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Abstract: Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a cardioprotective phytochemical occurring
in many plant products. In this study, a new series of imine congeners of resveratrol has been
synthesized in which the imine moiety replaced the double bond in the structure of resveratrol.
In addition, the in vitro antiplatelet activity of these resveratrol derivatives has been evaluated
against adenosine diphosphate (ADP), arachidonic acid (AA), and collagen as platelet aggregation
inducers. In general, the synthesized compounds were active as antiplatelet agents, and, therefore,
the imine functional group may be considered as an effective replacement for a double bond in
resveratrol for developing new and promising antiplatelet drugs.
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1. Introduction

Cardiovascular diseases (CVDs) are recognized as the first global cause of death. It has been
reported by the World Health Organization (WHO) that 17.7 million people died from CVDs in
2015 [1,2]. Platelet aggregation plays an essential role in the process of blood clotting and CVDs.
However, many antiplatelet drugs such as aspirin and clopidogrel, which are available in clinics,
are associated with some side effects such as bleeding and drug resistance that limit their usage [3,4].
Therefore, the search for new antiplatelet agents with fewer side effects and higher efficacy is among
the priorities of medicinal chemists.

Natural products with various chemical structures have an important role in drug discovery
and development [5–9]. Although chemical diversity of the natural products is pivotal in finding
useful lead compounds, usually chemical modifications are needed to improve their potency and
physicochemical properties [10–12]. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) (1) (Figure 1) is
one of these lead compounds. This stilbene is found in many natural sources such as grapes,
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apples, and berries [13–15]. Various biological activities of resveratrol have been reported such
as anticancer, anti-inflammatory, antioxidant, and antiplatelet [13,16,17]. Orsini et al. synthesized and
evaluated the antiplatelet aggregation activity of resveratrol 3-O-β-D-glucopyranoside and related
hyroxystilbenes [18]. Dutra et al. synthesized new resveratrol and resveratrol-furoxan hybrids as
antiplatelet and antithrombotic agents [19].
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Figure 1. Design of imine resveratrol derivatives.

A literature review revealed that C=N moiety is present in many structures with
antiplatelet activity. Tehrani et al. synthesized a series of Schiff bases derived from
2-hydrazinyl-1,3,4-thiadiazole with high antiplatelet activity [20]. Akhlaghi et al. reported
3-(arylimino)indolin-2-one and 1-(aryl)-3-(phenylimino)indolin-2-one derivatives as antiplatelet
agents [21]. Among their synthesized derivatives, compound (2) exhibited high antiplatelet
activity against arachidonic acid (AA) as a platelet aggregation inducer (IC50 = 3.4 µM) [21].
Furthermore, antiplatelet activity of N′-benzylidene-carbohydrazide-1H-pyrazolo[3,4-b]pyridine
derivatives have been reported [22]. A variety of indole hydrazone derivatives such as
indole N-acylhydrazones [23,24], indole-3-carboxaldehyde phenylhydrazones [25], N-1 substituted
indolehydrazones [26], indole-3-carbaldehyde, and indole-2-carbaldehayde hydrazones [27] have been
previously synthesized in our research group. Some of these reported derivatives exhibited remarkable
antiplatelet activity.

Therefore, the present research was aimed at the synthesis of a new series of imine congeners
of resveratrol in which the imine moiety replaced the double bond in the structure of resveratrol
(Figure 1) [28], and the evaluation of their in vitro antiplatelet activity against adenosine diphosphate
(ADP), arachidonic acid (AA), and collagen as platelet aggregation inducers.

2. Results and Discussion

2.1. Chemistry

The designed compounds were synthesized by the reaction of different aniline derivatives with
appropriate aldehydes in water as a green solvent without any catalyst (Figure 2). The synthesized
derivatives (3a–3r) were obtained with high yields (>89%). Structure of the synthesized compounds
was characterized by LC-MS 1H-NMR and 13C-NMR. The 1H-NMR spectra of the synthesized
compounds exhibited a singlet peak for the CH=N proton between 8.51 and 8.96 ppm.
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Figure 2. Synthesis of resveratrol derivatives.

2.2. Anti-Platelet Activity

The anti-platelet activity of the synthesized derivatives against ADP, AA, and collagen as platelet
aggregation inducers were evaluated, according to the Born method [29,30]. The obtained data are
presented in Table 1.

Table 1. Anti-platelet activity of the synthesized derivatives. Adenosine diphosphate (ADP),
arachidonic acid (AA), and collagen were used as a platelet aggregation inducer at a final concentration
of 5 µM, 1.35 µM, and 2.5 µg·mL−1, respectively. The results are expressed as the mean ± standard
error of mean (SEM) from three independent experiments.
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3b 3-OCH3, 4-OH - 100 180.2 ± 5.4 52.1 ± 2.2 39.0 ± 8.8
3c 2-OH 4′-OCH3 100 86.1 ± 6.6 30.2 ± 5.3 46.8 ± 4.3
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3k 4-CH3 4′-OH 100 65.4 ± 3.4 45.8 ± 3.3 59.03 ± 6.2
3l 3,4-dimethoxy 4′-OH 93.7 ± 5.6 65.3 ± 2.0 53.5 ± 2.7 67.8 ± 3.5

3m 3,4,5-trimethoxy 4′-OH 88.0 ± 3.1 65.2 ± 3.4 84.6 ± 1.1 93.4 ± 0.9
3n 3-OH 4′-OH 100 62.3 ± 7.1 33.4 ± 3.5 80.5 ± 1.4
3o 2-OCH3 4′-OH 92.4 ± 2.1 130.7 ± 5.1 43.8 ± 1.6 74.9 ± 3.4
3p 2-OH 2′-OH 95.1 ± 3.0 65.5 ± 4.3 41.1 ± 3.7 70.2 ± 2.5
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a Inhibition of platelet aggregation was assessed at 1 mM concentration.

2.3. Structure Activity Relationship

The data reported in Table 1 show that all the compounds (3a–3r) at the concentration of 1 mM
inhibited platelet aggregation induced by ADP, AA, and collagen. The inhibition range for ADP and
collagen were 30%–84.6% and 15.9%–93.4%, respectively. When AA was used as a platelet aggregation
inducer, the inhibition was increased and ranged from 74.7% to 100%.

Compound 3m with three-methoxy group on ring A inhibited platelet aggregation induced by all
the three platelet inducers above 85%.
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Since all compounds at concentration of 1 mM were able to completely inhibit platelet aggregation
induced by AA, the IC50 values for these compounds were calculated (Table 1).

As shown in Table 1, all the compounds with hydroxyl substituent on the B ring show high
activity (IC50 < 69.1 µM) except 3o. The results demonstrated that all the compounds with Schiff base
and phenolic hydroxyl groups at the ortho position of ring A or B show IC50 values ranging between
19.8 µM and 30.7 µM except for 3c and 3p. Compounds 3i and 3q exhibited satisfactory activity with
IC50 values of 29.9 µM and 30.7 µM, respectively. Compound 3r with IC50 value of 19.8 µM was the
most active compound.

3. Materials and Methods

3.1. General Procedure for the Preparation of 3a–3r

The mixture of aromatic amine (1 mmol) and aldehyde (1 mmol) in water was stirred at room
temperature. After completion of the reaction indicated by TLC (thin-layer chromatography), the
obtained precipitate was filtered off and washed with water. The obtained precipitate was recrystallized
from the appropriate solvent.

(E)-1-(4-Methoxyphenyl)-N-phenylmethanimine (3a). Yield 95%; m.p. 48–50 ◦C (m.p. 49–50 ◦C [31]).
ESI-MS m/z: 212 [M + H]+. Anal. Calcd for C14H13NO: C 79.59, H 6.20, N 6.63, found C 79.57, H 6.21,
N 6.64.

(E)-2-Methoxy-4-[(phenylimino)methyl]phenol (3b). Yield 89%. m.p. 159–162 ◦C (m.p. 158–160 ◦C [32]).
ESI-MS m/z: 228 [M + H]+; Anal. Calcd for C14H13NO2: C 73.99, H 5.77, N 6.16, found C 73.97, H 5.76,
N 6.15.

(E)-2-{[(4-Methoxyphenyl)imino]methyl}phenol (3c). Yield 94%. m.p. 76–77 ◦C; 1H-NMR (400 MHz,
DMSO-d6) δ 13.32 (s, 1H, OH), 8.94 (s, 1H, HC=N), 7.61 (m, 1H, Ar-H), 7.42 (m, 3H, Ar-H), 6.96
(m, 4H, Ar-H), 3.79 (s, 3H, OCH3). 13C-NMR (100 MHz, DMSO-d6) δ 161.72, 160.62, 158.99, 141.19,
133.25, 132.80, 123.09, 119.85, 119.53, 116.97, 115.13, 55.86; ESI-MS m/z: 228 [M + H]+. Anal. Calcd for
C14H13NO2: C 73.99, H 5.77, N 6.16, found C 73.95, H 5.76, N 6.17.

(E)-N,1-bis(4-Methoxyphenyl)methanimine (3d). Yield 89%. m.p. 154–155 ◦C (m.p. 154 ◦C [33]). ESI-MS
m/z: 242 [M + H]+. Anal. Calcd for C15H15NO2: C 74.67, H 6.27, N 5.81, found C 74.68, H 6.28, N 5.79.

(E)-1-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenyl)methanimine (3e). Yield 85%. m.p. 126–128 ◦C. 1H-NMR
(400 MHz, DMSO-d6) δ 8.52 (s, 1H, HC=N), 6.96–7.54 (m, 7H, Ar-H), 3.77–3.83 (m, 9H, OCH3); 13C-NMR
(100 MHz, DMSO-d6) δ 158.46, 158.05, 151.97, 149.45, 144.89, 129.77, 124.08, 122.66, 115.46, 114.95,
114.85, 111.74, 109.68, 56.07, 55.88, 55.73. ESI-MS m/z: 272 [M + H]+. Anal. Calcd for C16H17NO3:
C 70.83, H 6.32, N 5.16, found C 70.81, H 6.31, N 5.17.

(E)-N-(4-Methoxyphenyl)-1-(p-tolyl)methanimine (3f). Yield 96%. m.p. 87–88 ◦C. 1H-NMR (400 MHz,
DMSO-d6) δ 8.59 (s, 1H, HC=N), 7.70-7.81 (m, 2H, Ar-H), 7.31-7.42 (m, 4H, Ar-H), 6.98 (m, 2H, Ar-H),
3.78 (s, 3H, OCH3), 2.38 (s, 3H, OCH3). 13C-NMR (100 MHz, DMSO-d6) δ 158.2, 157.8, 144.2, 141.0,
133.8, 129.85, 128.88, 122.79, 114.87, 55.76, 21.1. ESI-MS m/z: 226 [M + H]+. Anal. Calcd for C15H15NO:
C 79.97, H 6.71, N 6.22, found C 79.95, H 6.70, N 6.23.

(E)-2-Methoxy-4-{[(4-methoxyphenyl)imino]methyl}phenol (3g). Yield 94%. m.p. 154–155 ◦C (m.p.
154 ◦C [34]). ESI-MS m/z: 258 [M + H]+. Anal. Calcd for C15H15NO3: C 70.02, H 5.88, N 5.44,
found C 70.01, H 5.89, N 5.43.

(E)-4-[(3-Methoxybenzylidene)amino]phenol (3h). Yield 94%. m.p. 165–167 ◦C (m.p. 167 ◦C [35]). ESI-MS
m/z: 228 [M + H]+. Anal. Calcd for C14H13NO2: C 73.99, H 5.77, N 6.16, found C 73.97, H 5.76, N 6.15.

(E)-2-{[(4-Hydroxyphenyl)imino]methyl}phenol (3i). Yield 98%. m.p. 140–143 ◦C. 1H-NMR (400 MHz,
DMSO-d6) δ 13.44 (s, 1H, OH), 9.72 (s, 1H, OH), 8.94 (s, 1H, HC=N), 7.58 (m, 1H, Ar-H), 7.31–7.37 (m,
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3H, Ar-H), 6.84–6.95 (m, 4H, Ar-H). 13C-NMR (100 MHz, DMSO-d6) δ 160.67, 160.60, 157.41, 139.65,
133.00, 132.67, 123.12, 119.89, 119.46, 116.92, 116.43, 116.01, 115.85. ESI-MS m/z: 214 [M + H]+. Anal.
Calcd for C13H11NO2: C 73.23, H 5.20, N 6.57, found C 73.21, H 5.21, N 6.56.

(E)-4-[(4-Methoxybenzylidene)amino]phenol (3j). Yield 95%. m.p. 187–188 ◦C (m.p. 189 ◦C [36]). ESI-MS
m/z: 228 [M + H]+. Anal. Calcd for C14H13NO2: C 73.99, H 5.77, N 6.16, found C 74.20, H 5.77, N 6.15.

(E)-4-[(4-Methylbenzylidene)amino]phenol (3k). Yield 94%. m.p. 152–153 ◦C; 1H-NMR (400 MHz,
DMSO-d6) δ 9.51 (s, 1H, OH), 8.55 (s, 1H, HC=N), 7.78 (m, 2H, Ar-H), 7.18–7.30 (m, 4H, Ar-H), 6.80 (m,
2H, Ar-H), 2.36 (s, 3H, CH3); 13C-NMR (100 MHz, DMSO-d6) δ 157.51, 156.57, 143.19, 141.24, 134.36,
129.82, 128.73, 122.86, 116.15, 21.59; ESI-MS m/z: 212 [M + H]+. Anal. Calcd for C14H13NO: C 79.59,
H 6.20, N 6.63, found C 79.45, H 6.19, N 6.62.

(E)-4-[(3,4-Dimethoxybenzylidene)amino]phenol (3l). Yield 92%. m.p. 155–156 ◦C (m.p. 155 ◦C [37]).
ESI-MS m/z: 258 [M + H]+. Anal. Calcd for C15H15NO3: C 70.02, H 5.88, N 5.44, found C 70.10, H 5.87,
N 5.45.

(E)-4-[(3,4,5-Trimethoxybenzylidene)amino]phenol (3m). Yield 96%. m.p. 140–142 ◦C. 1H-NMR (400 MHz,
DMSO-d6) δ 9.53 (s, 1H, OH), 8.51 (s, 1H, HC=N), 7.18–7.23 (m, 4H, Ar-H), 6.81 (m, 2H, Ar-H), 3.85 (s,
6H, OCH3), 3.73 (s, 3H, OCH3). 13C-NMR (100 MHz, DMSO-d6) δ 157.42, 156.60, 153.58, 143.06, 140.31,
132.44, 122.85, 116.19, 115.87, 107.19, 105.88, 60.61, 56.50, 56.36; ESI-MS m/z: 288 [M + H]+. Anal. Calcd
for C16H17NO4: C 66.89, H 5.96, N 4.88, found C 66.84, H 5.95, N 4.88.

(E)-3-{[(4-Hydroxyphenyl)imino]methyl}phenol (3n). Yield 94%. m.p. 191–193 ◦C. 1H-NMR (400 MHz,
DMSO-d6) δ 9.69 (s, 1H, OH), 9.55 (s, 1H, OH), 8.51 (s, 1H, HC=N), 7.19–7.37 (m, 5H, Ar-H), 6.83–6.91
(m, 3H, Ar-H). 13C-NMR (100 MHz, DMSO-d6) δ 158.10, 157.66, 156.70, 143.04, 138.29, 130.23, 122.95,
120.44, 118.64, 116.19, 115.90, 114.35; ESI-MS m/z: 214 [M + H]+. Anal. Calcd for C13H11NO2: C 73.23,
H 5.20, N 6.57, found C 73.21, H 5.21, N 6.58.

(E)-4-[(2-Methoxybenzylidene)amino]phenol (3o). Yield 92%. m.p. 168–169 ◦C (m.p. 168 ◦C [35]). ESI-MS
m/z: 228 [M + H]+. Anal. Calcd for C14H13NO2: C 73.99, H 5.77, N 6.16, found C 73.94, H 5.78, N 6.15.

(E)-2-[(2-Hydroxybenzylidene)amino]phenol (3p). Yield 98%. m.p. 141–143 ◦C. 1H-NMR (400 MHz,
DMSO-d6) δ 13.81 (s, 1H, OH), 9.77 (s, 1H, OH), 8.96 (s, 1H, HC=N), 7.13–7.61 (m, 4H, Ar-H), 6.89–6.95
(m, 4H, Ar-H). 13C-NMR (100 MHz, DMSO-d6) δ 162.13, 161.20, 151.56, 135.40, 133.31, 132.78, 128.53,
120.09, 120.04, 119.96, 119.21, 117.16, 116.98. ESI-MS m/z: 214 [M + H]+. Anal. Calcd for C13H11NO2:
C 73.23, H 5.20, N 6.57, found C 73.24, H 5.19, N 6.56.

(E)-2-[(3-Hydroxybenzylidene)amino]phenol (3q). Yield 99%. m.p. 122–124 ◦C (m.p. 122.5–123.5 ◦C [38]).
ESI-MS m/z: 214 [M + H]+. Anal. Calcd for C13H11NO2: C 73.23, H 5.20, N 6.57, found C 73.24, H 5.19,
N 6.55.

(E)-2-[(4-Methylbenzylidene)amino]phenol (3r). Yield 98%. m.p. 107–108 ◦C (m.p. 108.5 ◦C [39]). ESI-MS
m/z: 212 [M + H]+. Anal. Calcd for C14H13NO: C 79.59, H 6.20, N 6.63, found C 79.58, H 6.19, N 6.64.

3.2. Anti-Platelet Assay

The anti-platelet aggregation activity of the synthesized compounds was evaluated on an
APACT 4004 aggregometer (LABiTec, Ahrensburg, Germany), according to the method described
before [29,40,41]. Compounds (3a–3r) were added to platelet-rich plasma (PRP) and were incubated for
5 min at 37 ◦C. Adenosine diphosphate (ADP), arachidonic acid, and collagen were added separately as
platelet aggregation inducers at a final concentration of 5 µM, 1.35 µM, and 2.5 µg·mL−1, respectively.
The aggregation procedure was monitored for 5 min. Compounds were screened at a concentration
of 1 mM in DMSO. The IC50 values against AA were determined for the synthesized compounds.
Each experiment was carried out in triplicate and the results are shown as a mean ± standard error of
mean (SEM).
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4. Conclusions

In the present study, a series of resveratrol derivatives was synthesized and their antiplatelet
activity was evaluated against ADP, AA, and collagen as platelet aggregation inducers. Compound 3r
was the most active agent against AA and, therefore, possesses the potential to be considered a
lead compound for future studies and further investigations. Lastly, the imine functional group
may be qualified as an effective replacement for the double bond in resveratrol for anti-platelet
aggregation pharmacophore.

Supplementary Materials: The following are available online http://www.mdpi.com/1422-8599/2019/1/
M1039/s1, Figure S1: Qualitative data analysis report.

Author Contributions: M.B., M.S., M.E., and F.K. carried out the experiments, analyzed the results, and wrote the
manuscript. S.V., M.I., and J.S.-R. contributed to the discussion of results and critically reviewed the manuscript.
All the authors read and approved the final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Organization, W.H. Cardiovascular Diseases. Fact Sheet 317. 2007. Available online: https://www.who.int/
news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 17 May 2017).

2. Palmer, M.; Sutherland, J.; Barnard, S.; Wynne, A.; Rezel, E.; Doel, A.; Grigsby-Duffy, L.; Edwards, S.;
Russell, S.; Hotopf, E. The effectiveness of smoking cessation, physical activity/diet and alcohol reduction
interventions delivered by mobile phones for the prevention of non-communicable diseases: A systematic
review of randomised controlled trials. PLoS ONE 2018, 13, e0189801. [CrossRef] [PubMed]

3. Ren, Y.; Patel, K.; Crane, T. A review of antiplatelet drugs, coronary artery diseases and cardiopulmonary
bypass. J. Extr.-Corporeal Technol. 2010, 42, 103.

4. Guthrie, R. Review and management of side effects associated with antiplatelet therapy for prevention of
recurrent cerebrovascular events. Adv. Ther. 2011, 28, 473. [CrossRef] [PubMed]

5. Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.;
Tabanelli, G.; Montanari, C.; del Mar Contreras, M. Matricaria genus as a source of antimicrobial agents:
From farm to pharmacy and food applications. Microbiol. Res. 2018. [CrossRef] [PubMed]

6. Sharifi-Rad, M.; Fokou, P.; Sharopov, F.; Martorell, M.; Ademiluyi, A.; Rajkovic, J.; Salehi, B.; Martins, N.;
Iriti, M.; Sharifi-Rad, J. Antiulcer agents: From plant extracts to phytochemicals in healing promotion.
Molecules 2018, 23, 1751. [CrossRef] [PubMed]
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Kręgiel, D.; Mileski, K.S.; Sharifi-Rad, M. Nepeta species: From farm to food applications and phytotherapy.
Trends Food Sci. Technol. 2018. [CrossRef]

13. Olas, B.; Wachowicz, B. Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets
2005, 16, 251–260. [CrossRef] [PubMed]

http://www.mdpi.com/1422-8599/2019/1/M1039/s1
http://www.mdpi.com/1422-8599/2019/1/M1039/s1
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://dx.doi.org/10.1371/journal.pone.0189801
http://www.ncbi.nlm.nih.gov/pubmed/29304148
http://dx.doi.org/10.1007/s12325-011-0026-0
http://www.ncbi.nlm.nih.gov/pubmed/21547541
http://dx.doi.org/10.1016/j.micres.2018.06.010
http://www.ncbi.nlm.nih.gov/pubmed/30172312
http://dx.doi.org/10.3390/molecules23071751
http://www.ncbi.nlm.nih.gov/pubmed/30018251
http://dx.doi.org/10.3390/ijms19092843
http://www.ncbi.nlm.nih.gov/pubmed/30235891
http://dx.doi.org/10.14715/cmb/2018.64.8.5
http://dx.doi.org/10.14715/cmb/2018.64.8.6
http://dx.doi.org/10.1016/j.apsb.2016.06.003
http://dx.doi.org/10.1016/S0040-4039(02)01117-6
http://dx.doi.org/10.1016/j.tifs.2018.07.030
http://dx.doi.org/10.1080/09537100400020591
http://www.ncbi.nlm.nih.gov/pubmed/16011975


Molbank 2019, 2019, M1039 7 of 8

14. Li, S.-Y.; Wang, X.-B.; Kong, L.-Y. Design, synthesis and biological evaluation of imine resveratrol derivatives
as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem. 2014, 71, 36–45. [CrossRef]
[PubMed]

15. Iriti, M.; Vitalini, S. Chemical diversity of grape products, a complex blend of bioactive secondary metabolites.
Nat. Prod. J. 2011, 1, 71–74.

16. Shen, M.Y.; Hsiao, G.; Liu, C.L.; Fong, T.H.; Lin, K.H.; Chou, D.S.; Sheu, J.R. Inhibitory mechanisms of
resveratrol in platelet activation: Pivotal roles of p38 mapk and no/cyclic gmp. Br. J. Haematology 2007, 139,
475–485. [CrossRef] [PubMed]

17. Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol.
Front. Nutr. 2016, 3, 8. [CrossRef] [PubMed]

18. Orsini, F.; Pelizzoni, F.; Verotta, L.; Aburjai, T.; Rogers, C.B. Isolation, synthesis, and antiplatelet aggregation
activity of resveratrol 3-O-β-D-glucopyranoside and related compounds. J. Nat. Prod. 1997, 60, 1082–1087.
[CrossRef]

19. Dutra, L.A.; Guanaes, J.F.O.; Johmann, N.; Pires, M.E.L.; Chin, C.M.; Marcondes, S.; Dos Santos, J.L. Synthesis,
antiplatelet and antithrombotic activities of resveratrol derivatives with no-donor properties. Bioorg. Med.
Chem. Lett. 2017, 27, 2450–2453. [CrossRef]

20. Tehrani, K.H.M.E.; Sardari, S.; Mashayekhi, V.; Zadeh, M.E.; Azerang, P.; Kobarfard, F. One pot synthesis
and biological activity evaluation of novel schiff bases derived from 2-hydrazinyl-1,3,4-thiadiazole.
Chem. Pharm. Bull. 2013, 61, 160–166. [CrossRef]

21. Akhlaghi, M.F.; Amidi, S.; Esfahanizadeh, M.; Daeihamed, M.; Kobarfard, F. Synthesis of n-arylmethyl
substituted indole derivatives as new antiplatelet aggregation agents. Iranian J. Pharm. Res. 2014, 13, 35.

22. Lourenço, A.L.; Salvador, R.R.; Silva, L.A.; Saito, M.S.; Mello, J.F.; Cabral, L.M.; Rodrigues, C.R.;
Vera, M.A.; Muri, E.M.; de Souza, A.M. Synthesis and mechanistic evaluation of novel
N′-benzylidene-carbohydrazide-1H-pyrazolo [3,4-b] pyridine derivatives as non-anionic antiplatelet agents.
Eur. J. Med. Chem. 2017, 135, 213–229. [CrossRef] [PubMed]

23. Mirfazli, S.S.; Kobarfard, F.; Firoozpour, L.; Asadipour, A.; Esfahanizadeh, M.; Tabib, K.; Shafiee, A.;
Foroumadi, A. N-substituted indole carbohydrazide derivatives: Synthesis and evaluation of their
antiplatelet aggregation activity. DARU J. Pharm. Sci. 2014, 22, 65. [CrossRef] [PubMed]

24. Mirfazli, S.S.; Khoshneviszadeh, M.; Jeiroudi, M.; Foroumadi, A.; Kobarfard, F.; Shafiee, A. Design, synthesis
and qsar study of arylidene indoles as anti-platelet aggregation inhibitors. Med. Chem. Res. 2016, 25, 1–18.
[CrossRef]

25. Tehrani, K.H.M.E.; Zadeh, M.E.; Mashayekhi, V.; Hashemi, M.; Kobarfard, F.; Gharebaghi, F.; Mohebbi, S.
Synthesis, antiplatelet activity and cytotoxicity assessment of indole-based hydrazone derivatives. Iranian J.
Pharm. Res. 2015, 14, 1077.

26. Kalhor, N.; Mardani, M.; Abdollahzadeh, S.; Vakof, M.; Zadeh, M.E.; Tehrani, K.H.M.E.;
Kobarfard, F.; Mohebbi, S. Novel N-substituted ((1H-indol-3-yl)methylene)benzohydrazides and
((1H-indol-3-yl)methylene)-2-phenylhydrazines: Synthesis and antiplatelet aggregation activity. Bull. Korean
Chem. Soc. 2015, 36, 2632–2639. [CrossRef]

27. Mashayekhi, V.; Tehrani, K.H.M.E.; Amidi, S.; Kobarfard, F. Synthesis of novel indole hydrazone derivatives
and evaluation of their antiplatelet aggregation activity. Chem. Pharm. Bull. 2013, 61, 144–150. [CrossRef]
[PubMed]

28. Lima, L.M.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design. Curr.
Med. Chem. 2005, 12, 23–49. [CrossRef] [PubMed]

29. Amidi, S.; Kobarfard, F.; Moghaddam, A.B.; Tabib, K.; Soleymani, Z. Electrochemical synthesis of novel 1,
3-indandione derivatives and evaluation of their antiplatelet aggregation activities. Iranian J. Pharm. Res.
2013, 12, 91.

30. Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194,
927–929. [CrossRef]

31. Iovel, I.; Golomba, L.; Fleisher, M.; Popelis, J.; Grinberga, S.; Lukevics, E. Hydrosilylation of (hetero) aromatic
aldimines in the presence of a Pd (I) complex. Chem. Heterocycl. Compd. 2004, 40, 701–714. [CrossRef]

32. Cheng, L.-X.; Tang, J.-J.; Luo, H.; Jin, X.-L.; Dai, F.; Yang, J.; Qian, Y.-P.; Li, X.-Z.; Zhou, B. Antioxidant and
antiproliferative activities of hydroxyl-substituted schiff bases. Bioorg. Med. Chem. Lett. 2010, 20, 2417–2420.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ejmech.2013.10.068
http://www.ncbi.nlm.nih.gov/pubmed/24269515
http://dx.doi.org/10.1111/j.1365-2141.2007.06788.x
http://www.ncbi.nlm.nih.gov/pubmed/17868048
http://dx.doi.org/10.3389/fnut.2016.00008
http://www.ncbi.nlm.nih.gov/pubmed/27148534
http://dx.doi.org/10.1021/np970069t
http://dx.doi.org/10.1016/j.bmcl.2017.04.007
http://dx.doi.org/10.1248/cpb.c12-00651
http://dx.doi.org/10.1016/j.ejmech.2017.04.023
http://www.ncbi.nlm.nih.gov/pubmed/28453995
http://dx.doi.org/10.1186/s40199-014-0065-6
http://www.ncbi.nlm.nih.gov/pubmed/25238875
http://dx.doi.org/10.1007/s00044-015-1440-7
http://dx.doi.org/10.1002/bkcs.10531
http://dx.doi.org/10.1248/cpb.c12-00597
http://www.ncbi.nlm.nih.gov/pubmed/23154304
http://dx.doi.org/10.2174/0929867053363540
http://www.ncbi.nlm.nih.gov/pubmed/15638729
http://dx.doi.org/10.1038/194927b0
http://dx.doi.org/10.1023/B:COHC.0000040765.61681.f0
http://dx.doi.org/10.1016/j.bmcl.2010.03.039
http://www.ncbi.nlm.nih.gov/pubmed/20346660


Molbank 2019, 2019, M1039 8 of 8

33. Nassar, A.; Hassan, A.; Ibraheem, N.; Hekal, B. Synthesis and comparative studies of cyclopalladated
complexes with ortho c-h activation of aromatic rings bearing electron donating and electron withdrawing
groups. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 2015, 45, 813–820. [CrossRef]

34. Gebretekle, D.; Tadesse, A.; Upadhyay, R.; Dekebo, A. Synthesis, characterization and antimicrobial
evaluation of some schiff bases and their thiazolidinone products. Oriental J. Chem. 2012, 28, 1791–1796.
[CrossRef]

35. Grammaticakis, P.; Texier, H. Contribution al’étude de l’absorption dans l’ultraviolet moyen et le visible de
derivés fonctionnels azotés de quelques aldéhydes et cétones aromatiques. X.—aniles (premier mémoire).
Bull. Soc. Chim. Fr. 1971, 38, 1323–1330.

36. Oliveira Calil, N.; Senra Goncalves de Carvalho, G.; Farah da Silva, A.; David da Silva, A.; Rezende Barbosa
Raposo, N. Antioxidant activity of synthetic resveratrol analogs: A structure-activity insight. Lett. Drug
Des. Discovery 2012, 9, 676–679. [CrossRef]
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