Sex hormones and breast cancer risk in premenopausal women: collaborative reanalysis of seven prospective studies

Endogenous Hormones and Breast Cancer Collaborative Group

Running title: sex hormones and premenopausal breast cancer

Correspondence to: Professor Timothy Key DPhil, Endogenous Hormones and Breast Cancer Collaborative Group, Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Richard Doll Building, Roosevelt Drive, Oxford OX3 7LF, UK. Tel: +44 1865 289600 Fax: +44 1865 289610 Email: tim.key@ceu.ox.ac.uk

See end of paper for affiliations of all authors from the Endogenous Hormones and Breast Cancer Collaborative Group.

Abstract

Background

The relationships of circulating concentrations of oestrogens, progesterone and androgens with breast cancer and related risk factors in premenopausal women are not well understood.

Methods

Individual data on prediagnostic sex hormone and sex hormone binding globulin (SHBG) concentrations were contributed by 7 prospective studies. Analyses were restricted to women who were premenopausal and under age 50 at blood collection, and to breast cancer cases diagnosed before age 50. The odds ratios (ORs) with 95% confidence intervals (95% CIs) for breast cancer associated with hormone concentrations were estimated by conditional logistic regression in up to 767 cases and 1699 controls matched for age, date of blood collection, and day of cycle, with stratification by study and further adjustment for cycle phase. The associations of hormones with risk factors for breast cancer in control women were examined by comparing geometric mean hormone concentrations in categories of these risk factors, adjusted for study, age, phase of menstrual cycle and body mass index (BMI). All statistical tests were two-sided.

Findings

ORs for breast cancer associated with a doubling in hormone concentration were 1.19 (95% CI 1.06-1.35) for oestradiol, 1.17 (1.03-1.33) for calculated free oestradiol, 1.27 (1.05-1.54) for oestrone, 1.30 (1.10-1.55) for androstenedione, 1.17 (1.04-1.32) for DHEAS, 1.18 (1.03-1.35) for testosterone and 1.08 (0.97-1.21) for calculated free testosterone. Breast cancer risk was not associated with luteal phase progesterone (for a doubling in concentration OR=1.00 (0.92-1.09)), and adjustment for other factors had little effect on any of these ORs. The cross-sectional analyses in control women showed several associations of sex hormones with breast cancer risk factors.

Interpretation

Circulating oestrogens and androgens are positively associated with the risk for breast cancer in premenopausal women, and may mediate some of the effects of other risk factors on breast cancer.

Keywords: Breast cancer; sex hormones; premenopausal

Funding: The central pooling, checking and analysis of data were supported by Cancer Research UK.

INTRODUCTION

Breast cancer risk is affected by several reproductive and hormonal factors and it has long been hypothesized that endogenous sex hormones influence risk.¹ There are now sufficient data from studies of hormones and breast cancer risk in postmenopausal women to show that risk is positively associated with circulating concentrations of oestrogens and androgens,^{2–4} but in premenopausal women fewer data are available and hormone measurements are complicated by the substantial variation in hormone concentrations across the menstrual cycle.

The Endogenous Hormones and Breast Cancer Collaborative Group was established to conduct pooled analyses of individual data from prospective studies in order to increase the precision of the estimated associations of endogenous hormones with breast cancer risk.² We report here a collaborative analysis of data from seven studies. We describe the associations of circulating sex hormones with breast cancer risk, including examination of consistency between studies, associations in subgroups, and the effects of adjustment for other risk factors. We also describe cross-sectional analyses of the associations of circulating sex hormones and sex hormone binding globulin (SHBG) with risk factors for breast cancer. The aim was to further understanding of the role of sex hormones in the aetiology of premenopausal breast cancer, therefore all analyses were restricted to women who were premenopausal and aged under 50 years at blood collection, and to case-control sets where the case was diagnosed with breast cancer before age 50.

METHODS

Data collection

Published studies were eligible for the collaborative re-analysis if they included data on endogenous hormones and breast cancer risk using prospectively collected blood samples from premenopausal women. Studies were identified by computer aided literature searches and through discussions with colleagues. The studies included were: CLUE I, Washington County, MD, USA;^{5,6} Columbia, MO, USA;⁷ European Prospective Investigation into Cancer and Nutrition (EPIC), Europe;⁸ Guernsey, UK;⁹ Nurses' Health Study II (NHS-II), USA;¹⁰⁻¹² New York University Women's Health Study (NYU WHS), USA;¹³ Study of Hormones and Diet in the Etiology of Breast Tumors (ORDET), Italy.¹⁴ The majority of the women in these studies were of white European ethnic origin. Two further studies in the Collaborative Group had prospective hormone data but were not included in the analyses reported here because data on day of menstrual cycle at blood collection were not available: Melbourne Collaborative Cohort Study (MCCS), Australia,¹⁵ and Radiation Effects Research Foundation (RERF) study phases 1 and 2, Japan.^{16,17} One further study was identified but the data could not be retrieved; this study included 17 cases of breast cancer and 67 matched controls among women who were premenopausal at blood collection.¹⁸

Table 1 summarizes the study designs. Details of the recruitment of participants, informed consent, ethics approvals and definitions of reproductive variables are in the

original publications. The majority of cases were of invasive breast cancer, but some studies also included *in situ* cases. Cases were individually matched to between 2 and 4 controls: all studies matched on age and date of blood sample (or follow-up time for EPIC), and on the day or phase of menstrual cycle at blood collection. Collaborators were asked to provide data on concentrations of the hormones oestradiol (total), oestrone, progesterone, androstenedione, dehydroepiandrosterone sulphate (DHEAS), testosterone, and SHBG, as well as data on reproductive, anthropometric and lifestyle factors for each woman in their study, where available. Women who were using hormonal contraceptives or other exogenous sex hormones at the time of blood collection were excluded, as were women missing information for date of birth, date at blood collection, day of menstrual cycle at blood collection, or date of diagnosis (cases).

Brief details of the assays are in Web Table 1, with further details in the original publications. Six studies measured hormone concentrations in serum whereas one (NHS II) used heparin plasma; for convenience we refer to serum concentrations for the pooled analyses. Circulating concentrations of free oestradiol and free testosterone were calculated from the concentrations of oestradiol and testosterone respectively and of SHBG, with albumin assumed to be constant (40 g/L), according to the law of mass action.^{19,20}

Statistical analysis

Day of cycle at blood collection was grouped into six categories, using days until next period if available (backward dating), otherwise using days since last period (forward dating). The six categories were: early follicular (days 24+ backwards, or days 1-5 forwards), late follicular (19-23 backwards, 6-10 forwards), mid-cycle (15-18 backwards, 11-14 forwards), early luteal (11-14 backwards, 15-18 forwards), mid luteal (5-10 backwards, 19-24 forwards), late luteal (0-4 backwards, 25+ forwards). For CLUE I and Columbia, day of cycle was determined using forward dating for all participants. For Guernsey and NHS II, day of cycle was determined backwards for all participants (except one case in NHS II). For the other three studies, the percentages determined using backward dating (otherwise forward dating) were: 54.4% and 51.0% in cases and controls respectively in EPIC; 75.2% and 82.9% in cases and controls in NYU WHS; and 94.0% and 96.1% in cases and controls in ORDET.

In NHS-II participants provided two blood samples at baseline, one collected in the follicular phase and one in the luteal phase. For most of the analyses reported here we use values for oestradiol and oestrone from the follicular phase, and progesterone, androstenedione, DHEAS, testosterone and SHBG from the luteal phase; in the analyses of oestradiol subdivided by phase of cycle (Figure 1 and Web Figure 12) we used both the follicular and the luteal measures.

All women were classified as premenopausal in the contributed datasets, with the criteria for this based on questionnaire information, as described in the original studies; four studies additionally measured serum FSH concentration and excluded women with FSH values higher than the cut-off recommended by their laboratory (Guernsey, NYU WHS, ORDET, and Columbia for women aged 45 and above with

missing date of last menses). We restricted the analyses to cases diagnosed before age 50 (and their matched controls), so that most cases would have been diagnosed when premenopausal; this restriction further served to reduce the possibility that some participants were perimenopausal at blood collection.

All the studies used a nested case-control design, with assays arranged so that casecontrol sets were generally measured in the same batch, thus eliminating inter-assay variation from the case-control comparisons. We retained the original matched sets in the analyses. Some studies used density sampling, meaning that an individual participant could appear more than once in a data file.

Conditional logistic regression was used to calculate the odds ratio (OR) for breast cancer in relation to the serum concentrations of hormones and SHBG, categorizing women in each study according to the quintiles of hormone concentration for the controls in that study, after standardizing for phase of menstrual cycle using residuals from the study-specific mean for each cycle phase; for progesterone we restricted the analysis to samples collected in the luteal phase. Study-specific quintile cut-points were used because the absolute concentrations of hormones and SHBG vary between studies due to laboratory variation; further explanation of this approach is provided in previous publications.^{2,21} To test for the significance of the association and to provide a summary measure of risk we also calculated the odds ratio associated with a unit increase in a continuous variable equal to the logarithm to the base 2 of the hormone concentration. A unit increase in this variable is equivalent to a doubling in hormone concentration. Heterogeneity in linear trends between studies was tested by comparing the chi-squared values for models with and without a (study) x (linear trend) interaction term. We also used chi-squared tests to examine whether there was evidence of heterogeneity in the associations of hormones with breast cancer risk according to subgroups defined by years between blood collection and diagnosis, stage of disease, receptor status and other characteristics. We also investigated the associations of hormones with breast cancer risk after adjusting for reproductive and hormonal risk factors for breast cancer: age at menarche (<12, 12-13, 14+ years, unknown); parity (zero, 1, 2, 3, 4+ full-term pregnancies, unknown); age at first fullterm pregnancy (<20, 20-24, 25-29, 30+ years, unknown); body mass index (BMI; <22.5, 22.5-24.9, 25.0-27.4, 27.5-29.9, 30.0+ kg/m², unknown).

Concentrations of the hormones and SHBG were positively skewed, therefore logtransformed concentrations were used for all parametric analyses. Correlations between hormones were calculated using standardised log-transformed concentrations within each study, the standardised values being calculated by subtracting the mean log concentration and dividing by the standard deviation of the log concentration. The associations of hormones with risk factors for breast cancer were examined in the controls. Geometric means and 95% confidence intervals were calculated according to categories of these factors, adjusting for study, age (<40, 40-44, 45-49), cycle phase, and body mass index (BMI), as appropriate. F-tests were used to test for heterogeneity in the geometric mean hormone concentrations between the categories of risk factors, and where appropriate to test for trends across the categories, with the ordered categories scored from 1 to the maximum number of categories. The heterogeneity between studies in the associations of hormones with risk factors was assessed by adding a (study) x (factor) interaction term to the model and using the Ftest to calculate its significance. All statistical tests were two-sided and statistical significance was set at the 5% level. All analyses were performed using Stata version 12.0 (Stata Corp., College Station, TX).

Role of the funding source

The funding source had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The members of the writing team had full access to all data in the study. The corresponding author had the final responsibility for the decision to submit for publication.

RESULTS

Characteristics of cases and controls

Mean age at blood collection ranged from 35.6 years for cases in CLUE to 42.2 years for cases and controls in EPIC (Web Table 2). The median time between blood collection and diagnosis ranged from 2 years in EPIC to 9 years in CLUE. Geometric mean concentrations of sex hormones and SHBG in controls ranged from 164 to 316 pmol/L for oestradiol, 1.85 to 4.25 pmol/L for calculated free oestradiol, 145 to 360 pmol/L for oestrone, 9.62 to 43.5 nmol/L for luteal phase progesterone, 2.88 to 5.79 nmol/L for androstenedione, 2208 to 3921 nmol/L for DHEAS, 0.84 to 1.56 nmol/L for testosterone, 10.1 to 23.3 pmol/L for calculated free testosterone, and 43.0 to 74.3 nmol/L for SHBG (Table 2).

Sex hormones, SHBG and breast cancer risk

Figure 1 shows geometric mean concentrations of oestradiol and progesterone in cases and controls by phase of menstrual cycle at blood collection. For oestradiol, geometric mean values in cases were higher than in controls at all cycle phases except the late luteal phase. For progesterone, geometric means were lower in cases than controls in the early luteal phase, with small, non-significant differences in other phases.

Oestradiol, calculated free oestradiol, oestrone, androstenedione, DHEAS and testosterone were positively associated with breast cancer risk, with ORs in the top fifth of the distribution of 1.41, 1.19, 1.50, 1.68, 1.45, and 1.32, respectively (Figure 2); using a doubling scale, the ORs were 1.19 for oestradiol, 1.17 for calculated free oestradiol, 1.27 for oestrone, 1.30 for androstenedione, 1.17 for DHEAS, and 1.18 for testosterone. Luteal phase progesterone, calculated free testosterone and SHBG were not significantly associated with risk. In a sensitivity analysis restricted to women with blood collected at ages below 45 and cases diagnosed before age 45 the results were similar (Web Figure 1). There was no significant heterogeneity between studies in the associations of these hormones with breast cancer risk (Web Figures 2 to 10). Further adjustment for age at menarche, age at first full-term pregnancy, number of full-term pregnancies, and BMI did not substantially change the ORs, except that after

adjustment there was a statistically significant positive association of calculated free testosterone with risk (OR 1.14, P = 0.031; Web Figure 11).

Subgroup analyses

Subgroup analyses were conducted to detect heterogeneity in the associations of log hormone concentrations with breast cancer risk in subgroups according to years from blood collection to diagnosis ($< 4, \geq 4$), stage of disease (*in situ*, invasive), oestrogen receptor status (positive, negative), progesterone receptor status (positive, negative), HER2 receptor status (positive, negative), phase of menstrual cycle at blood collection (except for progesterone; follicular, mid-cycle, luteal), age at menarche ($<14, \ge14$ years), parity (nulliparous, parous), age at first full-term pregnancy (<25, ≥ 25 years), mother or sister with breast cancer (no, yes), BMI (<25, ≥25 kg/m²), smoking (never or past, current), alcohol intake ($<10, \ge 10$ g/d), previous use of hormonal contraceptives (no, yes), and assay method for oestradiol, calculated free oestradiol, oestrone, testosterone and calculated free testosterone (extraction, non-extraction); see Web Figures 12 to 20. Of the nine hormones examined in relation to these factors, four out of 130 tests for heterogeneity were statistically significant: for oestradiol the OR for a doubling in concentration was 1.26 (1.10-1.44) for never or past smokers and 0.94 (0.75-1.18) for current smokers (P for heterogeneity=0.034), and 1.01 (0.82-1.24) for never users and 1.32 (1.14-1.53) for past users of hormonal contraceptives (P for heterogeneity=0.030); for oestrone the OR for a doubling in concentration was 1.74 (0.99-3.03) for progesterone receptor positive and 0.54 (0.27-1.08) for progesterone receptor negative cancers (P for heterogeneity=0.010); and for luteal phase progesterone the OR for a doubling in concentration was 1.25 (1.01-1.55) for nulliparous women and 0.99 (0.90-1.09) for parous women (P for heterogeneity=0.034).

Two sub-group analyses were of particular *a priori* interest. For oestrogens and androgens, the ORs were larger for oestrogen receptor positive tumours than for oestrogen receptor negative tumours, but none of these differences was statistically significant (Table 3). For oestradiol according to phase of menstrual cycle the ORs for a doubling in concentration were 1.25 (1.06-1.48) for follicular, 1.20 (0.81-1.79) for mid-cycle, and 1.13 (0.92-1.37) for luteal samples, P for heterogeneity=0.732 (Web Figure 12).

Associations of hormones and SHBG with BMI, parity and other factors

BMI was inversely associated with oestradiol, luteal phase progesterone and SHBG, with mean concentrations 17%, 28%, and 46% lower, respectively, in women with a BMI of 30 and above compared to women with a BMI of under 22.5 kg/m²; conversely, calculated free oestradiol, oestrone, DHEAS, testosterone and calculated free testosterone were positively associated with BMI, with mean concentrations 10%, 16%, 8%, 7% and 63% higher, respectively, in women with a BMI of 30 and above compared to women with a BMI of under 22.5 kg/m² (means adjusted for age, study and cycle phase; Figure 3).

The associations of sex hormones with age, age at menarche, parity, family history of breast cancer, smoking, alcohol and previous use of hormonal contraceptives are

shown in Web Figures 21 to 27. Sex hormone concentrations were lower in older than in younger women, whereas SHBG was higher in older women (Web Figure 21). Parity was inversely associated with calculated free testosterone, but was not significantly associated with concentrations of the other sex hormones or SHBG (Web Figure 23), and none of the hormones or SHBG was significantly associated with age at menarche or family history of breast cancer (Web Figures 22 and 24). Androstenedione, DHEAS, testosterone and calculated free testosterone were higher in current smokers of 15+ cigarettes per day than in never-smokers, by 21%, 12%, 12% and 13% respectively (Web Figure 25), and the same hormones were positively associated with alcohol consumption, with mean concentrations 14%, 16%, 23% and 23% higher, respectively, in women with an alcohol intake of 20 g/d and above compared to women who did not consume alcohol (Web Figure 26); further adjustment of the analyses by smoking for alcohol, and of the analyses by alcohol for smoking, had no material effect on the results (not shown). Women who had previously used hormonal contraceptives had lower concentrations of oestradiol (by 7%), oestrone (by 7%), androstenedione (by 5%) and SHBG (by 4%) (Web Figure 27).

DISCUSSION

Sex hormones, SHBG and breast cancer risk

Oestradiol, calculated free oestradiol, oestrone, androstenedione, DHEAS and testosterone were positively associated with breast cancer risk, whereas luteal phase progesterone and SHBG were not associated with risk. Calculated free testosterone was positively associated with breast cancer risk in the adjusted analysis, but not in the unadjusted analysis. These associations did not vary according to the time between blood collection and diagnosis, making reverse causality unlikely, and (with the exception of calculated free testosterone) were not materially affected by adjustment for other risk factors, suggesting that confounding is unlikely. These results therefore strongly suggest that breast cancer risk in premenopausal women increases with increasing concentrations of these sex hormones. The results are qualitatively similar to those reported in postmenopausal women, but smaller in magnitude.^{2–4}

The analyses reported in this paper were all based on a single hormone measure for each woman. Measurements of hormone concentrations are subject to largely random error associated with assay variation and fluctuations in serum levels within individual women. Studies of the reproducibility of sex hormones in premenopausal women for up to three years have shown intra-class correlations of ~0.6 or above for androgens and SHBG, but correlations of ~0.4 or less for oestrogens and progesterone.^{22,23} It is therefore likely that the observed associations between hormone concentrations and breast cancer risk are underestimates of the true associations, particularly for oestrogens, but more reproducibility data are required.

The sub-group analyses showed heterogeneity in the associations of oestradiol with risk according to smoking and previous use of hormonal contraceptives, of oestrone with risk according to progesterone receptor status, and of luteal phase progesterone with risk according to parity, but there was no significant heterogeneity according to

any other combination of factor and hormone. All the sex hormones had larger associations with the risk of oestrogen receptor positive breast cancer than with the risk of oestrogen receptor negative disease; these differences were not significant, but statistical power was low due to small numbers of oestrogen receptor negative disease (e.g. 71 cases for oestradiol). For oestradiol the plot of geometric mean concentrations in cases and controls according to phase of menstrual cycle (Figure 1) suggested that concentrations in cases were higher than those in controls in the follicular phase and at mid-cycle, but not in the late luteal phase, and similarly the sub-group analyses of breast cancer risk showed larger ORs in the follicular phase and at mid-cycle than in the luteal phase, but these differences were not significant.

Associations of hormones with breast cancer risk factors in controls

All the hormones, except for androstenedione, were associated with BMI. Total oestradiol was inversely associated with BMI, whereas free oestradiol was positively associated with BMI because of the strong inverse association of SHBG with BMI. Interpretation of these observations is difficult, but if free oestradiol is a reliable index of bioavailable oestradiol then obese premenopausal women are exposed to a slightly more oestrogenic environment. Oestrone was also positively associated with BMI, perhaps due to increased peripheral aromatization of androstenedione, as in postmenopausal women.²⁴ Progesterone was lower in obese than non-obese women, whereas DHEAS and testosterone were positively associated with BMI. Similar findings for oestrogens and progesterone have been reported among regularly menstruating women in the BioCycle Study,²⁵ and in massively obese premenopausal women.²⁶

Parity was not strongly associated with any of the hormones, but showed an inverse association with calculated free testosterone. Some previous studies in younger premenopausal women have suggested that early menarche and nulliparity are associated with oestrogen levels,^{27,28} but in the current study none of the hormones or SHBG was significantly associated with age at menarche, and none of the oestrogen measures was associated with parity.

Androstenedione, DHEAS, testosterone and free testosterone were higher in women who consumed the most cigarettes and the most alcohol than in non-smokers and non-drinkers, respectively. Very similar associations were seen in postmenopausal women.²⁹ The mechanism may involve stimulation of hormone synthesis by the adrenal glands.³⁰

Women who had previously used hormonal contraceptives had lower concentrations of oestradiol, oestrone, androstenedione, and SHBG. It is not clear whether these are causal associations, or what mechanism could be involved, though they might involve long-term effects on the liver.³¹

Sex hormones may mediate the effects of some risk factors on the development of breast cancer. For example, the increase in breast cancer risk caused by alcohol³² might be due to increased serum concentrations of sex hormones, although it could also be due to other effects of alcohol. BMI is inversely associated with the risk of breast cancer in premenopausal women,³³ and this might be related to the effects of

obesity on hormone levels. We observed that total oestradiol was inversely related to BMI and positively associated with risk, which is compatible with the idea that the lower risk in obese women is due to lower oestradiol, but this interpretation is complicated by the fact that we observed that free oestradiol was positively associated with BMI, as were oestrone and the androgens DHEAS, testosterone and free testosterone. Luteal phase progesterone was also lower in obese than normal weight women, perhaps due to a higher probability of anovulatory cycles in obese women;³⁴ our analyses do not show any association of progesterone with breast cancer risk, but the reliability of progesterone measurements is low and more data are needed before concluding that progesterone is not a determinant of breast cancer risk.

The strengths of this analysis are that the data and serum samples were all collected prospectively, that it includes almost all the available data from published studies world-wide, and that we were able to adjust for phase of cycle and for other potential risk factors. The total sample size is moderately large for most of the hormones, but power is low for the sub-group analyses.

A potential weakness is that the study designs and methods for measuring hormones and other risk factors were not standardized. For example, studies variably used forward or backward dating in determining when blood was collected in the menstrual cycle, and, because of differences in progesterone measurement across study, we were unable to distinguish ovulatory versus anovulatory cycles. Further, hormone concentrations varied substantially between studies, and this is likely to reflect, in part, differences in assay methods. The accuracy of assay methods varies, and assays which incorporate an extraction step are more accurate than "direct" non-extraction assays.³⁵ Ideally assays would be standardized and use the most accurate methods available, but in the current analysis our aim was to make the best use of the data available. To allow for differences in absolute hormone concentrations between assay laboratories we used study-specific quintiles of hormone concentrations.²¹ This approach assumes that the true concentrations across the quintiles are similar in all the studies, and if this assumption is not correct then the estimates of ORs may be biased. However, because heterogeneity in risk estimates was not evident between studies or between assay methods (extraction versus non-extraction) this assumption does seem reasonable.

This collaborative analysis shows a positive association between sex hormones and breast cancer risk in premenopausal women. It is not known whether this association is causal, but there are plausible biological mechanisms which could explain such an effect. The magnitude of the observed association is modest, but the true association may be substantially larger because of measurement error in the assessment of longterm premenopausal hormone levels. Further research is needed to provide more robust estimates of the overall associations and associations in sub-groups, and to determine the environmental and genetic factors that cause differences in hormone levels between premenopausal women.

REFERENCES

- 1. MacMahon B, Cole P, Brown J. Etiology of human breast cancer: a review. *J* Natl Cancer Inst 1973; **50**: 21–42.
- 2. Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. *J Natl Cancer Inst* 2002; **94**: 606–16.
- 3. Kaaks R, Rinaldi S, Key TJ, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. *Endocr Relat Cancer* 2005; **12**: 1071–82.
- 4. Zhang X, Tworoger SS, Eliassen AH, Hankinson SE. Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. *Breast Cancer Res Treat* 2013 Jan 3. [Epub ahead of print]
- 5. Helzlsouer KJ, Gordon GB, Alberg AJ, Bush TL, Comstock GW. Relationship of prediagnostic serum levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate to the risk of developing premenopausal breast cancer. *Cancer Res* 1992; **52**: 1–4.
- Helzlsouer KJ, Alberg AJ, Bush TL, Longcope C, Gordon GB, Comstock GW. A prospective study of endogenous hormones and breast cancer. *Cancer Detect Prev*; 18: 79–85.
- 7. Dorgan JF, Stanczyk FZ, Kahle LL, Brinton LA. Prospective case-control study of premenopausal serum estradiol and testosterone levels and breast cancer risk. *Breast Cancer Res* 2010; **12**: R98.
- 8. Kaaks R, Berrino F, Key T, et al. Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). *J Natl Cancer Inst* 2005; **97**: 755–65.
- 9. Thomas HV, Key TJ, Allen DS, et al. A prospective study of endogenous serum hormone concentrations and breast cancer risk in premenopausal women on the island of Guernsey. *Br J Cancer* 1997; **75**: 1075–9.
- Eliassen AH, Missmer SA, Tworoger SS, et al. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. *J Natl Cancer Inst* 2006; **98**: 1406–15.
- Tworoger SS, Missmer SA, Eliassen AH, et al. The association of plasma DHEA and DHEA sulfate with breast cancer risk in predominantly premenopausal women. *Cancer Epidemiol Biomarkers Prev* 2006; 15: 967– 71.
- 12. Fortner RT, Eliassen AH, Spiegelman D, Willett WC, Barbieri RL, Hankinson SE. Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses' Health Study II. *Breast Cancer Res* 2013; **15**: R19.

- 13. Zeleniuch-Jacquotte A, Afanasyeva Y, Kaaks R, et al. Premenopausal serum androgens and breast cancer risk: a nested case-control study. *Breast Cancer Res* 2012; **14**: R32.
- 14. Micheli A, Muti P, Secreto G, et al. Endogenous sex hormones and subsequent breast cancer in premenopausal women. *Int J Cancer* 2004; **112**: 312–8.
- 15. Baglietto L, Severi G, English DR, et al. Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. *Cancer Epidemiol Biomarkers Prev* 2010; **19**: 492–502.
- Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE. A prospective study of estradiol and breast cancer in Japanese women. *Cancer Epidemiol Biomarkers Prev* 2000; 9: 575–9.
- 17. Grant EJ, Neriishi K, Cologne J, et al. Associations of ionizing radiation and breast cancer-related serum hormone and growth factor levels in cancer-free female A-bomb survivors. *Radiat Res* 2011; **176**: 678–87.
- Wysowski DK, Comstock GW, Helsing KJ, Lau HL. Sex hormone levels in serum in relation to the development of breast cancer. *Am J Epidemiol* 1987; 125: 791–9.
- 19. Södergård R, Bäckström T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. *J Steroid Biochem* 1982; **16**: 801–10.
- 20. Endogenous Hormones and Breast Cancer Collaborative Group. Free estradiol and breast cancer risk in postmenopausal women: comparison of measured and calculated values. *Cancer Epidemiol Biomarkers Prev* 2003; **12**: 1457–61.
- Key TJ, Appleby PN, Allen NE, Reeves GK. Pooling biomarker data from different studies of disease risk, with a focus on endogenous hormones. *Cancer Epidemiol Biomarkers Prev* 2010; 19: 960–5.
- 22. Muti P, Trevisan M, Micheli A, et al. Reliability of serum hormones in premenopausal and postmenopausal women over a one-year period. *Cancer Epidemiol Biomarkers Prev* 1996; **5**: 917–22.
- 23. Missmer SA, Spiegelman D, Bertone-Johnson ER, Barbieri RL, Pollak MN, Hankinson SE. Reproducibility of plasma steroid hormones, prolactin, and insulin-like growth factor levels among premenopausal women over a 2- to 3year period. *Cancer Epidemiol Biomarkers Prev* 2006; **15**: 972–8.
- 24. Edman CD, MacDonald PC. Effect of obesity on conversion of plasma androstenedione to estrone in ovulatory and anovulatory young women. *Am J Obstet Gynecol* 1978; **130**: 456–61.

- 25. Yeung EH, Zhang C, Albert PS, et al. Adiposity and sex hormones across the menstrual cycle: the BioCycle Study. *Int J Obes (Lond)* 2012 Feb 7. doi: 10.1038/ijo.2012.9.
- Kopelman PG, Pilkington TR, White N, Jeffcoate SL. Abnormal sex steroid secretion and binding in massively obese women. *Clin Endocrinol (Oxf)* 1980; 12: 363–9.
- 27. Trichopoulos D, Cole P, Brown JB, Goldman MB, MacMahon B. Estrogen profiles of primiparous and nulliparous women in Athens, Greece. *J Natl Cancer Inst* 1980; **65**: 43–6.
- Apter D, Reinilä M, Vihko R. Some endocrine characteristics of early menarche, a risk factor for breast cancer, are preserved into adulthood. *Int J Cancer* 1989; 44: 783–7.
- 29. Endogenous Hormones and Breast Cancer Collaborative Group. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. *Br J Cancer* 2011; **105**: 709–22.
- 30. Mello NK. Hormones, nicotine, and cocaine: clinical studies. *Horm Behav* 2010; **58**: 57–71.
- 31. Johnson PJ. Sex hormones and the liver. Clin Sci (Lond) 1984; 66: 369-76.
- 32. Collaborative Group on Hormonal Factors in Breast Cancer. Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. *Br J Cancer* 2002; **87**: 1234–45.
- 33. van den Brandt PA, Spiegelman D, Yaun SS, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 2000; 152: 514–27.
- 34. Grodstein F, Goldman MB, Cramer DW. Body mass index and ovulatory infertility. *Epidemiology* 1994; **5**: 247–50.
- 35. Stanczyk FZ, Lee JS, Santen RJ. Standardization of steroid hormone assays: why, how, and when? *Cancer Epidemiol Biomarkers Prev* 2007; **16**: 1713–9.

MEMBERS AND AFFILIATIONS OF THE ENDOGENOUS HORMONES AND BREAST CANCER COLLABORATIVE GROUP

All named members of the collaborative group are authors of this manuscript. TJ Key co-ordinated the collaborative group, drafted the manuscript, conducted the literature search and contributed to study design and data interpretation. PN Appleby centralized the data, conducted the statistical analyses, and contributed to interpreting the data. GK Reeves and RC Travis contributed to study design, data interpretation and writing. All the co-authors from the collaborating studies contributed to data collection, data interpretation and writing.

Contributors

Writing committee

TJ Key, PN Appleby, GK Reeves, RC Travis, Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.

Co-authors from collaborating studies

AJ Alberg, Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.

A Barricarte, Navarre Public Health Institute, Pamplona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), Spain.

F Berrino, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy.

LA Brinton, National Cancer Institute, Bethesda, MD, USA.

JF Dorgan, Fox Chase Cancer Center, Philadelphia, PA, USA.

L Dossus, Inserm, Centre for Research in Epidemiology and Population Health (CESP), Nutrition, Hormones and Women's Health team, Villejuif, France; Univ Paris Sud, Villejuif, France; and IGR, Villejuif, France.

M Dowsett, Institute of Cancer Research, London, UK.

AH Eliassen, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.

RT Fortner, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA. SE Hankinson, for the Nurses' Health Study II research group, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; and Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.

KJ Helzlsouer, Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; and Prevention and Research Center, Mercy Medical Center, Baltimore, MD, USA.

J Hoffman-Bolton, Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; and George W Comstock Center for Public Health Research and Prevention, Washington County, MD, USA.

R Kaaks, Deutsches Krebsforschungszentrum, Heidelberg, Germany.

LL Kahle, Information Management Services, Rockville, MD, USA.

K Koenig, Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.

V Krogh, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy.

P Muti, McMaster University, Hamilton, Canada.

K Overvad, Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.

PHM Peeters, Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands; and School of Public Health, Faculty of Medicine, Imperial College, London, UK.

E Riboli, School of Public Health, Imperial College, London, UK.

S Rinaldi, International Agency for Research on Cancer, Lyon, France.

DE Rollison, Department of Interdisciplinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA.

S Sieri, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy.

FZ Stanczyk, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.

D Trichopoulos, Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; and Hellenic Health Foundation, Athens, Greece. SS Tworoger, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.

P Vineis, ISI Foundation, Torino, Italy; and Imperial College, London, UK.

A Zeleniuch-Jacquotte, Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflicts of interest.

FUNDING

The central pooling, checking and analysis of data were supported by Cancer Research UK; details of funding for the original studies are in the relevant publications. The funders of the study had no role in the study design, data collection, data analysis, data interpretation or writing of the report. The authors at the secretariat had full access to all the data and had final responsibility for the decision to submit the manuscript.

ACKNOWLEDGEMENTS

We thank the women who participated in the collaborating studies, the research staff, the collaborating laboratories and the funding agencies in each of the studies.

Legends to Figures

Fig. 1. Geometric mean oestradiol and progesterone concentrations (pmol/L and nmol/L, respectively, with 95% confidence intervals) in cases and controls by phase of menstrual cycle. Adjusted for study and age at blood collection. EF=early follicular; LF=late follicular; MC=mid cycle; EL=early luteal; ML=mid luteal; LL=late luteal.

Fig. 2. Odds ratios (ORs) for breast cancer associated with sex hormones and SHBG. The black squares indicate the ORs in fifths (study-specific fifths after adjustment for phase of cycle within each study), and the horizontal lines show the 95% confidence intervals. The area of each square is proportional to the amount of statistical information (inverse of the variance of the logarithm of the OR). The diamonds show the OR for a doubling in concentration, and the widths of the diamonds show the 95% confidence intervals. Estimates are from conditional logistic regression on case-control sets matched within each study.

Fig. 3. Geometric mean hormone and SHBG concentrations (with 95% confidence intervals) in controls by BMI. Adjusted for study, age at blood collection and phase of menstrual cycle.

Study	Recruitment	Fasting status	Storage	Matching crite	eria			
	period		temperature	Controls per case	Age at blood collection	Date of blood sample	Day of cycle	Other and comments
CLUE I, USA	1974	Non-fasting	-70 C	2	± 1 year	\pm 14 days	± 1 day	Time of day, fasting status, ethnic group, freeze/thaw history of serum sample
Columbia, USA	1977-1989	Non-fasting	-70 C	2	± 2 years	± 1 year	± 2 days	Time of day at blood collection
EPIC, Europe	1992-1998	Matched	Mostly -196 C ¹	2	± 6 months	No (incidence density sampling)	5 phases	Time of day at blood collection, subcohort
Guernsey, UK	1977-1990	Non-fasting	-20 C	3	± 2 years	± 1 year	$\pm 1 \text{ day}$	
Nurses' Health Study II phases 1 (1999-2003 follow- up cycles) and 2 (2005-2009 follow- up cycles), USA	1996-1999	Matched	-130 C	2	± 2 years	± 2 months	\pm 1 day for luteal blood sample (asked to provide follicular sample at days 3 to 5 and luteal sample at 7-9 days before anticipated start of next cycle)	Time of day, fasting status
NYU WHS, USA	1985-1991	Non-fasting	-80 C	2	± 6 months	\pm 3 months	5 phases and day	Number of subsequent samples
ORDET, Italy	1987-1992	12 hour fast prior to collection. Samples taken 07.30-09.00	-80 C	4	± 5 years	± 89 days	All days 20 to 24	Daylight saving period, recruitment centre

Table 1. Description of studies

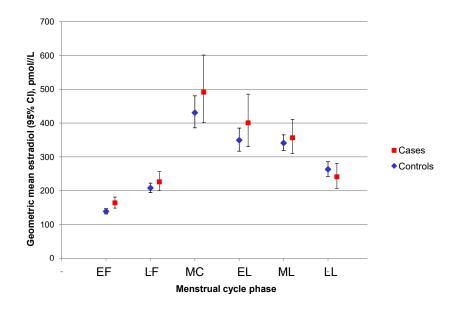
¹ Stored in liquid nitrogen at -196 C, except in Denmark in nitrogen vapour at -150 C. CLUE I = Washington County, MD Study "Give us a clue to cancer and heart disease"; EPIC = European Prospective Investigation into Cancer and Nutrition; NYU WHS = New York University Women's Health Study; ORDET = Study of Hormones and Diet in the Etiology of Breast Tumors.

Study		Number ¹	Oestradiol, pmol/L	Calculated free oestradiol, pmol/L	Oestrone, pmol/L	Luteal phase progesterone, nmol/L	Androstenedio ne, nmol/L	DHEAS, nmol/L	Testosterone, nmol/L	Calculated free testosterone, pmol/L	SHBG, nmol/L
CLUE I, USA	Cases	21	172 (134-222)	2.03 (1.55-2.64)	252 (211-301)	5.32 (1.73-16.3)	2.98 (2.31-3.85)	3903 (2787-5465)	-	-	69.9 (58.0-84.2)
	Controls	42	168 (137-206)	1.85 (1.51-2.26)	239 (207-275)	9.62 (5.47-16.9)	2.88 (2.42-3.43)	3853 (3023-4910)	-	-	74.3 (65.3-84.4)
Columbia, USA	Cases	13	239 (165-347)	3.26 (2.24-4.75)	-	-	-	-	1.00 (0.79-1.28)	13.7 (9.86-19.1)	48.2 (34.3-67.7)
	Controls	24	316 (257-387)	4.05 (3.34-4.92)	-	-	-	-	0.86 (0.73-1.02)	10.7 (9.10-12.7)	56.6 (48.3-66.4)
EPIC, Europe	Cases	206	318 (285-355)	4.60 (4.13-5.12)	384 (354-416)	8.42 (6.30-11.3)	5.59 (5.22-5.98)	3712 (3469-3972)	1.70 (1.60-1.81)	25.2 (23.2-27.3)	43.5 (40.6-46.6)
	Controls	408	296 (275-318)	4.25 (3.94-4.60)	360 (339-383)	12.3 (9.84-15.4)	4.92 (4.68-5.18)	3341 (3169-3522)	1.56 (1.49-1.63)	23.3 (21.8-24.8)	43.0 (40.9-45.3)
Guernsey, UK	Cases	32	323 (253-412)	3.16 (2.39-4.17)	-	10.7 (5.84-19.5)	-	2253 (1410-3599)	1.17 (0.97-1.40)	13.2 (11.3-15.5)	68.6 (59.5-79.1)
	Controls	94	282 (246-323)	3.02 (2.52-3.62)	-	10.6 (7.25-15.4)	-	2548 (1924-3375)	1.12 (1.02-1.23)	13.4 (11.6-15.5)	61.5 (55.8-67.7)
Nurses' Health Study II phase 1, USA	Cases	139	182 (166-199)	2.30 (2.12-2.49)	150 (142-159)	45.7 (41.1-50.8)	3.91 (3.68-4.16)	2302 (2129-2489)	0.92 (0.87-0.99)	11.3 (10.5-12.2)	57.9 (53.8-62.3)
5 1 7	Controls	268	164 (153-177)	2.08 (1.95-2.22)	145 (138-151)	43.5 (39.9-47.4)	3.89 (3.72-4.06)	2208 (2089-2333)	0.90 (0.86-0.94)	10.9 (10.3-11.5)	58.5 (55.5-61.8)
Nurses' Health Study II phase 2, USA	Cases	105	193 (175-213)	2.21 (2.02-2.42)	161 (150-173)	40.7 (34.6-47.9)	-	2838 (2556-3151)	0.91 (0.85-0.98)	9.6 (8.7-10.5)	70.6 (65.3-76.3)
5	Controls	203	186 (174-199)	2.25 (2.11-2.40)	163 (154-171)	38.1 (33.9-42.9)	-	2642 (2449-2851)	0.91 (0.87-0.96)	10.6 (10.0-11.3)	62.4 (59.0-66.0)
NYU WHS phase2, USA	Cases	137	-	-	-	-	4.30 (3.96-4.67)	3978 (3625-4366)	1.01 (0.91-1.12)	14.0 (12.4-15.8)	48.1 (44.1-52.4)
001	Controls	258	-	-	-	-	4.07 (3.83-4.33)	3869 (3598-4161)	0.95 (0.88-1.03)	13.1 (11.9-14.3)	47.8 (44.8-51.0)
ORDET, Italy	Cases	84	300 (274-329)	3.66 (3.34-4.00)	-	38.2 (32.7-44.6)	5.26 (4.38-6.32)	3856 (3153-4715)	0.85 (0.75-0.97)	9.9 (8.5-11.6)	62.0 (56.6-68.0)
	Controls	336	282 (259-306)	3.50 (3.23-3.79)	-	32.4 (28.3-37.1)	5.79 (5.38-6.23)	3921 (3604-4265)	0.84 (0.79-0.90)	10.1 (9.3-10.8)	59.8 (57.1-62.6)

Table 2. Geometric mean hormone concentrations (95% CI) by study and case-control status

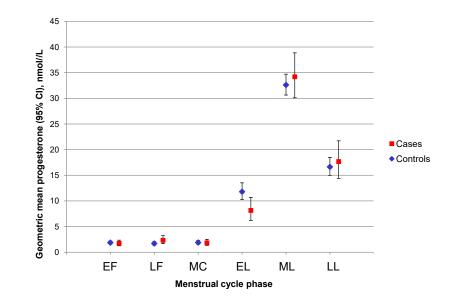
¹Numbers are for women with known phase of cycle and values for oestradiol (except for NYU WHS where numbers are for women with values for testosterone).

- indicates data not available.


Geometric mean hormone concentrations for Nurses' Health Study II are obtained using the follicular phase data for oestradiol, calculated free oestradiol and oestrone and using the luteal phase data for all other hormones.

CLUE I = Washington County, MD Study "Give us a clue to cancer and heart disease"; EPIC = European Prospective Investigation into Cancer and Nutrition; NYU WHS = New York University Women's Health Study; ORDET = Study of Hormones and Diet in the Etiology of Breast Tumors.

	ER	oositive	ER	negative	
Hormone	Cases/controls	OR (95% CI)	Cases/controls	OR (95% CI)	P for heterogeneity
Oestradiol	147/374	1.25 (0.95-1.65)	71/209	1.09 (0.76-1.57)	0.56
Calculated free oestradiol	147/374	1.22 (0.91-1.63)	71/209	1.03 (0.68-1.54)	0.50
Oestrone	107/205	1.26 (0.77-2.06)	37/72	0.90 (0.45-1.82)	0.45
Luteal phase progesterone	152/369	1.05 (0.88-1.24)	67/184	1.13 (0.88-1.47)	0.62
Androstenedione	124/237	1.45 (0.98-2.15)	54/106	1.11 (0.58-2.14)	0.50
DHEAS	170/327	1.24 (0.97-1.57)	67/130	0.91 (0.62-1.34)	0.19
Testosterone	211/495	1.13 (0.88-1.43)	99/265	1.03 (0.76-1.39)	0.66
Calculated free testosterone	211/495	1.08 (0.88-1.33)	99/264	1.01 (0.78-1.30)	0.66
SHBG	214/503	1.04 (0.80-1.35)	102/271	1.08 (0.77-1.52)	0.86


Table 3. Associations of hormones and SHBG with breast cancer risk, subdivided by oestrogen receptor status

Odds ratios (ORs) for breast cancer associated with a doubling in concentration. Estimates are from conditional logistic regression on case-control sets matched within each study.

Geometric mean estradiol by phase of menstrual cycle

Adjusted for study, updated 1/11/12

Geometric mean progesterone by phase of menstrual cycle

Adjusted for study, updated 1/11/12

plotodrsumTK: 10/01/2013

Odds ratios by fifth (and doubling) of concentration of selected estrogens, androgens and SHBG among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Hormone	Exposure	Cases/Controls	OR (95% Cl)	Odds ratio & 95% Cl	P-trend
Estradiol	Q1	104/280	1.00	•	
	Q2	108/277	1.07 (0.77-1.48)		
	Q3	120/271	1.19 (0.87-1.63)	- +	
	Q4	128/277	1.26 (0.92-1.73)		
	Q5	140/270	1.41 (1.02-1.95)		
	Doubling	600/1375	1.19 (1.06-1.35)	$ \diamond$	0.004
Calculated free estradiol	Q1	112/271	1.00	•	
	Q2	109/269	1.01 (0.73-1.38)	_	
	Q3	112/267	1.04 (0.76-1.42)		
	Q4 Q5	125/269 129/265	1.14 (0.83-1.56) 1.19 (0.86-1.64)		
	Doubling	587/1341	1.17 (1.03-1.33)		0.014
atrono	Q1	80/195	, , ,	l∼	0.014
Estrone	Q2	90/184	1.00 1.19 (0.83-1.71)		
	Q3	94/183	1.28 (0.89-1.84)		
	Q4	108/189	1.42 (0.98-2.06)		
	Q5	105/182	1.50 (1.02-2.19)		
	Doubling	477/933	1.27 (1.05-1.54)		0.014
utaal phase progesteron		100/210	1.00		0.011
_uteal phase progesteron	Q2	79/208	0.83 (0.57-1.20)	_	
	Q3	98/205	1.04 (0.74-1.48)		
	Q4	92/207	0.97 (0.68-1.39)		
	Q5	91/204	0.98 (0.68-1.40)		
	Doubling	460/1034	1.00 (0.92-1.09)	\$	0.935
Androstenedione	Q1	97/238	1.00	Ĭ	
androsterieulone	Q2	118/234	1.29 (0.93-1.79)	Ţ_ _	
	Q 3	93/239	1.01 (0.71-1.44)	_	
	Q4	118/232	1.36 (0.96-1.94)	⊢_ ∎	
	Q5	143/234	1.68 (1.18-2.39)	_	
	Doubling	569/1177	1.30 (1.10-1.55)	\diamond	0.003
DHEAS	Q1	107/285	1.00	4	
	Q2	144/287	1.34 (0.99-1.81)		
	Q3	150/278	1.44 (1.07-1.95)	∎	
	Q4	134/283	1.27 (0.94-1.72)		
	Q5	152/278	1.45 (1.07-1.95)		
	Doubling	687/1411	1.17 (1.04-1.32)	\diamond	0.010
Testosterone	Q1	144/350	1.00	•	
	Q2	130/331	0.99 (0.75-1.32)		
	Q3	158/330	1.21 (0.92-1.61)		
	Q4 Q5	152/329 166/322	1.16 (0.87-1.54) 1.32 (0.98-1.76)		
	Doubling	750/1662	1.18 (1.03-1.35)		0.018
	•				0.010
Calculated free testostero	one Q1 Q2	147/329 149/325	1.00 1.03 (0.79-1.36)	<u> </u>	
	Q3	134/325	0.93 (0.70-1.24)		
	Q4	132/325	0.93 (0.69-1.24)		
	Q5	175/322	1.25 (0.94-1.66)		
	Doubling	737/1626	1.08 (0.97-1.21)	6	0.151
	Q1	138/347	1.00	L	
SHBG			1.08 (0.81-1.44)	T	
SHBG	02				
SHBG	Q2 Q3	142/338 151/338			
SHBG	Q3	151/338	1.14 (0.86-1.51)	-+ 8 - 8	
SHBG					
SHBG	Q3 Q4	151/338 170/339	1.14 (0.86-1.51) 1.29 (0.98-1.71)		0.290
SHBG	Q3 Q4 Q5	151/338 170/339 166/337	1.14 (0.86-1.51) 1.29 (0.98-1.71) 1.28 (0.96-1.70)		0.290

Figure 3

Mean concentration of selected hormones among premenopausal controls by categories of body mass index (kg/m²), adjusted for study, age and phase of cycle

Hormone and category	n	Mean* (95% CI)	P-het (trend)	Relative	e mean⁺ &	95% CI	
Estradiol (pmol/L) <22.5 kg/m ² 22.5-24.9 kg/m ² 25.0-27.4 kg/m ² 27.5-29.9 kg/m ² ≥30.0 kg/m ²	829 666 397 245 325	250.9 (239.1-263.3) 220.1 (208.6-232.2) 239.3 (223.2-256.5) 229.1 (209.7-250.3) 209.3 (193.8-226.1)	<0.001 (0.001)		• • •		
Calculated free estradiol <22.5 kg/m² 22.5-24.9 kg/m² 25.0-27.4 kg/m² 27.5-29.9 kg/m² ≥30.0 kg/m²	(pmol/L) 821 661 391 241 321	2.86 (2.73-3.00) 2.75 (2.61-2.90) 3.12 (2.91-3.34) 3.21 (2.94-3.51) 3.16 (2.93-3.41)	0.902 (0.001)	5 0.7	1.0	1.5	2.0
Estrone (pmol/L) <22.5 kg/m² 25.5-24.9 kg/m² 25.0-27.4 kg/m² 27.5-29.9 kg/m² ≥30.0 kg/m²	501 360 214 144 222	202 (194-211) 198 (189-208) 217 (203-231) 213 (197-230) 235 (221-250)	0.5 <0.001 (<0.001)	5 0.7	1.0	1.5	2.0
Luteal phase progesteror <22.5 kg/m ² 22.5-24.9 kg/m ² 25.0-27.4 kg/m ² 27.5-29.9 kg/m ² ≥30.0 kg/m ²	ne (nmol/L) 691 529 317 185 252	29.81 (27.57-32.23) 28.58 (26.15-31.24) 26.93 (24.00-30.22) 27.45 (23.62-31.91) 21.34 (18.75-24.30)		5 0.7		1.5	2.0
Androstenedione (nmol/l <22.5 kg/m² 22.5-24.9 kg/m² 25.0-27.4 kg/m² 27.5-29.9 kg/m² ≥30.0 kg/m²	L) 678 458 262 167 213	4.33 (4.18-4.49) 4.30 (4.12-4.49) 4.12 (3.89-4.37) 4.33 (4.03-4.65) 4.03 (3.78-4.29)	0.244 (0.069)	5 0.7	1.0 •••	1.5	2.0
DHEAS (nmol/L) <22.5 kg/m² 22.5-24.9 kg/m² 25.0-27.4 kg/m² 27.5-29.9 kg/m² ≥30.0 kg/m²	917 636 366 236 343	2706 (2609-2807) 3003 (2876-3137) 2924 (2761-3097) 2889 (2689-3103) 2928 (2758-3108)	0.005 (0.029)	5 0.7	1.0 •	1.5	2.0
Testosterone (nmol/L) <22.5 kg/m² 25.5-24.9 kg/m² 25.0-27.4 kg/m² 27.5-29.9 kg/m² ≥30.0 kg/m²	1148 859 499 305 433	0.94 (0.91-0.97) 0.97 (0.93-1.00) 0.98 (0.94-1.03) 0.96 (0.91-1.02) 1.01 (0.96-1.06)	0.5 0.171 (0.023)	5 0.7	1.0 •	1.5	2.0
Calculated free testoster <22.5 kg/m ² 22.5-24.9 kg/m ² 25.0-27.4 kg/m ² 27.5-29.9 kg/m ² ≥30.0 kg/m ²	one (pmol/l 1141 855 496 301 430	-) 10.2 (9.9-10.6) 11.8 (11.3-12.3) 13.0 (12.3-13.7) 14.0 (13.0-15.0) 16.6 (15.6-17.6)	0.5 <0.001 (<0.001)	5 0.7	1.0 •	1.5	2.0
SHBG (nmol/L) <22.5 kg/m ² 22.5-24.9 kg/m ² 25.0-27.4 kg/m ² 27.5-29.9 kg/m ² ≥30.0 kg/m ²	1154 863 501 303 432	67.9 (66.2-69.7) 57.7 (56.0-59.5) 51.0 (49.1-53.1) 44.5 (42.3-46.8) 37.0 (35.5-38.7)	0.9 <0.001 [@] (<0.001)	5 0.7	1.0	1.5	2.0
* means are geometric means + means are scaled to the over		, , ,	0.5	5 0.7	1.0	1.5	2.0

* means are scaled to the overall mean concentration (dotted line)
 @ indicates significant interaction with study (P<0.05)

Supplementary appendix

Sex hormones and breast cancer risk in premenopausal women: collaborative reanalysis of seven prospective studies

Correspondence to: Professor Tim Key, Endogenous Hormones and Breast Cancer Collaborative Group, Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Richard Doll Building, Roosevelt Drive, Oxford OX3 7LF, UK. Tel: +44 1865 289600 Fax: +44 1865 289610 Email: tim.key@ceu.ox.ac.uk

Table of Contents

Web Table 1. Assay methods

Web Table 2. Participant characteristics by study and case-control status

Web Figure 1. Odds ratios by fifth (and doubling) of concentration of selected oestrogens, progesterone, androgens and SHBG among premenopausal cases diagnosed before age 45 and matched controls aged under 45 years at blood collection, adjusted for phase of cycle within study

Web Figure 2. Individual study results for oestradiol

Web Figure 3. Individual study results for calculated free oestradiol

Web Figure 4. Individual study results for oestrone

Web Figure 5. Individual study results for luteal phase progesterone

Web Figure 6. Individual study results for androstenedione

Web Figure 7. Individual study results for DHEAS

Web Figure 8. Individual study results for testosterone

Web Figure 9. Individual study results for calculated free testosterone

Web Figure 10. Individual study results for SHBG

Web Figure 11. Odds ratios by fifth (and doubling) of concentration of selected oestrogens, progesterone, androgens and SHBG, adjusted for phase of cycle within study and for age at menarche, parity, age at first full-term pregnancy and BMI

Web Figure 12. Odds ratios for oestradiol split by age and other factors

Web Figure 13. Odds ratios for calculated free oestradiol split by age and other factors

Web Figure 14. Odds ratios for oestrone split by age and other factors

Web Figure 15. Odds ratios for luteal phase progesterone split by age and other factors

Web Figure 16. Odds ratios for androstenedione split by age and other factors

Web Figure 17. Odds ratios for DHEAS split by age and other factors

Web Figure 18. Odds ratios for testosterone split by age and other factors

Web Figure 19. Odds ratios for calculated free testosterone split by age and other factors

Web Figure 20. Odds ratios for SHBG split by age and other factors

Web Figure 21. Geometric mean hormone and SHBG concentrations in controls by age.

Web Figure 22. Geometric mean hormone and SHBG concentrations in controls by age at menarche

Web Figure 23. Geometric mean hormone and SHBG concentrations in controls by parity **Web Figure 24.** Geometric mean hormone and SHBG concentrations in controls by family history of breast cancer

Web Figure 25. Geometric mean hormone and SHBG concentrations in controls by cigarette smoking

Web Figure 26. Geometric mean hormone and SHBG concentrations in controls by alcohol consumption

Web Figure 27. Geometric mean hormone and SHBG concentrations in controls by previous use of hormonal contraceptives

Web Tab	le 1. A	Assay r	nethods
---------	---------	---------	---------

Study	Estradiol		Estrone		Progesterone		Androstened ione		Testosterone		DHEAS		SHBG	
	Assay	CV %	Assay	CV%	Assay	CV %	Assay	CV %	Assay	CV %	Assay	CV%	Assay	CV %
CLUE I, USA	RIA, in-house with extraction	3.6/7.1	RIA, in- house with extraction	4.6/9.9	RIA (ICN)	2.9/7.7	RIA (in- house with extraction)	8.6/10.0			RIA (Wien Laborator ies)	2.7	RIA (DPC)	8.0/10.9
Columbia, USA	RIA, in-house with extraction	8.5							RIA (in-house with extraction)	11.2			CIA (Siemens)	7.0
EPIC, Europe	RIA (DiaSorin)	3.2/7.2	RIA (DSL)	4.9/12. 6	RIA (Immunotech)	7.4/9.4	RIA (DSL)	5.8/18.9	RIA (Immunotech)	8.4/15.3	RIA (Immuno tech)	6.1/12. 4	IRMA (Cis- Bio)	6.7/16.5
Guernsey, UK	RIA (DPC)	13.5/2.3			RIA (DPC)	7.8/15.8			RIA (IDS)	7.0/4.5			IRMA (in- house)	5.3/4.1
Nurses' Health Study II phase 1, USA	RIA with extraction (Quest Diagnostics)	-/<14	RIA with extraction (Quest Diagnostics)	-/<14	CIA (Diagnostic Products)	3/17	RIA (DSL)	-/<14	RIA with extraction (Quest Diagnostics)	-/9	CIA (DPC)	/≤12	CIA (Diagnostic Products)	-/<14
Nurses' Health Study II phase 2, USA	LCMS (Mayo Clinic)	-/≤13	LCMS (Mayo Clinic)	-/≤10	CIA (Diagnostic Products; Abbott Diagnostics)				LCMS (Mayo Clinic)	-/≤14	CIA (Diagnost ic Products; Siemens)	-/≤11	CIA (Diagnostic Products; Abbott Diagnostics)	-/<14
NYU WHS, USA							RIA (DSL)	7.8/13.5	RIA (Immunotech)	8.7/15.8	RIA (Immuno tech)	5.4/14. 7	IRMA (Cis- Bio)	5.6/13.5
ORDET, Italy	RIA (Orion Diagnostica)	5.9/7.41			RIA (Orion Diagnostica)	8.7/10.6	RIA (ICN Biomedical)	2.7/4.8	RIA (Orion Diagnostica)	4.6/9.1	RIA (Orion Diagnosti ca)	7.0/13. 8	IRMA (Orion Diagnostica)	3.5/9.6

CV% = percentage coefficient of variation, intra-assay/inter-assay.

Assay abbreviations: CIA = chemiluminescent immunoassay; DSL = Diagnostic Systems Laboratories; DPC = Diagnostic Products Corporation; ECIA = electrochemiluminescence immunoassay; ICN = ICN Biomedicals Inc.; IRMA = Immunoradiometric assay; LCMS = liquid chromatography-tandem mass spectrometry; RIA = Radioimmunoassay.

Study abbreviations: CLUE I = Washington County, MD Study "Give us a clue to cancer and heart disease"; EPIC = European Prospective Investigation into Cancer and Nutrition; NYU WHS = New York University Women's Health Study; ORDET = Study of Hormones and Diet in the Etiology of Breast Tumors.

¹CVs for high oestradiol concentration samples, CVs for low oestradiol were 14.0/16.4.

Study		Number ¹	Time to diagnosis (years) ²	Age (years)	Age at menarche (years)	Nulliparous, n (%)	Age at first FTP (years)	BMI (kg/m ²)	Family history of breast cancer, n (%)	Current smokers, n (%)	Alcohol (g/d)	Previous use of hormonal contraceptives, n (%)
CLUE I, USA	Cases	21	9 (4-12)	35.6 (5.3)	-	0 (0.0)	20.3 (2.0)	-	-	8 (38.1)	-	4 (19.0)
	Controls	42	-	35.8 (5.3)	-	2 (5.9)	20.4 (3.5)	-	-	9 (21.4)	-	6 (14.3)
Columbia, USA	Cases	13	3 (0-9)	39.5 (5.7)	12.7 (1.8)	4 (30.8)	22.1 (5.4)	26.6 (5.6)	3 (23.1)	3 (23.1)	-	-
	Controls	24	-	39.9 (3.5)	13.0 (1.4)	0 (0.0)	22.2 (3.5)	23.9 (4.4)	3 (13.0)	7 (29.2)	-	-
EPIC, Europe	Cases	206	2 (1-4)	42.2 (3.7)	12.7 (1.5)	30 (15.8)	25.8 (4.1)	24.6 (4.2)	-	51 (24.9)	8.0 (12.2)	126 (62.1)
	Controls	408	-	42.2 (3.7)	12.7 (1.5)	57 (15.2)	24.8 (3.9)	25.1 (4.6)	-	90 (22.4)	7.8 (12.7)	258 (64.0)
Guernsey, UK	Cases	32	5 (2-7)	38.9 (3.4)	13.0 (1.6)	4 (12.5)	24.7 (4.7)	24.0 (3.4)	5 (15.6)	1 (12.5)	-	28 (87.5)
	Controls	94	-	38.8 (3.2)	12.9 (1.5)	11 (11.7)	24.3 (4.1)	24.4 (3.9)	7 (7.4)	4 (16.7)	-	70 (74.5)
Nurses' Health	Cases	139	2 (1-3)	41.8 (3.6)	12.4 (1.4)	32 (23.4)	27.7 (4.4)	25.0 (5.3)	22 (15.8)	18 (12.9)	4.2 (7.4)	120 (86.3)
Study II phase 1, USA	Controls	268	-	41.6 (3.4)	12.5 (1.4)	53 (19.9)	26.6 (4.3)	25.0 (5.0)	24 (9.0)	17 (6.3)	3.7 (6.0)	225 (84.0)
Nurses' Health	Cases	105	8 (6-9)	38.1 (2.9)	12.5 (1.4)	31 (29.5)	27.0 (4.0)	23.5 (4.1)	18 (17.1)	11 (10.5)	3.2 (6.1)	79 (75.2)
Study II phase 2, USA	Controls	203	-	38.4 (2.9)	12.5 (1.5)	40 (19.8)	26.1 (3.8)	24.8 (5.5)	22 (10.8)	14 (6.9)	2.7 (4.9)	172 (84.7)
NYU WHS, USA	Cases	137	5 (2-7)	39.9 (3.3)	12.3 (1.4)	60 (46.9)	27.3 (6.4)	23.1 (4.5)	44 (32.1)	23 (18.9)	5.8 (12.6)	81 (66.9)
CON	Controls	258	-	39.9 (3.3)	12.4 (1.4)	107 (44.6)	26.3 (6.1)	23.7 (4.3)	45 (17.4)	41 (18.1)	7.8 (17.2)	154 (65.0)
ORDET, Italy	Cases	84	4 (1-8)	40.5 (3.3)	12.6 (1.6)	10 (11.9)	26.3 (4.2)	24.3 (4.4)	6 (7.2)	15 (17.9)	9.6 (14.2)	46 (55.4)
	Controls	336	-	40.6 (3.6)	12.5 (1.4)	48 (14.3)	25.0 (3.6)	24.0 (3.9)	28 (8.4)	89 (26.5)	9.1 (13.5)	165 (49.1)

Web Table 2. Participant characteristics by study and case-control status

Values are mean (SD) unless otherwise indicated, percentages exclude women with missing values. ¹Numbers are for women with known phase of cycle and values for oestradiol (except for NYU WHS where numbers are for women with values for testosterone).

²Median (inter-quartile range) time between blood collection and diagnosis for cases.

- indicates data not available or not applicable. CLUE I = Washington County, MD Study "Give us a clue to cancer and heart disease"; EPIC = European Prospective Investigation into Cancer and Nutrition; NYU WHS = New York University Women's Health Study; ORDET = Study of Hormones and Diet in the Etiology of Breast Tumors.

Odds ratios by fifth (and doubling) of concentration of selected estrogens, androgens and SHBG among pre-menopausal cases diagnosed before age 45 and matched controls aged under 45 years at blood collection (concentrations adjusted for phase of cycle within study)

Hormone	Exposure	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl	P-trend
Estradiol	Q1 Q2 Q3 Q4 Q5	41/106 41/103 50/106 43/101 52/101	1.00 1.04 (0.61-1.77) 1.23 (0.74-2.04) 1.16 (0.69-1.97) 1.35 (0.80-2.26)		
Calculated free estradiol	Doubling Q1 Q2 Q3 Q4 Q5	227/517 33/102 43/100 45/98 48/100 50/96	1.18 (0.95-1.46) 1.00 1.37 (0.80-2.35) 1.47 (0.85-2.53) 1.58 (0.92-2.70) 1.66 (0.95-2.89)		0.125 -
Estrone	Doubling Q1 Q2 Q3 Q4 Q5	219/496 30/75 30/68 41/71 45/70 35/69	1.19 (0.96-1.47) 1.00 1.12 (0.61-2.06) 1.50 (0.84-2.67) 1.67 (0.93-3.00) 1.35 (0.71-2.59)		0.104
Luteal phase progesteron	Doubling	181/353 39/81 24/77 40/80 42/78 28/75	1.27 (0.87-1.85) 1.00 0.67 (0.37-1.23) 1.12 (0.64-1.96) 1.22 (0.70-2.14) 0.82 (0.45-1.51)		0.208
Androstenedione	Q1 Q1 Q2 Q3 Q4 Q5	173/391 36/98 46/94 39/95 52/95 52/93	0.98 (0.85-1.12) 1.00 1.41 (0.82-2.42) 1.20 (0.68-2.11) 1.63 (0.94-2.81)		0.748
DHEAS	Doubling Q1 Q2 Q3 Q4	52/93 225/475 37/109 52/107 48/108 61/110	1.69 (0.96-2.98) 1.46 (1.09-1.95) 1.00 1.42 (0.86-2.34) 1.37 (0.82-2.29) 1.67 (1.02-2.73)		0.010
Testosterone	Q5 Doubling Q1 Q2 Q3 Q4	57/102 255/536 53/126 42/118 60/120 40/121	1.71 (1.04-2.80) 1.32 (1.07-1.63) 1.00 0.90 (0.55-1.46) 1.27 (0.79-2.04) 0.85 (0.51-1.40)		— 0.008
Calculated free testostero	Q5 Doubling one Q1 Q2 Q3	74/113 269/598 47/118 45/117 46/114	1.73 (1.06-2.84) 1.33 (1.04-1.71) 1.00 0.98 (0.59-1.62) 1.07 (0.65-1.74)		0.021
SHBG	Q4 Q5 Doubling Q1 Q2	47/117 77/113 262/579 50/124 58/123	1.06 (0.64-1.76) 1.80 (1.12-2.89) 1.29 (1.06-1.58) 1.00 1.20 (0.77-1.87)		0.010
	Q3 Q4 Q5 Doubling	62/120 54/123 51/118 275/608	1.30 (0.83-2.05) 1.10 (0.69-1.74) 1.10 (0.68-1.76) 0.92 (0.74-1.15)		0.486

Odds ratios associated with a doubling in estradiol among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Study	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
CLUE ph2	21/42	1.01 (0.51-2.00)	_
Columbia	13/24	0.57 (0.24-1.35)	
EPIC phase 1	206/408	1.22 (1.01-1.48)	
Gnsy 3 SH	32/94	1.80 (0.87-3.71)	
Nurses II phase 1 fp	139/268	1.42 (1.08-1.88)	-
Nurses II phase 2 fp	105/203	1.17 (0.82-1.68)	_ +_
ORDET ph2	84/336	1.00 (0.78-1.29)	-#-
All studies	600/1375	1.19 (1.06-1.35)	\diamond
Test of significance (all stud Test of heterogeneity betwe	,		0.25 0.5 1 2 4

plotodrtTK(C07c): 17/10/2012

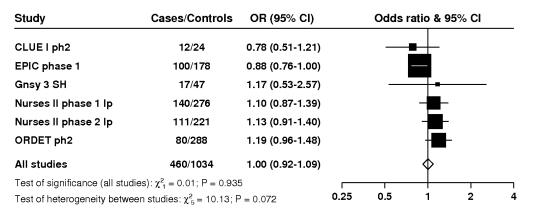
4

1

Odds ratios associated with a doubling in calculated free estradiol among pre-menopausal cases diagnosed before age 50 and matched controls

aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study) Study **Cases/Controls** OR (95% CI) Odds ratio & 95% Cl CLUE | ph2 20/40 1.22 (0.59-2.50) Columbia 13/24 0.60 (0.23-1.56) EPIC phase 1 204/404 1.22 (1.02-1.47) Gnsy 3 SH 23/68 1.22 (0.58-2.57) Nurses II phase 1 fp 139/268 1.55 (1.13-2.14) Nurses II phase 2 fp 104/201 0.96 (0.63-1.46) 0.97 (0.76-1.25) ORDET ph2 84/336 All studies 587/1341 1.17 (1.03-1.33) >Test of significance (all studies): $\chi^2_1 = 6.09$; P = 0.014 0.25 0.5 2

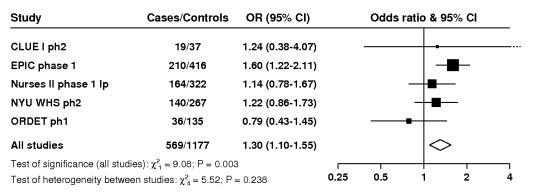
Test of heterogeneity between studies: χ^2_6 = 8.08; P = 0.232


plotodrtTK(C11): 17/10/2012

Odds ratios associated with a doubling in estrone among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Study	Cases/Controls	OR (95% CI)	Oc	ds ratio	& 95% (
CLUE ph2	21/42	1.27 (0.48-3.34)	-		-	
EPIC phase 1	206/409	1.34 (1.04-1.73)		-		
Nurses II phase 1 fp	145/279	1.33 (0.89-1.97)		+		
Nurses II phase 2 fp	105/203	0.97 (0.60-1.58)				
All studies	477/933	1.27 (1.05-1.54)		<	\diamond	
Test of significance (all stud Test of heterogeneity betwe			0.25 0.	5 1	2	 4

plotodrtTK(D10lp): 17/10/2012


Odds ratios associated with a doubling in luteal phase progesterone among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

plotodrtTK(D05): 10/01/2013

Odds ratios associated with a doubling in androstenedione

among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

plotodrtTK(D07): 17/10/2012

Odds ratios associated with a doubling in DHEAS among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Study	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
CLUE ph2	17/33	1.06 (0.59-1.91)	_
EPIC phase 1	210/415	1.31 (1.04-1.66)	
Gnsy 3 SH	5/13	too few cases	
NYU WHS ph2	141/266	1.07 (0.84-1.37)	
Nurses II phase 1 lp	163/319	1.17 (0.90-1.52)	-+
Nurses II phase 2 lp	115/230	1.17 (0.88-1.56)	-+
ORDET ph1	36/135	1.12 (0.67-1.87)	_
All studies	687/1411	1.17 (1.04-1.32)	\diamond
Test of significance (all stud Test of heterogeneity betwe	,		0.25 0.5 1 2 4

plotodrtTK(D08): 17/10/2012

Odds ratios associated with a doubling in testosterone among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Study	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
Columbia	13/24	1.77 (0.58-5.36)	_
EPIC phase 1	210/410	1.48 (1.10-1.99)	∎
Gnsy 3 SH	33/97	1.10 (0.60-2.03)	
NYU WHS ph2	137/258	1.12 (0.87-1.45)	
Nurses II phase 1 lp	158/308	1.24 (0.84-1.84)	- +
Nurses II phase 2 lp	115/229	0.99 (0.65-1.49)	_
ORDET ph2	84/336	1.04 (0.78-1.38)	-#-
All studies	750/1662	1.18 (1.03-1.35)	\diamond
Test of significance (all stud Test of heterogeneity betwee			0.25 0.5 1 2 4

plotodrtTK(D09c): 17/10/2012

Odds ratios associated with a doubling in calculated free testosterone among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Study	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
Columbia	13/24	1.96 (0.75-5.13)	_
EPIC phase 1	208/406	1.24 (1.00-1.54)	
Gnsy 3 SH	24/71	0.95 (0.52-1.72)	_
NYU WHS ph2	136/254	1.09 (0.88-1.35)	
Nurses II phase 1 lp	158/308	1.28 (0.92-1.78)	_
Nurses II phase 2 lp	114/227	0.71 (0.50-1.02)	
ORDET ph2	84/336	0.99 (0.78-1.27)	-#-
All studies	737/1626	1.08 (0.97-1.21)	\diamond
Test of significance (all studi Test of heterogeneity betwee	,		0.25 0.5 1 2 4

Odds ratios associated with a doubling in SHBG among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study)

Study	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
CLUE ph2	20/40	0.72 (0.26-2.00)	e
Columbia	13/24	0.54 (0.17-1.71)	
EPIC phase 1	208/412	1.02 (0.80-1.29)	-#-
Gnsy 3 SH	24/71	1.72 (0.74-4.04)	····
NYU WHS ph2	140/266	1.04 (0.75-1.44)	
Nurses II phase 1 lp	164/322	0.94 (0.72-1.24)	-#-
Nurses II phase 2 lp	114/228	1.68 (1.13-2.51)	│∎
ORDET ph2	84/336	1.13 (0.76-1.67)	
All studies	767/1699	1.07 (0.94-1.23)	\diamond
Test of significance (all stud	dies): χ ² ₁ = 1.12; P = 0.29	0	· · · · · · · · · · · · · · · · · · ·
Test of heterogeneity betwe	een studies: $\chi^2_7 = 9.78$; P	= 0.201	0.25 0.5 1 2 4

Odds ratios by fifth (and doubling) of concentration of selected estrogens, androgens and SHBG among pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection (concentrations adjusted for phase of cycle within study) adjusting for age at menarche, parity, age at first full-term pregnancy and BMI

Hormone	Exposure	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl	P-trend
Estradiol	Q1 Q2 Q3 Q4 Q5	104/280 108/277 120/271 128/277 140/270	1.00 1.04 (0.75-1.45) 1.18 (0.86-1.63) 1.24 (0.90-1.70) 1.36 (0.98-1.90)		
	Doubling	600/1375	1.19 (1.05-1.34)	$ \diamond$	0.008
Calculated free estradiol	Q1 Q2 Q3 Q4 Q5 Doubling	112/271 109/269 112/267 125/269 129/265 587/1341	1.00 1.00 (0.73-1.38) 1.03 (0.75-1.42) 1.19 (0.86-1.64) 1.19 (0.85-1.65) 1.18 (1.04-1.35)		0.011
Estrone	Q1 Q2 Q3 Q4 Q5 Doubling	80/195 90/184 94/183 108/189 105/182 477/933	1.00 1.19 (0.82-1.72) 1.34 (0.92-1.96) 1.47 (1.00-2.15) 1.59 (1.07-2.35) 1.30 (1.07-1.59)		0.008
Luteal phase progesteror	ne Q1 Q2 Q3 Q4 Q5	100/210 79/208 98/205 92/207 91/204	1.00 0.84 (0.57-1.23) 1.05 (0.74-1.51) 1.03 (0.72-1.49) 1.00 (0.69-1.45)		0.057
Androstenedione	Doubling Q1 Q2 Q3 Q4 Q5 Doubling	460/1034 97/238 118/234 93/239 118/232 143/234 569/1177	1.00 (0.92-1.09) 1.00 1.31 (0.93-1.82) 1.01 (0.71-1.44) 1.37 (0.96-1.96) 1.67 (1.16-2.39) 1.30 (1.09-1.55)		0.957
DHEAS	Q1 Q2 Q3 Q4 Q5	107/285 144/287 150/278 134/283 152/278	1.00 1.33 (0.98-1.81) 1.41 (1.04-1.92) 1.33 (0.97-1.81) 1.51 (1.11-2.05)		0.000
Testosterone	Doubling Q1 Q2 Q3 Q4 Q5	687/1411 144/350 130/331 158/330 152/329 166/322	1.19 (1.05-1.35) 1.00 1.01 (0.76-1.35) 1.26 (0.95-1.68) 1.19 (0.89-1.59) 1.35 (1.01-1.82)		0.005
Calculated free testoster	Q2 Q3 Q4	750/1662 147/329 149/325 134/325 132/325	1.20 (1.04-1.37) 1.00 1.09 (0.82-1.44) 1.00 (0.75-1.34) 1.01 (0.75-1.36)		0.011
	Q5 Doubling	175/322 737/1626	1.43 (1.06-1.93) 1.14 (1.01-1.28)	\diamond	0.031
SHBG	Q1 Q2 Q3 Q4 Q5	138/347 142/338 151/338 170/339 166/337	1.00 1.04 (0.77-1.39) 1.07 (0.79-1.44) 1.20 (0.89-1.62) 1.18 (0.86-1.62)		0.075
	Doubling	767/1699	1.01 (0.87-1.17)		0.876
			0.25	0.5 1 2	4

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in estradiol, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Control	s OR (95% Cl)	Odds ratio & 95% Cl
All studies	600/1375	1.19 (1.06-1.35)	
Years from blood collection <4 ≥4	to diagnosis 325/724 275/651	1.22 (1.05-1.43) 1.14 (0.94-1.39)	
Stage of disease in situ invasive	108/222 371/882	χ^2_1 het = 0.28; P = 0.595 1.07 (0.81-1.41) 1.19 (1.02-1.39) χ^2_1 het = 0.43; P = 0.510	
Estrogen receptors positive negative	147/374 71/209	1.25 (0.95-1.65) 1.09 (0.76-1.57) χ^2_1 het = 0.33; P = 0.564	
Progesterone receptors positive negative	154/417 64/164	1.27 (0.98-1.66) 0.98 (0.66-1.44) χ^2_1 het = 1.20; P = 0.274	
HER2 receptors positive negative	39/99 131/384	1.23 (0.72-2.12) 1.19 (0.90-1.58) χ^2_1 het = 0.01; P = 0.907	
Phase of cycle at blood coll follicular mid-cycle luteal	lection 333/668 45/107 222/600	1.25 (1.06-1.48) 1.20 (0.81-1.79) 1.13 (0.92-1.37) χ^2_2 het = 0.62; P = 0.732	
Age at menarche <14 years ≥14 years	427/995 147/324	χ_2 het = 0.02, P = 0.732 1.21 (1.05-1.39) 1.19 (0.95-1.50) χ_1^2 het = 0.01; P = 0.916	
Parity nulliparous parous	108/205 469/1108	1.02 (0.77-1.34) 1.20 (1.05-1.38) χ ² ₁ het = 1.25; P = 0.264	
Age at first birth <25 years ≥25 years	167/417 289/501	1.15 (0.94-1.42) 1.23 (1.02-1.49)	+=-
Mother or sister with breast		χ^2_1 het = 0.24; P = 0.621	
no yes	318/834 54/84	1.23 (1.03-1.47) 0.91 (0.60-1.39) χ ² ₁ het = 1.82; P = 0.177	
Body mass index <25 kg/m² ≥25 kg/m²	383/834 191/486	1.25 (1.08-1.46) 1.08 (0.89-1.31) χ ² ₁ het = 1.66; P = 0.198	1
Smoking never or past smoker current smoker	468/1068 107/229	1.26 (1.10-1.44) 0.94 (0.75-1.18) χ^2_1 het = 4.48; P = 0.034	
Usual alcohol consumption <10 g/d ≥10 g/d	399/866 108/239	1.24 (1.08-1.44) 1.00 (0.78-1.27)	
Ever used hormonal contra no yes	ceptives 179/447 403/889	χ_1^2 het = 2.73; P = 0.098 1.01 (0.82-1.24) 1.32 (1.14-1.53)	-#-
Extraction assay yes no	278/537 322/838	χ^2_1 het = 4.71; P = 0.030 1.23 (1.01-1.50) 1.17 (1.00-1.36) χ^2_1 het = 0.15; P = 0.698	
		0.2	5 0.5 1 2 4

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in calculated free estradiol, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
All studies	587/1341	1.17 (1.03-1.33)	
Years from blood collectio	n to diagnosis		
<4	319/709	1.22 (1.04-1.43)	
≥4	268/632	1.08 (0.88-1.34) χ ² ₁ het = 0.75; P = 0.385	
Stage of disease	107/000		
in situ invasive	107/220 369/878	0.98 (0.72-1.34) 1.22 (1.04-1.43)	
	303/070	χ^2_1 het = 1.55; P = 0.213	
Estrogen receptors	447/074		
positive negative	147/374 71/209	1.22 (0.91-1.63) 1.03 (0.68-1.54)	
	1 11 200	χ^2_1 het = 0.45; P = 0.504	Γ
Progesterone receptors	154/417		
positive negative	154/417 64/164	1.24 (0.93-1.64) 0.93 (0.60-1.43)	
-	0 10 10 1	χ^2_1 het = 1.22; P = 0.269	
HER2 receptors	39/99	1 17 (0 69 0 02)	
positive negative	131/384	1.17 (0.68-2.03) 1.16 (0.86-1.57)	
0		χ^2_1 het = 0.00; P = 0.986	
Phase of cycle at blood co follicular	llection 329/658	1.21 (1.01-1.46)	
mid-cycle	44/103	1.15 (0.78-1.70)	
luteal	214/580	1.14 (0.93-1.38)	- -
Ago of monoroho		χ^2_2 het = 0.24; P = 0.888	
Age at menarche <14 years	421/976	1.18 (1.02-1.36)	
≥14 years	141/312	1.16 (0.92-1.46)	- ↓ ₩
Parity		χ^2_1 het = 0.02; P = 0.894	
nulliparous	108/199	0.98 (0.74-1.29)	_
parous	456/1080	1.19 (1.04-1.37)	- -
Age at first birth		χ_1^2 het = 1.76; P = 0.184	
<25 years	160/404	1.12 (0.91-1.38)	_
≥25 years	284/488	1.25 (1.04-1.52)	
Mother or sister with breas	at cancer	χ_1^2 het = 0.73; P = 0.393	
no	309/809	1.15 (0.95-1.39)	+ ± -
yes	53/81	0.89 (0.55-1.43)	
Body mass index		χ_1^2 het = 1.07; P = 0.301	
<25 kg/m ²	374/818	1.23 (1.05-1.43)	
≥25 kg⁄m²	188/471	1.09 (0.89-1.33)	
Smoking		χ^2_1 het = 1.00; P = 0.318	
never or past smoker	462/1051	1.24 (1.07-1.42)	- ₩ -
current smoker	106/229	0.96 (0.77-1.21)	
Usual alcohol consumption	n	χ^2_1 het = 3.39; P = 0.066	
<10 g/d	397/861	1.22 (1.04-1.42)	_ _
≥10 ğ/d	107/238	1.09 (0.86-1.37)	
Ever used hormonal contra	aceptives	χ^2_1 het = 0.76; P = 0.385	
no	176/437	1.03 (0.84-1.27)	- # -
yes	393/865	1.27 (1.09-1.48)	-₩
Extraction assay		χ^2_1 het = 2.80; P = 0.094	
yes	276/533	1.24 (0.98-1.55)	
no	311/808	1.14 (0.98-1.33)	H M -
		χ^2_1 het = 0.31; P = 0.577 r 0.2	

plotodrsTK(C11): 17/10/2012

			protodro 11
Odds ratios in pre-men aged under 50 years at estrone, split by age at (concentrations adjust	blood collection as diagnosis and other	sociated with a dou factors	0 and matched controls Ibling in
Factor and subset	Cases/Controls	OR (95% Cl)	Odds ratio & 95% (

Factor and subset	Cases/Contro	Is OR (95% CI)	Odds ratio & 95% Cl
All studies	477/933	1.27 (1.05-1.54)	- ₩-
Years from blood collectior			
<4 ≥4	272/532	1.37 (1.08-1.74) 1.10 (0.79-1.52)	
≥4	205/401	χ_1^2 het = 1.11; P = 0.291	
Stage of disease	100/106		
in situ invasive	100/196 289/566	1.34 (0.85-2.11) 1.29 (0.99-1.67)	
		χ^2_1 het = 0.02; P = 0.890	
Estrogen receptors positive	107/205	1.26 (0.77-2.06)	
negative	37/72	0.90 (0.45-1.82)	_
Progesterone receptors		χ^2_1 het = 0.58; P = 0.446	
positive	101/193	1.74 (0.99-3.03)	
negative	44/86	0.54 (0.27-1.08)	
HER2 receptors		χ^2_1 het = 6.67; P = 0.010	
positive	27/51	1.05 (0.44-2.50)	_
negative	72/138	1.40 (0.75-2.59)	
hase of cycle at blood col	lection	χ^2_1 het = 0.28; P = 0.598	
follicular	320/616	1.28 (1.01-1.62)	⊢ ₽
mid-cycle luteal	38/81	1.03 (0.65-1.62)	
luteal	119/236	1.34 (0.95-1.89) χ ² ₂ het = 1.00; P = 0.606	
Age at menarche	040/070		
<14 years ≥14 years	342/673 110/208	1.26 (1.02-1.55) 1.33 (0.98-1.79)	
	110/200	χ^2_1 het = 0.12; P = 0.725	
Parity nulliparous	90/151	1.09 (0.79-1.51)	
parous	364/720	1.25 (1.01-1.53)	
-		χ^2_1 het = 0.64; P = 0.423	
Age at first birth <25 years	115/249	1.33 (0.99-1.79)	
≥25 years	234/336	1.14 (0.88-1.47)	_ ∔ ∎⊑
Nother or sister with breas	cancer	χ^2_1 het = 0.93; P = 0.335	
no	211/434	1.18 (0.85-1.64)	
yes	39/48	1.10 (0.47-2.56)	
Body mass index		χ^2_1 het = 0.02; P = 0.876	
<25 kg/m ²	305/541	1.36 (1.09-1.69)	∎
≥25 kg⁄m²	147/341	1.20 (0.92-1.57)	┼╇╌
Smoking		χ^2_1 het = 0.79; P = 0.373	
never or past smoker	387/796	1.30 (1.07-1.58)	-∰
current smoker	89/130	1.12 (0.79-1.60)	
Jsual alcohol consumptior	1	χ^2_1 het = 0.70; P = 0.404	
<10 g/d	357/689	1.25 (1.01-1.55)	⊢ ₩
≥10 g/d	85/150	1.34 (0.97-1.84) χ ² ₁ het = 0.16; P = 0.690	
Ever used hormonal contra			
no	137/258	1.12 (0.85-1.49)	
yes	336/665	1.35 (1.09-1.66) χ ² ₁ het = 1.54; P = 0.215	
Extraction assay			
yes	271/524 206/409	1.18 (0.88-1.58) 1.34 (1.04-1.73)	
no	200/409	χ_{1}^{2} het = 0.40; P = 0.526	
		~,···· ····,· ·····	

plotodrsTK(D10lp): 01/11/2012

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in luteal phase progesterone, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Contro	ls OR (95% CI)	Odds ratio & 95% Cl
All studies	460/1034	1.00 (0.92-1.09)	
Years from blood collection <4 ≥4	to diagnosis 231/500 229/534	0.99 (0.89-1.11) 1.02 (0.90-1.16)	\$
Stage of disease in situ invasive	99/207 284/668	χ^2_1 het = 0.11; P = 0.737 1.23 (0.99-1.53) 1.00 (0.90-1.11)	↓
Estrogen receptors positive negative	152/369 67/184	χ^2_1 het = 2.80; P = 0.094 1.05 (0.88-1.24) 1.13 (0.88-1.47)	- -
Progesterone receptors positive negative	158/402 61/150	χ^2_1 het = 0.25; P = 0.620 1.03 (0.87-1.22) 1.20 (0.89-1.62) χ^2_1 het = 0.78; P = 0.378	_ ≜
HER2 receptors positive negative	36/90 136/364	1.26 (0.81-1.96) 1.02 (0.87-1.20) χ_1^2 het = 0.81; P = 0.367	+
Age at menarche <14 years ≥14 years	334/776 109/221	1.01 (0.92-1.11) 1.02 (0.88-1.19) χ^2_1 het = 0.01; P = 0.904	†
Parity nulliparous parous	86/161 357/835	1.25 (1.01-1.55) 0.99 (0.90-1.09) χ_1^2 het = 4.48; P = 0.034	₽
Age at first birth <25 years ≥25 years	115/278 233/410	0.94 (0.82-1.07) 0.99 (0.88-1.11)	\$
Mother or sister with breast no	cancer 297/750	χ ² ₁ het = 0.42; P = 0.515 1.14 (1.00-1.30)	.
yes Body mass index	50/77	1.09 (0.79-1.49) χ ² ₁ het = 0.07; P = 0.786	
<2́5 kg/m² ≥25 kg/m²	302/644 142/354	1.00 (0.90-1.10) 1.04 (0.91-1.19) χ ² , het = 0.32; P = 0.572	4
Smoking never or past smoker current smoker	365/840 79/152	1.01 (0.92-1.11) 1.01 (0.84-1.21)	
Usual alcohol consumption <10 g/d ≥10 g/d	332/702 73/161	χ ² ₁ het = 0.00; P = 0.996 1.03 (0.93-1.13) 0.97 (0.83-1.13)	4
Ever used hormonal contrac no yes	ceptives 131/314 326/711	χ^2_1 het = 0.45; P = 0.502 1.03 (0.91-1.17) 0.99 (0.89-1.09)	*
		χ^2_1 het = 0.34; P = 0.562	0.5 1 2 4

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in androstenedione, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Control	s OR (95% CI)	Odds ratio & 95% Cl
All studies	569/1177	1.30 (1.10-1.55)	
Years from blood collection			
<4	366/769	1.29 (1.04-1.59)	
≥4	203/408	1.34 (0.99-1.81)	
		χ^2_1 het = 0.05; P = 0.824	
Stage of disease			
in situ	94/183	1.31 (0.84-2.04)	
invasive	391/825	1.36 (1.10-1.67)	
Estrogen receptors		χ^2_1 het = 0.02; P = 0.886	
positive	124/237	1.45 (0.98-2.15)	<u>↓ ↓ ∎ </u>
negative	54/106	1.11 (0.58-2.14)	_
_		χ^2_1 het = 0.46; P = 0.499	
Progesterone receptors	440/000		
positive	116/222	1.48 (0.96-2.26)	
negative	60/117	1.10 (0.61-1.98)	
HER2 receptors		χ^2_1 het = 0.63; P = 0.428	
positive	16/31	0.57 (0.13-2.44)	
negative	39/76	1.00 (0.43-2.29)	
5		χ^2_1 het = 0.42; P = 0.516	
Phase of cycle at blood coll			
follicular	136/263	1.41 (1.01-1.98)	
mid-cycle luteal	65/127 368/787	1.42 (0.88-2.29)	
luteal	300/101	1.24 (1.00-1.54) χ ² ₂ het = 0.54; P = 0.762	
Age at menarche		χ_2 net = 0.54, F = 0.762	
<14 years	424/861	1.36 (1.12-1.66)	│₩
≥14 ýears	122/265	1.21 (0.88-1.67)	-
- -		χ^2_1 het = 0.42; P = 0.518	
Parity	100/040	1 40 (1 00 1 00)	
nulliparous	132/240 402/839	1.40 (1.03-1.90)	
parous	402/039	1.25 (1.02-1.52) χ ² ₁ het = 0.44; P = 0.509	
Age at first birth		χ_1 net = 0.44, 1 = 0.009	
<25 years	147/310	1.28 (0.95-1.72)	- -
≥25 years	242/380	1.24 (0.94-1.65)	+- e
		χ^2_1 het = 0.02; P = 0.883	
Mother or sister with breast	271/636	1 12 (0 99 1 45)	
no ves	68/83	1.13 (0.88-1.45) 1.07 (0.64-1.78)	
yes	00/03	χ^2_1 het = 0.04; P = 0.846	
Body mass index			
<25 kg/m²	371/731	1.29 (1.04-1.59)	₩
≥25 kg/m²	176/402	1.29 (0.99-1.68)	
Smoking		χ^2_1 het = 0.00; P = 0.991	
Smoking never or past smoker	438/921	1.32 (1.08-1.61)	
current smoker	110/193	1.24 (0.90-1.72)	
Surrent Shiuker	110/195	χ^2_1 het = 0.11; P = 0.736	7
Usual alcohol consumption			
<10 g/d	407/789	1.29 (1.06-1.57)	-₩
≥10 g⁄d	116/258	1.27 (0.88-1.83)	
Ever used hormonal contro	contivos	χ^2_1 het = 0.01; P = 0.932	
Ever used hormonal contra no	169/375	1.17 (0.90-1.54)	
yes	378/735	1.36 (1.10-1.67)	
,00	0.0/100	w2 hot 0.97: D 0.051	
		0.25	0.5 1 2 4

plotodrsTK(D07): 01/11/2012

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in DHEAS, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Contro	Is OR (95% CI)	Odds ratio & 95% Cl
All studies	687/1411	1.17 (1.04-1.32)	
Years from blood collectio <4 ≥4	n to diagnosis 375/783 312/628	1.29 (1.10-1.52) 1.03 (0.86-1.23)	- B -
Stage of disease in situ invasive	139/272 449/938	χ^2_1 het = 3.42; P = 0.064 1.19 (0.91-1.56) 1.14 (0.98-1.32) χ^2_1 het = 0.09; P = 0.770	
Estrogen receptors positive negative	170/327 67/130	χ_1 het = 0.09, P = 0.770 1.24 (0.97-1.57) 0.91 (0.62-1.34) χ_1^2 het = 1.74; P = 0.187	_
Progesterone receptors positive negative	158/303 77/150	1.30 (1.00-1.68) 0.88 (0.62-1.25)	_
HER2 receptors positive negative	28/55 85/167	χ^2_1 het = 3.06; P = 0.080 1.35 (0.73-2.47) 0.89 (0.63-1.24) χ^2_1 het = 1.39; P = 0.238	
Phase of cycle at blood co follicular mid-cycle luteal	llection 137/266 68/131 482/1014	1.20 (0.91-1.58) 1.38 (0.98-1.94) 1.12 (0.97-1.30)	
Age at menarche <14 years ≥14 years	514/1052 151/309	χ^2_2 het = 1.27; P = 0.531 1.20 (1.04-1.37) 1.13 (0.88-1.46) χ^2 het = 0.15; P = 0.600	
Parity nulliparous parous	166/280 485/1029	χ_1^2 het = 0.15; P = 0.699 1.13 (0.90-1.42) 1.19 (1.03-1.37) χ^2 het = 0.12; P = 0.717	
Age at first birth <25 years ≥25 years	164/354 304/468	χ^2_1 het = 0.13; P = 0.717 1.34 (1.04-1.71) 1.14 (0.94-1.39) χ^2_1 het = 1.04; P = 0.309	
Mother or sister with breas no yes	st cancer 369/852 90/106	1.09 (0.94-1.28) 1.21 (0.86-1.69)	
Body mass index <25 kg/m² ≥25 kg/m²	462/875 202/487	χ_1^2 het = 0.30; P = 0.587 1.15 (0.99-1.33) 1.23 (1.01-1.51)	4
Smoking never or past smoker current smoker	543/1136 122/209	χ^2_1 het = 0.31; P = 0.575 1.19 (1.04-1.36) 1.18 (0.87-1.60)	
Usual alcohol consumption <10 g/d ≥10 g/d	n 501/974 129/268	χ^2_1 het = 0.00; P = 0.970 1.12 (0.97-1.29) 1.51 (1.14-1.98)	₩
Ever used hormonal contra no yes	aceptives 198/411 467/933	χ^2_1 het = 3.81; P = 0.051 1.08 (0.88-1.33) 1.19 (1.03-1.38) χ^2_1 het = 0.57; P = 0.449	
		0.25	5 0.5 1 2 4

plotodrsTK(D08): 17/10/2012

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in testosterone, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Controls	OR (95% CI)	Odds ratio & 95% Cl
All studies	750/1662	1.18 (1.03-1.35)	
Years from blood collection	n to diagnosis		
<4	389/839	1.23 (1.01-1.49)	
≥4	361/823	1.13 (0.93-1.37)	
Stage of disease		χ^2_1 het = 0.36; P = 0.547	
in situ	143/290	1.44 (1.01-2.04)	
invasive	483/1097	1.11 (0.94-1.30) χ ² ₁ het = 1.73; P = 0.189	1
Estrogen receptors			
positive	211/495	1.13 (0.88-1.43)	
negative	99/265	1.03 (0.76-1.39) χ ² ₁ het = 0.20; P = 0.657	
Progesterone receptors			
positive	211/522	1.23 (0.95-1.59)	_+=
negative	97/233	0.90 (0.68-1.20) χ ² ₁ het = 2.57; P = 0.109	
HER2 receptors			
positive	40/102	0.89 (0.59-1.36)	₽÷
negative	147/418	0.94 (0.71-1.26) χ ² ₁ het = 0.05; P = 0.831	
Phase of cycle at blood col	llection	$\chi_1 \text{ fiel} = 0.05, P = 0.031$	
follicular	149/307	1.37 (1.04-1.80)	
mid-cycle	70/145	1.53 (1.00-2.35)	
luteal	531/1210	1.08 (0.92-1.27) χ ² ₂ het = 3.81; P = 0.149	
Age at menarche		-	
<14 years	569/1267	1.22 (1.05-1.41)	
≥14 years	176/379	1.07 (0.83-1.38) χ ² ₁ het = 0.84; P = 0.360	
Parity			
nulliparous	176/316	1.18 (0.94-1.49)	+
parous	539/1259	1.16 (0.99-1.36) χ ² ₁ het = 0.02; P = 0.901	
Age at first birth			
<25 years	196/456	1.22 (0.96-1.54)	┼╋╌
≥25 years	340/580	1.19 (0.97-1.48) χ ² ₁ het = 0.02; P = 0.902	
Mother or sister with breas	st cancer		L
no	440/1112	1.05 (0.89-1.24)	
yes	99/133	1.29 (0.91-1.83)	
Body mass index		χ^2_1 het = 1.12; P = 0.289	
<25 kg/m ²	512/1055	1.18 (1.01-1.38)	┝╋╋╌
≥25 kg/m²	232/589	1.21 (0.97-1.50)	₽₽
Smoking		χ^2_1 het = 0.05; P = 0.828	
never or past smoker	575/1263	1.17 (1.00-1.36)	⊦∰⊒-
current smoker	126/262	1.26 (0.94-1.70)	┼┋┻──
Usual alcohol consumption	n	χ^2_1 het = 0.26; P = 0.608	
<10 g/d	518/1072	1.19 (1.01-1.40)	⊢∰ -
≥10 g/d	137/291	1.31 (1.00-1.70)	┝┼╋╌╴
Ever used hormonal contra	aceptives	χ^2_1 het = 0.45; P = 0.504	
no	205/494	1.26 (1.01-1.58)	
yes	509/1081	1.13 (0.96-1.32)	┼╋╇╴
Extraction assay		χ^2_1 het = 0.82; P = 0.364	
yes	286/561	1.15 (0.87-1.51)	-+ <u>+</u>
no	464/1101	1.19 (1.01-1.39)	-∰
		χ^2_1 het = 0.05; P = 0.828	

Odds ratios in pre-menopausal cases diagnosed before age 50 and matched controls aged under 50 years at blood collection associated with a doubling in calculated free testosterone, split by age at diagnosis and other factors (concentrations adjusted for phase of cycle within study)

Factor and subset	Cases/Control	ls OR (95% CI)	Odds ratio & 95% Cl
All studies	737/1626	1.08 (0.97-1.21)	
Years from blood collection <4 ≥4	to diagnosis 383/823 354/803	1.17 (1.00-1.37) 1.00 (0.85-1.17)	
Stage of disease in situ invasive	142/288 481/1091	χ^2_1 het = 1.99; P = 0.158 1.10 (0.84-1.45) 1.09 (0.95-1.25) χ^2_1 het = 0.01; P = 0.934	
Estrogen receptors positive negative	211/495 99/264	1.08 (0.88-1.33) 1.01 (0.78-1.30) χ_1^2 het = 0.19; P = 0.660	
Progesterone receptors positive negative	211/522 97/232	1.16 (0.94-1.43) 0.91 (0.71-1.17) χ_1^2 het = 2.09; P = 0.148	
HER2 receptors positive negative	40/102 147/418	0.88 (0.59-1.31) 0.92 (0.72-1.16) χ_{1}^{2} het = 0.03; P = 0.873	
Phase of cycle at blood coll follicular mid-cycle luteal	lection 145/296 69/141 523/1189	1.20 (0.96-1.50) 1.19 (0.86-1.65) 1.03 (0.90-1.18) χ^2_{2} het = 1.67; P = 0.433	
Age at menarche <14 years ≥14 years	562/1245 170/366	χ_2 net = 1.67, P = 0.433 1.12 (0.99-1.26) 1.01 (0.83-1.23) χ^2_1 het = 0.83; P = 0.362	
Parity nulliparous parous	175/308 527/1231	1.04 (0.86-1.26) 1.09 (0.96-1.24) χ ² ₁ het = 0.17; P = 0.679	
Age at first birth <25 years ≥25 years	189/443 335/567	1.11 (0.92-1.33) 1.16 (0.97-1.38)	
Mother or sister with breast no yes	t cancer 431/1083 97/130	χ^2_1 het = 0.15; P = 0.695 0.98 (0.85-1.13) 1.23 (0.91-1.67)	₩
Body mass index <25 kg/m² ≥25 kg/m²	502/1036 229/573	χ^2_1 het = 1.86; P = 0.173 1.10 (0.97-1.26) 1.16 (0.97-1.39) χ^2_1 het = 0.29; P = 0.592	
Smoking never or past smoker current smoker	567/1245 126/262	$\chi_{1} \text{ here } = 0.25, Y = 0.352$ $1.08 (0.95-1.22)$ $1.16 (0.92-1.46)$ $\chi_{1}^{2} \text{ here } = 0.34; P = 0.561$	
Usual alcohol consumption <10 g/d ≥10 g/d	516/1065 135/289	1.06 (0.93-1.21) 1.28 (1.03-1.59) χ^2_1 het = 2.48; P = 0.115	
Ever used hormonal contra no yes	ceptives 203/484 498/1055	1.13 (0.95-1.35) 1.02 (0.90-1.16)	
Extraction assay yes no	285/559 452/1067	χ^2_1 het = 1.10; P = 0.294 1.01 (0.81-1.28) 1.11 (0.97-1.26) χ^2_1 het = 0.43; P = 0.511	
		0.2	5 0.5 1 2 4

Odds ratios in pre-men aged under 50 years at SHBG, split by age at d	blood collection as	sociated with a dou	
(concentrations adjuster Factor and subset	ed for phase of cycle Cases/Controls		Odds ratio & 95% C
All studies	767/1600	1.07 (0.94-1.23)	

Factor and subset	Cases/Control	s OR (95% CI)	Odds ratio & 95% Cl
All studies	767/1699	1.07 (0.94-1.23)	
ears from blood collectio	n to diagnosis		I
<4	395/856	0.98 (0.82-1.17)	- # -
≥4	372/843	1.21 (0.99-1.48)	
age of disease		χ^2_1 het = 2.48; P = 0.115	
in situ	147/301	1.24 (0.91-1.69)	
invasive	503/1139	0.97 (0.83-1.15) χ ² ₁ het = 1.89; P = 0.170	
strogen receptors			
positive	214/503 102/271	1.04 (0.80-1.35)	
negative	102/271	1.08 (0.77-1.52) χ ² ₁ het = 0.03; P = 0.863	
rogesterone receptors	045/500		L
positive negative	215/532 98/234	1.02 (0.79-1.31) 1.05 (0.73-1.51)	
-	50/204	χ^2_1 het = 0.02; P = 0.885	Π
ER2 receptors	40/103		
positive negative	148/420	1.10 (0.56-2.19) 1.11 (0.83-1.50)	
0		χ^2_1 het = 0.00; P = 0.979	
nase of cycle at blood co follicular	151/311	1.19 (0.88-1.60)	
mid-cycle	73/152	1.13 (0.76-1.67)	
luteal	543/1236	1.04 (0.89-1.21)	
ge at menarche		χ^2_2 het = 0.69; P = 0.707	
<14 years	570/1270	1.07 (0.92-1.25)	-#-
≥14 years	172/374	1.11 (0.87-1.41)	
rity		χ^2_1 het = 0.05; P = 0.822	
nuÍliparous	178/316	1.20 (0.92-1.55)	<u>_<u>+</u>±<u></u>■</u>
barous	553/1281	1.03 (0.89-1.20) χ ² ₁ het = 1.02; P = 0.313	-
e at first birth		$\chi_1 = 1.02, T = 0.313$	
<25 years	195/457	1.07 (0.85-1.35)	
25 years	342/579	0.98 (0.79-1.22) χ ² ₁ het = 0.34; P = 0.559	
ther or sister with breas			
no ves	439/1106 99/134	1.15 (0.97-1.38) 1.00 (0.68-1.47)	
63	55/154	χ^2_1 het = 0.45; P = 0.505	T
dy mass index	E00/4060		
<25 kg/m² ≥25 kg/m²	509/1060 231/581	1.05 (0.88-1.25) 1.02 (0.82-1.28)	
•	2011001	χ^2_1 het = 0.04; P = 0.842	П
noking never or past smoker	592/1305	1.08 (0.93-1.24)	
current smoker	134/274	0.96 (0.70-1.32)	
		χ^2_1 het = 0.46; P = 0.499	
ual alcohol consumptio <10 g/d	n 525/1087	1.14 (0.97-1.33)	line-
≥10 g/d	136/295	0.81 (0.59-1.12)	─ ─ ₽┤ [┲]
er used hormonal contra	acentives	χ^2_1 het = 3.81; P = 0.051	
10	222/523	1.03 (0.82-1.29)	#
yes	509/1081	1.15 (0.98-1.35)	¦ ∰ -
		χ^2_1 het = 0.68; P = 0.410 Γ	
		0.2	5 0.5 1 2

Hormone and category	n	Mean* (95% CI)	P-het (trend)	Relativ	Relative mean⁺ & 95% Cl			
Estradiol (pmol/L) under 40 40-44 45-49	637 1046 840	239.1 (226.0-252.8) 238.6 (228.6-249.1) 220.4 (210.0-231.4)	0.033 (0.025)		•			
Calculated free estradiol under 40 40-44 45-49	(pmol/L) 630 1041 824	3.10 (2.94-3.28) 3.02 (2.89-3.15) 2.74 (2.61-2.87)	0.9 0.002 (0.001)	5 0.7	1.0 •	1.5	2.0	
Estrone (pmol/L) under 40 40-44 45-49	351 640 506	216 (205-227) 213 (205-221) 200 (192-209)	0.9 0.051 (0.023)	5 0.7	1.0	1.5	2.0	
Luteal phase progesteror under 40 40-44 45-49	ie (nmol/L) 502 890 625	31.06 (28.30-34.10) 29.39 (27.43-31.50) 22.88 (21.05-24.87)	0.9 <0.001 (<0.001)	5 0.7	1.0 •-	1.5	2.0	
Androstenedione (nmol/L under 40 40-44 45-49	.) 402 710 718	4.79 (4.57-5.02) 4.26 (4.11-4.41) 3.98 (3.84-4.12)	0.! <0.001 [@] (<0.001)	5 0.7	1.0 •	1.5	2.0	
DHEAS (nmol/L) under 40 40-44 45-49	575 1045 935	3315 (3164-3474) 2925 (2826-3026) 2544 (2453-2639)	0.! <0.001 [@] (<0.001)	5 0.7	1.0	1.5	2.0	
Testosterone (nmol/L) under 40 40-44 45-49	775 1341 1154	1.07 (1.03-1.11) 0.97 (0.94-1.00) 0.90 (0.87-0.93)	0.9 <0.001 [@] (<0.001)	5 0.7	1.0	1.5	2.0	
Calculated free testostero under 40 40-44 45-49	one (pmol/L 768 1335 1145	.) 13.9 (13.3-14.5) 12.2 (11.8-12.6) 11.0 (10.6-11.4)	0.9 <0.001 [@] (<0.001)	5 0.7	1.0	1.5	2.0	
SHBG (nmol/L) under 40 40-44 45-49	803 1356 1163	52.9 (51.3-54.6) 54.9 (53.6-56.2) 57.3 (55.8-58.8)	0.9 0.001 [@] (<0.001)	5 0.7	1.0	1.5	2.0	
* means are geometric means			0.9	5 0.7	1.0	1.5	2.0	

Mean concentration of selected hormones among premenopausal controls by categories of age at blood collection, adjusted for study, BMI and phase of cycle

* means are geometric means
 * means are scaled to the overall mean concentration (dotted line)
 [®] indicates significant interaction with study (P<0.05)

Mean concentration of selected hormones among premenopausal controls by categories of age at menarche, adjusted for study, age, BMI and phase of cycle

Hormone and category	n	Mean* (95% CI) F	P-het (trend)	(trend) Relative mean⁺ & 95%			
Estradiol (pmol/L) under 12 12-13 14 and over	522 1303 649	230.6 (216.9-245.2) 232.1 (223.3-241.2) 235.0 (222.3-248.3)	0.899 (0.655)		•		
Calculated free estradiol	(pmol/L)		0	0.5 0.7	1.0	1.5	2.0
under 12 12-13 14 and over	516 1290 641	2.93 (2.75-3.11) 2.96 (2.84-3.07) 2.93 (2.77-3.09)	0.949 (0.996)		*		
			0	.5 0.7	1.0	1.5	2.0
Estrone (pmol/L) under 12 12-13 14 and over	313 796 342	209 (198-220) 210 (203-218) 206 (196-217)	0.799 (0.714)				
	<i>,</i>		0	.5 0.7	1.0	1.5	2.0
Luteal phase progestero under 12 12-13 14 and over	ne (nmol/L) 433 1080 474	28.75 (26.03-31.75) 27.02 (25.39-28.76) 27.79 (25.26-30.57)	0.573 [@] (0.649)		• •		
			0	.5 0.7	1.0	1.5	2.0
Androstenedione (nmol/l under 12 12-13 14 and over	L) 397 944 434	4.20 (4.01-4.40) 4.29 (4.16-4.42) 4.24 (4.05-4.43)	0.771 (0.823)				
		,	0	.5 0.7		1.5	2.0
DHEAS (nmol/L) under 12 12-13 14 and over	553 1373 583	2823 (2693-2959) 2898 (2813-2985) 2803 (2677-2935)	0.408 (0.822)				
		. ,	0	0.5 0.7	1.0	1.5	2.0
Testosterone (nmol/L) under 12 12-13 14 and over	709 1751 798	0.96 (0.92-1.00) 0.97 (0.95-0.99) 0.96 (0.93-1.00)	0.909 (0.978)				
		, , , , , , , , , , , , , , , , , , ,	0	.5 0.7	i 1.0	1.5	2.0
Calculated free testoster under 12 12-13 14 and over	one (pmol/ 703 1743 791	L) 12.1 (11.6-12.7) 12.2 (11.9-12.6) 11.8 (11.3-12.4)	0.432 (0.476)		•		
		, , , , , , , , , , , , , , , , , , ,	0	.5 0.7	1.0	1.5	2.0
SHBG (nmol/L) under 12 12-13 14 and over	708 1762 797	55.0 (53.2-56.9) 54.7 (53.5-55.8) 56.7 (54.9-58.5)	0.172 (0.198)				
* means are geometric means * means are scaled to the ove		centration (dotted line)	0	.5 0.7	1.0	1.5	2.0

* means are geometric means
 * means are scaled to the overall mean concentration (dotted line)
 @ indicates significant interaction with study (P<0.05)

Hormone and category	n	Mean* (95% CI)	P-het (trend	d)	Relative	mean⁺ &	95% CI	
Estradiol (pmol/L) none one two three or more	359 391 1068 648	244.1 (226.6-262.8 229.7 (214.1-246.5 229.2 (219.7-239.2 233.4 (220.9-246.7	5) (0.429)	_		•		
Calculated free estradiol none one two three or more	(pmol/L) 356 388 1056 638	3.14 (2.92-3.38) 2.93 (2.73-3.14) 2.90 (2.78-3.02) 2.92 (2.76-3.08)	0.320 (0.154)	0.5	0.7	1.0 	1.5	2.0
Estrone (pmol/L) none one two three or more	259 206 594 382	209 (197-221) 205 (192-219) 206 (198-214) 216 (206-226)	0.504 (0.375)	0.5	0.7	1.0 •	1.5	2.0
Luteal phase progestero none one two three or more	ne (nmol/L) 306 330 860 493	26.66 (23.68-30.01 29.70 (26.51-33.22 26.34 (24.56-28.26 29.01 (26.42-31.85) 0.192 3 (0.653)	0.5	0.7	1.0 	1.5	2.0
Androstenedione (nmol/ none one two three or more	L) 408 285 667 372	4.18 (3.99-4.39) 4.38 (4.14-4.63) 4.28 (4.13-4.44) 4.20 (4.00-4.41)	0.582 (0.995)	0.5	0.7	1.0	1.5	2.0
DHEAS (nmol/L) none one two three or more	539 377 945 597	2887 (2749-3031) 2851 (2693-3019) 2827 (2726-2931) 2889 (2760-3025)	0.866 (0.934)	0.5	0.7		1.5	2.0
Testosterone (nmol/L) none one two three or more	613 511 1276 784	1.00 (0.96-1.05) 0.98 (0.94-1.03) 0.95 (0.92-0.98) 0.96 (0.92-0.99)	0.198 (0.073)	0.5	0.7	1.0 •	1.5	2.0
Calculated free testoster none one two three or more	one (pmol/ 608 511 1268 775	L) 12.8 (12.2-13.5) 12.4 (11.7-13.1) 11.9 (11.5-12.3) 11.8 (11.3-12.4)	0.054 (0.010)	0.5	0.7	1.0	1.5	2.0
SHBG (nmol/L) none one two three or more	619 516 1299 791	53.9 (52.0-55.9) 54.6 (52.5-56.7) 55.4 (54.0-56.8) 56.5 (54.7-58.3)	0.284 (0.053)	0.5	0.7	1.0	1.5	2.0
* means are geometric means		, , , , , , , , , , , , , , , , , , ,		0.5	0.7	1.0	1.5	2.0

Mean concentration of selected hormones among premenopausal controls by categories of number of full-term pregnancies, adjusted for study, age, BMI and phase of cycle Hormone and category n Mean* (95% CI) P-het (trend) Relative mean* & 95% CI

⁺ means are scaled to the overall mean concentration (dotted line)

Hormone and category	n	Mean* (95% Cl)	P-het	t Relative mean⁺ & 95% (95% CI	
Estradiol (pmol/L) no yes	1770 164	231.5 (223.9-239.3) 244.0 (218.8-272.1)	0.365	_				
Calculated free estradiol ((pmol/L) 1745	2.93 (2.83-3.02)	0.310	0.5	0.7	1.0 •	1.5	2.0
yes	162	3.10 (2.79-3.45)						
Estrone (pmol/L) no yes	820 92	209 (204-215) 207 (191-225)	0.833	0.5	0.7	1.0	1.5	2.0
,				0.5	0.7		1.5	2.0
Luteal phase progesteron no yes	ie (nmol/L) 1575 152) 27.79 (26.52-29.13) 25.40 (21.81-29.58)	0.269	0.0	-	•••	1.0	2.0
				0.5	0.7	1.0	1.5	2.0
Androstenedione (nmol/L no yes) 1060 169	4.27 (4.16-4.38) 4.17 (3.90-4.47)	0.545					
				0.5	0.7	1.0	1.5	2.0
DHEAS (nmol/L) no yes	1723 241	2849 (2774-2926) 2928 (2724-3147)	0.487	_				
Testesterene (nm el/l.)				0.5	0.7	1.0	1.5	2.0
Testosterone (nmol/L) no yes	2420 296	0.97 (0.95-0.99) 0.95 (0.90-1.01)	0.668	_				
Coloulated free testesters	no (nmol/			0.5	0.7	1.0	1.5	2.0
Calculated free testostero no yes	2400 294	12.1 (11.8-12.4) 12.3 (11.5-13.2)	0.677	_				
CUDC (nm al/L)				0.5	0.7	1.0	1.5	2.0
SHBG (nmol/L) no yes	2420 297	55.5 (54.6-56.5) 52.9 (50.3-55.6)	0.077	_		•		
* means are geometric means				0.5	0.7	1.0	1.5	2.0

Mean concentration of selected hormones among premenopausal controls by categories of mother or sister with breast cancer, adjusted for study, age, BMI and phase of cycle

⁺ means are scaled to the overall mean concentration (dotted line)

Hormone and category	n	Mean* (95% CI)	P-het		Relative	e mean⁺ &	95% CI	
Estradiol (pmol/L) never previous current (<15 cigs per day current (15+ cigs per day	1555 437 /) 192 /) 217	236.3 (228.1-244.8) 227.9 (213.1-243.6) 207.0 (187.0-229.1) 239.2 (217.2-263.4)	0.089		-	•		
Calculated free estradiol (p never previous current (<15 cigs per day current (15+ cigs per day	1538´ 429 /) 190	2.99 (2.89-3.10) 2.85 (2.66-3.04) 2.65 (2.40-2.93) 3.04 (2.76-3.34)	0.092	0.5	0.7	1.0 •	1.5	2.0
Estrone (pmol/L) never previous current (<15 cigs per da) current (15+ cigs per da)	974 333 /) 95 /) 84	211 (205-217) 206 (196-217) 203 (185-224) 206 (186-229)	0.808	0.5	0.7		1.5	2.0
Luteal phase progesterone never previous current (<15 cigs per day current (15+ cigs per day	1293 362 /) 143	27.74 (26.18-29.38) 27.60 (24.74-30.79) 26.16 (21.96-31.15) 27.50 (23.21-32.59)	0.943 [@]	0.5	0.7		1.5	2.0
Androstenedione (nmol/L) never previous current (<15 cigs per day current (15+ cigs per day	1012 449 /) 152 /) 145	4.19 (4.07-4.32) 4.03 (3.86-4.21) 4.68 (4.34-5.05) 5.07 (4.69-5.48)	<0.001	0.5	0.7	1.0 • • •	1.5	2.0
DHEAS (nmol/L) never previous current (<15 cigs per da) current (15+ cigs per da)		2837 (2758-2919) 2777 (2654-2906) 3044 (2801-3308) 3173 (2911-3458)	0.023	0.5	0.7	1.0	1.5	2.0
Testosterone (nmol/L) never previous current (<15 cigs per day current (15+ cigs per day	1931 651 /) 231 /) 276	0.97 (0.94-0.99) 0.92 (0.88-0.95) 0.97 (0.90-1.04) 1.09 (1.02-1.16)	<0.001	0.5	0.7	1.0	1.5	2.0
Calculated free testosteror never previous current (<15 cigs per day current (15+ cigs per day	1918 645	.) 12.1 (11.8-12.5) 11.5 (10.9-12.0) 12.0 (11.1-13.0) 13.7 (12.8-14.7)	0.001	0.5	0.7	1.0 ••••••••••••••••••••••••••••••••••••	1.5	2.0
SHBG (nmol/L) never previous current (<15 cigs per da) current (15+ cigs per da)	1965 660 /) 233 /) 284	55.0 (53.9-56.1) 55.5 (53.6-57.5) 56.0 (52.8-59.4) 55.3 (52.5-58.4)	0.930	0.5	0.7	1.0	1.5	2.0
* means are geometric means		centration (dotted line)		0.5	0.7	1.0	1.5	2.0

Mean concentration of selected hormones among premenopausal controls by categories of cigarette smoking, adjusted for study, age, BMI and phase of cycle

* means are geometric means
 * means are scaled to the overall mean concentration (dotted line)
 @ indicates significant interaction with study (P<0.05)

Hormone and category	n	Mean* (95% CI) F	P-het (tren	d)	Relative mean⁺ & 95% C		95% CI	
Estradiol (pmol/L) none <10 g/d 10-19 g/d 20+ g/d	782 747 240 212	226.3 (215.5-237.5) 235.6 (224.0-247.8) 220.8 (202.1-241.2) 260.3 (236.5-286.5)	0.040 (0.062)			•		
Calculated free estradiol none <10 g/d 10-19 g/d 20+ g/d	(pmol/L) 775 738 239 212	2.88 (2.75-3.02) 2.96 (2.82-3.12) 2.77 (2.55-3.02) 3.31 (3.02-3.64)	0.029 (0.078)	0.5	0.7	1.0	1.5	2.0
Estrone (pmol/L) none <10 g/d 10-19 g/d 20+ g/d	529 624 147 98	207 (199-216) 210 (202-218) 192 (177-208) 243 (220-268)	0.003 (0.183)	0.5	0.7	1.0	1.5	2.0
Luteal phase progestero none <10 g/d 10-19 g/d 20+ g/d	ne (nmol/L) 679 660 204 163) 26.31 (24.30-28.49) 29.01 (26.72-31.50) 26.43 (22.83-30.59) 28.78 (24.33-34.04)	0.334 (0.340)	0.5	0.7		1.5	2.0
Androstenedione (nmol/l none <10 g/d 10-19 g/d 20+ g/d	-) 659 617 217 207	4.16 (4.01-4.32) 4.18 (4.03-4.34) 4.36 (4.09-4.64) 4.69 (4.39-5.01)	0.013 (0.003)	0.5	0.7	1.0	1.5	2.0
DHEAS (nmol/L) none <10 g/d 10-19 g/d 20+ g/d	930 919 265 224	2819 (2718-2923) 2798 (2696-2903) 2889 (2699-3094) 3270 (3031-3528)	0.003 (0.005)	0.5	0.7	1.0	1.5	2.0
Testosterone (nmol/L) none <10 g/d 10-19 g/d 20+ g/d	1107 999 315 282	0.93 (0.90-0.96) 0.95 (0.92-0.99) 0.97 (0.91-1.03) 1.14 (1.07-1.22)	<0.001 (<0.001)	0.5	0.7	1.0	1.5	2.0
Calculated free testoster none <10 g/d 10-19 g/d 20+ g/d	one (pmol/ 1103 993 315 281	· · ·	<0.001 (<0.001)	0.5	0.7	1.0	1.5 ⊢	2.0
SHBG (nmol/L) none <10 g/d 10-19 g/d 20+ g/d	1110 1005 317 287	54.3 (52.9-55.8) 56.0 (54.5-57.7) 56.2 (53.4-59.1) 54.8 (51.9-57.8)	0.399 (0.395)	0.5	0.7	1.0	1.5	2.0
* means are geometric means * means are scaled to the over	all mean cor			0.5	0.7	1.0	1.5	2.0

Mean concentration of selected hormones among premenopausal controls by categories of usual alcohol consumption, adjusted for study, age, BMI and phase of cycle

* means are scaled to the overall mean concentration (dotted line)

Hormone and category	n	Mean* (95% Cl)	P-het	et Relative mean⁺ & 95'			95% CI	
Estradiol (pmol/L) no yes	878 1515	242.8 (231.2-254.9) 226.8 (218.7-235.2)	0.035			•		
				0.5	0.7	1.0	1.5	2.0
Calculated free estradiol no yes	(pmol/L) 873 1492	3.03 (2.88-3.18) 2.89 (2.79-3.00)	0.158			•		
				0.5	0.7	1.0	1.5	2.0
Estrone (pmol/L) no yes	400 1091	221 (211-232) 205 (199-211)	0.008			•		
				0.5	0.7	1.0	1.5	2.0
Luteal phase progesteror no yes	ie (nmol/L 695 1321	.) 26.23 (24.14-28.51) 28.31 (26.70-30.01)	0.160					
				0.5	0.7	1.0	1.5	2.0
Androstenedione (nmol/L no yes	.) 649 1121	4.38 (4.22-4.55) 4.18 (4.07-4.30)	0.065			•		
				0.5	0.7	1.0	1.5	2.0
DHEAS (nmol/L) no yes	768 1727	2931 (2812-3056) 2827 (2752-2905)	0.167			•		
				0.5	0.7	1.0	1.5	2.0
Testosterone (nmol/L) no yes	1068 2025	0.97 (0.94-1.01) 0.96 (0.94-0.99)	0.597 [@]			÷		
				0.5	0.7	1.0	1.5	2.0
Calculated free testostero no yes	one (pmol. 1062 2009	/L) 12.0 (11.5-12.5) 12.2 (11.9-12.5)	0.492			÷.		
				0.5	0.7	1.0	1.5	2.0
SHBG (nmol/L) no yes	1107 2034	56.7 (55.2-58.3) 54.4 (53.3-55.5)	0.021			•		
* means are geometric means * means are scaled to the over	all mean co	ncentration (dotted line)		0.5	0.7	1.0	1.5	2.0

Mean concentration of selected hormones among premenopausal controls by categories of ever used hormonal contraceptives, adjusted for study, age, BMI and phase of cycle Mean* (95% Cl) B-bet п. Deletiv .

* nears are scaled to the overall mean concentration (dotted line) [®] indicates significant interaction with study (P<0.05)