immunity. We emphasize that an effective therapeutic 

strategy will require coordinate activation of tumor-specific immunity as well as increased 

recognition and accessibility of melanoma cells in primary tumors and distal metastases. This 

review integrates available knowledge on melanoma-specific immunity, molecular signaling 

pathways and molecular targeting strategies that could be utilized to envision therapeutics with 

broader application and greater efficacy for early stage and advanced metastatic melanoma.     
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1. Introduction 

 The recent rise of immunotherapies has led to an old, but revolutionary, concept of cancer 

treatment based on the improved activation of the endogenous immune system against cancer cells 

(1-3). The relevance of the field is well represented by the joint contribution of the 2018 Nobel 

Prize recipients for Physiology or Medicine James P. Allison and Tasuku Honjo for their discovery 

of cancer therapy by inhibition of negative immune checkpoint regulation (4, 5). The first immune-

checkpoint inhibitors, antibodies that specifically target the immunoregulatory molecules cytotoxic 

T-lymphocyte-associated protein 4 (anti-CTLA-4, Ipilimumab) and programmed cell death protein 

1 (anti-PD-1, Nivolumab), were approved by the US Food and Drug Administration (FDA) in 2011 

and 2014, respectively, for the treatment of unresectable or metastatic melanoma, thus enormously 

improving the management of this aggressive cancer, and doubling the median survival for 

metastatic disease (6, 7).  

 Malignant melanoma represents one of the most immunogenic tumors, which means that it 

has incredibly high genomic mutational load and has the highest potential to elicit specific adaptive 

antitumor immune responses. It serves as an excellent model for the evaluation of innovative 

immunotherapies such as checkpoint inhibitors as well as anticancer vaccines and engineered 

chimeric antigen receptor T cells (CAR T cells)  (8-10). Moreover, melanoma may be vulnerable to 

a newer cohort of checkpoint inhibitors targeting B- and T-lymphocyte attenuator (BTLA), T-cell 

immunoglobulin and mucin domain-3 (TIM-3) and lymphocyte-activation gene 3 (LAG-3) that 

continue to be areas of intense research (11).  Despite these major advances in cancer 

immunotherapy, a large subset of melanoma patients do not respond or relapse due to primary or 

acquired resistance, resulting in 40 to 65% treatment failure for patients treated with anti-PD-1, and 

treatment failure in over 70% of patients treated with anti-CTLA-4 (12).  

The plasticity of melanoma cells leads to a phenomenon called “immune escape”, whereby 

cancer cells acquire a less immunogenic phenotype and the ability to suppress anti-tumor immune 
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cells within the tumor microenvironment (TME) (13, 14).  While many factors contributing to 

immune escape have been elucidated, a therapeutic strategy to completely re-instill curative anti-

tumor immunity has not yet been realized. This review will describe the immune landscape 

participating in the initial control of pre-malignant cells and then will highlight the molecular and 

cellular “crosstalk” exploited by melanoma to reprogram immune cells and the TME to cause 

immune escape and progression to advanced disease. Finally, this review will shed light on the 

innovative immunotherapies that are currently under investigation with the aim to rescue anti-tumor 

immunity.   

2. Immune surveillance in melanoma 

2.1 Immunity and melanoma 

 The immune system is generally thought to keep the body in a state of homeostasis by 

defending against infection and disease caused by bacteria, viruses, fungi, and parasites. However, 

it is now generally accepted that the immune system also functions to constantly survey and 

eliminate pre-cancerous cells to prevent progression to melanoma (15-19). In most cases, 

intracellular check points are engaged within a malfunctioning cell that leads to a process of self-

destruction, or apoptosis, negating the need for immunity. However, in instances when pre-

malignant cells do not properly undergo apoptosis, the immune system must quickly act to prevent 

further transformation and the potential for immune escape (20-22).  

As in infection, both the innate and adaptive arms of immunity must work together to 

eliminate both pre-malignant and early stages of melanoma, and to provide long-term protection 

from potential relapse (23-26). For this to occur, the innate compartment must quickly eliminate 

tumor cells and act to recruit adaptive immune cells, present tumor antigens through major 

histocompatibility complexes (MHC) and provide the proper co-stimulatory signaling through 

surface receptors and/or cytokines to generate a long-term, tumor-specific memory population. 

Cytokines involved in this process include interleukins (IL), interferons (IFN) and colony 
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stimulating factors (CSF), which can be activating or suppressive in nature. Orchestrating an 

effective, anti-tumoral response, especially after negative selection in the thymus that leads to self-

tolerance of tumor cells, seems to be a nearly impossible task. However, melanoma tends to be 

incredibly immunogenic, generating neoantigens through chromosomal rearrangements or genetic 

polymorphisms that can mimic “foreign” infection and thus potentially elicit cytotoxic responses 

(27-31). Many of the key innate and adaptive subsets capable of anti-tumor activity have been 

identified in independent studies of melanoma and other solid malignancies (23, 32). The most 

effective therapeutic strategy should integrate as many of these immune subsets, without causing 

significant toxicity, for the greatest clinical benefit (33).  Here, we focus on the inherent anti-tumor 

functions of both innate and adaptive immune subsets that are postulated to control pre-malignant 

cells during early stages of melanomagenesis.  

2.2 Innate immunity 

The fast and non-specific anti-tumor responses elicited by innate immunity are not only 

critical in preventing and controlling early stages of melanoma, but also in priming robust adaptive 

immunity to provide long-term, tumor-specific immune surveillance. Several therapeutic strategies 

to inhibit melanoma growth have specifically focused on the activation of the anti-tumor activities 

of naive or differentiated innate subsets found within tumors, which includes, but are not limited to, 

macrophages, polymorphonuclear neutrophils (PMN), natural killer (NK) cells and dendritic cells 

(DC) (33, 34). These innate cells comprise an immune system within the skin known as the skin-

associated lymphoid tissue (SALT) (35). It is important to note that innate cells are incredibly 

plastic and can acquire both pro- and/or anti-tumor functions depending on cell-cell or tumor-cell 

engagement and soluble factors present in the microenvironment (36, 37). Here, we first discuss the 

anti-tumor activities that can be exerted by innate immune cells. 

Tumor-resident macrophages, PMN, NK and DC are among the first to contribute to immediate, 

non-specific cytotoxicity against melanoma cells. Through activating NK receptors (NKG2D, 
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NKp30, NKp46, DNAM-1) and agonists present on the surface of melanoma cells, NK are 

independently activated to eliminate melanoma cells that have significantly downregulated their 

MHC class I molecules (23, 38). Indeed, previous studies have found that IL-15 stimulation of NK 

cells is sufficient to cause regression of MHC class I low melanomas in mice. It has been 

demonstrated that the expression of NK receptor ligands by melanoma cells can be both dependent on 

tumor progression (acute vs. late recognition) and localization (primary vs. metastatic and in different 

metastatic sites). For example, NKp44 and NKp46 are expressed on lymph node metastasis but in a lesser 

extent in skin metastasis. The expression of DNAM-1 ligands, such as nectin-2 (CD112) and PVR (poliovirus 

receptor), is independent of the anatomical site and tumor stage, and the disruption of their interaction 

with DNAM-1 is responsible of the loss of cytotoxicity and of failed tumor rejection. DNAM+ NK cells 

showed higher cytotoxicity with respect of DNAM- NK cells, despite the two populations shared the same 

positivity for both NKp46 and NKG2D, suggesting the relevance of DNAM-1 signaling in activating NK cells 

against melanomas, at least during early recognition and lymph node metastasis (38). 

In addition to direct tumor interactions, NK cytolytic activity can be induced through DCs 

activated by soluble antigenic peptides present in the TME (23, 39). In general, NK cells poorly 

infiltrate primary cutaneous melanomas and mostly accumulate in the peritumoral space, however, 

during regression, they can be observed more dispersed throughout the tumor tissue (40-42). 

Intratumoral NK cells (activated) can then indirectly contribute to recruitment and maturation of 

antigen-presenting cells through the secretion of cytokines such as CXCL1 (CXC-motif ligand 1) 

and CCL5 (CC-motif ligand 5). Macrophages, PMN and DC that are recruited to tumor tissue can 

then phagocytose apoptotic or dead melanoma cells or debris and cross-present tumor antigens that 

drive secondary adaptive immune responses involving CD4 helper and CD8 effector T cells (CD4 

Th and CD8 Teff cells, respectively) (43-45). Interestingly, several studies in pre-clinical melanoma 

models have shown that soluble factors secreted by activated T cells in turn induce anti-tumor 

activity of innate immune cells (macrophages and granulocytes) to assist in primary tumor growth 

control and minimize lung metastases (46).  
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 As professional antigen-presenting cells (APCs), DCs are among the most efficient in 

eliciting cytotoxic T cell responses against infection and malignancy. DCs circulate and survey 

various tissues throughout the entire body, ultimately migrating to lymph nodes where interactions 

with naive or memory T cells occur (39). Mature DCs express a plethora of co-stimulatory markers, 

including CD80 and CD86 (cluster of differentiation 80 and 86, respectively), which are essential 

for activation of melanoma-specific T cells (47, 48). The T cell receptor (TCR)-MHC class I 

interaction, co-stimulatory markers and proper cytokines (IL-12, IFN-) produced by DCs and 

helper T cells are requisite for the proper development of melanoma-specific, cytotoxic T cells (49, 

50). Ultimately, functional effector T cells must be recruited to melanomas through a chemokine 

gradient (CXCL9, CXCL10, CXCL11) generated by DCs or tumor-associated stroma (51, 52). 

Inefficiency in any or all of these steps can lead to compounding deficiencies in adaptive tumor-

specific immunity. Overall, DCs exert a protective role against melanoma tumors as evidenced by 

high frequency of DCs in tumor-negative sentinel lymph nodes (53-55).      

Anti-tumor macrophages and neutrophils, designated M1 and N1, respectively, have been 

studied extensively for their potential use as immunotherapy for melanoma (56-61). These innate 

subsets exert anti-tumoral effects through phagocytosis, secretion of tumoricidal agents (reactive 

oxygen species, nitric oxide, IFN-, Fas ligand/FasL) or assemble other tumor-specific immune 

cells through secretion of chemotactic factors. Interestingly, while macrophages can stimulate 

adaptive T cell responses, a reciprocal relationship also exists whereby activated Th1 cells generate 

tumor-killing macrophages through the expression of IFN-, CD40 ligand and lymphotoxin-alpha. 

Use of microbial agents (Bacillus Calmette-Guerin (BCG) and vaccinia virus) have been shown to 

be effective against melanoma by inducing the anti-microbial, cytotoxic functions of macrophages. 

Topical agents, such as ingenol-3-angelate, are known to recruit neutrophils in cutaneous 

melanomas and induce their N1 anti-tumor functions (62, 63). Similarly, we found that the primary 

immune population mediating tumor growth control of subcutaneous melanomas, following 
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intravenous administration of a tumor-colonizing, Salmonella-based therapy, were cytotoxic PMN 

responding to the bacterial vector (64, 65). In both cases of neutrophil-mediated killing, cytotoxic 

activity was contained within tumor tissue, minimizing adverse effects to healthy tissue that would 

normally be observed with radiotherapy or chemotherapy. Adoptively transferred M1- and N1-

polarized cells generated in vivo with GM-CSF (granulocyte-macrophage colony stimulating factor) 

treatment have also been shown to eliminate melanoma in recipient mice (66-70). Overall, the 

innate immune system plays a critical role in first-line defense against melanoma and will likely be 

indispensable for generating effective anti-tumor immunity using immunotherapy.        

2.3 Adaptive immunity 

 Long-term memory responses critical for life-long melanoma remission involve the 

activation and expansion of adaptive immune cells, namely helper CD4+ T cells and cytotoxic or 

memory CD8+ T cells. As previously mentioned, DC, and to some extent macrophages, are the 

most capable in priming adaptive immunity to incite cytotoxicity of CD8+ effector T cells and also 

mediate generation of memory immune populations involved in long-term remission. DC are 

initially activated in the tumor bed in the presence of cytosolic melanoma DNA through the cGAS-

STING pathway (71-74). Soluble tumor antigens from necrotic melanoma cells are engulfed by DC 

and macrophages and proteolytically processed for direct presentation or cross presentation to naïve 

T cells in tumor-draining lymph nodes (TDLNs) via MHC class I and II molecules. In some 

instances, neutrophils have also been shown to present antigen in TDLN, although their efficiency 

to elicit T cell responses is incredibly low (75). Cytokines, such as interferon-γ (IFN-) and tumor 

necrosis factor-α (TNF-), play pivotal roles in activation of melanoma-specific T cells during 

TCR-MHC interactions and are expressed by DCs and macrophages of the M1 phenotype.  

While neo-antigens expressed by melanoma cells would be the most immunogenic, i.e. most 

likely to expand cytotoxic T cells, self-antigens expressed at high levels could potentially break 

tolerance and activate low-affinity CD8+ T cells. It is becoming more apparent, however, that more 
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than just overexpression of wildtype peptide sequences from melanoma cells is needed to induce 

effective anti-tumor responses from tolerant or low-affinity T cells. Hence, the use of checkpoint 

inhibitors, such as anti-PD1/PD-L1 and anti-CTLA-4, and adjuvants in combination with self-

antigen cancer vaccines is almost requisite (76, 77). Currently, identification of neo-antigens 

broadly expressed by melanomas is an area of intense research. Indeed, vaccines encoding neo-

antigens expressed by a single melanoma can be therapeutically beneficial as determined in pre-

clinical models of melanoma utilizing a single melanoma cell line or graft. However, neo-antigens 

are not identical from patient to patient or even from distal melanomas within the same individual, 

thus requiring development of highly personalized vaccines, which can be both cost- and labor-

intensive with no guarantee of success (78, 79).       

Once CD8+ T cells are sufficiently primed and activated, naturally or through vaccination, 

they begin to seek out and induce apoptosis of melanoma cells through the release of perforin and 

granules, which then provides additional antigens for presentation and expansion of melanoma-

specific T cells (80). Life-long remission can then be achieved with this repeating cycle (Figure 1), 

but in many cases, a select population of resistant melanomas subvert immune recognition and 

destruction by downregulating antigen presentation machinery, direct suppression of both innate 

and adaptive immune cells or expansion of immune-suppressive subsets.  

3. Melanoma cross-talk leading to immune escape 

3.1 Hallmark of cancer: Immune escape 

The existing relationship between cancer cells and immune cells can be described following 

the 3 E’s rule (Elimination, Equilibrium, Escape). During early phases, transformed cells are 

actively eliminated by immune cells, thus impeding tumor initiation. Due to the high plasticity of 

tumor cells, and the eventual development of favorable mutations, a subset of transformed cells can 

acquire properties that lead to immune evasion. During “equilibrium”, tumor initiation is achieved 

by selection and expansion of the “immune-resistant” clones, but the host’s immune system is able 
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to control tumor outgrowth through continuous elimination of “immune-sensitive” clones. The last 

phase is characterized by immune escape: cells that are most fit to evade immunity are free to 

proliferate leading to tumor progression, analogous to Darwinian selection (9, 81). 

Escape mechanisms are easily developed by cells with high plasticity. Malignant melanoma 

represents one of the most immunogenic tumors due to its high mutational burden, but plasticity of 

melanoma cells allows them to adapt to a hostile immune microenvironment. In this context, tumor 

cells can acquire different immunogenic features, as well as the ability to produce 

immunomodulatory molecules that can, in turn, affect immune cell activation or the composition of 

the immune infiltrate within the tumor (82). The immunogenicity of melanoma cells is due to the 

expression of tumor-associated antigens (TAAs), highly immunogenic proteins that can be divided 

into three classes: 

1. Lineage-specific markers that are overexpressed in melanoma cells, such as MART-1 

(Melanoma Antigen Recognized by T cells), tyrosinase and gp100 (glycoprotein 100);  

2. Cancer-testis (CT) antigens, physiologically expressed (low levels) by adult germ cells and 

placenta, but aberrantly over-expressed by cancer cells;  

3. Neoantigens, antigens originating from somatic mutations.  

Melanoma cells can escape T cell recognition through: i) the downregulation of TAAs, ii) 

defects/deletions in antigen processing machinery that may include proteasome subunits or 

transporters associated with antigen processing (TAP) and/or iii) the downregulation of MHC 

molecules, typically through β2-microglobulin mutations. By reducing antigen presentation alone, 

melanoma cells are capable of becoming virtually “invisible” to the immune system (9, 83-85). On 

the other hand, melanoma cells are not only restricted to a single avenue of immune escape: the high 

antigen load within the tumor microenvironment can contribute itself to T cell exhaustion and failed tumor 

control, thus adding to the complexity, and difficulty, of curative treatments (Figure 2).   It is important to 

note that melanoma cells are able to affect the behavior of stromal cells, namely cancer-associated 
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fibroblasts (CAFs), in order to promote the recruitment of pro-tumor immune cells (86, 87). CAFs are known 

to promote cancer cell proliferation and invasion (88), and other findings demonstrated that these cells can 

participate to the evolution of an immunosuppressive environment, both within the tumor bulk and in 

metastatic niches, through the release of immunomodulatory factors. It has been recently demonstrated 

that melanoma-derived extracellular vesicles can induce a pro-inflammatory signature in lung fibroblasts 

(upregulation of cytokines and chemokines, including IL-1α, IL-1β, CXCL10, CXCL1, CCL2, CCL3 and CCL5), 

thus enhancing the recruitment of myeloid-derived cells such as neutrophils (86). Moreover, pro-

inflammatory pathways, eventually associated with BRAF mutations, can in turn induce the expression of 

PD-1 ligands and COX-2 on CAFs, contributing to the immune suppression (89). CAFs can favor immune 

escape through the secretion of MMPs and the secretion of Prostaglandin E2 (PGE2), affecting melanoma 

cell susceptibility to NK-mediated lysis (90), eventually mediated by a decreased surface expression of the 

activating receptor NKp44 (91). T cell functions can be also affected by CAFs: the secretion of cytokines (i.e., 

CXCL5) can induce the expression of PD1 on cancer cells (92), and the CAFs-mediated metabolic stress of 

CD8+ T cells limits their functions against tumor cells (93).   

This section will highlight the mechanisms exploited by melanoma cells to communicate with cells of the 

tumor microenvironment in order to gain an immunosuppressing, tumor-promoting, setting. 

 

3.2 Cell-cell contact 

In order to elicit an efficient antitumor immune response, T cells must be fully activated by 

two costimulatory signals. The first one is MHC-T cell receptor (TCR) interactions and depends on 

DC or tumor cell antigen presentation; if only this signal is present, T cells are not completely 

stimulated and become anergic. The complimentary signal is represented by the expression of co-

stimulatory molecules on T cells (e.g. CD28), that bind to their cognate receptors on antigen 

presenting cells (e.g. CD80, CD86). Similarly, inhibitory receptors (e.g. CTLA-4, PD-1, PD-L1, 

B7-H2, B7-H3) trigger negative stimuli that lead to T cell anergy (94). It has been demonstrated 

that melanoma suppresses T cell activation through upregulation of co-inhibitory molecules such as 
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PD-L1 (95, 96) and that the overexpression of PD-1 in T cells continuously exposed to cancer 

antigens leads to T cell anergy (97). Indeed, it has been demonstrated that the high antigen load is 

involved in CD8+ cell dysfunction and exhaustion, so that despite melanomas are highly immunogenic, T 

cells are not able to restrain tumor growth. Dysfunctional T cells are characterized by high levels of clonal 

expansion together with the overexpression of checkpoint molecules (i.e., PD-1, TIM-3, LAG-3): thus, 

exhaustion might be induced by antigen-driven interactions with melanoma cells (98, 99). From a functional 

point of view, dysfunctional T cells lose their effector functions (i.e., cytotoxicity) while maintaining the 

proliferative capacity, at least early during the acquisition of the exhausted phenotype (100). In an elegant 

study, Schietinger A. et al were able to follow the activation state of T cells during tumor initiation and 

progression. The authors demonstrated that the chronic antigen presentation, eventually by non-

professional presenting cells (such as tumor cells), in a non-inflammatory context, is responsible for the 

induction of a programmed, alternative, dysfunctional differentiation program in T cells. Such program is 

triggered early during tumor initiation, even in pre-malignant lesions, evolving to a “fixed” dysfunctional 

state as tumor progresses. In this context, a comparative whole-genome transcriptomic analysis showed 

that “early” and “late” dysfunctional T cells share a signature related to the inhibition of their effector 

functions (e.g. Tbx21, Eomes, Id2, Gzmk, Ccr5, Cxcr3). Conversely, the early phase is characterized by the 

downregulation of genes involved in activating T cell functions (e.g., Foxo1, Foxp1, Tcf7, Klf2) and the late 

phase by the upregulation of genes involved in reducing immune function (e.g., Egr1, Batf, Blimp, Lag3, 

Ctla4) (101). T cell dysfunction seems to be reversible during early phases, becoming irreversible over time. 

The transition from the dynamic and the fixed states is epigenetically imprinted: the two conditions are 

characterized by different chromatin assets, leading to a differential gene expression. For example, in early 

dysfunction, T cells showed low expression of CD38, CD101, CD30L and high expression of CD5, while late 

dysfunction is characterized by the opposite pattern (102). Otherwise, other studies demonstrated that PD-

1-expressing T cells chronically stimulated by tumor antigens undergo fast proliferation followed by 

apoptosis due to a microenvironment-driven DNA damage. In this way, an equilibrium is reached between 

proliferation and death, impeding T cells expansion and leading to failed control of tumor outgrowth (103). 

The expression of immune-checkpoint molecules by melanoma cells, or by tumor-associated 
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immune or stromal cells, formed the rationale for the development of the immune-checkpoint 

inhibitor therapies (i.e., PD-1/PD-L1/CTLA-4 axis inhibitors), that have been approved for the 

treatment of unresectable, metastatic melanoma. However, most patients show primary or acquired 

resistance and, eventually, tumor relapse. Unfortunately, melanoma cells are known to exploit 

alternative mechanisms to suppress the immune system such as upregulation of TIM-3, LAG-3 and 

BTLA which can compensate for PD-1 or CTLA-4 axis inhibition, thus sustaining 

immunosuppression (104-108).  

3.3 Pro-tumor cytokines and chemokines 

Cancer cells are able to shape the local immune landscape through the recruitment of pro-

tumor, and the suppression or exclusion of anti-tumor, immune subsets. In this context, the 

secretion of cytokines and chemokines by melanoma cells is often mediated through the 

hyperactivation of NFκB signaling pathways (109). Pro-inflammatory events initiated by 

melanomas result in the recruitment of innate immune cells, which include neutrophils, 

macrophages and DCs.  As previously discussed, DCs can process tumor antigens and migrate to 

regional lymph nodes where they can prime effector T cells (Teff) (85), thus representing the 

functional bridge between innate and adaptive immunity. Melanoma cells, however, impair DC 

recruitment and maturation through vascular endothelial growth factor (VEGF) and transforming 

growth factor (TGF)-β secretion, which impedes T cell targeting of tumor cells (107, 110). 

Moreover, dysregulation of the Wnt/β-catenin signaling pathway in melanoma cells, often related to 

aggressive cancer cell subsets (i.e., cancer stem cells), leads to defective CCL4 production, which in 

turn impairs DC and T cell recruitment while also inducing resistance to anti-PD-1 therapies (107, 

111). IL-37b is another factor involved in anti-tumor suppression that mediates the downregulation 

of costimulatory molecules CD80 and CD86 on APCs (12), resulting in suboptimal activation and 

dramatic impairment of Teff  cells. 
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In addition to the impairment of DC-mediated T cell recruitment, melanoma cells can 

redirect the production of cytokines to favor recruitment of pro-tumor T cells while rejecting Teff 

cells. Melanoma growth and progression have been correlated with the presence of 

CD4+CD25+Foxp3+ regulatory T cells (Treg) within the tumor in B16F10 tumor-bearing mice and 

in melanoma patients (112). Physiologically, Treg functions are required for maintaining self-

tolerance, thus providing suppressive control over antigen-specific Teff cells. Thus, it is not 

surprising that their recruitment by melanoma cells represents a strategy to evade elimination. Treg 

produce immunosuppressive cytokines and chemokines, such as IL-10, IL-35 and TGF-β, and can 

also engage DC directly through CTLA-4 in order to inhibit antitumor immune responses (113, 

114). Furthermore, they can inhibit effector functions of Natural Killer (NK) cells through 

expression of membrane bound TGF-β which is responsible for NK cell downregulation of the 

Natural Killer  Group 2D receptor (NKG2D) (115).  

The ratio of Teff/Treg within the tumor has a predictive value in immunotherapeutic responses 

(116). A study by Shabaneh et al. demonstrated that Treg cells have an important role not only in late 

phases of anti-tumor suppression, but also in early phases of tumor development. In this study, an 

inducible PTEN/BRAF melanoma mouse model was utilized to demonstrate the importance of 

BRAF oncogenic signaling in the recruitment of regulatory cells, driven by CCL2, CCL17 and 

CCL22 (117). Moreover, defective production of cytokines and chemokines involved in T cell 

homing was observed, contributing to an imbalance between Teff and Treg cells. Among these 

molecules, IFN-γ expression contributed to both a tumor-supportive and a tumor-suppressive 

immune environment. Aberrant IFN-γ signaling has been associated with the downregulation of the 

Jak1/2 pathway in tumor cells and subsequent reduced production of CXCL9 and CXCL10 within 

the TME, two important chemotactic molecules responsible of T cell migration and infiltration 

(118). Epigenetic silencing of genes encoding chemotactic molecules is one mechanism that has 

been described in melanoma (85).  
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Melanoma cells recruit and modify the function of macrophages (M) and neutrophils (N) 

within the TME. These inflammatory, phagocytic cells can behave in an anti-tumor (M1 and N1) or 

in a pro-tumor (M2 and N2) fashion, depending on the signals received within the TME. 

Macrophages are recruited by secretion of CCL2 (MCP-1, monocyte-chemoattractant protein-1) 

and it has been reported that the expression levels of this chemokine is determinant for the induction 

of a pro-tumor or an anti-tumor setting, with high levels favoring tumor rejection and low-to-

intermediate levels sustaining tumor growth (119). A similar biphasic effect is achieved by VEGF-

C, involved in macrophage recruitment in addition to pro-angiogenic processes (120). Tumor-

associated macrophages (TAM) are frequently polarized toward a M2 phenotype because of the 

secretion of TGF-β (121). IL-10 plays a pivotal role in the ability of macrophage to modulate 

immune responses, which functions to downregulate MHC class II antigens and upregulate the 

costimulatory molecule B7, leading to  poor antigen-presentation and the inhibition of T cells (121). 

Other M2 tumor-supportive features are related to the production of matrix metalloproteases 

(MMPs), involved in tumor invasion, and the production of proangiogenic molecules  such as 

VEGF to mediate extravasation of tumor cells (122). 

Together with DCs, neutrophils are among the first to respond to tumor-mediated 

inflammatory signals. Malignant melanomas produce chemokines that lead to neutrophil infiltration 

during tumor initiation and progression. Particularly, the mobilization of neutrophils is achieved by 

molecules that bind to CXCR2, which includes CXCL1, CXCL2, CXCL3, CXCL5 and CXCL8 

(123). Interestingly, UVB radiation exposure, one of the well-known causes of melanoma, induces 

the production of CXCL1 and CXCL8 and the recruitment of anti-tumor neutrophils (124). Like 

macrophages, neutrophils can be polarized to become predominantly anti-tumor (N1) or pro-tumor 

(N2). The neutrophils role in tumor initiation and progression has been matter of debate: it seems 

that tumor initiation is characterized by the presence of N1 neutrophils that mediate melanoma cell 

killing, while in late stages N2 neutrophils are the most abundant phenotype and have a role in 

tumor progression (125, 126). To date, emerging clinical evidence support the finding that a high 
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neutrophil-to-lymphocyte ratio (NLR) represents poor prognostic outcomes and is a negative 

predictive indicator of immune checkpoint inhibitor therapy success (127, 128). The specific 

mechanisms that drive neutrophil phenotypic switching are not fully understood, but may be related 

to the complex network of soluble mediators within the TME. Tumor-derived IFN-β has been 

demonstrated to be involved in the induction of the N1 phenotype (59), thus limiting the pro-

angiogenic and pro-invasive properties of tumor-associated neutrophils (129). Moreover, it has been 

demonstrated that circulating tumor cells (CTCs) promote the establishment of metastasis through 

the secretion of G-CSF (granulocyte colony stimulating factor) and CXCL6, and subsequent 

recruitment of N2 neutrophils (130). Pro-tumor neutrophils can contribute to immune evasion 

orchestrated by melanoma cells through the expression of immune checkpoint proteins (i.e., PD-

L1), the overexpression of other immunosuppressive molecules, such as IDO (indoleamine 2,3-

dioxygenase) and iNOS (inducible nitric oxide synthase), or the secretion of molecules involved in 

the recruitment of Treg (i.e. IL-17) (131, 132). 

Melanoma is also known to recruit myeloid-derived suppressor cells (MDSC). MDSC are 

comprised of immature precursors of DCs, macrophages and neutrophils, usually retained within 

the bone marrow, but that can be mobilized upon appropriate stimuli. Their expansion and 

migration can be induced by inflammatory molecules produced during chronic inflammation and 

cancer progression, such as GM-CSF, IL-6, IL-10, IFN-γ and VEGF (103) and a central role seems 

to be played by CCR5 ligands in melanomas: CCL3, CCL4 and CCL5. Importantly, an enriched 

CCR5+MDSC infiltrate within the melanoma microenvironment has been observed in mouse 

models, and the administration of CCR5-Ig fusion protein leads to melanoma growth inhibition 

associated with impaired MDSC trafficking (104). The inhibitory role of MDSCs on anti-tumor 

immunity is due to: 1) the production of NO (nitric oxide) and Arg-1 (arginase 1), inducing T cell 

apoptosis and cell cycle arrest, 2) high expression of PD-L1, inducing T cell exhaustion, 3) 

upregulation of IDO, leading to T cell anergy and 4) secretion of IL-10 and TGF-β, suppressing T 

cell trafficking (103). The presence of MDSC in cancer tissue is another potential prognostic 
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indicator for immune-checkpoint inhibitor therapy treatment, and has been reported as a predictive 

marker of response to ipilimumab in melanoma patients (105). 

3.4 Metabolic mediators. 

Cancer cells can escape immunosurveillance or evade immunotherapies via metabolic 

reprogramming. Metabolic mediators can drive immunosuppressive signaling and essential 

substrate consumption by cancer cells can cause metabolic depletion leading to anergy of immune 

cells.   

Cancer cells require high nutrient consumption in order to support tumor growth. Their 

plastic phenotype allows for rapid reprogramming of cell metabolism for survival in hostile 

conditions such as hypoxia, as well as the ability to activate “unconventional” metabolic pathways, 

such as glycolysis, even in the presence of normal oxygen levels (Warburg effect). The increase of 

glucose consumption by melanoma cells leads to glucose deprivation for cells within the TME 

whose metabolism is strikingly glycolytic. In this context, glucose deprivation inhibits T cell 

proliferation and activation, dampening anti-tumor immune responses. CD28 is involved in multiple 

pathways related to T cell activation, such as the upregulation of the glucose transporter GLUT1, 

which when silenced, significantly impairs T cell functions (133). It has been demonstrated that the 

production of IFN-γ, cytolytic activity and cell cycle progression of T cells are regulated by glucose 

consumption (134). Moreover, recent studies show that the increase of oxidative metabolism that 

can occur in melanoma cells consumes oxygen from the TME leading to oxygen deprivation for T 

cells (135). 

Lactate derived from cancer cell glycolysis represents another metabolite involved in   

immune cell suppression. In particular, it has been involved in the reduction of antigen-presenting 

efficiency of DCs (136). Furthermore, as a consequence of excessive amounts of lactate, 

extracellular acidosis causes the inhibition of NK and T cells in mouse models of melanoma (137), 

and the neutralization of acidic conditions improves response to immune-checkpoint inhibitor 
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therapies (138). Amino acid availability within the TME is crucial for T cells that, similar to other 

immune cells, are unable to synthesize amino acids (i.e., tryptophan, glutamine, arginine). 

Malignant melanoma has been demonstrated to be highly dependent on glutamine metabolism that 

fuels oxidative phosphorylation by entering the TCA (tricarboxylic acid cycle) after conversion to 

glutamate and then α-ketoglutarate (139). The glutamine addiction of melanoma cells restricts 

glutamine availability for T cells, preventing proper T cell activation (140).  

L-arginine metabolism in melanoma has been associated with immunosuppression (141). 

Arginine uptake is crucial because its endogenous synthesis rate is not sufficient to sustain highly 

proliferative cells, and studies have demonstrated that downregulation of arginosuccinate synthetase 

in melanoma cells renders them unable to generate arginine (142, 143). High arginine uptake by 

cancer cells leaves little for T cells, leading to reduced proliferation and survival (141, 144). 

Importantly, L-arginine is the precursor for NO synthesis. NO is a crucial immunomodulatory 

factor that exerts its suppressive effects though inhibition of T cell proliferation and function. 

Moreover, reactive nitrogen species, such as peroxynitrite, are known to induce apoptosis of T cells 

(145, 146). 

In contrast to glutamine and arginine, which are directly consumed by tumor cells, 

tryptophan deficiency within the TME is due to the upregulation of the catabolic enzyme IDO in 

tumor cells and MDSC (147, 148). Physiologically, this enzyme is involved in tolerance during 

pregnancy to prevent rejection of the fetus and it can thus be exploited by tumor cells as a 

mechanism of immune escape. In fact, it is frequently overexpressed by cancer cells and its 

upregulation has been associated with tumor progression and poor prognosis (149). Regarding 

melanoma, its expression has been correlated with Breslow thickness and PD-L1 expression, and it 

negatively correlates with progression-free survival (150, 151). Mechanistically, local tryptophan 

deprivation is signaled through glucokinase, an amino acid-sensing kinase that in turn triggers 

downstream pathways such as mTORC1 (mammalian target of rapamycin complex 1)  inhibition 
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and the consequent activation of the autophagic process, leading to T cell anergy (152). Another 

mechanism implicated in T cell anergy due to tryptophan deficiency is the activation of stress 

sensors such as GCN2 (general control nonderepressible 2), which senses the lack of tryptophan-

charged tRNAs and induces a stress response that limits protein translation. Moreover, GCN2 

activation promotes Treg differentiation and activation (153). However, recent evidence has 

demonstrated that this sensor does not affect immunity in B16 melanoma tumors, and this could be 

due to the maintenance of adequate tryptophan levels within the TME despite its catabolism through 

IDO (154). 

IDO catalyzes the conversion of tryptophan to kynurenine, that can directly act as an 

immunosuppressive molecule. Increased kynurenine in the TME directly inhibits NK cell cytolytic 

activity through the downregulation of activating receptors (NKp44, NKp30, and NKG2D) (155). 

In other cell types, kynurenine binds to the aryl hydrocarbon receptor (AhR), a ligand-dependent 

transcription factor that, once activated, promotes the differentiation of Treg cells, reduces the 

immunogenicity of APCs and induces the upregulation of PD-1 expression on Teff cells (156). 

Another metabolic product that acts as an immunosuppressive mediator is adenosine obtained from 

ATP through the activity of the ectonucleotidases CD39 and CD73. Specifically, the release of 

intracellular ATP is followed by its conversion to AMP by CD39, and subsequently AMP 

undergoes dephosphorylation by CD73. Hypoxic conditions, as well as extracellular stresses, 

represent the driving events: the induction of the transcription factor HIF1α (hypoxia inducible 

factor 1) in response to low oxygen levels promotes the expression of CD39 and CD73 both on 

cancerous and non-cancerous cells (i.e., endothelial cells and lymphocytes) (157, 158). The A2A 

high-affinity adenosine receptor has been implicated in the immunosuppressive effect of this 

molecule because of its high expression levels on immune cells. Specifically, adenosine has been 

shown to inhibit NK infiltration and function, to impair macrophage activation and to favor Treg cell 

maturation, while impairing Teff cell priming, proliferation and cytokine release (159-161). 

Furthermore, increased production of adenosine has been observed in melanoma progression during 
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immunotherapy (i.e., during adoptive T cell transfer or immune-checkpoint blockade), and it has 

been attributed to the phenotype switch of melanoma cells. Thus, adenosine can be implicated both 

in immune escape and in mechanisms leading to adaptive resistance (162). 

3.5 MicroRNAs (miRNAs) 

MicroRNAs are small, 20-25 nucleotide-long, non-coding RNAs that are involved in the 

attenuation or complete inhibition of protein translation. Their binding to a specific RNA is due to 

their complimentary nucleotide sequence: a fully complimentary sequence leads to mRNA 

degradation and inhibition of protein expression, whereas a partial complementarity is responsible 

for the attenuation of protein expression (163). Several miRNAs have been implicated in cancer 

progression and both oncogenic and tumor-suppressor miRNAs have been recognized. The 

overexpression of oncogenic miRNAs by cancer cells often leads to the inhibition tumor suppressor 

proteins (i.e., apoptotic proteins, proteins involved in cell differentiation or in cell cycle regulation), 

and the downregulation of tumor-suppressor miRNAs leads to aberrant expression of proteins 

involved in cancer progression (i.e., oncogenes, anti-apoptotic proteins or proteins involved in cell 

proliferation) (164). MiRNAs can modulate intracellular processes, as well as be transferred to 

nearby cells for cross-talk within the TME. In order to overcome degradation by RNAses in the 

extracellular space, miRNAs are carried by transporters, such as proteins (argonaute, ARG), high-

density lipoproteins (HDL), or extracellular vesicles (exosomes) (163). 

miRNAs are involved in the modulation of the immune microenvironment in malignant 

melanoma. The miR-30b/-30d cluster, upregulated in melanoma cells, has been associated with 

GalNAc transferase 7 (polypeptide N-acetylgalactosaminyltransferase 7) downregulation, which 

impairs recruitment of Teff cells and increases infiltration of Treg following increased IL-10 secretion 

(165). Recently, a panel of miRNAs (miR-146a, miR-155, miR-125b, miR-100, let-7e, miR-125a, 

miR-146b, miR-99b), carried from tumor cells by extracellular vesicles, have been implicated in 

monocyte conversion to MDSC and in immune-checkpoint inhibitor resistance in melanoma 
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patients (166). Among other miRNAs, miR-210 is upregulated by hypoxic conditions in melanoma 

cells and impairs the susceptibility of tumor cells to T cell-mediated lysis (167). MiR-21 and -29a 

are known to target anti-angiogenic pathways, thus promoting tumor angiogenesis, and genes 

involved in M1 macrophage polarization (168). The role of miR-155 is more controversial because 

it can exert both immune-promoting and immune-suppressive effects (169). It has been implicated 

in macrophage polarization toward the M1 phenotype to promote anti-tumor immunity, but in 

tumors with increased IL-1β signaling, it mediates the induction MDSCs (170, 171). Moreover, 

transgenic mice lacking miR-155 showed defective T cells and increased B16F10 melanoma growth 

(172).  

Other studies have demonstrated that melanoma-derived miRNA can affect response to 

immune-checkpoint inhibitor therapies. MiR-146a has been implicated in supporting immune 

suppression during melanoma growth wherein mice lacking its expression showed lower metastasis 

and increased survival. Targeting miR-146a with a specific antagomir acted synergistically with 

anti-PD-1 to enhancing the antitumor immune response (173). 

3.6 Exosomes  

Exosomes are small vesicles originating in the cytosol and derived from endosomal 

compartments. They are delimited by a phospholipid bilayer and can carry various molecules 

(proteins, lipids, nucleic acids). They are secreted into extracellular spaces and are exploited by 

tumor cells to deliver signals to the surrounding cells, allowing crosstalk with other tumor cells or 

cells of the TME.  

T cell function is frequently affected by tumor-derived exosomes. They have been 

implicated in the expansion of Treg and in the promotion of their function (174), thus reinforcing 

immune evasion. Melanoma exosomes can also deliver membrane-bound ligands, such as PD-L1, 

that find their cognate receptors on T cells providing inhibitory signals (175). Moreover, exosomes 

may carry soluble factors such as Fas and TRAIL (TNF-related apoptosis-inducing ligand) which 
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can induce Teff cell apoptosis (176). As mentioned above, melanoma-derived exosomes can carry 

miRNAs that silence anti-apoptotic Bcl (B-cell lymphoma) proteins, such as Bcl-2, Bcl-xl, and Bcl-

w, to induce mitochondrial-mediated apoptosis in CD4+ T cells (177). In some cases, however, the 

exposure of MHC-I and melanoma-associated antigens (MART-1, gp100, tyrosinase) on exosome 

membranes can mimic antigen presentation processes, leading to T cell activation (178). 

Several studies demonstrated the important role of tumor-derived exosomes in the 

development of metastatic niches. An elegant study performed by Peinado H. et al. demonstrated 

that melanoma-derived exosomes induce the acquisition of pro-angiogenic and pro-metastatic 

phenotypes by bone marrow cells leading to accelerated tumor growth and increased metastasis. 

This is due, at least partially, to the exosomal-mediated transfer of the Met receptor to bone marrow 

progenitor cells, inducing their mobilization via S6 induction and ERK phosphorylation (179).  

The two-fold nature of melanoma-derived exosomes is further demonstrated in DCs where 

melanoma exosomes may carry TAAs to DCs to promote the activation and expansion of cytotoxic 

T cells, but they may also inhibit differentiation of DCs from monocytes due to high IL-6 content 

(178). 

4. Augmenting or rescuing immunity in melanoma 

4.1 The era of cancer immunotherapy  

 In recent years, several treatments have been approved by the United States Food and Drug 

Administration (FDA) for melanoma. Application of each treatment is dependent on the features of 

the cancer (stage, location and genetics) and can include combinations of surgery, photodynamic 

therapy, chemo/radiotherapy, targeted therapy or immunotherapy. Most melanomas of stage I-III 

are removed by surgery followed by adjuvant therapy (targeted or immunotherapy) (180). 

Metastases are treated with a combination of surgery (if solitary/localized) and adjuvant 

chemotherapy as well as radiotherapy for advanced metastases of the skin, bone and brain (181). 

Metastases are the main cause of death, thus requiring more effective strategies to target distal 
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metastases with greater efficacy and significantly less toxicity. To date, tumor infiltrating 

lymphocytes (TILs) have been associated with positive outcome and improved survival in patients 

with malignant melanomas (182). Thus, immunotherapeutic strategies have been a focal point for 

treatment of advanced stage, metastatic melanoma, with some having shown incredible success in a 

select cohort of melanoma patients.  

 The prognostic factors that determine the efficacy of a particular immunotherapy are still 

largely unknown. Despite successes, cancer relapse and variable response rates among patients of 

all stages are observed. This is likely exacerbated by the ability of melanoma to quickly adapt 

multiple immune suppressive pathways to escape immune attack as previously discussed. A better 

understanding of these escape mechanisms has led to predictions that targeting multiple suppressive 

pathways will be more efficacious than single immunotherapy treatment, and will be critical for 

maintaining long-term tumor surveillance. 

4.2 Administration of cytokines 

IFNs are cytokines normally secreted by leukocytes during infection and are instrumental in 

the development of anti-proliferative and anti-angiogenic activities against melanoma (183). IFNs 

act as agonists for the anti-tumor activity of both adaptive and innate immune cells and are 

antagonistic towards suppressive immune subsets such as MDSCs and Treg.  IFN- and IL-2 are 

cytokines generally given in combination with surgery and chemotherapy, radiotherapy or targeted 

therapy. IFN- was FDA approved in 1995 as adjuvant therapy for resected stage IIB/III melanoma 

(184).  IFN- has been shown to induce upregulation of MHC class I on melanoma cells and 

immune cells to cause increases in cancer cell death and extension of survival (185). Only a small 

percentage of patients, however, respond to IFN- adjuvant treatment, with ulceration of the 

primary melanoma being a predictive indicator of IFN sensitivity (186). A pegylated form of IFN-

, Peg-IFN has also been approved for stage III melanomas, with effects mimicking those of un-

pegylated IFN- (187), but with a longer half-life in circulation leading to increased efficacy. 
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However, additional care must be taken to minimize adverse events. FDA-approved in 1998 for 

metastatic melanoma, IL-2 is known to act directly on T cells, which includes effector CD8 and 

regulatory CD4 cells (188). Due to potentially dangerous adverse events such as tachycardia and 

multisystem organ failure, patients are first screened for biomarkers such as VEGF and fibronectin 

(189).  

4.3 Expanding melanoma-specific T cells and targeting suppressive immune subsets  

Gp100 is a glycoprotein that is overexpressed by melanoma cells and has negligible 

expression in healthy tissues, making it an ideal melanoma-specific antigen for vaccine 

development. Monotherapy with gp100 peptides has shown little efficacy in preclinical melanoma 

models, however, combination treatment with gp100 peptides and IL-2 showed a dramatic increase 

in median progression-free survival (PFS) and complete responses of 5% (190). Most importantly, 

gp100 peptides are capable of inducing T cell responses in patients with advanced melanoma (191, 

192). Gp100 is currently being evaluated in several clinical trials as monotherapy (NCT01744171, 

NCT0-117647) or in combination with immunotherapies (NCT00960752, NCT01176461, 

NCT02535078). 

Tregs suppress effector T cell responses and can be found circulating or infiltrating tumors in 

melanoma patients, ultimately contributing to poor clinical outcome (193). Strategies to target Tregs 

and increase T cell immunity are limited.  Ontak, which was FDA-approved in 1999, is an IL-2 

protein fused to diphtheria toxin, and is designed to target peripheral blood Tregs through their IL-2 

receptor (194). A Phase II trial in late stage melanoma patients (stage IV) showed 17% partial 

response, 15% mixed responses and 5% stable disease (195). However, in another clinical study, no 

objective response, survival benefit, or depletion of Tregs was observed (196). Thus, while Treg 

depletion could provide great benefit alone or combined with other immunotherapeutic treatments, 

more effective strategies must be developed.  

4.4 Checkpoint inhibitors 
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 Current FDA-approved checkpoint inhibitors consist of antibodies which bind checkpoint 

proteins or receptors to prevent signaling which causes T cell anergy. CTLA-4, also known as 

CD152, is an important negative regulator (checkpoint) in T lymphocyte activation (197, 198). 

CTLA-4 is upregulated on the surface of tumor-associated T cells and, in contrast to CD28, 

transmits an inhibitory signal when bound to co-stimulatory molecules B7-1 (CD80) or B7-2 

(CD86) found on antigen presenting cells (199). CTLA-4 binds with much greater affinity and 

avidity to co-stimulatory molecules compared to CD28, thus favoring a suppressive phenotype in 

the TME (200). Furthermore, CTLA-4 engagement inhibits T cell cytokine production and 

proliferation (201). In CTLA-4-/- knockout mice, lethal hyperproliferative lymphocyte expansion 

occurs early in life and prevents survival past three weeks (202). 

Given the role that CTLA-4 plays as a negative regulator of T cell activation, it was 

hypothesized that blocking engagement with CTLA-4 could boost immunity against tumor cells 

(203). Ipilimumab, FDA approved in 2011 for melanoma, is an antibody which binds and prevents 

signaling through CTLA-4 (197, 204). Anti-CTLA-4 antibodies act as antagonists, blocking 

inhibitory signaling, and increasing the potential for cytotoxic T cells in melanomas to become 

activated and expand. Ipilimumab has been combined with cytokine therapies, as discussed 

previously, with overall response rates of ~40% and median progression-free survival (PFS) of 6 

months (205). In Phase III trials, ipilimumab monotherapy has been shown to be more effective 

than cancer vaccines alone (gp100 vaccine) in increasing median overall survival (OS) of metastatic 

melanoma patients (10.1 months vs. 6.4 months, respectively). Combination therapy did not 

increase median OS, suggesting that in situ vaccination may be occurring (206).  

 Another checkpoint receptor found on the surface of T cells, PD-1, binds its agonist PD-1 

ligand (PD-L1) to also suppress T cell activation. PD-L1 is expressed by melanoma cells or tumor-

associated stroma, and this expression is strongly correlated with efficacy of anti-PD-1 

immunotherapy (207). PD-1 is also expressed on B and NK cells, and thus therapeutic blockade 
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could potentially affect these immune subsets as well (95). Nivolumab was the first anti-PD-1 

antibody to be approved by the FDA in 2014 for the treatment of patients with metastatic 

melanoma. Nivolumab binds PD-1 to prevent the interaction between PD-1 receptor and its ligands 

in the TME, favoring a more active anti-tumor phenotype. Nivolumab treatment significantly 

increases median PFS to 6.9 months, compared to 2.9 and 2.2 for ipilimumab and chemotherapy 

monotherapies, respectively (205, 208). However, more impressive is the median PFS of 11.5 

months with combination nivolumab/ipilimumab. Another anti-PD-1 antibody, pembrolizumab, 

was FDA-approved in 2015, for advanced melanomas (209, 210). Like nivolumab, pembrolizumab 

prolongs PFS and OS with less toxicity than ipilimumab. Currently, there are numerous clinical 

trials utilizing checkpoint inhibitors alone or in combination with chemotherapy, radiotherapy and 

other immunotherapies (NCT01103635, NCT0253078, NCT02643303, NCT03086174, 

NCT02608268). Similar studies are also being performed using anti-PD-L1 antibodies such as 

durvalumib, avelumab and atezolizumab (NCT02535078, NCT03167177, NCT03138889).   

5. Concluding remarks 

 Fully unraveling the crosstalk between the immune system and melanoma that causes loss or 

suppression of anti-tumor responses will be critical for the development of more effective and less 

toxic treatments. The identification of cytokines, immunosuppressive immune subsets and 

checkpoint pathways that are critical for melanoma progression has led to the development and 

FDA approval of numerous immunotherapeutic agents. This is important since the heterogeneity of 

advanced melanomas will undoubtedly require a combination of these agents to establish durable, 

life-long immunity. Also, one must take into consideration the optimal doses required to establish 

durable tumor control while minimizing adverse events. Since each patient would be unique in the 

features of their melanoma, it will be necessary to determine those features prior to treatment in 

order to select a balanced combination that will maximize PFS and minimize toxicity.   
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Figure Legends 

Figure 1. Melanoma Clearance by Functioning Immune Cells. In the innate arm of immunity, 

natural killer (NK) cells bind tumor cells via receptor/ligand interactions and release cytolytic 

molecules causing tumor cell death. Phagocytes, such as  polymorphonuclear neutrophils (PMN), 

macrophages (Mφ), and dendritic cells (DC) take up dead tumor cells and process and present 

tumor associated antigens (TAA). DCs are actively recruited by cytokines secreted from activated 

NK cells. Recruitment of T- and B-lymphocytes by chemokine gradients and presentation of TAAs 

to T- and B-cells activates the adaptive arm of immunity. Tumor specific CD8+ T-cells bind tumor 

cells presenting TAA on MHC molecules via engagement of the T-cell receptor, leading to release 

of cytotoxic granules into tumor cells. Tumor specific CD4+ T-cells engage B-lymphocytes via 

TAAs presented by MHC molecules leading to release of antibodies specific for TAAs whose 

binding causes tumor cell death through various mechanisms including NK cell killing. Adaptive 

immune cells also re-activate innate immunity through receptor/ligand interaction as well as 

cytokine release, and tumor cell killing by adaptive immune cells releases further TAAs to be 

endocytosed and processed by APCs. 

Figure 2. Mechanisms of Immune Escape in Melanoma. Melanoma cells secrete proteins such as 

VEGF and TGF-β to inhibit recruitment and function of APCs such as DCs. Immunosuppressive 

regulatory T-cells (Treg) are recruited by melanoma cells through chemokine secretion and these in 

further inhibit APCs through engagement of CD86 by CTLA-4 expressed on the Treg surface. Treg  

also release inhibitory cytokines to activated effector T-cells (Teff) which prohibits  melanoma cell 

killing. Tumor cells directly inhibit Teff action through expression of the PD-L1 ligand which when 

binding the PD-1 receptor on T-cells induces anergy, as well as secretion of apoptosis –inducing 

factors such as Fas ligand within exosomes. Melanoma cells also recruit and convert myeloid-

derived suppressor cells (MDSC) through secretion of  GM-CSF or IL-6 as well as delivery of 

exosome loaded micro RNAs. MDSC inhibit Teff  through multiple mechanisms such as expression 
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of IDO which depletes necessary tryptophan and converts it to suppressive kynurenine. Finally, 

melanoma cells deplete glucose and amino acids such as glutamine and arginine from the tumor 

microenvironment resulting in immune cell starvation.   
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