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Abstract: Advanced oxidation processes (AOPs) are technologies to degrade organic pollutants
to carbon dioxide and water with an eco-friendly approach to form reactive hydroxyl radicals.
Photocatalysis is an AOP whereby TiO2 is the most adopted photocatalyst. However, TiO2 features
a wide (3.2 eV) and fast electron-hole recombination. When Mn is embedded in TiO2, it shifts the
absorption wavelength towards the visible region of light, making it active for natural light applications.
We present a systematic study of how the textural and optical properties of Mn-doped TiO2 vary with
ultrasound applied during synthesis. We varied ultrasound power, pulse length, and power density
(by changing the amount of solvent). Ultrasound produced mesoporous MnOx-TiO2 powders with
a higher surface area (101–158 m2 g−1), pore volume (0-13–0.29 cc g−1), and smaller particle size
(4–10 µm) than those obtained with a conventional sol-gel method (48–129 m2 g−1, 0.14–0.21 cc g−1,
181 µm, respectively). Surprisingly, the catalysts obtained with ultrasound had a content of brookite
that was at least 28%, while the traditional sol-gel samples only had 7%. The samples synthesized
with ultrasound had a wider distribution of the band-gaps, in the 1.6–1.91 eV range, while traditional
ones ranged from 1.72 eV to 1.8 eV. We tested activity in the sonophotocatalytic degradation of two
model pollutants (amoxicillin and acetaminophen). The catalysts synthesized with ultrasound were
up to 50% more active than the traditional samples.
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1. Introduction

Water quality is a gargantuan socio-economic issue [1,2]. Improper disposal of drugs, illicit
discharge during manufacturing, and the direct or indirect releases by humans and animals are the
leading causes of water contamination [3,4]. Micropollutants damage the ecosystem even in the ng L−1

to µg L−1 range, which is enough to interfere with the endocrine systems of complex organisms and
to induce their microbiological resistance. Moreover, these small concentrations accumulate in soil
and plants, increasing the local concentration above the µm range [3,5,6]. Many governmental and
non-governmental organizations, including the European Union (EU), the World Health Organization
(WHO), and the International Program of Chemical Safety (IPCS), provide rules and legal frameworks
to protect and improve the quality of the water resources and investigate the long-term effects of these
contaminants, which still need further investigation [5]. Antibiotics, anti-inflammatories, hormones,
blood lipid regulators, analgesics, and many other recalcitrant pharmaceuticals pollute water in the
g L−1 orders of magnitude [7]. Acetaminophen (APAP) and amoxicillin (AMO) are the most prescribed
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analgesics and antibiotics worldwide, respectively [4,8]. APAP’s concentration in several treatment
plant effluents is higher than 200 µg L−1, which is sufficient to cause liver-related pathologies and
other severe ailments [9–12]. Moreover, antibiotic consumption is expected to grow by 67% in the next
five years [3].

Various techniques are currently available to degrade organic contaminants. Specifically, advanced
oxidation processes (AOPs) mineralize a variety of organics into CO2, H2O, and/or mineral acids [13,14].
However, their application at the commercial scale is limited by efficiencies, which are still low, and the
negative techno-economic assessment. AOPs remove pollutants through the generation of highly
oxidative radical species; namely, hydroxyl (HO�), superoxide (O2

�−), and perhydroxyl (HOO�)
radicals. AOPs include (1) ozonation, (2) photocatalysis, and (3) ultrasonic cavitation [13]. In addition,
the combination of UV radiation with ultrasonication increases the efficiency of removing contaminants
from water [14].

One of the major advantages of photocatalysis over other AOPs is the generation of renewable
oxidant sources (H2O and/or O2 from air), as other AOPs use consumable oxidants [12,15]. TiO2 is one
the most employed semiconductors. It has found applications in water and air purification [16–18],
sterilization [19], self-cleaning building materials [20], defogging [21], and H2 generation from
water splitting [22]. TiO2 is cheaper and more photo-chemically and chemically stable than other
semiconductors [13]. Under UV irradiation, TiO2 degrades organic dyes and pesticides in a few
hours [14,23]. However, its large band-gap (from 3.0 eV to 3.2 eV), low quantum yield, and fast
recombination of electron-hole pairs limits its commercial application under visible light. Metal,
metal oxide, and non-metal doping extends the absorption of TiO2 to a longer wavelength [24–30].
The efforts of researchers in the field of photocatalysis aim mainly at extending the band-gap to the
visible light region of the solar spectrum (λ > 400 nm). To cope with the lengthy catalyst preparation
steps and to improve the mixing between active phase and dopant(s), spray drying and ultrasound is
an approach that has been recently adopted by the authors of this paper [29–34]. The shape and size of
catalysts vary with the operating parameters, including the ultrasound irradiation time, temperature,
power density, the ultrasonic source (bath-type and horn-type), magnetic stirring, and reactor shape and
size [24,35–37]. Conventional sol-gel synthesis procedures require a long processing time. Ultrasound
is a mechanical wave that propagates through a succession of compression and rarefaction cycles.
It results in the formation of vapor-filled voids that grow and collapse violently to generate hotspots
wherein the temperature and pressure reach 5000 K and 20 MPa. The application of ultrasound
lowers the process’s temperature yet facilitates the transition from an amorphous to a crystalline
structure [35]. Acoustic cavitation increases the surface area, controls the particle size distribution,
and improves photocatalytic activity [32]. The optimization of the sonication parameters is obviously
essential to generating particles with specific characteristics [38]. Stucchi et al. investigated the effect
of ultrasonication on Ag-doped TiO2’s photocatalytic degradation of acetone under UV and visible
light [32]. Stucchi et al. also report that doping TiO2 with Mn shifts the absorption towards the visible
light region of the electromagnetic spectrum [29]. Among all the 3d metals, only Mn absorbs radiation
in the visible region and infrared solar light [39,40]. As a consequence, doping TiO2 with Mn reduces
the band-gap [40] and may increase the crystallinity of the material [41]. Metals and metal oxides
form new electronic states between the valence and conduction bands of TiO2, which reduces the
electron-hole recombination rate by acting as an electron trap. This is due to the interaction between
the 3d orbitals of Ti and the d orbitals of Mn. Therefore, the distance of charge transfer between
electrons of the Mn ions and the conduction or valence band of TiO2 is shortened and the electrons are
scavenged more efficiently from the holes, even though the intra-band-gap introduced is narrower [42].
Moreover, the intra-gap creates new electronic states in the TiO2 band-gap, which promotes the d
electron transfer from Mn to the conduction band of TiO2 [41].

Neppolian et al. [43] prepared nano-TiO2 photocatalysts using sol-gel and ultrasound-assisted
sol-gel methods. They investigated the effect of ultrasonic irradiation time, power density, ultrasonic
source, magnetic stirring, initial temperature, and geometry on the reactor. Li et al. [23] combined
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ultrasonic cavitation and the hydrothermal method to prepare Fe-doped TiO2 for the photo-degradation
of methyl orange (MO). The high crystallinity, large surface area, and larger pore size of the samples
prepared photodegraded MO 2.5 times faster. Prasad et al. [37] proved that ultrasound accelerated the
synthesis and minimized the agglomeration of ZrO2.

The originality of this work relates to the synthesis of Mn-doped TiO2 catalysts by an
ultrasound-assisted sol-gel method, and quantified the effects of power, pulse, and solvent amount on
textural and optical properties, including specific surface area (SSA), pore volume, pore size, particle-size
distribution, phase composition, and band-gap (eV). XRD, BET, PSD, and UV-spectrophotometry
characterized our samples. We compared the physicochemical properties of the samples obtained
with ultrasound-assisted sol-gel and a conventional sol-gel process. We also tested their activities by
degrading acetaminophen and amoxicillin in a sonophotocatalytic process and correlated the activity
with the catalyst features.

2. Results and Discussion

2.1. X-Ray Diffraction (XRD)

The XRD patterns of the Mn-doped TiO2 calcined at 450 ◦C and obtained with ultrasound (Figure 1)
match with anatase (most intense peak at 25.4◦), rutile (most intense peak at 27.4◦), and brookite.
The (121) brookite peak at 30.8◦ is unmistakable. The most intense peak of anatase at 25.4◦ overlaps
with the (120) and (111) peaks of brookite at (25.34◦ and 25.69◦) (Table 1).

None of the diffractograms exhibit peaks related to Mn (MnOx), which may mean that Mn is
partly well dispersed on the surface and/or dispersed within the TiO2 lattice [44,45]. Indeed, the ionic
radius and the charge of the dopant alter the structure of TiO2. If the dopant charge is lower than
that of Ti4+, it alters the concentration of oxygen vacancies depending on the position within the TiO2

matrix; it either replaces Ti in the lattice or occupies an interstitial position depending on its size
and concentration. Mn2+ has a larger ionic radius (0.8 Å) than Ti (0.68 Å). Therefore, Mn2+ ions only
replace Ti4+ in the lattice sites. The replacement by metal ions with a valence lower than 4+ and ionic
radius higher than 0.68 Å induces oxygen vacancies at the boundaries of anatase grains, which favors
bond rupture and solid-state ionic rearrangement [42,44,46,47]. The formation of crystalline phases
and their transformation from anatase to rutile depends on the starting material, deposition method,
and calcination temperature [45,48,49].
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Figure 1. XRD pattern of samples prepared with ultrasound and calcined at 450 ◦C. A = anatase;
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Table 1. Average pore size, pore volume, surface area (error within ±1%), particle size (error within
±1%), and phase fraction (error within ±6%) of the samples prepared with ultrasound and calcined at
450 ◦C.

Samples
XRD BET PSD

Anatase
%

Rutile
%

Brookite
%

Average Pore
Size (Å)

Pore Volume
(cc g−1)

Surface Area
(m2 g−1)

Median
Size (µm)

Mean Size
(µm)

TM10-49-0 56 14 28 19 0.13 101 9 10
TM10-195-1 52 14 34 28 0.24 154 9 10
TM10-98-2 45 20 35 24 0.13 102 9 10

TM20-195-0 48 21 31 24 0.29 158 11 13
TM20-98-1 51 18 31 25 0.20 132 7 8
TM20-49-2 44 22 30 22 0.14 102 4 4
TM30-98-0 47 18 30 28 0.20 121 8 9
TM30-49-1 45 26 28 19 0.14 138 9 10

TM30-195-2 50 16 35 22 0.25 128 9 10
Sol-gel-450 86 7 7 19 0.21 129 155 181
Sol-gel-550 73 20 7 33 0.14 48 160 183

Surprisingly, all of the samples synthesized with ultrasound also contain brookite in percentages
around 30%. Brookite is the least-studied TiO2 phase because it is very difficult to obtain it as a
pure phase or in high percentages and analyze it [50]. However, DFT analysis calculated higher
reactivity for the exposed brookite (210) surface than for the ubiquitous anatase (101): Li et al. reported
that H2O is adsorbed on brookite (201) 30% more strongly than anatase (101) [51]. The combination
of anatase and rutile has synergistic effects, compared to the pure phases. The combination of
anatase and rutile in the lattice inhibits the electron-hole recombination by trapping photo-excited
electrons and holes in the anatase [52]. In fact, anatase has a larger band-gap than rutile. However,
the indirect band-gap of anatase is smaller than its direct one, while in the case of rutile, both are
similar. For brookite, the theoretical band-gap is an intermediate between those of anatase and
rutile (3.14 eV) [50]; nevertheless, its value depends on whether it is measured as a direct or an
indirect band-gap, and on from the thickness of sample layers for pure crystals, reaching 3.56 eV for a
direct band-gap [53]. However, semiconductors with an indirect bandgap have longer charge-carrier
lifetimes than to materials with a direct bandgap. [52]. Therefore, anatase and brookite have longer
electron-hole pair lives than rutile, which makes them more suitable to carry charges for longer times.
Longer electron-hole pair lifetimes in anatase compared to rutile are preferable for charge carriers to
participate in surface reactions [54]. On the other hand, there are many other surface properties that
affect molecular adsorption and the photocatalytic activity. These include the surface morphology,
the affinity of the molecules for the surface, the interaction of the molecules with the surface defects,
and the surface potential, which influences the charge transfer from the photocatalyst to the molecules
adsorbed [50,53,55].

2.2. Specific Surface Area (BET) and Pore Volume

The N2 adsorption-desorption patterns of the Mn-doped TiO2 powders are type IV isotherms
(Figure 2) with a type H3 hysteresis loop (which indicates that powders contain mesopores from 2 nm
to 50 nm). For all the catalysts, the pore size is 2–3 nm (Table 2). The isotherm type IV of the catalyst
has a type E pore shape with a thinly-necked-bottle shape. The pore size decreases because (1) small
crystallites aggregate and (2) Mn ions migrate into the pores of TiO2 [27,50].
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Figure 2. Example of N2 adsorption (full points)–desorption (empty points) isotherm of a Mn-doped
TiO2 powder (TM-49-0).

Table 2. Band-gap of the samples.

Samples
UV–Vis

Band-Gap (eV)

TM10-49-0 1.91
TM10-195-1 1.83
TM10-98-2 1.91

TM20-195-0 1.6
TM20-98-1 1.71
TM20-49-2 1.77
TM30-98-0 1.65
TM30-49-1 1.6

TM30-195-2 1.77
TM20-195-0-550 1.63
TM30-195-2-550 1.65

Sol-gel-450 1.8
Sol-gel-550 1.72

2.3. PSD

The Mie theory applies to Mn-doped TiO2 particles, as all the mean particle sizes are between 4
and 13 µm and the particle’s median sizes are between 4 and 11 µm for the samples synthesized with
ultrasound (Table 1). It is well known that ultrasound cavitation in comparison to the conventional
sol-gel process reduces the particle size and the size of agglomerates on the support [32,33]. However,
the smaller the particle, the higher the risk of sintering during calcination [31,56].

2.4. UV–Vis Absorbance and Band-Gap

All samples turned from white to grey during calcination. The color of the sample depends on the
Mn concentration and it darkens as its concentration increases [38]. UV–Vis measured the absorbance
wavelength of the samples of Mn-doped TiO2 (Table 2). The absorbance wavelength of bare TiO2 has a
sharp edge at 400 nm, which is related to the excitation of the electrons from the valence band to the
conduction band of the semiconductor (Figure 3) [29].
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Figure 3. Absorbance spectra of MnOx-TiO2 samples.

Bare TiO2 absorbs in the UV region of the spectrum as it has a band-gap energy of 3.2 eV. Metal
doping red shifts the absorption of TiO2 depending on the degree of doping [35,57,58]. Moreover,
Aziz et al. reported that TiO2 nanoparticles prepared sonochemically had a band-gap, decreasing from
3.06 eV to 2.61 eV as the ultrasound power applied decreased from 70% to 30% (maximum nominal
power of 750 W). This makes the absorbance wavelength shift towards the visible region compared to
the conventional sol-gel process [36,59].

The band-gap of all Mn-doped samples ranged from 1.6 eV to 1.91 eV. The shift of the absorption
in the visible region is attributable to the broad absorption of some of transition metals and the effect of
doping with pure TiO2. Mn decreased the band-gap of the catalysts to less than 2 eV. Samples prepared
at 200 W L−1 (TM10-195-1, TM20-98-1, TM30-98-0, TM30-58-1, and TM20-58-2) have an absorbance up
to 0.95 a.u. compared to the samples prepared at 150 W L−1, whose absorbance reached a maximum of
0.85 a.u. The higher the ultrasonic power density, the more intimate the mixing among the catalyst
components, leading to lower band-gap and higher absorbance.

Oxygen occupies the 2p and 4d orbitals of the valence band (VB) of TiO2. DFT calculations
reported the existence of oxygen vacancies in TiO2 without affecting the overall band-gap that induces
a donor level next to the mid-gap (deep level) defect states. The substitution of Mn ions with the lower
valence and higher ionic radius Ti4+ induces oxygen vacancies at the surface of anatase, which serves as
an excellent site for O2 adsorption and activation to form superoxide anion radicals (�O2

−). By shifting
the valence band to lower binding energies, the absorption peak edges shift to the red region. A high
concentration of Mn provokes the recombination of electron-hole pairs, which is due to the induced
lattice defects [40,56]. In a photocatalyst, when Mn2+ traps electrons, its electronic configuration
changes from 3d5 to 3d6, (Equation (1)) and when it traps holes its electronic configuration changes to
3d4 (Equation (3)). Both states are unstable, and to restore its stable configuration, Mn donates the
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trapped electron to an oxygen molecule (Equation (2)) and the trapped hole to the water adsorbed
onto the surface (Equation (4)) to generate superoxide (O2

−) and hydroxyl (OH�) radicals, respectively:

Mn2+ + e−→Mn+ (1)

Mn+ + O2ads→Mn2+ + O2
�− (2)

Mn2+ + h+
→Mn3+ (3)

Mn3+ + OH−→Mn2+ + OH�. (4)

The half-electronic structure of Mn2+ accelerates the charge transfer process and acts as a shallow
trap for the charge carriers. Therefore, the generation of highly active oxidative species increases [47].

2.5. The Effect of Ultrasound Power

At low power (0–15 W), the release of energy inside the solution is insufficient to convert anatase
to rutile (Figure 4, Figure 5, Figure 6, Figure 7 and Figure S1). The higher the power, the higher
the amount of anatase that will turn into rutile. By increasing the amplitude, the energy within the
hot-spots increases, which favors crystal growth [58]. Despite the high temperature within the hot-spots,
the cooling rates are in the order of milliseconds [59]. At high amplitude, ethanol partially vaporizes,
making the catalyst precursors more concentrated; thus, shifting the reaction equilibrium and increasing
the phase transformation from anatase to rutile. Moreover, at power in the range of 15–20 W, the higher
bulk temperature prevents gas bubbles and the energy of collapse is consequently lower. This, despite
the higher bulk temperature, limits the collapse temperature and minimizes the local volatilization.
At the same time, dissipated mechanical heat energy accelerates the phase transformation.

During sonication, small bubbles close to the horn coalesce and form larger bubbles. Acoustic
shielding is the reflection of acoustic energy from large bubbles towards the horn, since large bubbles
are incapable of absorbing acoustic energy. Because of this, the distribution of energy inside the
liquid is heterogeneous. In general, at higher amplitude, acoustic shielding increases and leads to a
reduction in the percentage of rutile (Table 1) [60]. At power lower than 10 W, stable cavitation occurs,
whereas above 10 W, the cavitation is transient [61]. The higher the power, the higher the number of
cavitation bubbles. However, there is not enough time for ethanol to accumulate at the surface of the
bubble/solution and for water and ethanol to evaporate [61].

Figure 5 and Figure S2 show the effect of the power on the surface area, pore volume, and average
pore size. At 20 W, which is an intermediate power, the specific surface area is the highest (158 m2 g−1),
as is pore volume. At both lower and higher power than the optimum value of power, surface area
and pore volume decrease, while pore size increases.

Power density, frequency, and wattage of the system define the characteristics of ultrasound [32].
A minimum intensity or power is required to achieve cavitation. Under certain conditions, particles
continuously form until an optimum value of power/amplitude. High power or amplitude is necessary
to achieve a sufficient mechanical vibration to promote cavitation in the sample, but high power
and amplitude also deteriorate the transducer, which leads to the agitation of the solution instead
of cavitation, causing poor transmission of ultrasound through the liquid medium. In addition,
high power/amplitude causes undesired effects, such as the degradation of molecular structures.
High power disrupts the bubble dynamic as it grows, and this leads to poor cavitation and growth
of the material [62]. Additionally, at high power/amplitude, the removal efficiency of the deposit
increases and there is less chance of crystallization [63]. At higher power/amplitude the cushioning
effects also decrease, transferring energy out of the system, leading to lower cavitation activity [64].
Yu et al. prepared TiO2 particles with ultrasound, achieving a surface area of 112 m2 g−1 and a pore
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size of 6.7 nm. They proved that a high amplitude creates particles with higher surface area and pore
diameter (around 7 nm) [65].
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is heterogeneous. In general, at higher amplitude, acoustic shielding increases and leads to a 
reduction in the percentage of rutile (Table 1) [60]. At power lower than 10 W, stable cavitation occurs, 
whereas above 10 W, the cavitation is transient [61]. The higher the power, the higher the number of 
cavitation bubbles. However, there is not enough time for ethanol to accumulate at the surface of the 
bubble/solution and for water and ethanol to evaporate [61]. 
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Ultrasonic power considerably affects the size of particles (Figure 6). A power of 20 W yielded the
smallest particle size (4 µm), whereas with powers higher or lower than 20 W, larger particles formed
(10 µm). In fact, at high power, shock waves cause particles to collide with high energy, provoking
localized melting at the collision sites and initiating the agglomeration of particles. At lower power, the
collision energy is not high enough to start nucleation and particles agglomerate into big clusters [63].

Figure 7 shows the effect of operating parameters on the band-gap. In general, increasing the
ultrasound power results in a smaller band-gap. However, above 20 W, there is no significant effect on
band-gap narrowing. Cavitation and collapsing of the bubbles induce turbulence inside the liquid and
increase the diffusion of materials. Therefore, Mn diffuses more inside the TiO2 lattice and replaces Ti
ions, decreasing the band-gap up to a certain power, at which point the turbulence has no more effect.
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2.6. The Effect of Ultrasound Pulses

To reduce the net power consumption in the system, and to cool down the transducer and
investigate the effect of ultrasound pulses on the catalyst textural and optical properties, we varied the
on/off ultrasound pulses ratio (Table 3). Pulse has an optimum value when it comes to the ultrasonic
preparation of nanoparticles (Figure 4, Figure 5, Figure 6, Figure 7, Figure S3, and Figure S4). Pulse
sonication produces smaller crystal particles. Especially for high current densities, nucleation occurs at
a high rate during each pulse. In shorter pulse sonication, the growth of crystals by the creation of
new nuclei, or deposition on the already existing nuclei, is slow. Crystal size may or may not increase
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with the number of pulses. It depends on whether each new pulse forms a new nucleus or adds to
pre-existing ones. If the new nuclei form during each pulse, the crystal size will be smaller [63].

Table 3. Experimental design: factorial design. US = ultrasound.

Sample Name Ultrasound
Power (W)

Solvent
(mole)

Ultrasound
Pulses—On-Off (s)

Calcination
Temperature (◦C)

TM10-49-0 10 49 Continuous US 450
TM10-195-1 10 195 1-1 450
TM10-98-2 10 98 2-2 450

TM20-195-0 20 195 Continuous US 450
TM20-98-1 20 98 1-1 450
TM20-49-2 20 49 2-2 450
TM30-98-0 30 98 Continuous US 450
TM30-49-1 30 49 1-1 450

TM30-195-2 30 195 2-2 450
Sol-gel-450 - 195 No US 450
Sol-gel-550 - 195 No US 550

The effect of pulses can be explained in terms of times τ1 and τ2, which are characteristic of
each sonochemical system pulsing. The former is the time within which ultrasound produces and
then grows active gas bubbles; the latter is the time taken by all the gas bubbles present in the
system to dissolve in the liquid or evaporate. For the system to activate, τ1 must be shorter than the
ultrasound pulse length. When τ2 is longer than the interval time from one ultrasound pulse to the next,
gas nuclei are still present in the system and the pulse that just started overlaps the previous one that
is deactivating. Therefore, the active bubble population is higher with combinations of short τ1 and
long τ2. Consequently, when the ultrasound-off pulse times are shorter, there is a higher probability
that active bubble nuclei are still dissolved in the system [66]. This is why the SSA of the samples
exhibit a clear maximum at ultrasound pulses with a 1s/1s on/off time. Moreover, at short ultrasound
pulses, the ultrasound smoothly stirs the solution and crystallization has less time to occur [65,66].
On the other hand, at longer pulse sonication times, the number of active bubbles decreases due to the
degassing [30]. Therefore, in order to maximize the cavitation efficiency, the optimum pulse sonication
must be identified [62]. In our case, the minimum band-gap energy was achieved with an on-off pulse
of 1-1 s.

The band-gap was narrower in the samples obtained with continuous ultrasound (Figure 8)
and wider for longer pulses (2s/2s on/off). We explain this considering that continuous ultrasound
promoted a more intimated mixing between Mn and TiO2.
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2.7. The Effect of Solvent Volume

By decreasing the solvent volume at equal conditions of ultrasound power, the ultrasound density
increases [30]. However, by decreasing the solvent volume regardless of the ultrasound power applied,
the percentage of the anatase phase decreases (Figure 4). This phenomenon is attributable to the
fact that ethanol suppresses the hydrolysis of titanium alkoxide and the rapid crystallization of TiO2

particles, as already mentioned in the discussion about the X-ray diffractograms. Moreover, ethanol is
volatile and diffuses into the cavitation bubbles. The ethanol vapor inside the bubble reduces the final
temperature in the adiabatic compression. The amount of water during the sol-gel process determines
the reaction mechanism and the number of active sites generated [35].

Increasing the amount of solvent results in a homogenous reaction mixture, and therefore produces
particles with higher surface areas and pore volumes [33]. However, in the absence of alcohol, particles
have an irregular shape. The growth of crystals occurs by increasing the amount of solvent, which,
therefore, leads to particles with higher surface areas and pore volumes (Figures 4–7).

It is well known that the nucleation and the growth of crystals requires water. The higher the
amount of water, the more homogeneous the nuclei and the smaller the size of particles. On the
other hand, the amount of solvent changes the power density of ultrasound. Decreasing the solvent’s
volume increases the power density inside the liquid and prevents the agglomeration of the particles,
resulting in particles of a smaller size. On the other hand, by increasing the solvent’s volume, the
power density inside the solution decreases and agglomeration of particles results in larger particles
(Figure 6). For our samples, the amount of solvent had no significant effect on the band-gap energy
(Figure 7).

2.8. Photocatalytic Degradation

We applied ultrasound and UV irradiation in the presence of Mn-doped TiO2 powders to the
aqueous solution of acetaminophen (APAP) or amoxicillin (AMO) for 3 h (Figures 8 and 9). In the
degradation of AMO, the catalysts follow a very specific trend. The most active samples were
TW20-195-0 and TW30-49-1, which had a combination of high surface area (158 m2 g−1 and 138 m2 g−1,
respectively) and the narrowest band-gap. They degraded 53% and 51% of model pollutant, respectively.
After these two samples, the most active were the catalysts with still moderately low band-gaps
(1.71–1.77 eV; i.e., TM30-195-2, TM20-98-1, and TM20-49-2), which had SSAs in the 101–132 m2 g−1

range. After those, the samples with a higher band-gaps and a lower SSAs followed, having lower
activities as well. The sample TM10-49-2, although having the highest band-gap (1.91 eV) and the
lowest surface area (101 m2 g−1) among the samples, was an “outsider”: this sample, that should have
been the least active, was not. This catalyst was, however, the one with the highest anatase percentage,
which may explain its activity.

In the degradation of acetaminophen (APAP), the catalysts behave differently, and do not follow
any specific trend. They are also less active than in the degradation of AMO, converting a maximum of
26% of the model pollutant with the sample TM-20-98-1. The only recognizable trend has to do with
the brookite percentage: the least active sample (TM10-49-0) was the one with the highest band-gap
(1.91 eV), the lowest surface area (101 m2 g−1), and the lowest percentage of brookite (28%). The second
least active sample (TM30-49-1), despite exhibiting a low band-gap (1.6 eV) and moderately high
surface area (138 m2 g−1) also had the lowest percentage of brookite (28%). The two most active
samples, TM-20-98-1 and TM20-195-0, were still samples that combined low band-gaps (1.6–1.71 eV)
with high surface areas (>130 m2 g−1).

We explain the difference between the degradation of AMO and APAP with their different
molecular properties, such as pKa and polar surface. Amoxicillin and acetaminophen have pKas of
2.8 and 9.4, respectively. AMO is more acidic than APAP, and therefore, it adsorbs better onto the
OH-covered surface of TiO2. Additionally, AMO has a polar surface area of 140 Å2, while that of APAP
is 49 Å2 [29].
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Additionally, we applied ultrasound in the absence of photocatalysis for 3 h to verify the extent of
degradation of ultrasound alone (Figures S5 and S6). For acetaminophen, the maximum degradation
in the absence of photocatalysis and with ultrasound at 20 W reached 11.4%. Excluding the sample
TM-10-49-0, which degraded 12% of the model pollutant, the degradation of acetaminophen with a
combination of sonication and photocatalysis degraded significantly more acetaminophen than in the
absence of a catalysts, reaching up to 26% degradation.

For amoxicillin, after 3 h, the degradation with sonication at 20 W was 29%. The three worst-
performing samples did not degrade significantly more model pollutants than ultrasound alone
(Figure 8). However, with sonication and photocatalysis the amoxicillin degradation reached 53%.
The combination of sonication and photocatalysis processes features higher efficiency to treat wastewater
when combined, rather than as individual processes.

2.9. Comparison of the Ultrasound-Assisted Method with the Traditional Sol-Gel Method

We prepared two samples with the conventional sol-gel process. Figure 10 shows the XRD patterns
of these two samples. The fractional composition of anatase at both calcination temperatures was much
higher than the sample prepared with ultrasound (Table 1). However, sol-gel samples had much less
brookite (both ~7%), whereas in the samples synthesized with ultrasound the brookite content was 28%
to 35%. Therefore, ultrasound affects the phase composition of the samples and this is maintained even
after calcination at 450 ◦C. This unexpected result may open up new applications of TiO2 with brookite
as an active phase, which, depending on the application, is sometimes more active than anatase [50].

The particle size of the samples synthesized with traditional sol-gel is much higher than that of
the samples prepared with ultrasound. The particle size of the sample obtained with the conventional
sol-gel process was 181 µm, while the largest particle size of the samples obtained with ultrasound was
13 µm. Calcining the samples at 450 ◦C did not affect the SSA (129 m2 g−1). However, when raising the
calcination temperature to 550 ◦C, the SSA decreased dramatically (48 m2 g−1) due to the coalescence
of the pores. The pore volume also decreased along from 0.21 to 0.14 mL g−1. The samples prepared
with traditional sol-gel had a band-gap that was towards the wider end of the samples prepared
with ultrasound (1.72 eV to 1.8 eV versus 1.6 eV to 1.91 eV), demonstrating that ultrasound tunes
the band-gap of MnOx-TiO2 systems. This also opens up to exploration with ultrasound to tune
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the band-gap and optical properties of other mixed oxide systems. Changing ultrasound operating
parameters controls the level of mixing between the two semiconductors in the lattice and on the surface.Catalysts 2019, 9, x FOR PEER REVIEW 15 of 21 
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B = brookite.

The sample Sol-gel-450 degraded 30% of AMO in 3 h, which was comparable to the three
least active catalysts synthesized with ultrasound. Indeed, this sample had a moderately high SSA
(129 m2 g−1) together with a wide band-gap (1.8 eV), similarly to the least active samples.

3. Materials and Methods

3.1. Materials

Ti(IV)-butoxide (reagent grade, 97%), manganese (II) nitrate nonahydrate (reagent grade, 98%),
nitric acid (ACS reagent, 70%), ethanol (HPLC grade, ≥98%), acetaminophen (APAP, analytical
standard), and amoxicillin (AMO, analytical standard) were purchased from Sigma Aldrich, ON,
Canada. We employed all the materials without further purification.

3.2. Catalysts’ Syntheses

We designed our experiments based on a three-operating parameters factorial design: ultrasound
power, ultrasound pulse, and solvent quantity (Table 3).

We synthesized Mn-doped TiO2 catalysts by a modified sol-gel method assisted by ultrasound.
A 500 W ultrasonic processor with a 20 mm tip ultrasound was powered inside the sol-gel catalyst
synthesis mixture (model: VCX 500, Sonics and Materials, Inc., Newtown, CT, USA). We equipped
the probe with a 20 mm diameter replaceable tip. We calibrated the ultrasonic processor periodically
with the method described by Uchida and Kikuchi [67]. We added, dropwise, a solution of Mn(NO3)2

(1 mol) in water (24, 48, and 98 mol) to the mixture of titanium (IV) butoxide (5 mol), ethanol (25, 50,
and 100 mol), and HNO3 (5 mol), after starting the sonication. The reaction occurred under ultrasound
irradiation at three different powers (10, 20, and 30 W) and ultrasound pulses (no pulse, 1-1 and 2-2 s
on/off) for 3.5 h. The powers reported are the actual powers delivered to the system. Afterwards, the
gels were aged at room temperature for 12 h and dried overnight at 100 ◦C in an oven under a static
atmosphere. A furnace calcined the samples at 450 ◦C for 5 h (Table 1). We also prepared two samples
by conventional sol-gel process with calcination at 450 ◦C and 550 ◦C for the sake of comparison
(Table 1).
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3.3. Catalyst Characterization

A Philips PANanalytical (USA) X’pert diffractometer measured each sample’s crystallinity at
ambient temperature with an angle of incidence of 0.5◦ and Cu Kα (1.5406 Å) radiation at 50 kV and 40
mA. The instrument scanned the diffraction angle between 20◦ and 80◦, with a divergence slit of 1◦.
We calculated the anatase, rutile, and brookite phase contents of the samples according to the Zhang
and Banfield equation [68].

An AUTOSORB-1 (Quantachrome Instruments, USA) measured the specific surface area of the
samples by the standard multi-point Brunauer–Emmett–Teller (BET). A furnace degassed the samples
at 200 ◦C for 12 h in vacuum. The desorption isotherm determined the pore size distribution according
to the Barret–Joyner–Halender (BJH) method with cylindrical pore size.

A laser scattering analyzer (LA-950 Horiba) determined the particle size distribution (PSD) by
applying the Mie algorithm with.

A Thermoscientific UV–VIS Evolution 300 spectrophotometer equipped with a diffuse reflectance
accessory (Pike technology EasiDiff) calculated the band-gap (Eg) of each sample with Plank’s
equation [29]. The absorption spectrum of each sample recorded was in the wavelength range of
200–900 nm. We calculated the bandgap with Plank’s equation (Eg = hc

λ ), where h is 6.63E-34 j.c, c is
light speed of 3.0 E + 08 m sec−1, and λ is the cut-off wavelength in nm. The cut-wavelength for each
absorption spectrum obtained from the intersection between the extension of the vertical section and
the hv x-axis.

By applying a Varian Prostar HPLC-UV instrument (model 210), equipped with a Microsorb MV
100-5 C18 column (250 mm × 4.6 mm, Variant, Agilent Technologies), we monitored the conversion of
AMO and APAP. Methanol (0.5 mL min−1) was the eluent (HPLC grade, ≥99.9%). The UV detection
wavelengths were 275 nm for AMO and 210 nm for APAP.

3.4. Sonophotocatalytic Activity Tests

We prepared 150 mL solution of 25 ppm of APAP or 100 ppm of AMO in a jacketed glass reactor
and applied continuous sonication (20 W) and UVA radiation (160 Wm−2) for 3 h. We selected the
starting concentrations of APAP and AMO based on the HPLC detection limit [18,31].

The US processor was the same as for the catalysts’ syntheses. Cooling water kept the temperature
of the solution at 10 ◦C throughout all the tests. The catalyst’s concentrations were all 0.1 g L−1.

We sampled the solution every 30 min and analyzed the products by HPLC analysis.

4. Conclusions

Doping TiO2 with Mn increases the light absorption in the visible region due to MnOx species that
absorb in the 390 nm to 730 nm range. The ultrasound-assisted synthesis of semiconductors yielded
mesoporous, Mn-doped TiO2 powders with a higher surface area (158 m2 g−1) and pore volume
(0.29 mL g−1), and smaller particle size (4 µm) than those obtained with the conventional sol-gel method
(48–129 m2 g−1, 0.14–0.21 mL g−1, and 181µm, respectively). Ultrasound power and pulses, and amount
of solvent (power density), elicit specific effects on the final properties of TiO2 particles. In particular,
moderate powers (20 W versus 10 W and 30 W), the highest solvent amount (198 mol; i.e., the lowest
power density), and continuous ultrasound confer to the catalyst the desired textural (high SSA) and
optical (low band-gap) properties for active photocatalysts. The catalysts degraded acetaminophen
(APAP) and amoxicillin (AMO) under UV and ultrasonic irradiation. AMO decomposed more easily
than APAP due to its different molecular properties (pKa and polar surface area). The maximum AMO
degradation achieved was 53% with the catalyst with the smallest band-gap (1.6 eV) and the highest
surface area (158 m2 g−1), whereas the maximum APAP degradation was 26% with the catalyst with the
band-gap of (1.7 eV) and the surface area of (132 m2 g−1). The catalysts synthesized with ultrasound
had a surprisingly high content of brookite (28% versus 7% in the traditional samples), suggesting that
TiO2 brookite may be at least as active as TiO2 anatase in the oxidation of the model pollutants.
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Ultrasound alone at 20 W degraded 11.4% and 29% of acetaminophen and amoxicillin, respectively.
The worst-performing photocatalysts did not significantly degrade the model pollutants above that
value. However, with the most active samples, the degradation proportions were 26% and 53% of
acetaminophen and amoxicillin, respectively.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/11/949/s1,
Figure S1: Effect of ultrasound power on Rutile %, Figure S2: Effect of ultrasound power on average pore size,
Figure S3: Effect of ultrasound pulse and solvent on Rutile %, Figure S4: Effect of ultrasound pulse and solvent
on Rutile %, Figure S5: Acetaminophen degradation in the absence of photocatalysis, Figure S6: Amoxicillin
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