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About the stability of the tangent bundle of Pn

restricted to a surface

Chiara Camere ∗

Abstract

Let X be a smooth projective surface over C and let L be a line
bundle on X generated by its global sections. Let φL : X −→ Pr be
the morphism associated to L; we investigate the µ−stability of φ∗

LTPr

with respect to L when X is either a regular surface with pg = 0, a
K3 surface or an abelian surface. In particular, we show that φ∗

LTPr

is µ−stable when X is K3 and L is ample and when X is abelian and
L2 ≥ 14.

1 Introduction

Given a line bundle L generated by its global sections on a smooth projective
variety X, one can consider the kernel of the evaluation map

0 // ML
// H0(X,L) ⊗OX

// L // 0 (1)

and its dual EL = M∗
L.

The stability of this bundle is equivalent to that of φ∗
LTPr , where φL :

X −→ P
r is the morphism associated to L. It has been studied in the case

of a curve by Paranjape in [9] with Ramanan and in his Ph.D. thesis [8]; in
particular, the latter contains the statements on which rely all our results
contained in a former paper [3] and in this one. Later Ein and Lazarsfeld
showed in [4] that ML is stable if degL > 2g and Beauville investigated the
case of degree 2g in [2].

The aim of this paper is to study this problem in the case of projective
surfaces. Here we consider the µ−stability of a sheaf with respect to a chosen
linear series H, which generalises the definition given in the case of curves: a
vector bundle E is said to be µ−stable with respect to H if for each proper

quotient sheaf F we have µ(F ) > µ(E), where µ(F ) = c1(F ).Hn−1

rkF is the
slope of F (see [5]).
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After studying these vector bundles in Section 2, we gather some results
which hold on curves in Section 3 and then in Section 4 we obtain some
results about regular surfaces, including the following

Theorem 1. Let X be a smooth projective K3 surface over C and let L be
an ample line bundle generated by its global sections on X; then the vector
bundle EL is µ−stable with respect to L.

Finally, in Section 5 we study the case of abelian surfaces, showing the
following

Theorem 2. Let X be a smooth projective abelian surface over C and let
L be a line bundle on X generated by its global sections such that L2 ≥ 14.
Then the vector bundle EL is µ−stable with respect to L.

2 Simplicity and rigidity of EL

Let us briefly recall the geometric interpretation of EL: since L is generated
by its global sections, the morphism φL : X −→ P(H0(L)) ≃ P

r is well-
defined and we have L = φ∗

LOPr(1); thus, from the dual sequence of (1) and
from the well-known Euler exact sequence it follows that EL = φ∗

LTPr ⊗ L∗

and the stability of EL is equivalent to the stability of φ∗
LTPr .

In the next sections we will deal with the problem of whether or not
these bundles are µ-stable, but let us first of all underline that they satisfy
in almost any case a less strong property, the simplicity.

Proposition 1. Let X be a smooth projective variety and L be a big line
bundle generated by its global sections on X; if dimX ≥ 2 then EL is simple.

Proof. If we tensor with EL the short exact sequence (1) in cohomology
we get

0 // H0(ML ⊗ EL) // H0(L)⊗H0(EL)
α

// H0(L⊗ EL) //

// H1(ML ⊗ EL) // H0(L)⊗H1(EL) // · · ·

(2)
SinceH0(L∗) ∼= H1(L∗) ∼= 0 by Ramanujam-Kodaira vanishing theorem (see
[7]), we also have H0(L)∗ ∼= H0(EL). Now, by tensoring the dual sequence
of (1) with L we obtain in cohomology

0 // H0(OX) // H0(L)⊗H0(L)∗
α

// H0(L⊗ EL) // H1(OX) // · · ·

(3)
where the morphism α is the same morphism as in (2). Hence H0(ML ⊗
EL) ∼= H0(OX) ∼= C, i.e. EL is simple.
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In the case of regular surfaces, under mild assumptions, which hold for
example if X is a K3 surface, they are also rigid, hence providing an example
of an exceptional vector bundle on such a surface.

Proposition 2. Let X be a smooth projective regular surface and L as above;
if the multiplication map H0(KX)⊗H0(L) → H0(KX⊗L) is surjective, then
EL is rigid.

Proof. The morphism α in sequence (3) is surjective because X is
regular. Let us show that H1(EL) ∼= 0: indeed, by tensoring (1) with KX

in cohomology we get

0 // H0(ML ⊗KX) // H0(L)⊗H0(KX)
ϕ

// H0(L⊗KX) //

// H1(ML ⊗KX) // H0(L)⊗H1(KX) = 0

Since we assumed ϕ surjective, we have H1(EL) ∼= H1(ML ⊗ KX) ∼= 0
by the duality theorem. Then from the exact sequence (2) it follows that
Ext1(EL, EL) ∼= H1(ML ⊗ EL) ∼= 0, i.e. EL is rigid.

3 Some results on vector bundles on curves

Let us briefly recall some facts about vector bundles on curves. In a former
paper [3] we showed the following

Theorem 3. Let C be a smooth projective curve of genus g ≥ 2 over an
algebraically closed field k and let L be a line bundle on C generated by its
global sections such that degL ≥ 2g − c(C). Then:

1. EL is semi-stable;

2. EL is stable except when degL = 2g and either C is hyperelliptic or
L ∼= K(p+ q) with p, q ∈ C.

In the case L = KC more was already known: in [9] Paranjape and
Ramanan showed the following

Theorem 4. Let C be a smooth projective curve of genus g ≥ 2 over C;
EKC

is always semistable and it is also stable if C is not hyperelliptic.

The proof of Theorem 3 was essentially based on the following lemma,
shown by Paranjape in [8].

Lemma 1. Let F be a vector bundle on C generated by its global sections and
such that H0(C,F ∗) = 0; then degF ≥ rkF + g − h1(C,detF ). Moreover,
if h1(C,detF ) ≥ 2 then degF ≥ 2rkF + c(detF ) ≥ 2rkF + c(C).
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4 About regular surfaces

Before restricting to the case of regular surfaces, let us see a few statements
which hold for every surface.

Lemma 2. Let F be a vector bundle of rank 2 generated by its global sections
on a smooth projective surface X and assume moreover that h0(detF ) = 2.
Then there is a short exact sequence

0 // OX
s

// F // detF // 0 (4)

Proof. We cannot have F = O2
X because h0(detF ) = 2; then, since

F is of rank 2 generated by its global sections, we can suppose h0(F ) ≥ 3.
Then there is a section s ∈ H0(X,F ) which is zero only in a finite number
of points and we have the following short exact sequence

0 // OX
s

// F // IZ detF // 0 (5)

where Z is the zero locus of s. In cohomology we obtain

0 // H0(X,OX ) // H0(X,F ) // H0(X,IZ detF ) // · · ·

Since h0(F ) ≥ 3, we get h0(IZ detF ) ≥ 2, but h0(IZ detF ) ≤ h0(detF ) =
2. Since detF is generated by its global sections, from h0(IZ detF ) =
h0(detF ) = 2 it follows that IZ detF = detF and Z = ∅. Therefore the
sequence (5) becomes (4).

Proposition 3. Let X be a smooth projective surface over C and let L

be a line bundle on X generated by its global sections. Let C be a smooth
irreducible curve on X such that H1(L ⊗ OX(−C)) = 0. Then (EL)|C =
E(L|C) ⊕Or

C , with r = h0(L⊗OX(−C)).

Proof. Tensoring the exact sequence

0 // OX(−C) // OX
// OC

// 0

with L, we get

0 // L⊗OX(−C) // L // L|C // 0

and hence in cohomology we have

0 // H0(X,L⊗OX(−C)) // H0(X,L) // H0(X,L|C) // 0
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So we have the following diagram

0

��

0

��

0

��

0 // L∗
|C

//

��

H0(X,L|C)
∗ ⊗OC

//

��

E(L|C) //

��

0

0 // L∗
|C

//

��

H0(X,L)∗ ⊗OC
eL

//

��

(EL)|C //

��

0

0 // 0 //

��

Or
C

//

��

Or
C

//

��

0

0 0 0

(6)

By the snake lemma, the third column is exact. Moreover, the sequence
splits and (EL)|C = E(L|C) ⊕Or

C .

Corollary 1. Let X be a smooth projective regular surface over C such
that pg = 0 and let C be a smooth irreducible curve on X of genus g ≥ 2
such that L = OX(KX + C) is generated by its global sections; then EL is
µ−semistable with respect to C and it is also stable if c(C) > 0.

Proof. By Proposition 3 (EL)|C ∼= E(L|C), since r = pg = 0; on the
other hand, L|C = KC , so the statement follows from Theorem 4.

When r 6= 0, the restriction to the curve is no longer semistable, but in
the case of K3 surfaces this is enough to gain the µ−stability.

Proof of Theorem 1. Let C ∈ |L| be a smooth irreducible curve of
genus g ≥ 2. By Proposition 3 we have (EL)|C = EKC

⊕OC , since L|C
∼= KC ;

moreover µ(EL) =
2g−2
g

< 2. Let us suppose that g ≥ 3: if g = 2 then C

is hyperelliptic and we will deal with the case c(C) = 0 later. Let F be a
quotient sheaf of EL of rank 0 < rkF < g; then F|C is a quotient of (EL)|C .
There is a diagram of the form

0 // OC
//

��

(EL)|C //

��

EKC
//

��

0

0 // W //

��

F|C //

��

G⊕ τ //

��

0

0 0 0
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where G is a vector bundle generated by its global sections, W is either OC

or 0 and τ is a torsion sheaf on C, hence degW = 0 and deg τ ≥ 0. So we
get µ(F ) = degG+deg τ

rkF .

• If rkG = 0, then rk (F ) = 1 and we always have µ(F ) ≥ 2. Indeed,
otherwise it would be F = OX(D) with D > 0 an effective base-point
free divisor such that D.C = 0 or 1; we cannot have D.C = 0, since D
is nef, hence D2 ≥ 0, but by the Hodge index theorem we would have
D2 < 0, which is a contradiction. If D.C = 1, by the Hodge index
theorem we get D2 = 0, hence D = kE with k ≥ 1 and E an elliptic
curve; in fact, we have k = 1 because D.C = 1, so h0(D) = 2 and |D|
is a pencil; then, since C.D = 1, C would be a section and C2 < 0,
impossible.

• If rkG > 0, then G is generated by its global sections such that
H0(C,G∗) = 0; the hypothesis of Lemma 1 then hold and, since
µ(F ) ≥ degG

rkF , we have:

1. if h1(detG) < 2, since g ≥ 3, then

µ(F ) ≥ 1 +
g − 2

rkG+ 1
> 1 +

g − 2

g
= µ(EL).

2. If h1(detG) ≥ 2, then

µ(F ) ≥ 2 +
c(detG) + deg τ − 2

rkG+ 1
≥ 2 > µ(EL)

if c(detG) ≥ 2, in particular if c(C) ≥ 2, but also if c(detG) = 1
and deg τ > 0.

This shows that µ(F ) > µ(EL) in the case c(C) ≥ 2.

We now deal with the case c(C) = 1. We can repeat the above proof by
applying Lemma 1 and it does not work only if h1(detG) ≥ 2, deg τ = 0
and c(detG) = 1. If g = 3 then µ(EL) =

4
3 and we always have µ(F ) > 4

3 .
From now on we assume g ≥ 4; then either the curve is trigonal or a

smooth plane quintic of genus g = 6 (see [6]).

1. If there is a g
1
3 on C, the only line bundles which compute the Clifford

index are OC(g
1
3) and OC(KC − g

1
3).

(a) If detG = OC(g
1
3), since h1(detG) ≥ 2, by Lemma 1 we have

degG ≥ 2rkG + 1, hence in this case rkG = 1. Then rkF =
2 and detF|C = OC(g

1
3); it follows that detF = OX(D) with

D.C = 3. By the Hodge index theorem then, since g ≥ 4, we
have D2 ≤ 9

2g−2 < 2, so D2 = 0 and D = kE with k ≥ 1 and E
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an elliptic curve; since D.C = 3 and C.E ≥ 2, this implies k = 1
and h0(OX(D)) = 2; by Lemma 2, it follows from h1(detF ∗) =
0 = Ext1(OX ,detF ) that F = OX ⊕ detF , hence h0(F ∗) > 0,
which is impossible.

(b) If detG = OC(KC −g
1
3) we have degG = 2g−5 and rkG ≤ g−3

by Lemma 1, hence

µ(F ) ≥
2g − 5

rkG+ 1
≥

2g − 5

g − 2
= 2−

1

g − 2
> µ(EL)

if g > 4. If g = 4 we have degG = 3 and we fall in the former
case.

2. If there is a g
2
5 on C, the genus is g = 6 and the only line bundle which

computes the Clifford index is OC(g
2
5)

∼= OC(KC − g
2
5).

If detG = OC(g
2
5), since h

1(detG) ≥ 2, by Lemma 1 degG ≥ 2rkG+1,
hence rkG ≤ 2 and rkF ≤ 3. Therefore we get

µ(F ) =
5

rkG+ 1
≥

5

3
= µ(EL)

Let us investigate whether equality can hold or not; suppose that
rkF = 3. Since F is of rank > 2 generated by its global sections,
there is a short exact sequence

0 // OX
// F // V // 0 (7)

with V of rank 2 generated by its global sections such that detV =
detF = OX(D) with D.C = 5. By the Hodge index theorem then
D2 ≤ 2; however the case D2 = 2 cannot occur, since otherwise (C −
2D)2 = −2 and by Riemann-Roch theorem at least one between C−2D
and 2D−C would be effective, contradicting (C− 2D).C = 0 and the
ampleness of C. If D2 = 0, then D = kE with k ≥ 1 and E an
elliptic curve; since D.C = 5 and C.E ≥ 2, this implies k = 1 and
h0(OX(D)) = 2, so by Lemma 2 there is a short exact sequence

0 // OX
s

// V // detV // 0

and in cohomology we obtain h1(V ∗) = h1(V ) = 0. As a consequence
we have Ext1(OX , V ) = 0 and F = OX ⊕V , impossible since it would
imply h0(F ∗) > 0.

Then µ(F ) > µ(EL) also if c(C) = 1.

Suppose now that C is a hyperelliptic curve; in this case (see [1], pag.129),
the morphism φL : X −→ P

g induces a double covering π : X −→ F where
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F ⊂ P
g is a rational surface of degree g − 1 which is either smooth or a

cone over a rational normal curve. If g = 2 then F = P
2 (see [1], pag.129)

and it is well-known that its tangent bundle is µ−stable (see [5] Section 1.4)
with respect to OP2(1). If g ≥ 3, let i : F →֒ P

g be the embedding and
H = i∗OPg(1) the ample hyperplane section of F such that π∗H = L; we
have H2 = g − 1.

On the surface F we have the short exact sequence

0 // H∗ // H0(F,H)∗ ⊗OF
// EH

// 0 (8)

We know that the curve H is rational, so pa(H) = 0; we consider a smooth
curve Γ ∈ |2H|. By the adjunction formula we have 0 = pa(H) = 1+ 1

2 (H
2+

H.KF ), so we get H.KF = −H2− 2 = −g− 1; using the adjunction formula
once more we then obtain

pa(Γ) = 1 +
1

2
(Γ2 + Γ.KF ) = 1 + 2H2 +H.KF = g − 2

Since g ≥ 3 we have pa(Γ) ≥ 1. SinceH is ample, we deduceH0(F,OF (−H)) =
H1(F,OF (−H)) = 0 (see [7]). Then from the short exact sequence

0 // OF (H − Γ) // OF (H) // OΓ(H) // 0

and from the associated cohomology sequence it follows thatH0(F,OF (H)) ∼=
H0(F,OΓ(H)), hence (EH)|Γ = EOΓ(H).

Moreover, degOΓ(H) = H.Γ = 2g − 2 > 2pa(Γ) = 2g − 4. Since OΓ(H)
is a line bundle on a smooth projective curve Γ of genus ≥ 1 of degree
> 2pa(Γ), (EH)|Γ is stable (see [4]).

Since EH is µ−stable with respect to 2H, it is also µ−stable with respect
to H and this yields the µ−stability of EL with respect to L, because π is
a double covering (see [5], Lemma 3.2.2).

Remark. Throughout the proof the ampleness of L is used only when
C is a smooth plane quintic of genus g = 6 to show that we cannot have
equality between slopes. Indeed, if we only assume that L is generated by
its global sections and L2 ≥ 2 then EL is still µ−semistable with respect to
L and also µ−stable unless C is a smooth plane quintic of genus g = 6.

5 About abelian surfaces

In this section we study the same problem when X is an abelian surface
over C and we give the proof of Theorem 2.

Proposition 4. Let X be an abelian surface over C; then there is no irre-
ducible hyperelliptic curve of genus g ≥ 6 and no irreducible trigonal curve
of genus g ≥ 8 on X.
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Proof. Take d = 2 or 3 and suppose that there is a d−gonal irreducible
curve C of genus g ≥ 2d + 2 on X. Then there is an exact sequence of
sheaves on X

0 // F ∗ // H0(g1d)⊗OX
// OC(g

1
d)

// 0

where F is a vector bundle of rank 2 such that c1(F ) = C and c2(F ) = d.
Dualising the above exact sequence we get

0 // O2
X

// F // OC(KC − g1d)
// 0

It follows from the assumption on the genus that c1(F )2 − 4c2(F ) = 2g −
2− 4d > 0, so F is Bogomolov unstable (see [10]). Therefore, there exists a
line bundle OX(A) on X such that µ(OX(A)) > µ(F ), i.e. 2A.C > C2, and
we have an exact sequence

0 // OX(A) // F // IZ ⊗OX(B) // 0

with A+B = C, A.B + deg IZ = d and (A−B)2 > 0 (see [10]). Hence
we can construct the following diagram

0

��

O2
X

i

�� ((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

0 // OX(A) // F //

��

IZ ⊗OX(B) // 0

OC(KC − g1d)

��

0

Since i is an isomorphism outside C, h0(IZ⊗OX(B)) > 0 and B is effective.
By the Hodge index theorem A2B2 ≤ (A.B)2 ≤ d2. Since KX = 0, A2 and
B2 are even numbers and A2 > B2 because 2A.C > C2, hence we must have
B2 ≤ 2.

If B2 = 2, then d = 3 and A2 = 4 and we would have 6 − 2A.B > 0, so
A.B ≤ 2 in contradiction with A2B2 = 8. Therefore B2 = 0, which means
that B = kE where E is an elliptic curve and k ≥ 1; on the other hand we
know that 0 ≤ A.B ≤ d. In fact A.B > 0, otherwise by the Hodge index
theorem it would follow B = 0 against the fact that h0(IZ ⊗ OX(B)) > 0;
hence 1 ≤ kA.E ≤ d. Since A.E = 1 would imply that A itself is elliptic,
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the only possibility is k = 1 and A.B > 1. In this case we have h0(B) = 1,
hence by the snake lemma we have the following diagram

0

��

0

��

0

��

0 // OX

s

��

// O2
X

��

// OX

σ

��

// 0

0 // OX(A) //

��

F //

��

IZ ⊗OX(B) //

��

0

0 // τ //

��

OC(KC − g1d)

��

// τ ′ //

��

0

0 0 0

where τ and τ ′ are two torsion sheaves with support respectively on the
zero-locus of s and σ. Hence the exactness of the third line implies that C
is reducible, against our assumptions.

Proof of Theorem 2. Since L is generated by its global sections such
that L2 ≥ 14, the general member of |L| is a smooth irreducible curve of
genus g ≥ 8. Hence, given a non-zero α ∈ Pic0(X), we can find C ∈ |L⊗α−1|
smooth irreducible of genus g ≥ 8. The µ−stability of EL with respect to
L is equivalent to the µ−stability of EL with respect to C. Since we have
H0(α) = H1(α) = 0, it follows from Proposition 3 that (EL)|C ∼= E(L|C).
Moreover, L|C

∼= KC ⊗ α|C , so by Theorem 3 EL is µ−stable with respect
to C if c(C) ≥ 2. By the hypothesis on the genus of C and by Proposition
4 the cases c(C) = 0, 1 cannot occur, so there is nothing more to prove.

Remark. In the case g(C) ≤ 7 the same proof shows the µ−stability of
EL if c(C) ≥ 2. Moreover, it is possible to show that EL is µ−stable with
respect to L also if either C is a smooth plane quintic of genus g = 6 or if
C is a trigonal curve of genus g = 4.
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