About the stability of the tangent bundle of \mathbb{P}^{n} restricted to a surface

Chiara Camere *

Abstract

Let X be a smooth projective surface over \mathbb{C} and let L be a line bundle on X generated by its global sections. Let $\phi_{L}: X \longrightarrow \mathbb{P}^{r}$ be the morphism associated to L; we investigate the μ-stability of $\phi_{L}^{*} T_{\mathbb{P} r}$ with respect to L when X is either a regular surface with $p_{g}=0$, a K3 surface or an abelian surface. In particular, we show that $\phi_{L}^{*} T_{\mathbb{P} r}$ is μ-stable when X is K 3 and L is ample and when X is abelian and $L^{2} \geq 14$.

1 Introduction

Given a line bundle L generated by its global sections on a smooth projective variety X, one can consider the kernel of the evaluation map

$$
\begin{equation*}
0 \longrightarrow M_{L} \longrightarrow H^{0}(X, L) \otimes \mathcal{O}_{X} \longrightarrow L \longrightarrow 0 \tag{1}
\end{equation*}
$$

and its dual $E_{L}=M_{L}^{*}$.
The stability of this bundle is equivalent to that of $\phi_{L}^{*} T_{\mathbb{P}^{r}}$, where ϕ_{L} : $X \longrightarrow \mathbb{P}^{r}$ is the morphism associated to L . It has been studied in the case of a curve by Paranjape in [9] with Ramanan and in his Ph.D. thesis [8]; in particular, the latter contains the statements on which rely all our results contained in a former paper [3] and in this one. Later Ein and Lazarsfeld showed in [4] that M_{L} is stable if $\operatorname{deg} L>2 g$ and Beauville investigated the case of degree $2 g$ in [2].

The aim of this paper is to study this problem in the case of projective surfaces. Here we consider the μ-stability of a sheaf with respect to a chosen linear series H, which generalises the definition given in the case of curves: a vector bundle E is said to be μ-stable with respect to H if for each proper quotient sheaf F we have $\mu(F)>\mu(E)$, where $\mu(F)=\frac{c_{1}(F) \cdot H^{n-1}}{\mathrm{rk} F}$ is the slope of F (see [5).

[^0]After studying these vector bundles in Section 2, we gather some results which hold on curves in Section 3 and then in Section 4 we obtain some results about regular surfaces, including the following

Theorem 1. Let X be a smooth projective $K 3$ surface over \mathbb{C} and let L be an ample line bundle generated by its global sections on X; then the vector bundle E_{L} is μ-stable with respect to L.

Finally, in Section 5 we study the case of abelian surfaces, showing the following

Theorem 2. Let X be a smooth projective abelian surface over \mathbb{C} and let L be a line bundle on X generated by its global sections such that $L^{2} \geq 14$. Then the vector bundle E_{L} is μ-stable with respect to L.

2 Simplicity and rigidity of E_{L}

Let us briefly recall the geometric interpretation of E_{L} : since L is generated by its global sections, the morphism $\phi_{L}: X \longrightarrow \mathbb{P}\left(H^{0}(L)\right) \simeq \mathbb{P}^{r}$ is welldefined and we have $L=\phi_{L}^{*} \mathcal{O}_{\mathbb{P}^{r}}(1)$; thus, from the dual sequence of (1) and from the well-known Euler exact sequence it follows that $E_{L}=\phi_{L}^{*} T_{\mathbb{P}^{r}} \otimes L^{*}$ and the stability of E_{L} is equivalent to the stability of $\phi_{L}^{*} T_{\mathbb{P}^{r}}$.

In the next sections we will deal with the problem of whether or not these bundles are μ-stable, but let us first of all underline that they satisfy in almost any case a less strong property, the simplicity.

Proposition 1. Let X be a smooth projective variety and L be a big line bundle generated by its global sections on X; if $\operatorname{dim} X \geq 2$ then E_{L} is simple.

Proof. If we tensor with E_{L} the short exact sequence (11) in cohomology we get

$$
\begin{gather*}
0 \longrightarrow H^{0}\left(M_{L} \otimes E_{L}\right) \longrightarrow H^{0}(L) \otimes H^{0}\left(E_{L}\right) \xrightarrow{\alpha} H^{0}\left(L \otimes E_{L}\right) \longrightarrow \\
\longrightarrow H^{1}\left(M_{L} \otimes E_{L}\right) \longrightarrow H^{0}(L) \otimes H^{1}\left(E_{L}\right) \longrightarrow \tag{2}
\end{gather*}
$$

Since $H^{0}\left(L^{*}\right) \cong H^{1}\left(L^{*}\right) \cong 0$ by Ramanujam-Kodaira vanishing theorem (see [7]), we also have $H^{0}(L)^{*} \cong H^{0}\left(E_{L}\right)$. Now, by tensoring the dual sequence of (1) with L we obtain in cohomology

$$
\begin{equation*}
0 \longrightarrow H^{0}\left(\mathcal{O}_{X}\right) \longrightarrow H^{0}(L) \otimes H^{0}(L)^{*} \xrightarrow{\alpha} H^{0}\left(L \otimes E_{L}\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}\right) \longrightarrow \cdots \tag{3}
\end{equation*}
$$

where the morphism α is the same morphism as in (2). Hence $H^{0}\left(M_{L} \otimes\right.$ $\left.E_{L}\right) \cong H^{0}\left(\mathcal{O}_{X}\right) \cong \mathbb{C}$, i.e. E_{L} is simple.

In the case of regular surfaces, under mild assumptions, which hold for example if X is a K3 surface, they are also rigid, hence providing an example of an exceptional vector bundle on such a surface.

Proposition 2. Let X be a smooth projective regular surface and L as above; if the multiplication map $H^{0}\left(K_{X}\right) \otimes H^{0}(L) \rightarrow H^{0}\left(K_{X} \otimes L\right)$ is surjective, then E_{L} is rigid.

Proof. The morphism α in sequence (3) is surjective because X is regular. Let us show that $H^{1}\left(E_{L}\right) \cong 0$: indeed, by tensoring (11) with K_{X} in cohomology we get

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(M_{L} \otimes K_{X}\right) \longrightarrow H^{0}(L) \otimes H^{0}\left(K_{X}\right) \xrightarrow{\varphi} H^{0}\left(L \otimes K_{X}\right) \longrightarrow \\
& \longrightarrow H^{1}\left(M_{L} \otimes K_{X}\right) \longrightarrow H^{0}(L) \otimes H^{1}\left(K_{X}\right)=0
\end{aligned}
$$

Since we assumed φ surjective, we have $H^{1}\left(E_{L}\right) \cong H^{1}\left(M_{L} \otimes K_{X}\right) \cong 0$ by the duality theorem. Then from the exact sequence (2) it follows that $\operatorname{Ext}^{1}\left(E_{L}, E_{L}\right) \cong H^{1}\left(M_{L} \otimes E_{L}\right) \cong 0$, i.e. E_{L} is rigid.

3 Some results on vector bundles on curves

Let us briefly recall some facts about vector bundles on curves. In a former paper [3] we showed the following

Theorem 3. Let C be a smooth projective curve of genus $g \geq 2$ over an algebraically closed field k and let L be a line bundle on C generated by its global sections such that $\operatorname{deg} L \geq 2 g-c(C)$. Then:

1. E_{L} is semi-stable;
2. E_{L} is stable except when $\operatorname{deg} L=2 g$ and either C is hyperelliptic or $L \cong K(p+q)$ with $p, q \in C$.

In the case $L=K_{C}$ more was already known: in (9) Paranjape and Ramanan showed the following

Theorem 4. Let C be a smooth projective curve of genus $g \geq 2$ over \mathbb{C}; $E_{K_{C}}$ is always semistable and it is also stable if C is not hyperelliptic.

The proof of Theorem 3 was essentially based on the following lemma, shown by Paranjape in [8].
Lemma 1. Let F be a vector bundle on C generated by its global sections and such that $H^{0}\left(C, F^{*}\right)=0$; then $\operatorname{deg} F \geq \operatorname{rk} F+g-h^{1}(C, \operatorname{det} F)$. Moreover, if $h^{1}(C, \operatorname{det} F) \geq 2$ then $\operatorname{deg} F \geq 2 \mathrm{rk} F+c(\operatorname{det} F) \geq 2 \mathrm{rk} F+c(C)$.

4 About regular surfaces

Before restricting to the case of regular surfaces, let us see a few statements which hold for every surface.

Lemma 2. Let F be a vector bundle of rank 2 generated by its global sections on a smooth projective surface X and assume moreover that $h^{0}(\operatorname{det} F)=2$. Then there is a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{s} F \longrightarrow \operatorname{det} F \longrightarrow 0 \tag{4}
\end{equation*}
$$

Proof. We cannot have $F=\mathcal{O}_{X}^{2}$ because $h^{0}(\operatorname{det} F)=2$; then, since F is of rank 2 generated by its global sections, we can suppose $h^{0}(F) \geq 3$. Then there is a section $s \in H^{0}(X, F)$ which is zero only in a finite number of points and we have the following short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{s} F \longrightarrow \mathcal{I}_{Z} \operatorname{det} F \longrightarrow 0 \tag{5}
\end{equation*}
$$

where Z is the zero locus of s. In cohomology we obtain

$$
0 \longrightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{0}(X, F) \longrightarrow H^{0}\left(X, \mathcal{I}_{Z} \operatorname{det} F\right) \longrightarrow \cdots
$$

Since $h^{0}(F) \geq 3$, we get $h^{0}\left(\mathcal{I}_{Z} \operatorname{det} F\right) \geq 2$, but $h^{0}\left(\mathcal{I}_{Z} \operatorname{det} F\right) \leq h^{0}(\operatorname{det} F)=$ 2. Since $\operatorname{det} F$ is generated by its global sections, from $h^{0}\left(\mathcal{I}_{Z} \operatorname{det} F\right)=$ $h^{0}(\operatorname{det} F)=2$ it follows that $\mathcal{I}_{Z} \operatorname{det} F=\operatorname{det} F$ and $Z=\varnothing$. Therefore the sequence (5) becomes (4).

Proposition 3. Let X be a smooth projective surface over \mathbb{C} and let L be a line bundle on X generated by its global sections. Let C be a smooth irreducible curve on X such that $H^{1}\left(L \otimes \mathcal{O}_{X}(-C)\right)=0$. Then $\left(E_{L}\right)_{\mid C}=$ $E_{\left(L_{\mid C}\right)} \oplus \mathcal{O}_{C}^{r}$, with $r=h^{0}\left(L \otimes \mathcal{O}_{X}(-C)\right)$.

Proof. Tensoring the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-C) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{C} \longrightarrow 0
$$

with L, we get

$$
0 \longrightarrow L \otimes \mathcal{O}_{X}(-C) \longrightarrow L \longrightarrow L_{\mid C} \longrightarrow 0
$$

and hence in cohomology we have

$$
0 \longrightarrow H^{0}\left(X, L \otimes \mathcal{O}_{X}(-C)\right) \longrightarrow H^{0}(X, L) \longrightarrow H^{0}\left(X, L_{\mid C}\right) \longrightarrow 0
$$

So we have the following diagram

By the snake lemma, the third column is exact. Moreover, the sequence splits and $\left(E_{L}\right)_{\mid C}=E_{\left(L_{\mid C}\right)} \oplus \mathcal{O}_{C}^{r}$.

Corollary 1. Let X be a smooth projective regular surface over \mathbb{C} such that $p_{g}=0$ and let C be a smooth irreducible curve on X of genus $g \geq 2$ such that $L=\mathcal{O}_{X}\left(K_{X}+C\right)$ is generated by its global sections; then E_{L} is μ-semistable with respect to C and it is also stable if $c(C)>0$.

Proof. By Proposition $3\left(E_{L}\right)_{\mid C} \cong E_{\left(L_{\mid C}\right)}$, since $r=p_{g}=0$; on the other hand, $L_{\mid C}=K_{C}$, so the statement follows from Theorem [4.

When $r \neq 0$, the restriction to the curve is no longer semistable, but in the case of K 3 surfaces this is enough to gain the μ-stability.

Proof of Theorem 1. Let $C \in|L|$ be a smooth irreducible curve of genus $g \geq 2$. By Proposition 3 we have $\left(E_{L}\right)_{\mid C}=E_{K_{C}} \oplus \mathcal{O}_{C}$, since $L_{\mid C} \cong K_{C}$; moreover $\mu\left(E_{L}\right)=\frac{2 g-2}{g}<2$. Let us suppose that $g \geq 3$: if $g=2$ then C is hyperelliptic and we will deal with the case $c(C)=0$ later. Let F be a quotient sheaf of E_{L} of rank $0<\operatorname{rk} F<g$; then $F_{\mid C}$ is a quotient of $\left(E_{L}\right)_{\mid C}$. There is a diagram of the form

where G is a vector bundle generated by its global sections, W is either \mathcal{O}_{C} or 0 and τ is a torsion sheaf on C, hence $\operatorname{deg} W=0$ and $\operatorname{deg} \tau \geq 0$. So we get $\mu(F)=\frac{\operatorname{deg} G+\operatorname{deg} \tau}{\operatorname{rk} F}$.

- If $\operatorname{rk} G=0$, then $\operatorname{rk}(F)=1$ and we always have $\mu(F) \geq 2$. Indeed, otherwise it would be $F=\mathcal{O}_{X}(D)$ with $D>0$ an effective base-point free divisor such that $D . C=0$ or 1 ; we cannot have $D . C=0$, since D is nef, hence $D^{2} \geq 0$, but by the Hodge index theorem we would have $D^{2}<0$, which is a contradiction. If $D . C=1$, by the Hodge index theorem we get $D^{2}=0$, hence $D=k E$ with $k \geq 1$ and E an elliptic curve; in fact, we have $k=1$ because $D . C=1$, so $h^{0}(D)=2$ and $|D|$ is a pencil; then, since $C . D=1, C$ would be a section and $C^{2}<0$, impossible.
- If $\operatorname{rk} G>0$, then G is generated by its global sections such that $H^{0}\left(C, G^{*}\right)=0$; the hypothesis of Lemma 1 then hold and, since $\mu(F) \geq \frac{\operatorname{deg} G}{\operatorname{rk} F}$, we have:

1. if $h^{1}(\operatorname{det} G)<2$, since $g \geq 3$, then

$$
\mu(F) \geq 1+\frac{g-2}{\operatorname{rk} G+1}>1+\frac{g-2}{g}=\mu\left(E_{L}\right)
$$

2. If $h^{1}(\operatorname{det} G) \geq 2$, then

$$
\mu(F) \geq 2+\frac{c(\operatorname{det} G)+\operatorname{deg} \tau-2}{\operatorname{rk} G+1} \geq 2>\mu\left(E_{L}\right)
$$

if $c(\operatorname{det} G) \geq 2$, in particular if $c(C) \geq 2$, but also if $c(\operatorname{det} G)=1$ and $\operatorname{deg} \tau>0$.

This shows that $\mu(F)>\mu\left(E_{L}\right)$ in the case $c(C) \geq 2$.
We now deal with the case $c(C)=1$. We can repeat the above proof by applying Lemma 1 and it does not work only if $h^{1}(\operatorname{det} G) \geq 2, \operatorname{deg} \tau=0$ and $c(\operatorname{det} G)=1$. If $g=3$ then $\mu\left(E_{L}\right)=\frac{4}{3}$ and we always have $\mu(F)>\frac{4}{3}$.

From now on we assume $g \geq 4$; then either the curve is trigonal or a smooth plane quintic of genus $g=6$ (see [6]).

1. If there is a \mathfrak{g}_{3}^{1} on C, the only line bundles which compute the Clifford index are $\mathcal{O}_{C}\left(\mathfrak{g}_{3}^{1}\right)$ and $\mathcal{O}_{C}\left(K_{C}-\mathfrak{g}_{3}^{1}\right)$.
(a) If $\operatorname{det} G=\mathcal{O}_{C}\left(\mathfrak{g}_{3}^{1}\right)$, since $h^{1}(\operatorname{det} G) \geq 2$, by Lemma 1 we have $\operatorname{deg} G \geq 2 \operatorname{rk} G+1$, hence in this case $\operatorname{rk} G=1$. Then $\operatorname{rk} F=$ 2 and $\operatorname{det} F_{\mid C}=\mathcal{O}_{C}\left(\mathfrak{g}_{3}^{1}\right)$; it follows that $\operatorname{det} F=\mathcal{O}_{X}(D)$ with $D . C=3$. By the Hodge index theorem then, since $g \geq 4$, we have $D^{2} \leq \frac{9}{2 g-2}<2$, so $D^{2}=0$ and $D=k E$ with $k \geq 1$ and E
an elliptic curve; since $D . C=3$ and $C . E \geq 2$, this implies $k=1$ and $h^{0}\left(\mathcal{O}_{X}(D)\right)=2$; by Lemma 2, it follows from $h^{1}\left(\operatorname{det} F^{*}\right)=$ $0=\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \operatorname{det} F\right)$ that $F=\mathcal{O}_{X} \oplus \operatorname{det} F$, hence $h^{0}\left(F^{*}\right)>0$, which is impossible.
(b) If $\operatorname{det} G=\mathcal{O}_{C}\left(K_{C}-\mathfrak{g}_{3}^{1}\right)$ we have $\operatorname{deg} G=2 g-5$ and rk $G \leq g-3$ by Lemma 1, hence

$$
\mu(F) \geq \frac{2 g-5}{\operatorname{rk} G+1} \geq \frac{2 g-5}{g-2}=2-\frac{1}{g-2}>\mu\left(E_{L}\right)
$$

if $g>4$. If $g=4$ we have $\operatorname{deg} G=3$ and we fall in the former case.
2. If there is a \mathfrak{g}_{5}^{2} on C, the genus is $g=6$ and the only line bundle which computes the Clifford index is $\mathcal{O}_{C}\left(\mathfrak{g}_{5}^{2}\right) \cong \mathcal{O}_{C}\left(K_{C}-\mathfrak{g}_{5}^{2}\right)$.
If $\operatorname{det} G=\mathcal{O}_{C}\left(\mathfrak{g}_{5}^{2}\right)$, since $h^{1}(\operatorname{det} G) \geq 2$, by Lemma $1 \operatorname{deg} G \geq 2 \mathrm{rk} G+1$, hence $\operatorname{rk} G \leq 2$ and $\mathrm{rk} F \leq 3$. Therefore we get

$$
\mu(F)=\frac{5}{\operatorname{rk} G+1} \geq \frac{5}{3}=\mu\left(E_{L}\right)
$$

Let us investigate whether equality can hold or not; suppose that rk $F=3$. Since F is of rank >2 generated by its global sections, there is a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X} \longrightarrow F \longrightarrow V \longrightarrow 0 \tag{7}
\end{equation*}
$$

with V of rank 2 generated by its global sections such that $\operatorname{det} V=$ $\operatorname{det} F=\mathcal{O}_{X}(D)$ with $D . C=5$. By the Hodge index theorem then $D^{2} \leq 2$; however the case $D^{2}=2$ cannot occur, since otherwise $(C-$ $2 D)^{2}=-2$ and by Riemann-Roch theorem at least one between $C-2 D$ and $2 D-C$ would be effective, contradicting $(C-2 D) \cdot C=0$ and the ampleness of C. If $D^{2}=0$, then $D=k E$ with $k \geq 1$ and E an elliptic curve; since $D . C=5$ and $C . E \geq 2$, this implies $k=1$ and $h^{0}\left(\mathcal{O}_{X}(D)\right)=2$, so by Lemma 2 there is a short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{s} V \longrightarrow \operatorname{det} V \longrightarrow 0
$$

and in cohomology we obtain $h^{1}\left(V^{*}\right)=h^{1}(V)=0$. As a consequence we have $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, V\right)=0$ and $F=\mathcal{O}_{X} \oplus V$, impossible since it would imply $h^{0}\left(F^{*}\right)>0$.

Then $\mu(F)>\mu\left(E_{L}\right)$ also if $c(C)=1$.

Suppose now that C is a hyperelliptic curve; in this case (see [1], pag.129), the morphism $\phi_{L}: X \longrightarrow \mathbb{P}^{g}$ induces a double covering $\pi: X \longrightarrow F$ where
$F \subset \mathbb{P}^{g}$ is a rational surface of degree $g-1$ which is either smooth or a cone over a rational normal curve. If $g=2$ then $F=\mathbb{P}^{2}$ (see [1], pag.129) and it is well-known that its tangent bundle is μ-stable (see [5] Section 1.4) with respect to $\mathcal{O}_{\mathbb{P}^{2}}(1)$. If $g \geq 3$, let $i: F \hookrightarrow \mathbb{P}^{g}$ be the embedding and $H=i^{*} \mathcal{O}_{\mathbb{P}^{g}}(1)$ the ample hyperplane section of F such that $\pi^{*} H=L$; we have $H^{2}=g-1$.

On the surface F we have the short exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{*} \longrightarrow H^{0}(F, H)^{*} \otimes \mathcal{O}_{F} \longrightarrow E_{H} \longrightarrow 0 \tag{8}
\end{equation*}
$$

We know that the curve H is rational, so $p_{a}(H)=0$; we consider a smooth curve $\Gamma \in|2 H|$. By the adjunction formula we have $0=p_{a}(H)=1+\frac{1}{2}\left(H^{2}+\right.$ $H . K_{F}$), so we get $H . K_{F}=-H^{2}-2=-g-1$; using the adjunction formula once more we then obtain

$$
p_{a}(\Gamma)=1+\frac{1}{2}\left(\Gamma^{2}+\Gamma \cdot K_{F}\right)=1+2 H^{2}+H \cdot K_{F}=g-2
$$

Since $g \geq 3$ we have $p_{a}(\Gamma) \geq 1$. Since H is ample, we deduce $H^{0}\left(F, \mathcal{O}_{F}(-H)\right)=$ $H^{1}\left(F, \mathcal{O}_{F}(-H)\right)=0$ (see [7]). Then from the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{F}(H-\Gamma) \longrightarrow \mathcal{O}_{F}(H) \longrightarrow \mathcal{O}_{\Gamma}(H) \longrightarrow 0
$$

and from the associated cohomology sequence it follows that $H^{0}\left(F, \mathcal{O}_{F}(H)\right) \cong$ $H^{0}\left(F, \mathcal{O}_{\Gamma}(H)\right)$, hence $\left(E_{H}\right)_{\mid \Gamma}=E_{\mathcal{O}_{\Gamma}(H)}$.

Moreover, $\operatorname{deg} \mathcal{O}_{\Gamma}(H)=H . \Gamma=2 g-2>2 p_{a}(\Gamma)=2 g-4$. Since $\mathcal{O}_{\Gamma}(H)$ is a line bundle on a smooth projective curve Γ of genus ≥ 1 of degree $>2 p_{a}(\Gamma),\left(E_{H}\right)_{\mid \Gamma}$ is stable (see [4]).

Since E_{H} is μ-stable with respect to $2 H$, it is also μ-stable with respect to H and this yields the μ-stability of E_{L} with respect to L, because π is a double covering (see [5], Lemma 3.2.2).

Remark. Throughout the proof the ampleness of L is used only when C is a smooth plane quintic of genus $g=6$ to show that we cannot have equality between slopes. Indeed, if we only assume that L is generated by its global sections and $L^{2} \geq 2$ then E_{L} is still μ-semistable with respect to L and also μ-stable unless C is a smooth plane quintic of genus $g=6$.

5 About abelian surfaces

In this section we study the same problem when X is an abelian surface over \mathbb{C} and we give the proof of Theorem 2,

Proposition 4. Let X be an abelian surface over \mathbb{C}; then there is no irreducible hyperelliptic curve of genus $g \geq 6$ and no irreducible trigonal curve of genus $g \geq 8$ on X.

Proof. Take $d=2$ or 3 and suppose that there is a d-gonal irreducible curve C of genus $g \geq 2 d+2$ on X. Then there is an exact sequence of sheaves on X

$$
0 \longrightarrow F^{*} \longrightarrow H^{0}\left(g_{d}^{1}\right) \otimes \mathcal{O}_{X} \longrightarrow \mathcal{O}_{C}\left(g_{d}^{1}\right) \longrightarrow 0
$$

where F is a vector bundle of rank 2 such that $c_{1}(F)=C$ and $c_{2}(F)=d$. Dualising the above exact sequence we get

$$
0 \longrightarrow \mathcal{O}_{X}^{2} \longrightarrow F \longrightarrow \mathcal{O}_{C}\left(K_{C}-g_{d}^{1}\right) \longrightarrow 0
$$

It follows from the assumption on the genus that $c_{1}(F)^{2}-4 c_{2}(F)=2 g-$ $2-4 d>0$, so F is Bogomolov unstable (see [10]). Therefore, there exists a line bundle $\mathcal{O}_{X}(A)$ on X such that $\mu\left(\mathcal{O}_{X}(A)\right)>\mu(F)$, i.e. $2 A . C>C^{2}$, and we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(A) \longrightarrow F \longrightarrow \mathcal{I}_{Z} \otimes \mathcal{O}_{X}(B) \longrightarrow 0
$$

with $A+B=C, A . B+\operatorname{deg} \mathcal{I}_{Z}=d$ and $(A-B)^{2}>0$ (see [10]). Hence we can construct the following diagram

Since i is an isomorphism outside $C, h^{0}\left(\mathcal{I}_{Z} \otimes \mathcal{O}_{X}(B)\right)>0$ and B is effective. By the Hodge index theorem $A^{2} B^{2} \leq(A . B)^{2} \leq d^{2}$. Since $K_{X}=0, A^{2}$ and B^{2} are even numbers and $A^{2}>B^{2}$ because $2 A . C>C^{2}$, hence we must have $B^{2} \leq 2$.

If $B^{2}=2$, then $d=3$ and $A^{2}=4$ and we would have $6-2 A \cdot B>0$, so $A . B \leq 2$ in contradiction with $A^{2} B^{2}=8$. Therefore $B^{2}=0$, which means that $B=k E$ where E is an elliptic curve and $k \geq 1$; on the other hand we know that $0 \leq A . B \leq d$. In fact $A . B>0$, otherwise by the Hodge index theorem it would follow $B=0$ against the fact that $h^{0}\left(\mathcal{I}_{Z} \otimes \mathcal{O}_{X}(B)\right)>0$; hence $1 \leq k A . E \leq d$. Since $A . E=1$ would imply that A itself is elliptic,
the only possibility is $k=1$ and $A . B>1$. In this case we have $h^{0}(B)=1$, hence by the snake lemma we have the following diagram

where τ and τ^{\prime} are two torsion sheaves with support respectively on the zero-locus of s and σ. Hence the exactness of the third line implies that C is reducible, against our assumptions.

Proof of Theorem 2. Since L is generated by its global sections such that $L^{2} \geq 14$, the general member of $|L|$ is a smooth irreducible curve of genus $g \geq 8$. Hence, given a non-zero $\alpha \in \operatorname{Pic}^{0}(X)$, we can find $C \in\left|L \otimes \alpha^{-1}\right|$ smooth irreducible of genus $g \geq 8$. The μ-stability of E_{L} with respect to L is equivalent to the μ-stability of E_{L} with respect to C. Since we have $H^{0}(\alpha)=H^{1}(\alpha)=0$, it follows from Proposition 3 that $\left(E_{L}\right)_{\mid C} \cong E_{\left(L_{\mid C}\right)}$. Moreover, $L_{\mid C} \cong K_{C} \otimes \alpha_{\mid C}$, so by Theorem 3 E_{L} is μ-stable with respect to C if $c(C) \geq 2$. By the hypothesis on the genus of C and by Proposition 4 the cases $c(C)=0,1$ cannot occur, so there is nothing more to prove.

Remark. In the case $g(C) \leq 7$ the same proof shows the μ-stability of E_{L} if $c(C) \geq 2$. Moreover, it is possible to show that E_{L} is μ-stable with respect to L also if either C is a smooth plane quintic of genus $g=6$ or if C is a trigonal curve of genus $g=4$.

Acknowledgements

I am very grateful to my advisor Prof. Arnaud Beauville for the help he gave me throughout this year and for patiently reading all the drafts of this paper.

References

[1] A. Beauville, Surfaces algébriques complexes, Astérisque 54, 1978.
[2] A. Beauville, Some stable vector bundles with reducible theta divisors, Manuscripta Math. 110, pp.343-349, 2003.
[3] C. Camere, About the stability of the tangent bundle restricted to a curve, C. R. Math. Acad. Sci. Paris 346 (2008), no. 7-8, 421-426.
[4] L. Ein and R. Lazarsfeld, Stability and Restrictions of Picard Bundles, with an Application to the Normal Bundles of Elliptic Curves, London Math. Soc. Lecture Note Ser., 179, pp. 149-156, Cambridge Univ. Press, Cambridge, 1992.
[5] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Math. E31. Vieweg, Braunschweig, 1997.
[6] H. H. Martens, Varieties of special divisors on a curve. II, J. Reine Angew. Math. 233, pp. 89-100, 1968.
[7] D. Mumford, Pathologies III, Amer. J. Math. 89 (1967), 94-104.
[8] K. Paranjape, Ph.D. Thesis, available on http://www.imsc.res.in/~kapil/papers/chap1djvu/index.djvu.
[9] K. Paranjape, S. Ramanan, On the Canonical Ring of a Curve, Algebraic geometry and commutative algebra, Vol. II, 503-516, Kinokuniya, Tokyo, 1988.
[10] M. Raynaud, Fibrés vectoriels instables-applications aux surfaces (d'après Bogomolov), Algebraic surfaces (Orsay, 1976-78), pp. 293314, Lecture Notes in Math. 868, Springer, Berlin-New York, 1981.

[^0]: *Laboratoire J.-A. Dieudonné, UMR CNRS 6621, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02 - E-mail: camere56@unice.fr

