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Abstract 

Protein interactions are essential elements for the biological machineries underlying biochemical 

and physiological mechanisms indispensable for microorganism life. By using mono-dimensional 

blue native polyacrylamide gel electrophoresis (1D-BN-PAGE), two-dimensional blue native/urea-

PAGE (2D-BN/urea-PAGE) and two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE), 

membrane protein complexes of Streptococcus thermophilus were resolved and visualized. Protein 

complex and oligomer constituents were then identified by nLC-ESI-LIT-MS/MS. In total, 65 

heteromeric and 30 homomeric complexes were observed, which were then associated with 110 

non-redundant bacterial proteins. Protein machineries involved in polysaccharide biosynthesis, 

molecular uptake, energy metabolism, cell division, protein secretion, folding and chaperone 

activities were highly represented in electrophoretic profiles; a number of homomeric moonlighting 

proteins were also identified. Information on hypothetical proteins was also derived. Parallel 

genome sequencing unveiled that the genes coding for the enzymes involved in exopolysaccharide 

biosynthesis derive from two separate clusters, generally showing high variability between bacterial 

strains, which contribute to a unique, synchronized and active synthetic module. The approach 

reported here paves the way for a further functional characterization of these protein complexes and 

will facilitate future studies on their assembly and composition during various growth conditions 

and in different mutant backgrounds, with important consequences for biotechnological applications 

of this bacterium in dairy productions.   

 

 

 

 

Abbreviations 

1D-BN-PAGE, mono-dimensional blue native polyacrylamide gel electrophoresis;  2D-BN/SDS-

PAGE, two-dimensional blue native/SDS-PAGE; 2D-BN/urea-PAGE, two-dimensional blue 

native/urea-PAGE; nLC-ESI-LIT-MS/MS, nano-liquid chromatography coupled with electrospray 

ionization-linear ion trap tandem mass spectrometry. 
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1.  Introduction 

Streptococcus thermophilus is of major importance for the food industry since it is widely used 

for the manufacture of dairy products; in this context, it is considered as the second most important 

industrial dairy starter after Lactococcus lactis [1,2]. Together with symbiotic Lactobacillus 

delbrueckii subsp. bulgaricus or Lb. helveticus, this Gram-positive (G+), lactic acid bacterium is 

generally used for the production at relatively high process temperatures of yogurt and so-called 

hard cooked cheeses (e.g., emmenthal, grana) [1,3]. In combination with other lactobacilli, it is also 

utilized for the manufacture of mozzarella and cheddar cheeses [1]. 

S. thermophilus is closely related to L. lactis but it is even more strictly related to streptococcal 

pathogenic species, including S. pyogenes, S. agalactiae, S. pneumoniae S. mutans S. suis and S. 

equi, which cause different lethal infection diseases or tooth decay [4,5]. Nevertheless, S. 

thermophilus is generally recognized as a safe bacterium and a multitude of live microorganism 

cells are ingested annually by humans. The complete genome sequence of various S. thermophilus 

strains (LMG18311, CNRZ1066, LMD9, JIM8232, ND03 and MNZLW002) was made publicly 

available (http://www.ncbi.nlm.nih.gov/genome/genomes/420) [6-11]. Its comparison with the 

genome of streptococcal pathogens highlighted the similitude of this lactic acid bacterium to 

pathogenic species [6-8], but also revealed that the most significant determinants for pathogenicity 

are either lacking or present as pseudogenes, except they code essential cellular functions. 

Comparative genomics also revealed that evolution has shaped the S. thermophilus genome mainly 

through loss-of-function events, even if lateral gene transfer played an important role [12], 

disclosing that this bacterium has followed an evolutionary path divergent to that of streptococcal 

pathogens as result to its adaptation to a specific and well-defined ecological niche, i.e. milk. 

To investigate global gene expression changes in S. thermophilus during exponential and 

stationary phases or following adaptation to various environmental stresses, we previously 

characterized changes of the corresponding cytosolic and/or membrane proteomic repertoires by 

gel-based and shotgun approaches [13-15]. Global characterization of multi-protein complexes is 

also an important step to provide an integrative view of multipart polypeptide machineries that are 

essential for bacterial biological functions and physiology. Recent advancements in high throughput 

technologies has allowed a direct description of protein-protein interactions; thus, two-hybrid assay 

[16–23], protein chip [24-26] or co-purification [27-29] procedures have been widely used to 

characterize bacterial protein-protein interaction networks. Recent considerations on restricted 

accuracy of deriving results and its labor-intensive nature have limited the application of the first 

two approaches to the production of large scale protein-protein interaction datasets [30,31]. Thus, 
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two functional proteomics technologies based on direct MS identification of resolved protein 

components have been preferentially used for systematic analysis of co-purified hetero-multimeric 

and/or homomeric complexes following their affinity capture by tagged-protein baits [28] or their 

direct resolution by 1D-BN-PAGE and 2D-BN/SDS-PAGE [29]. In both cases, protein complex 

purification has to be performed under native conditions to prevent molecular dissociation. Protein 

complex affinity capture by tagged-protein baits allowed the characterization of a number of 

polypeptide machineries, as in the case of Escherichia coli [32-35], Mycoplasma pneumoniae [36], 

Staphylococcus aureus [37], Rhodopseudomonas palustris and Shewanella oneidensis [38], 

generating large bacterial protein interaction networks. On the other hand, 1D-BN-PAGE  and 2D-

BN/SDS-PAGE have found a widespread application for the analysis of bacterial complexomes 

[29,39,40]. Also in this case, a non-denaturing environment must be kept throughout the first 

dimension BN-PAGE analysis. It comprises the use of: i) neutral pH-low salt concentration buffers, 

no reducing/denaturing agents, manipulation at low-temperatures and mild zwitterionic detergents 

for sample preparation; ii) anionic Coomassie Brilliant Blue G-250 dye and Bis-Tris/imidazole 

during electrophoresis to impose a net negative charge on protein surfaces, thus facilitating protein 

complex migration, hampering solute aggregation and stabilizing native gel pH value, respectively. 

Each multi-protein complex may be then denatured in a second dimension electrophoresis (SDS-

PAGE), and the protein alignment within the gel allows the MS-based identification of interactive 

proteins. Alternatively, each protein complex band from 1D-BN-PAGE can be directly analyzed for 

its constituents by nLC-ESI-MS/MS [41]. Both approaches were used for high-throughput 

characterization of: i) membrane protein complexes from Neisseria meningitides [42], Rhodobacter 

sphaeroides [43], Francisella tularensis [44], Clostridium thermocellum [45], Mycobacterium bovis 

[46] and Enterococcus faecalis [47]; ii) cytoplasmic protein complexes from Streptomyces 

coelicolor [48] and Pseudomonas sp. [49]; iii) membrane and cytoplasmic protein complexes from 

Helicobacter pylori [50,51], E. coli [52,53], Chlorobium tepidum [54,55] and 

Methanothermobacter therautotrophicus [56]. Results from tagged-protein- and BN-PAGE-based 

experiments allowed compiling various microbial protein interaction database, such as eNet, 

MPIDB, STRING, IntAct, DIP, BIOGRID and others [57-61], which now can be searched 

simultaneously by using the dedicated service PSICQUIC interface [62]. 

In this study, we report on the combined use of 1D-BN-PAGE, 2D-BN/urea-PAGE, 2D-

BN/SDS-PAGE, and nLC-ESI-LIT-MS/MS for the characterization of membrane complexes from 

S. thermophilus. A number of molecular machineries, as obtained from the extraction of  bacterial 

membranes with 0.5% n-dodecyl-E-D-maltoside (EDDM), were characterized, describing the 
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heteromultimeric or homomeric nature of the corresponding protein complexes and discussing their 

functional properties with respect to organism physiology. 

 

 

2. Materials and Methods 

2.1 Bacterial growth 

S. thermophilus strain DSM20617 was grown in M17 medium supplemented with 2% lactose, at 

37°C, without shaking [15]. Cells were monitored by measuring the absorbance at 600 nm, 

collected in their early exponential phase (pH 5.6) and then washed with sterile 20 mM Tris-HCl, 

pH 7.4, at 4°C. Bacterial cells were harvested by centrifugation at 14,000 x g, at 4°C, and then 

washed twice in PBS, pH 7.4. 

 

2.2 Protein sample preparation  

A biomass corresponding to 5 g of bacterial cells (wet weight) was suspended in extraction 

buffer (750 mM ε-amino caproic acid, 1 mM PMSF, 50 mM Tris-HCl, pH 7.0) and sonicated in ice 

with a Labsonic U sonicator, repeating duty cycles of 0.5 sec for 60 sec, for 5 times, with 15 sec 

intervals. Unbroken cells and cell debris were removed from resulting suspension by centrifugation 

at 10,000 x g, for 15 min, at 4°C. DNase I (100 μg/mL final concentration) was added to the 

supernatant; the sample was kept at 25°C, for 1 h, and then centrifuged at 100,000 x g, for 30 min, 

at 4°C. Membrane pellet was washed once in extraction buffer, at 4°C, and twice in 0.33 M sorbitol, 

1 mM PMSF, 50 mM Bis-Tris-HCl, pH 7.0, at 4°C. Finally, membrane pellet was resuspended in 

resuspension buffer (20% v/v glycerol, 1 mM PMSF, 25 mM Bis-Tris-HCl, pH 7.0) at 4°C, and 

quantified using the DC protein assay (Bio-Rad Laboratories, Hercules, CA). Under continuous 

mixing, equal volumes of sample suspension and resuspension buffer containing 1% EDDM 

(Sigma-Aldrich, St. Louis, MO) were mixed. Solubilization of membrane protein complexes was 

allowed to occur on ice, for 3 min. Sample was then centrifuged at 100,000 x g, for 30 min, and the 

supernatant (containing membrane multiprotein complexes) was resolved by 1D-BN-PAGE. A 

schematic representation of the most important experimental steps used in this study are reported in 

Supplementary Figure S1. 

 

2.3 Electrophoresis  

1D-BN-PAGE was carried out as described by Schagger and von Jagow [63], with some 

modifications. Different acrylamide gradients were tested to improve protein complex separation; 
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thus, 4-14% and 7-14% linear gradients were used for final experiments. Anode buffer contained 50 

mM Bis-Tris-HCl, pH 7, while cathode buffer was 15 mM Bis-Tris, 50 mM tricine, supplemented 

with 0.01% Coomassie Blue Brilliant G (Sigma). Before electrophoresis, samples were mixed with 

0.1 vol of 100 mM Bis-Tris-HCl, pH 7.0, 30% (w/v) sucrose, 5% w/v Coomassie Blue Brilliant G 

and run in a mini-vertical unit (Hoefer, Inc. Holliston, MA, USA) (110 × 100 mm, 0.75 mm thick) 

at 4°C, by applying a constant voltage of 50 V, overnight, which was then gradually increased up to 

200 V until completion. For visualization and further sampling for MS-based protein identification, 

gel lanes were stained using the blue-silver protocol [64]. Apparent molecular mass of bands was 

determined by using the Native Mark Unstained kit (Invitrogen Life Technologies, USA) 

Non-stained gel lanes from 1D-BN-PAGE were cut out immediately and further subjected to a 

second dimension run by urea-PAGE or SDS-PAGE separation. For urea-PAGE, gel lanes were 

equilibrated in 6 M urea, 30% (w/v) glycerol, 4% (w/v) SDS, 2% (w/v) DTT, 150 mM Tris-HCI, 

pH 6.8, for 15 min, and then reacted with 2.5% (w/v) iodoacetamide solved in the same buffer but 

depleted of the reducing agent, for additional 15 min. Gel lanes were then rinsed in equilibration 

buffer for 2 min and finally loaded onto the second dimension 12% T gel (1 mm thick). For SDS-

PAGE, gel lanes were equilibrated in 150 mM Tris-HCl pH 6.8, containing 10% (w/v) glycerol, 2% 

(w/v) SDS, 2% (w/v) DTT for 15 min, followed by a second incubation with the same buffer 

depleted of the reducing agent but containing 2.5% (w/v) iodoacetamide for 15 min. Gel lanes were 

then rinsed in equilibration buffer for 2 min and finally loaded onto the second dimension 9-16% T 

gradient gel (1 mm thick). In both cases, proteins were resolved at a constant current (25 mA) and 

visualized by using a blue-silver-based staining protocol [64].  

 

2.4 Protein digestion and mass spectrometry analysis 

Bands from 1D-BN-PAGE or spots from 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE were 

manually excised from the gels, triturated and washed with water. Proteins were in-gel reduced, S-

alkylated and digested with trypsin, as previously reported [65]. Protein digests were subjected to a 

desalting/concentration step on PZipTipC18 pipette tips (Millipore Corp., Bedford, MA, USA). 

Peptide mixtures were then analyzed by nLC-ESI-LIT-MS/MS using a LTQ XL mass spectrometer 

(ThermoFinnigan, USA) equipped with a Proxeon nanospray source connected to an Easy-nLC 

(Proxeon, Denmark) [66]. Peptide mixtures were separated on an Easy C18 column (100 x 0.075 

mm, 3 Pm) (Proxeon) using a gradient of acetonitrile containing 0.1% formic acid in aqueous 0.1% 

formic acid, at a flow rate of 300 nL/min; i) for spot identification, acetonitrile was ramped from 

5% to 35% over 10 min, from 35% to 95% over 2 min and then remained at 95% over 12 min; ii) 
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for band identification, acetonitrile was ramped from 5% to 40% over 40 min, from 35% to 80% 

over 10 min, from 80% to 95% over 2 min and then remained at 95% over 12 min. Spectra were 

acquired in the range m/z 400-2000. Acquisition was controlled by a data-dependent product ion 

scanning procedure over the three most abundant ions, enabling dynamic exclusion (repeat count 1 

and exclusion duration 1 min). The mass isolation window and collision energy were set to m/z 3 

and 35%, respectively. 

 

2.5  Protein identification 

nLC-ESI-LIT-MS/MS data were searched by using Mascot (version 2.2.06) (Matrix Science, 

UK) and Sequest within Proteome Discoverer (version 1.3) software package (Thermo, USA) 

against an updated S. thermophilus database containing available protein sequences (NCBI 

24/05/2012, 27333 sequences). As searching parameters, we used a mass tolerance value of 2 Da 

for precursor ion and 0.8 Da for MS/MS fragments, trypsin as proteolytic enzyme, a missed 

cleavages maximum value of 2, Cys carbamidomethylation and Met oxidation as fixed and variable 

modification, respectively. Protein candidates with more than 2 assigned unique peptides with an 

individual Mascot ion score > 25 and a significant threshold (p < 0.05), and/or a Sequest Xcorr value 

> 1.5 (for +1), 2.0 (for +2) and 2.2 (for +3 and higher charges) were further considered for protein 

identification.  

 

2.6  Bioinformatic analysis 

 Protein entries from spots in the same vertical line within 2D-BN/urea-PAGE or 2D-BN/SDS-

PAGE, and in the corresponding band from 1D-BN-PAGE were analyzed by STRING v. 9.05 

(http://string-db.org/), using S. thermophilus LMG18311 as selected organism. GO enrichment for 

biological processes, molecular functions and cellular components was also performed. The latter 

option was used to verify the occurrence of identified components as related to a membrane 

environment. Proteins or protein horthologs within each resulting STRING map were then searched 

against the eNet database (http://ecoli.med.utoronto.ca/index.php), or against combined MPIDB 

(http://jcvi.org/mpidb/about.php) [57], IntAct (http://www.ebi.ac.uk/intact) [59], DIP 

(http://dip.doe-mbi.ucla.edu/dip) [60] and BIOGRID (http://thebiogrid.org) database [61], using the 

service PSICQUIC interface (http://www.ebi.ac.uk/Tools/webservices/psicquic/view) [62]. This 

protocol was applied to all components as deriving from 1D-BN-PAGE, 2D-BN/urea-PAGE and 

2D-BN/SDS-PAGE experiments, which were then critically evaluated according to available 

interaction information. A parallel analysis of each protein or protein hortholog for its oligomeric 
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state as deriving from literature data or crystallographic information at PDB database 

(http://www.rcsb.org/pdb/home/home.do) was also performed. In this case, hortholog searching was 

performed by BLASTP analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

2.7 Eps and rgp gene clusters sequencing analysis 

The sequence of eps and rgp gene clusters (accession HG321352 and HG321353) was obtained 

from a draft genome sequence of strain DSM20617. Partial genome sequencing was obtained from 

GenProbio s.r.l. (Codorago, Italy) by using the Ion Torrent PGM (Life Technologies, Germany). 

Functional annotation was performed by the Rapid Annotation using Subsystem Technology server 

[67] and checked by BLAST analysis [68] to verify and, if necessary, to redefine the start of each 

predicted coding region or to remove or add coding regions. 

 

2.8 Analysis of exopolysaccharide production 

Exopolysaccharide production was evaluated in ruthenium red milk (RRM) plates consisting of 

0.5% w/v yeast extract, 10% w/v skim milk powder, 1% w/v sucrose, 1.5% w/v agar, and ruthenium 

red (0.08 g/l). Ruthenium red stains the bacterial cell wall producing red colonies for nonropy 

strains and white colonies for ropy strains [69,70]. 

Bacterial cells were collected by centrifugation, and the resulting pellet was processed for 

transmission electron microscopy. The extract treated bacterial cells were fixed in 2.5% 

glutaraldehyde, and later post-fixed with 1% osmium tetroxide (in 0.1 M cacodylate buffer, pH 7.2) 

for 2 h, at room temperature. After eliminating the remaining osmium tetroxide, the samples were 

dehydrated in a graduated cold ethanol series (35–100%); each step was performed for about 10–15 

min, at room temperature. The fixed cells were embedded in Epon 812. Blocks were cut with an 

ultramicrotome (Ultracut; Reichert), and collected on nickel grids. Sections were post-stained with 

5% uranyl acetate for 5 min at room temperature, and treated with lead citrate for 1 min. Sections 

were observed and photographed with a Philips CM 12 electron microscope and a Zeiss 900. 

 

 

3. Results and Discussion 

3.1. Isolation and separation of membrane protein complexes 

A global prediction of the membrane proteins within the S. thermophilus LMG18311 genome 

already identified 326 sequence entries containing at least one transmembrane helix (TMH) [7]; 

among that, 220 were predicted to contain more than 2 TMHs and 95 were clearly identified as 
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transport system (TPS) components, which included 48 ATP-binding cassette (ABC) transporters, 

29 secondary transporters, 7 ion channels, 6 F- or P-type ATPases, and 2 sugar phosphotransferase 

systems (PTS) [7]. Within the ABC transporter group, 30 and 18 were classified as importers and 

exporters, respectively. Reduced content of sugar importers in S. thermophilus genome supported 

its low capacity for sugar uptake, with respect to other streptococci [6,7,69]. A high percentage of 

pseudogenes (20%) occurred within the transporter group. Other accessory factors involved in 

transport or membrane-associated components non-containing TMHs were also identified [7]. 

In order to optimize the preparation of membrane protein complexes from S. thermophilus, 

different detergents were tested. Those suitable for efficient extraction of membrane components 

often did not allowed an optimal complex recovery (data not shown). Among non-ionic detergents 

(EDDM, digitonin and triton-X-100) tested, EDMM generated 1D-BN-PAGE profiles showing the 

highest abundance of bands putatively ascribed to protein complexes. A further refinement of the 

concentration range of EDMM to be used for preparative membrane complexes extraction was also 

obtained (Supplementary Figure S2); thus, a concentration value of 0.5% (w/v) EDMM ensured a 

sufficient protein extraction power, together with a certain ability to resolve a number of protein 

complexes in a more or less intact form within a 60-720 kDa mass range. This guaranteed a high 

protein complex representation within 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE maps (see 

below and data not shown); however, since each protein complex may have a diverse sensitivity to 

solubilization, we suggest to test various experimental conditions if it has to be fully characterized 

for its compositional/stoichiometric properties.  

After initial resolution of the protein complexes by 1D-BN-PAGE, two complementary 

approaches (urea-PAGE and SDS-PAGE) were used for the separation in the second dimension 

(Figure 1 and 2); in general, a reduced spot diffusion was observed in the first case. This combined 

procedure ensured confirmative data, but also provided complementary information for specific 

protein complexes. A similar condition was also verified by cross-relating data from 1D-BN-PAGE, 

2D-BN/urea-PAGE and 2D-BN/SDS-PAGE experiments (Figure 1 and 2); in fact, the first analysis 

highlighted the occurrence of minor protein components that were not sampled in the 2D maps (as 

result of their migration in faint, diffused spots) or were absent therein as result of their poor 

solubility within the PAGE matrix. Synergic effect of combining data from 1D and 2D-BN-PAGE 

has been already underlined in previous studies on complexomes from other prokaryotes and 

eukaryotes [41,43,49,54,55,71]. Protein information on spots from 2D-BN/urea-PAGE or 2D-

BN/SDS-PAGE, and bands from 1D-BN-PAGE always derived from nLC-ESI-LIT-MS/MS 

analysis of the corresponding in gel tryptic digests. In general, 1D-BN-PAGE ensured a higher 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

10 

 

number of identified proteins with respect to 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE; this was 

probably the result of the higher amount of sample loaded for analysis and/or the absence of a 

second dimension separation. For evaluation/interpretation of the whole experimental results, an 

integration of 1D-BN-PAGE migration and MS-based identification data with available protein 

interaction and oligomerization information in other bacteria was achieved. Altogether, these 

integrated experiments allowed describing 65 heteromeric and 30 homomeric protein complexes 

where a total of 110 gene expression products were present (Table 1).  

A post-hoc evaluation of the nature of the proteins identified from 1D-BN-PAGE, 2D-BN/urea-

PAGE and 2D-BN/SDS-PAGE experiments generally demonstrated negligible cytoplasmic 

contaminations, as revealed by the absence of abundant cytosolic proteins already identified in 

previous dedicated studies on S. thermophilus, i.e. transcription elongation factor NusA, Mn-

dependent inorganic pyrophosphatase and most ribosomal particle constituents [13,14]. In parallel, 

various moonlighting proteins were also identified; their occurrence in membranes has been already 

reported in other bacteria [72,73]. In general, our analysis described a number of protein complexes 

that are representative of the most important functional modules within the cell membrane. Protein 

machineries involved in polysaccharide biosynthesis, molecular uptake, energy metabolism, cell 

division, protein secretion, folding and chaperone activity were highly represented in 1D-BN-

PAGE, 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE profiles; a number of homomeric moonlighting 

proteins were also identified. Their properties will be discussed in detail in the following sections, 

here organized according to a functional criterion.  

 

3.2 Exopolysaccharide biosynthesis 

The ability of S. thermophilus to produce exopolysaccharide (EPS) is important for the dairy 

industry, as it enhances the texture and mouthfeel of certain fermented dairy products. EPS is highly 

variable among S. thermophilus strains and consists of heterosaccharide polymers primarily made 

of galactose, glucose and rhamnose monomers [74,75]. EPS biosynthesis in S. thermophilus 

involves binding of sugar monomers to a lipid carrier, using amino sugars as precursors. This 

reaction is performed by a galactose-1-phosphate or glucose-1-phosphate transferase, and 

subsequent attachment of different monomers is performed by glycosyl transferases. In addition to 

this, enzymes for polymerization and transmembrane translocation are needed [75,76]. Coding 

genes for these enzymes are arranged into a main EPS cluster, which generally contains 12-25 gene 

entries and shows an extremous degree of variability among different bacterial strains [8,69,74,77]; 

thus, more than 60 different S. thermophilus EPS gene clusters have been predicted by restriction 
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fragment length polymorphism analysis [78]. The modular gene organization is conserved in all 

EPS clusters and the biosynthesis of EPS is proposed to occur via a common molecular mechanism. 

Interestingly, the S. thermophilus genome also contains a second gene cluster predicted to be 

involved in rhamnose–glucose polysaccharide (RGP) production. Six conserved genes (rgpA-F) 

(including two ones coding for molecular ABC exporter components) determine the assembly and 

secretion of the rhamnose–glucose polysaccharide, while two or more variable genes located 

upstream (rgpH-I) are required for glucose side-chain coupling, controlling the frequency of 

branching [7,79]. Many aspects of polysaccharide biosynthesis are still not fully understood, such as 

the sequence similarity of some enzymes involved in EPS and RGP assemblage, or their eventual, 

concomitant occurrence in functionally-active machineries.  

In this study, a number of protein complexes made of both eps and rgp gene products were 

observed; additional complexes made only of eps-coded enzymes were also identified. In particular, 

epsB-epsC, rgpA-rgpD-rgpE-rgpF-epsI-epsJ, rgpA-rgpD-rgpE-rgpF-epsI, rgpA-rgpD-rgpF-epsI-

ster1438, rgpA-rgpD-rgpF-epsI, rgpA-rgpD-rgpF-ster1438, epsG-epsI-epsJ-epsN-ster1442, epsI-

epsJ-epsN-ster1442, rgpA-epsG-epsI, epsD-epsN-ster1440 and rgpA-epsI complexes were 

characterized by combining MS data of samples from 1D-BN-PAGE, 2D-BN/urea-PAGE and 2D-

BN/SDS-PAGE (Figure 1 and Table 1). Protein components were identified as deriving from 

different S. thermophilus strains; their nature strongly reflected the high variability of the 

corresponding EPS clusters and the absence of genomic information on the DSM20617 strain. 

Protein redundancies were excluded on the basis of sequence alignment of all identified species. In 

some cases, complex nature reflected progressive decomposition of higher structures. Generally, 

their molecular mass value was in good agreement with that expected theoretically. Exceptions 

regarded poorly-represented epsB-epsC-containing complexes at 602 and 518 kDa, for which the 

occurrence of additional constituents (in low amounts) escaping a positive MS identification may be 

hypothesized, as already reported for other poorly-abundant protein complexes from other bacteria 

[44,45,52,55,57].  

To further investigate the arrangement of the genes coding for the proteins reported above in the 

corresponding clusters and to verify the sequence of those coding for ster-related entries, a 

successive, dedicated analysis was performed on strain DSM20617. Partial genome sequencing 

revealed that the EPS locus is composed of 13 genes and one pseudogenes (epsH*) (Figure 3A), 

which show a high sequence identity (93-99%) with counterparts from the S. thermophilus/S. 

salivarius/S. vestibularis group. Concerning the genes organization in the EPS locus, only the first 

part of the cluster (epsABCDE) appeared as highly conserved among S. thermophilus strains. 
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Complessively, the entire EPS locus showed a genes order highly similar to that of S. mitis NCTC 

1, despite a low sequence identity. On the other hand, the RGP locus was composed of 14 genes 

showing high sequence similarity (99-100%) with orthologs from S. thermophilus and S. 

parasanguinis strains (Figure 3B). Both EPS and the RGP locus showed a low GC content (36 and 

37% respectively) if compared to that of the whole genome GC (39%), thus suggesting a potential 

role of horizontal gene transfer events in the acquisition/assembly of these gene clusters. 

On the basis on the results reported above, it was possible to ascertain that a number of enzymes 

coded from genes present in the same cluster establish positive interactions to each others (Table 1 

and Figure 3). Their identification in the EDMM-extracted fraction was suggestive for the 

occurrence of two dedicated biosynthetic machineries as embedded into the lipid bilayer to ensure 

trafficking of the assembled sugar oligomers from the inner side of the cell membrane toward the 

bacterial surface, for its incorporation in the bacterial capsular structures or its eventual release in 

the medium. Our results confirmed previous data on epsB-epsC-epsD binding in S. thermophilus 

and other pathogenic streptococci, as deriving from co-purification, co-immunoprecipitation or two-

hybrid assays [76,80] but, at the same time, they also highly expanded the interaction maps of 

exopolysaccharide biosynthesis enzymes [76,81-83]. On the other hand, the simultaneous 

occurrence of mixed gene products from EPS and RGP clusters onto independent protein 

machineries having putative separate oligosaccharide translocation mechanism across membranes 

was never reported so far; it was highly suggestive of a hierarchical organization of the complexes 

into a unique, synchronized, functional biosynthetic module. In this context, the occurrence of 

genes coding for proteins involved in the synthesis of the dTDP-rhamnose precursor have been 

already demonstrated in the EPS cluster of different pathogenic streptococci and lactobacilli 

[76,79,84,85], evocating a sort of genetic cross-talk between the corresponding rhamnose- and 

galactose/glucose-based biosynthetic machineries [75,76]. On the other hand, the functionality of 

the whole exopolysaccharide biosynthesis module in S. thermophilus DSM20617 was confirmed by 

a ruthenium red stain assay, which revealed white colonies (unstained) on agar plate (Figure 4A), 

and previous data [74]. Transmission electron microscopy confirmed the presence of a diffuse 

polysaccharide matrix on the surface of the bacterial cells (Figure 4B and 4C), highly similar to that 

reported for the closest neighbor Lactococcus lactis [79]. On the whole, our results can provide 

original insights for future studies on EPS production in lactic acid bacteria. 
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3.3 Solute transport systems 

A number TMH-containing proteins and TPS components, including ion channels, secondary 

transporters, sugar PTSs, ABC transporters and ATP synthases, were recognized as constituents of 

protein complex structures present within distinct bands from 1D-BN-PAGE or as vertical lines of 

spots in 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE (Figure 1 and Figure 2). Among the porter 

proteins, the permease LacS (essential for lactose uptake) was found as bound to the HtrA 

chaperone/protease involved in the folding/degradation of secreted proteins (Table 1). The crucial 

role of the secretory machinery for the proper localization of folded LacS within the cell membrane 

has been already reported [86,87]. A similar HtrA-bound condition was also observed for the 

phosphotransfer-driven group translocator ScrA, involved in sucrose transport. In both cases, our 

data suggest a specific function of HtrA in assisting the proper folding of these TMH-containing 

proteins and/or degradation of the corresponding misfolded counterparts. Molecular migration of 

both complexes in 1D-BN-PAGE was compatible with a dodecameric structure of HtrA containing 

a single substrate molecule, as already observed in other bacteria [88]. Conversely, native LacS and 

ScrA were absent within 1D-BN-PAGE, 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE as 

homodimeric species [89,90] (Figure 1, Figure 2 and Table 1); this was not surprising on the basis 

of their recalcitrance to be extracted from membranes by soft detergents, as already observed in our 

laboratory [14].  

Three complexes involving members of the phosphoenolpyruvate: glucose/mannose PTS [91], 

which play a key role in coupling active sugar transport across the cell membrane to a sequential 

phosphorylation cascade, were also detected by 1D-BN-PAGE. In particular, the mannose PTS 

system components IIAB (ManL) and IIC (ManM) were identified within a band migrating at about 

196 kDa. Together with component IID (ManN), these proteins constitute the glucose/mannose PTS 

transporter with a 2:1:2 (ManL:ManM:ManN) stoichiometry [47,53,92]. Observed migration was 

consistent with an intact glucose/mannose PTS transporter. Its functional expression may be related 

to its regulatory functions more than in glucose transport, as already hypothesized [91]. On the 

other hand, ManL was also detected as bound to its phosphorylating effector PtsH (Figure 1 and 

Table 1); measured gel migration was consistent with a dimeric state of both proteins therein, as 

already revealed by NMR analysis [93]. In parallel, PtsH was also observed to participate in another 

complex with PtsI (Figure 1 and Table 1). Direct interaction of these expression products from two 

contiguous genes in the same ORF (stu1264 and stu1265) [91] was already reported in E. coli [94]; 

also in this case, gel migration was in agreement with the presence of protein dimers within the 

complex [95]. Detection of ManL-PtsH and PtsH-PtsI complexes in 1D-BN-PAGE was very 
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surprising based on their underlying, relatively weak protein interactions [93,95]. Their observation 

was putatively ascribed to the relative high concentration of its single constituents, namely ManL 

and PtsI, as revealed by 2D-BN/urea-PAGE, and the very reduced mass increase of the 

corresponding complexes due to PtsH contribution ('M ~ 9 kDa) (Figure 1).   

The archetypal member of the aquaporin superfamily, i.e. glycerol facilitator protein, was also  

detected in 1D-BN-PAGE and 2D-BN/urea-PAGE (Figure 1). Its migration properties (at about 140 

kDa) and the absence of known interactors of this porin in the corresponding gel portion, as 

deduced by eNet and PSICQUIC analysis, strongly supported the occurrence of this protein as 

tetrameric species, in agreement with previous cryoelectron microscopy and X-ray crystallography 

studies [96]. 

Within the ABC transporter group, a number of products from contiguous genes present within 

the same ORF were identified within distinct bands from 1D-BN-PAGE or as vertical lines of spots 

in 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE (Figure 1, Figure 2 and Table 1). This was the case 

of the binary LmrA1(stu0433)-LmrA2(stu0434), stu0296-stu0297, stu0808-stu0809, 

Peb1(stu1161)-GlnQ(stu1162), LivG(stu0362)-LivF(stu0363) and PstB2(stu1005)-PhoU(stu1006) 

complexes; in the latter case, another complex (PstB2-PhoU-FtsZ-Tuf) was also recognized as 

made of additional cell cytoskeletal proteins. Specific ABC transporter components were also 

identified in additional macromolecular aggregates migrating in 1D-BN-PAGE at different mass 

values (Figure 1 and Table 1). Only for Peb1-GlnQ, LivG-LivF, PstB2-PhoU and PstB2-PhoU-

FtsZ-Tuf complexes, measured migration properties were in good agreement with what expected on 

the basis of the corresponding theoretical mass values. For the remaining complexes, additional 

constituents determining observed migration in 1D-BN-PAGE may have escaped a positive MS 

identification due to the low amount of protein generally detected, as already reported for other 

bacteria [44,45,52,55,57]. From their migration in 1D-BN-PAGE, 2D-BN/urea-PAGE and 2D-

BN/SDS-PAGE, previous literature data and the organization of the corresponding ABC transporter 

gene clusters in S. thermophilus, it is tempting to speculate that components at 222 and 135 kDa 

correspond to intact stu0808-stu0809-stu0810-stu0811 and PstS-PstB1-PstB2-PstC1-PstC2-PhoU 

complexes, respectively [6,7,44,45,52,55,57]. While information on putative functional efficiency 

of LmrA1-LmrA2, Peb1-GlnQ, LivG-LivF, PstB2-PhoU and stu0808-stu0809 interactions may be 

deduced by simple genome analysis, being part of complete multidrug (DrugE2) family ABC 

exporter and polar amino acid, branched-chain amino acid, phosphate and carbohydrate ABC 

uptake transporters, respectively [6,7,97,98], it is no clear whenever stu0296-stu0297 are a part of  

an active protein machinery, being constituents of an incomplete transporter [6,7].  
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We also observed the larger part of the respiratory chain-related F1F0-ATP synthase complex, 

which catalyzes ATP synthesis during oxidative phosphorylation and ATP hydrolysis to generate 

the transmembrane proton electrochemical gradient required for different cell functions [99]. F1F0-

ATP synthase contains 8 different subunits in a known stoichiometry (α3β3γδεAB2C10–14) and 

exhibits a total molecular mass of about 530 kDa; the complex consists of 2 parts designated as F0 

and F1. F0 is membrane embedded and consists of subunits A, B and C, while F1 is membrane-

extrinsic and consists of 5 subunits, i.e. D, E, J, G and H [100]. In this study, we observed only the F1 

part, which was detected within 3 distinct bands in 1D-BN-PAGE or as vertical lines of spots in 

2D-BN/urea-PAGE and 2D-BN/SDS-PAGE (Figure 1, Figure 2 and Table 1). The first one (at 

about 403 kDa) well fitted with the molecular mass of the whole F1 complex and contained all its 

subunits. The second (at 371 kDa) and the third one (at 333 kDa) showed progressive disappearance 

of J, or J and H subunits, respectively, which was associated with a partial F1 complex 

decomposition. Our results were in good agreement with previous observations on other G+ and G- 

bacteria [40,43-47,52,53]. 

 

3.4 Cell growth and morphology 

Bacterial division is generally driven through the formation of a macromolecular machinery 

(divisome) containing at least a dozen of proteins, which assembles with a defined dependence 

hierarchy at a specific cell membrane site [101]. The way in which the divisome assembles has been 

studied extensively in E. coli and B. subtilis, leading to related assembly pathways that requires the 

sequential assembly of different subcomplexes [102,103]. In fact, additional proteins associated 

with cell cytoskeletal structure and peptidoglycan (PG) biosynthesis transiently interact with the 

divisome machinery depending on division moment. Likewise other bacteria, various genes coding 

for division proteins in S. thermophilus occur within a specific ORF (stu0731-0740), where genes 

involved in cell wall biosynthesis are also present [6,7]. Additional genes coding for cell 

morphogenesis proteins and PG synthesis enzymes resides in distinct ORFs. 

In our study, a number of macromolecular aggregates were identified in 1D-BN-PAGE and 2D-

BN/urea-PAGE experiments. In particular, FtsZ-EzrA-DivIVA-MurG, FtsZ-DivIVA-MurG, FtsZ-

EzrA-DivIVA, FtsZ-DivIVA, FtsZ-MurG-Pbp2X-SecA-Tuf, FtsZ-DivIVA-SecA-PrtM-Tuf, FtsZ-

DivIVA-MurG-Pbp2X-Tuf, FtsZ-SecA-DivIVA-FtsY, MurG-MurM-MurE-Pbp2X, DivIVA-

MurG-SecA, MurG-MurM-MurE-Upps, MurG-MurM-MurE and MurG-MurM complexes were 

characterized, in agreement with previous interaction studies (as also verified by eNet and 

PSICQUIC analysis) [34,40,47,104]. Considering the possible occurrence of oligomeric proteins 
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(for FtsZ, DivIVA and SecA) within observed complexes, measured migration properties were in 

good agreement with what expected on the basis of the corresponding theoretical mass values. 

Ascertained assemblies often reflected progressive decomposition of higher structures. In general, 

complexes composition highlighted the simultaneous occurrence of entries uniquely made of 

elements from the divisome machinery, of enzymes involved in PG biosynthesis, or where mixed 

elements from both protein classes occurred together. In this context, it has been already suggested 

that, after initial division stages driven by FtsZ ring formation [105], the divisome locally recruits 

an assembled multiprotein Mur subcomplex made of enzymes assisting lateral envelope growth 

[101,102,106]. PG glycosyltransferase MurG was suggested to be a common component of both 

complexes playing a crucial role for their interaction [107]. Our results were consistent with this 

scenario. In rod-shaped cells, it has been hypothesized that the cotranslational assembly and 

localization of the divisome and of the Mur subcomplex, driving the flux of PG precursors toward 

the septum synthesis machinery, occurs through a genomic channeling mechanism [101].  

Ascertained FtsZ-MurG-Pbp2X-SecA-Tuf, FtsZ-DivIVA-SecA-PrtM-Tuf, FtsZ-SecA-DivIVA-

FtsY and DivIVA-MurG-SecA complexes also included proteins of the secretory machinery 

[86,87], namely SecA, FtsY and PrtM. Inclusion of the motor ATPase SecA has been already 

reported in cell wall biosynthesis and division functional modules of other bacteria [104]; it has 

been related to the possible role of this protein in directing secretion of the PG synthetic apparatus 

to regions where PG biosynthesis occur [108]. In fact, many proteins that carry out or mediate PG 

biosynthesis contain TMHs or membrane anchors linked to large extracellular domains, which are 

likely exported in a SecA-dependent manner. Bioinformatic analysis of our data confirmed the 

capability of SecA to interact with FtsZ and MurG [104], thus sanctioning a putative cross-talk of 

the bacterial secretory machinery with the cell growth- and morphology-affecting complexes 

mentioned above. 

 

3.5 Protein elongation, secretion and folding  

According to S. thermophilus genome analysis, components of the secretory machinery include 

signal recognition particle proteins Ffh and FtsY, trigger factor chaperone RopA, Sec translocase  

constituents (SecA-SecYEG and YajC), two ortholog proteins of YidC (stu1810 and stu0245) 

interacting with the translocase, TatA and TatC components of the twin Arg translocation pathway, 

various signal peptidases (SipA, SipB, LspA, Lgt, Sip and PilD), a PrsA/PrtM peptidylprolyl 

isomerase (lipoprotein) assisting the folding of the exported proteins and HtrA [7].  
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In addition to the already-mentioned complexes containing elements from different functional 

modules, protein assemblies uniquely related to the secretory machinery [86,87] were also 

recognized on the S. thermophilus membrane. In particular, SecA-FtsY-PrtM, SecA-FtsY-Ffh and 

SecA-Tuf complexes were identified in 1D-BN-PAGE and 2D-BN/urea-PAGE experiments (Table 

1). These results were in good agreement with previous studies on other bacteria where, similarly to 

what reported here, additional complexes (Ffh-FusA-Tuf, Tuf-GroL-ClpL-PotA, Tuf-RpsA-FusA-

DnaK, DnaK-RpsA-ClpL, DnaK-RpsA-Pyk, RpsA-ClpL, GroL-DnaK and Tig-Pyk) related to the 

elongation cycle of protein biosynthesis and/or involving protein folding-assisting interactions with 

various chaperones were also observed [32-34,46,50,53,104,109-111]. Ascertained relationships 

were coherent with that observed following eNet and PSICQUIC analysis. At present, it is not clear 

if these complexes were related to nascent, unfolded polypeptide chains before their localization 

close to/within the lipid bilayer or to membrane proteins that are partially unfolded therein. A 

number of chaperones, elongation factors and ribosomal protein antigens with moonlighting 

properties were identified as complex constituents, in agreement with previous investigations 

[72,73,112-115]. Among that, 60 kDa chaperonin GroL that was identified as an abundant 

homomeric complex migrating at about 518 kDa in 1D-BN-PAGE; its migration properties were 

not coherent with the characteristic epta- or tetradecameric structure of this chaperone, but strongly 

resembled those already observed during 2D-BN/SDS-PAGE analysis of membrane proteins from 

H. pylori [50]. In vitro studies have demonstrated that GroEL can mediate post-translational 

membrane insertion of lactose permease [116], bacteriorhodopsin [117] and holin [118]. However, 

in a proteome wide screen no membrane proteins were identified as GroEL substrates [119]. An 

analogous homomeric condition was observed for the ATPase/protein unfoldase ClpL, which was 

also observed as a tetrameric species migrating in 1D-BN-PAGE at about 303 kDa, in agreement 

with previous analytical ultracentrifugation and light scattering experiments [120]. On the basis of 

what reported above, further studies have to be accomplished to unveil the precise structure-

function relationship of these moonlighting chaperones in a membrane environment and their role 

in mediating inter-cellular interactions [72]. 

 

3.6 Moonlighting proteins with different function 

In addition to the already-mentioned chaperones and elongation factors, other moonlighting 

proteins (GlnA, Eno, GdhA, RpoC, DeoD, Ldh, GapN, Pyk, Pfk, Gapdh, TpiA, Pgi, Pgma and 

GltX) were also identified as abundant component present on the membrane fraction of S. 

thermophilus; their peculiar localization has been already reported in other bacteria, including 
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streptococci and lactobacilli [42,72,73,113,114,121]. About an half of them participate in the 

glycolytic pathway, but has also been reported to mediate adhesion to exogenous plasminogen, 

fibrinogen and cytoskeletal components as well as to modulate cell signaling processes [72]. Most 

of these moonlighting proteins occurred as homomeric complexes; this was the case of GlnA, Eno, 

GdhA, DeoD, GapN, Pyk, Pfk, Gapdh, Ldh and Pgma, which migrated in 1D-BN-PAGE as 

dodecameric, octameric, hexameric, hexameric, tetrameric, tetrameric, tetrameric, tetrameric, 

tetrameric and tetrameric species, respectively, in agreement with previous proteomic studies on 

other bacteria [42,48,53] and protein structures present within the PDB database 

(http://www.rcsb.org/pdb/home/home.do). These findings suggest the maintenance of the 

corresponding protein quaternary structures also in a membrane environment.  

On the other hand, known moonlighting proteins were also observed to participate in 

heteromeric complexes, as in the case of the RpoC, which was present in the complexes RpoA-

RpoB-RpoC, RpoB-RpoC-stu0256 and RpoC-RplJ-RplS. The occurrence of the RNA polymerase 

in bacterial membrane is not surprising [53,114]; a band showing a migration compatible with the 

whole biosynthetic machinery (where only RpoA, RpoB and RpoC were identified) has been 

already reported in E. coli [53]. In this case and in the current study, remaining RNA polymerase 

constituents may have escaped MS identification due to the low amount of protein present. RpoB 

and RpoC were also observed in other complexes; in this context, BLAST analysis identified 

stu0256 as a putative nucleotide triphosphate pyrophosphatase that hydrolyzes non-standard purines 

preventing their incorporation into RNA. Analogously, participation into heteromeric complexes 

was also verified for moonlighting dimeric proteins TpiA and Pgi that, according to their migration 

in 1D-BN-PAGE, were involved in binding to dimeric Pfl and MetN, respectively. These 

interaction data were in agreement with previous observations in E. coli [32]. Also in these cases, 

predicted protein oligomerization in a membrane environment was similar to that observed in 

aqueous media. Finally, moonlighting protein GltX was observed as bound to FabF and as 

monomeric species (data not shown), in agreement with previous chromatographic data [122]. This 

protein was previously identified as a cell wall-associated antigen in S. pneumonia [121]. 

Other proteins generally reported as cytosolic components were also observed in the membrane 

fraction of S. thermophilus; they included Dpr, Prs1, Prs2, PurB, PlsX and UspA  (Figure 1 and 

Figure 2). A careful evaluation of available literature confirmed their possible occurrence also on 

bacterial membrane. This was the case of the peroxide-resistance protein Dpr, which was detected 

on the membrane of H. pylori and E. coli grown under various environmental conditions 

[50,123,124]. This protein was suggested to have a scavenging function against reactive oxygen 
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species and Fe ion misbalance as well as a protective role against DNA damage [125]. Recently, it 

was proved to influence the attachment of bacteria to abiotic surfaces [126]. Its migration in 1D-

BN-PAGE was consistent with a dodecameric structure [125], whose high stability was also 

appreciated after urea-PAGE (Figure 1) and SDS-PAGE (Figure 1), as already observed in C. 

thermocellum [45]. On the other hand, two phosphoribosylpyrophosphate synthase isoforms, 

namely Prs1 and Prs2, were observed to migrate as a vertical line of spots in 2D-BN/SDS-PAGE 

(Figure 2 and Table 1). Homologue proteins from other bacteria have a functional hexameric 

structure [127,128]; this information, together with our PSICQUIC analysis that suggested a direct 

interaction between Prs1 and Prs2, was fully compatible with a heteromeric complex migrating at 

about 464 kDa, as revealed by 1D-BN-PAGE analysis. Phosphoribosylpyrophosphate synthase was 

observed as a membrane-bound component in human and rat cells [129,130]. In bacteria, its 

function has been associated to the biosynthesis of phosphoribosyl-1-pyrophosphate, a central 

metabolite precursor for cell wall sugar components [131]. Other membrane-associated proteins 

mentioned above occurred as homomeric complexes. In agreement with data present within the 

PDB database (http://www.rcsb.org/pdb/home/home.do), PurB, UspA and PlsX migrated in 1D-

BN-PAGE as tetrameric, dimeric and dimeric species (Table 1), respectively, thus confirming the 

maintenance of their protein quaternary structures also in a membrane environment. PlsX was also 

observed to form a heteromeric complex with LysS and SerS, coherently with data deduced from 

eNet and PSICQUIC analysis. The occurrence of PurB, PlsX and UspA on the bacterial membrane 

has been already reported [53,132] and associated with the biosynthesis of fatty acids and 

membrane phospholipids [133] or with the bacterial response to environmental stresses [134], 

respectively. 

 

3.7 Proteolytic enzymes and other proteins 

Membrane proteases detected in this study included FtsH, PepC and PepB, which migrated in 

1D-BN-PAGE as homomeric species present at about 430, 288 and 131 kDa and, respectively. In 

the first case, observed migration was consistent with the ascertained hexameric crystallographic 

structure of this membrane-spanning ATP-dependent metalloprotease [135]. It plays a key role in 

quality and regulatory control within the cell by degrading a unique subset of substrates. In fact, 

FtsH is able to identify and degrade nonfunctional or damaged membrane proteins by pulling them 

out of the lipid bilayer, followed by further substrate unfolding and translocation into the proteolytic 

chamber [111]. On the other hand, PepC is an endopeptidase with moonlighting properties that was 

observed among the antigenic cell wall-associated proteins of S. pneumonia, eliciting protective 
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immune response in the mouse [121]. Also in this case, 1D-BN-PAGE results were in agreement 

with the protein hexameric quaternary structure reported in the PDB database. Finally, PepB was 

never reported as a membrane component so far; its electrophoretic migration was consistent with a 

dimeric crystallographic structure [136].  

Analogous considerations on the absence of data concerning protein membrane localization were 

valid for phosphopantetheine adenyltransferase CoaD, hypothetical protein stu1225 (homologous to 

short-chain dehydrogenase/reductases), acetolactate synthase Als, CTP synthase PyrG and enoyl-

acyl carrier protein reductase FabK. These proteins were observed to migrate in 1D-BN-PAGE as 

hexameric, tetrameric, tetrameric, dimeric and dimeric species, respectively, in agreement with 

available data on their quaternary structure [137-141].  

 

4.  Conclusions 

Although milk is a rich growth medium for many microorganisms, bacteria that grow and 

compete well in the milk environment must, at minimum, be able to use lactose as an energy source 

and milk proteins as a source of amino acids. The adaptation of S. thermophilus to the milk 

environment is reflected by several observations at genomic and transcriptome levels [6-

11,142,143], including the detection of specialized systems for metabolizing lactose, the general 

absence of other carbohydrate metabolic systems, the presence of amino acid and peptide 

scavenging machinery, and numerous stress response and host defense mechanisms.  

In the present study, a combined approach based on 1D-BN-PAGE, 2D-BN/urea-PAGE, 2D-

BN/SDS-PAGE and nLC-ESI-LIT-MS/MS was used to investigate membrane protein complexes in 

S. thermophilus cells at their early exponential phase. We were able to reproducibly separate 

individual proteins and to reveal protein-protein interactions, consistently with the results obtained 

through independent, traditional biochemical and biophysical procedures. Among the 110 non-

redundant components present in the heteromeric/homomeric complexes here reported, 31 

corresponded to about 10% of the 326 membrane proteins predicted by in silico analysis of the S. 

thermophilus genome [7], while 7 matched about 7% of the 98 secretory proteins analogously 

envisaged [144]; on the other hand, 44 species were identified as moonlighting proteins [42,72,73] 

or components whose transient localization on or close to the bacterial membrane has been already 

reported. Thus, membrane protein machineries involved in essential biochemical processes, such as 

polysaccharide biosynthesis, molecular uptake, energy metabolism, cell division, protein secretion 

and folding, were characterized for their constitutive elements. Information on hypothetical proteins 

were also derived. In general, most (about 84%) of the heteromeric/homomeric complexes reported 
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in this study were coherent with that already described in other bacteria, as verified by eNet and 

PSICQUIC analysis of the corresponding hortolog species or by evaluation of literature data and 

crystallographic information present within the PDB database. Novel information on protein 

machineries involved in exopolysaccharide and peptidoglycan biosynthesis, cell division and 

protein secretion were obtained. The approach reported here paves the way for a further functional 

characterization of these protein complexes and will facilitate future studies of their assembly and 

composition during various experimental conditions and in different mutant backgrounds, with 

important consequences for biotechnological applications of this bacterium in dairy productions. 
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T
able 1. Protein heterom

ultim
eric and hom

om
eric com

plexes identified in the m
em

brane fraction of exponentially-grow
ing S. therm

ophilus cells. 

B
and in 1D

-B
N

-PA
G

E, protein com
plex experim

ental m
igration (as deduced w

ith respect to com
m

ercial m
olecular standards), protein com

plex description, 

corresponding protein nam
e, gene nam

e in the LM
G

18311 or LM
D

-9 genom
e [6,8], accession num

ber, theoretical M
r value, num

ber of observed unique 

peptides, sequence coverage and identification score are listed. Identification data reported in this table are those w
ith the highest values as obtained from

 

1D
-B

N
-PA

G
E (Figure 1), 2D

-B
N

/urea-PA
G

E (Figure 1) and 2D
-B

N
/SD

S-PA
G

E (Figure 2). Protein com
ponents identified in spots from

 2D
-B

N
/urea-

PA
G

E and 2D
-B

N
/SD

S-PA
G

E are indicated w
ith an asterisk and circle, respectively. M

S details for the identification data reported in this table are 

available in Suppl. Table S1 (for 1D
-B

N
-PA

G
E), Suppl. Table S2 (for 2D

-B
N

/urea-PA
G

E) and Suppl. Table S3 (for 2D
-B

N
/SD

S-PA
G

E). § R
efers to 

protein identification data w
here Sequest results are show

n; this condition occurred in the cases in w
hich identification param

eters w
ere satisfied for 

Sequest but not for M
ascot searching. U

nderlined are protein com
plex com

ponents for w
hich interaction/oligom

erization inform
ation w

as already available 

according to eN
et and PSIC

Q
U

IC
 analysis, literature data and/or crystallographic records present w

ithin the PD
B

 database. a R
efers to m

em
brane proteins 

predicted by in silico analysis of the S. therm
ophilus genom

e [7]; b refers to secretory proteins predicted by in silico analysis of the S. therm
ophilus genom

e 

[144]; c refers to m
oonlighting proteins [72,73] or com

ponents w
hose transient localization on or close to the cell m

em
brane has been already reported. This 

table includes protein abbreviations used w
ithin the w

hole text. 

B
and 

C
om

plex 

m
igration 

(kD
a) 

Protein com
plex 

Protein nam
e 

G
ene 

nam
e 

A
ccession 

M
ass 

(kD
a) 

U
nique 

Peptides 

Sequence 

coverage 

(%
) 

M
ascot score 

A
 

602 
G

lnA
 (dodecam

er) 
G

lutam
ine synthetase type I – G

lnA
*° c 

Stu1776 
54306535 

50.1 
14 

38.26 
528 

 
 

Stu0296-Stu0297 
A

m
ino acid A

B
C

 transporter substrate-binding protein - Stu0296 a, b 
Stu0296 

55822277 
31.3 

2 
9.22 

115 

 
 

 
A

m
ino acid A

B
C

 transporter substrate-binding protein - Stu0297 a, b 
Stu0297 

55822278 
32.9 

4 
9.67 

58 

 
 

Lm
rA

1-Lm
rA

2 
A

B
C

-type m
ultidrug (D

rugE2) exporter system
, A

TPase and perm
ease 

com
ponent - Lm

rA
1

 a 
Stu0433 

116627330 
67.1 

6 
13.41 

134 

 
 

 
M

ultidrug A
B

C
 exporter A

TP binding/m
em

brane-spanning protein - 

Lm
rA

2
 a 

Stu0434 
55820521 

65.1 
3 

6.42 
98 

 
 

H
trA

-LacS 
Trypsin-like serine protease – H

trA
* b 

Stu2024 
116628681 

42.8 
3 

14.36 
175 

 
 

 
Lactose perm

ease - LacS
 a 

Stu1398 
38492233 

69.1 
5 

8.68 
118 
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H
trA

-ScrA
 

Trypsin-like serine protease – H
trA

*
 b 

Stu2024 
116628681 

42.8 
2 

14.36 
175 

 
 

 
Sucrose PTS, EIIB

C
A

 - ScrA
 a 

Stu1734 
116628430 

66.9 
3 

6.32 
78 

 
 

EpsB
-EpsC

 
G

lycosyl transferase fam
ily protein – EpsB

*
 c 

Stu1485 
55823391 

35.0 
6 

17.53 
121 

 
 

 
Exopolysaccharide synthesis protein 4C

 - EpsC
 a 

Stu1110 
24637401 

25.5 
3 

13.91 
6.62

§ 

B
 

518 
FtsZ-EzrA

-D
ivIV

A
-M

urG
 

C
ell division protein FtsZ – FtsZ*

 c 
Stu0735 

55822702 
46.5 

3 
7.50 

100 

 
 

 
Septation ring form

ation regulator EzrA
 - EzrA

 c 
Stu1520 

116628215 
61.5 

2 
4.33 

83 

 
 

 
C

ell division initiation protein – D
ivIV

A
*

 c 
Stu0740 

116627610 
33.0 

14 
37.11 

515 

 
 

 

U
D

P-N
-acetylglucosam

ine-N
-acetylm

uram
yl-(pentapeptide) 

pyrophosphoryl-undecaprenol N
-acetylglucosam

ine transferase - 

M
urG

 c 

Stu0732 
81559554 

40.1 
3 

11.80 
66 

 
 

G
roL (hom

om
er) 

60 kD
a chaperonin – G

roL*°  c 
Stu0204 

68566260 
56.9 

16 
53.06 

775 

 
 

EpsB
-EpsC

 
G

lycosyl transferase fam
ily protein – EpsB

*
 c 

Stu1485 
55823391 

35.0 
2 

6.82 
128 

 
 

 
Exopolysaccharide synthesis protein 4C

 - EpsC
 a 

Stu1110 
24637493 

25.5 
4 

19.13 
94 

 
 

Stu0296-Stu0297 
A

m
ino acid A

B
C

 transporter substrate-binding protein - Stu0296
 a 

Stu0296 
55822277 

31.3 
2 

9.22 
93 

 
 

 
A

m
ino acid A

B
C

 transporter substrate-binding protein - Stu0297
 a 

Stu0297 
55822278 

32.9 
3 

5.67 
50 

C
 

446 
FtsZ-D

ivIV
A

-M
urG

 
C

ell division protein FtsZ – FtsZ*
 c 

Stu0735 
55822702 

46.5 
3 

10.00 
152 

 
 

 
C

ell division initiation protein – D
ivIV

A
*°  c 

Stu0740 
116627610 

33.0 
3 

17.18 
190 

 
 

 

U
D

P-N
-acetylglucosam

ine-N
-acetylm

uram
yl-(pentapeptide) 

pyrophosphoryl-undecaprenol N
-acetylglucosam

ine transferase - 

M
urG

 c 

Stu0732 
81559554 

40.1 
4 

15.17 
82 

 
 

Prs1-Prs2 
R

ibose-phosphate pyrophosphokinase - Prs1*°  c 
Stu0023 

116626993 
35.1 

4 
17.76 

125 

 
 

 
R

ibose-phosphate pyrophosphokinase - Prs2*°  c 
Stu1460 

116628164 
35.1 

4 
19.81 

112 

 
 

R
poA

-R
poB

-R
poC

 
D

N
A

-directed R
N

A
 polym

erase subunit alpha - R
poA

 c 
Stu1908 

81558875 
34.4 

2 
7.37 

4.16
§ 

 
 

 
D

N
A

-directed R
N

A
 polym

erase subunit beta – R
poB

*°  c 
Stu1868 

55821840 
133.3 

3 
3.27 

195 

 
 

 
D

N
A

-directed R
N

A
 polym

erase subunit beta’ – R
poC

*°  c 
Stu1867 

55821839 
135.3 

3 
2.55 

118 

 
 

FtsH
 (hexam

er) 
C

ell division protein FtsH
 – FtsH

 c 
Stu0012 

116626986 
71.9 

3 
4.73 

7.26
§ 

D
 

433 
FtsZ-EzrA

-D
ivIV

A
 

C
ell division protein FtsZ – FtsZ*

 c 
Stu0735 

55822702 
46.5 

4 
10.91 

177 

 
 

 
Septation ring form

ation regulator EzrA
 - EzrA

 c 
Stu1520 

55821496 
65.4 

2 
3.90 

51 

 
 

 
C

ell division initiation protein – D
ivIV

A
*

 c 
Stu0740 

116627610 
33.0 

3 
11.34 

129 

E 
403 

A
TPase A

-A
TPase C

- 

A
TPase D

-A
TPase G

-A
TPase H

 
H

+-A
TPase cytoplasm

ic F1-part alpha subunit - A
TPase A

*°  a 
Stu0482 

20070091 
54.5 

4 
25.55 

300 
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H

+-A
TPase cytoplasm

ic F1-part epsilon subunit - A
TPase C

*
 a 

Stu0485 
20070094 

5.2 
2 

56.25 
72 

 
 

 
A

TP synthase F1-sector beta subunit - A
TPase D

*°  a 
Stu0484 

81820338 
50.8 

18 
55.56 

1103 

 
 

 
A

TP synthase F1-sector gam
m

a subunit - A
TPase G

*°  a 
Stu0483 

81676597 
32.2 

7 
27.05 

164 

 
 

 
A

TP synthase F1-sector delta subunit - A
TPase H

*°  a 
Stu0481 

81559722 
20.4 

3 
13.48 

129 

F 
371 

Eno (octam
er) 

Enolase – Eno*°  c 
Stu0635 

68053529 
47.0 

32 
89.63 

1688 

 
 

A
TPase A

-A
TPase C

- 

A
TPase D

-A
TPase H

 
H

+-A
TPase cytoplasm

ic F1-part alpha subunit - A
TPase A

*°  a 
Stu0482 

20070091 
54.5 

2 
13.97 

186 

 
 

 
A

TP synthase F0F1 subunit epsilon - A
TPase C

*
 a 

Stu0485 
55820568 

16.7 
2 

21.62 
88 

 
 

 
A

TP synthase F1-sector beta subunit - A
TPase D

*°  a 
Stu0484 

81820338 
50.8 

8 
22.86 

298 

 
 

 
A

TP synthase F1-sector delta subunit - A
TPase H

*
 a 

Stu0481 
81559722 

20.4 
3 

19.66 
98 

 
 

FtsZ-D
ivIV

A
 

C
ell division protein FtsZ – FtsZ*

 c 
Stu0735 

55822702 
46.5 

3 
9.77 

100 

 
 

 
C

ell division initiation protein – D
ivIV

A
*

 c 
Stu0740 

116627610 
33.0 

4 
10.65 

116 

 
 

R
poB

-R
poC

-Stu0256 
D

N
A

-directed R
N

A
 polym

erase subunit beta - R
poB

 c 
Stu1868 

55821840 
133.3 

3 
3.02 

103 

 
 

 
D

N
A

-directed R
N

A
 polym

erase subunit beta’ - R
poC

 c 
Stu1867 

122266859 
135.2 

2 
1.73 

3.67
§ 

 
 

 
N

on-canonical purine N
TP pyrophosphatase - Stu0256 

Stu0256 
62900158 

36.0 
4 

16.67 
140 

G
 

333 
A

TPase A
-A

TPase D
-A

TPase H
 

H
+-A

TPase cytoplasm
ic F1-part alpha subunit - A

TPase A
*°  a 

Stu0482 
20070091 

54.5 
3 

33.33 
607 

 
 

 
A

TP synthase F1-sector beta subunit - A
TPase D

*°  a 
Stu0484 

81820338 
50.8 

23 
68.16 

1636 

 
 

 
A

TP synthase F1-sector delta subunit - A
TPase H

*
 a 

Stu0481 
122268026 

20.4 
4 

23.60 
140 

H
 

318 
G

dhA
 (hexam

er) 
G

lutam
ate dehydrogenase – G

dhA
*°  c 

Stu0430 
116627327 

48.3 
30 

74.00 
1456 

 
 

C
lpL (tetram

er) 
A

TP-dependent proteinase A
TP-binding subunit - C

lpL 
Stu1614 

55821590 
77.1 

7 
15.45 

249 

I 
303 

M
alQ

 (hom
om

er) 
4-alpha-glucanotransferase – M

alQ
*° 

Stu1013 
116627804 

56.6 
17 

34.28 
492 

 
 

FtsZ-M
urG

-Pbp2X
-SecA

-Tuf 
C

ell division protein FtsZ - FtsZ
 c 

Stu0735 
55822702 

46.5 
5 

10.68 
132 

 
 

 

U
D

P-N
-acetylglucosam

ine-N
-acetylm

uram
yl-(pentapeptide) 

pyrophosphoryl-undecaprenol N
-acetylglucosam

ine transferase - 

M
urG

 c 

Stu0732 
122267800 

40.2 
2 

7.58 
4.69

§ 

 
 

 
C

ell division protein FtsI/penicillin binding protein 2X
 - Pbp2X

 b 
Stu1701 

116628388 
82.6 

2 
3.44 

4.08
§ 

 
 

 
Protein translocase subunit SecA

 - SecA
 a 

Stu1730 
122266980 

96.3 
2 

2.12 
4.28

§ 

 
 

 
Elongation factor Tu - Tuf  c 

Stu0487 
81559720 

43.8 
3 

9.05 
72 

J 
288 

G
uaB

-U
vrB

 
Inosine 5’-m

onophosphate dehydrogenase – G
uaB

*° 
Stu2016 

55821983 
52.9 

2 
6.09 

75 

 
 

 
U

vrA
B

C
 system

 protein B
, excinuclease A

B
C

 subunit B
 - U

vrB
 

Stu1497 
122267209 

76.6 
2 

4.49 
4.26

§ 

 
 

PepC
 (hexam

er) 
A

m
inopeptidase C

 – PepC
*°  c 

Stu0229 
3024365 

50.4 
12 

28.54 
278 
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SecA
-FtsY

-PrtM
 

Protein translocase subunit SecA
 - SecA

 a 
Stu1730 

122266980 
96.3 

4 
5.65 

111 

 
 

 
Signal recognition particle receptor (docking protein) - FtsY

 a 
Stu1432 

116628140 
51.0 

2 
5.18 

79 

 
 

 
Protease m

aturation protein precursor - PrtM
 b 

Stu0456 
55822430 

39.9 
2 

7.82 
79 

K
 

261 
Tuf-G

roL-C
lpL-PotA

 
Elongation factor Tu – Tuf*

 c 
Stu0487 

81559720 
43.8 

3 
6.78 

98 

 
 

 
60 kD

a chaperonin - G
roL

 c 
Stu0204 

68566260 
56.9 

3 
5.75 

63 

 
 

 
A

TP-dependent proteinase A
TP-binding subunit - C

lpL 
Stu1614 

116628305 
77.1 

4 
8.01 

141 

 
 

 
Sperm

idine/putrescine im
port A

TP-binding protein PotA
 - PotA

 a 
Stu1538 

122267176 
43.8 

2 
5.99 

72 

L 
243 

FtsZ-D
ivIV

A
-SecA

-PrtM
-Tuf 

C
ell division protein FtsZ - FtsZ

 c 
Stu0735 

55822702 
46.5 

4 
12.73 

121 

 
 

 
C

ell division initiation protein – D
ivIV

A
*°  c 

Stu0740 
116627610 

33.0 
17 

36.08 
508 

 
 

 
Protein translocase subunit SecA

 – SecA
*

 a 
Stu1730 

122266980 
96.3 

15 
20.85 

405 

 
 

 
Protease m

aturation protein precursor - PrtM
 b 

Stu0456 
55822430 

39.9 
3 

9.43 
105 

 
 

 
Elongation factor Tu – Tuf*

 c 
Stu0487 

81559720 
43.8 

7 
24.12 

302 

 
 

R
gpA

/EpsF-R
gpD

-R
gpE-R

gpF-

EpsI-EpsJ 
Polysaccharide biosynthesis protein EpsF – R

gpA
/EpsF*°  c 

Stu1472 
90655845 

44.5 
2 

6.67 
58 

 
 

 
A

B
C

-type polysaccharide/polyol phosphate transport system
, A

TPase 

com
ponent - R

gpD
 a 

Stu1469 
116628173 

44.6 
6 

13.25 
67 

 
 

 
G

lycosyltransferase – R
gpE*° 

Stu1468 
116628172 

66.1 
14 

25.79 
291 

 
 

 
Polysaccharide biosynthesis protein – R

gpF*° 
Stu1467 

116628171 
68.4 

4 
8.09 

91 

 
 

 
Polysaccharide biosynthesis protein – EpsI*°  c 

- 
24637447 

38.2 
2 

7.01 
5.90

§ 

 
 

 
Polysaccharide biosynthesis protein - EpsJ  c 

- 
24637448 

38.7 
2 

5.76 
3.98

§ 

 
 

R
poC

-R
plJ-R

plS 
D

N
A

-directed R
N

A
 polym

erase subunit beta’ - R
poC

 c 
Stu1867 

122266859 
135.2 

2 
1.73 

3.67
§ 

 
 

 
50S ribosom

al protein L10 - R
plJ 

Stu0536 
97182027 

17.5 
2 

13.17 
64 

 
 

 
50S ribosom

al protein L19 - R
plS 

Stu1179 
62287370 

13.1 
2 

20.87 
4.75

§ 

M
 

222 
FtsZ-D

ivIV
A

-M
urG

-Pbp2X
-Tuf 

C
ell division protein FtsZ - FtsZ

 c 
Stu0735 

55822702 
46.5 

3 
9.32 

132 

 
 

 
C

ell division initiation protein – D
ivIV

A
°  c 

Stu0740 
116627610 

33.0 
3 

12.71 
96 

 
 

 

U
D

P-N
-acetylglucosam

ine-N
-acetylm

uram
yl-(pentapeptide) 

pyrophosphoryl-undecaprenol N
-acetylglucosam

ine transferase - 

M
urG

 c 

Stu0732 
122267800 

40.2 
2 

7.02 
5.32

§ 

 
 

 
C

ell division protein FtsI/penicillin binding protein 2X
 - Pbp2X

 b 
Stu1701 

116628388 
82.6 

2 
3.44 

3.8
§ 

 
 

 
Elongation factor Tu - Tuf  c 

Stu0487 
81559720 

43.8 
12 

39.95 
377 

 
 

D
pr (dodecam

er) 
Peroxide resistance protein, non-hem

e iron-containing ferritin – D
pr*°  c 

Stu0723 
116627595 

19.2 
7 

38.73 
386 
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Stu0808-Stu0809 
H

ypothetical protein - Stu0808*
 b 

Stu0808 
55822775 

35.6 
4 

12.80 
88 

 
 

 
C

arbohydrate A
B

C
 uptake transporter A

TP-binding protein - Stu0809
 a 

Stu0809 
116627673 

55.5 
2 

4.10 
91 

N
 

216 
D

pr (dodecam
er) 

Peroxide resistance protein, non-hem
e iron-containing ferritin – D

pr*°  c 
Stu0723 

116627595 
19.2 

7 
38.73 

386 

 
 

R
gpA

/EpsF-R
gpD

-R
gpE-R

gpF-

EpsI 
Polysaccharide biosynthesis protein EpsF – R

gpA
/EpsF*

 c 
Stu1472 

24637426 
44.6 

2 
6.67 

72 

 
 

 
A

B
C

-type polysaccharide/polyol phosphate transport system
, A

TPase 

com
ponent - R

gpD
 a 

Stu1469 
116628173 

44.6 
9 

30.75 
238 
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Legend to Figures 

 

Figure 1. Top. 1D-BN-PAGE separation of membrane protein complexes from Streptococcus 

thermophilus strain DSM20617. About 100 Pg of bacterial proteins were analyzed. 

Electrophoresis was performed on a gel casted with an acrylamide gradient of 4-14% T. 

Gels were stained by using a Coomassie blue-silver-based procedure. Commercially 

available molecular mass markers for the 1D-BN-PAGE are indicated at the top. Gel 

bands subjected to trypsinolysis and nLC-ESI-LIT-MS/MS analysis are indicated. 

Proteins identified by within each gel band are reported in Table 1 and Supplementary 

Table S1. 

Bottom. 2D-BN/urea-PAGE separation of membrane protein complexes from 

Streptococcus thermophilus strain DSM20617. About 50 Pg of bacterial proteins were 

analyzed. The first dimension (BN-PAGE) was performed on a gel casted with an 

acrylamide gradient of 4-14% T; the second dimension  (urea-PAGE) was performed on a 

gel casted with 12% T acrylamide. Gels were stained as mentioned above. Molecular 

mass markers for 1D-BN-PAGE and urea-PAGE are indicated at the top and on the left, 

respectively. Proteins identified by nLC-ESI-LIT-MS/MS are reported; identification 

details are specified in Supplementary Table S2. Corresponding heteromeric and 

homomeric protein complexes identified by combining 1D-BN-PAGE, 2D-BN/urea-

PAGE and 2D-BN/SDS-PAGE experiments, followed by nLC-ESI-LIT-MS/MS analysis, 

are shown in Table 1. 

 

Figure 2. 2D-BN/SDS-PAGE separation of membrane protein complexes from Streptococcus 

thermophilus strain DSM20617. About 50 Pg of bacterial proteins were analyzed. The 

first dimension (BN-PAGE) was performed on a gel casted with an acrylamide gradient 

of 7-14% T; the second dimension  (SDS-PAGE) was performed on a gel casted with an 

acrylamide gradient of 9-16% T. Gels were stained by using a Coomassie blue-silver-

based procedure. Molecular mass markers for 1D-BN-PAGE and urea-PAGE are 

indicated at the top and on the left, respectively. Proteins identified by nLC-ESI-LIT-

MS/MS are indicated; identification details are reported in Supplementary Table S3. 

Corresponding heteromeric and homomeric protein complexes identified by combining 

1D-BN-PAGE, 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE, followed by nLC-ESI-LIT-

MS/MS analysis are shown in Table 1. 
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Figure 3. Schematic organization of the eps and rgp genes cluster in S. thermophilus DSM20617. 

Genes coding for proteins here identified in heteromultimeric and homomeric complexes 

are reported in red. Shown are genes and related product as deduced by BLAST analysis. 

Panel A. EPS cluster; epsA, cell envelope-related transcriptional attenuator; epsB, 

capsular polysaccharide biosynthesis protein; epsC, polysaccharide export protein, MPA1 

family, G+ type; epsD, membrane-associated ATPase; epsE, galactosyl transferase; 

epsF/rgpA, rhamnosyl transferase; epsG, glycosyl transferase; epsH*, exopolysaccharide 

biosynthesis protein, truncated; epsL, β-glycosyltransferase; epsJ, glycosyltransferase; 

epsK, polysaccharide polymerase; epsZ, flippase, assisting in the membrane translocation 

of lipopolysaccharides; epsM, galactopyranose mutase; epsN, galactofuranose transferase. 

Asterisk indicates a truncated gene (epsH). Panel B. RGP cluster; gt, glucosyltransferase; 

mp, predicted membrane protein; drr, dTDP-4-dehydrorhamnose reductase; flp, flippase; 

gtp/ster1442, CDP-glycosylpolyol phosphate:glycosylpolyol glycosylpolyol 

phosphotransferase; gpf, β-1,3-glucosyltransferase; gpf1/ster1440, glycosyl transferase; 

gpf3/ster1438, glycosyl transferase; rht, α-D-GlcNAc-α-1,2-L-rhamnosyltransferase; flp1, 

rhamnose-containing polysaccharide translocation permease; rgpD, ABC transporter 

possibly involved in side chain formation of rhamnose-glucose polysaccharide; rgpE, 

glycosyltransferase possibly involved in side chain formation of rhamnose-glucose 

polysaccharide; rgpF, α-L-rha-α-1,3-L-rhamnosyltransferase; mp1, predicted membrane 

protein.  

 

Figure 4. Microscopic analysis of S. thermophilus DSM20617. Panel A. White colonies for ropy S. 

thermophilus DSM20617 in ruthenium red milk agar plate. Panel B and C. Transmission 

electron micrographs showing S. thermophilus DSM20617 cells. The black arrows 

indicate the polysaccharide matrix present on the surface of bacterial cells. The white 

arrow indicates the bacterial cell wall. 
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Salzano et al., Figure 1 
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Salzano et al., Figure 2 
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   Salzano et al., Figure 4 
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Mono-dimensional Blue Native-PAGE and bi-dimensional Blue 

Native/Urea- or /SDS-PAGE combined with nLC-ESI-LIT-MS/MS 

unveil membrane protein heteromeric and homomeric complexes in 

Streptococcus thermophilus 
 

 

Anna Maria Salzano, Gianfranco Novi, Stefania Arioli, Silvia Corona,  

Diego Mora and Andrea Scaloni 
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Supplementary Figure 1. A schematic representation of the most important experimental steps 

used in this study. 

 

Supplementary Figure 2. 1D-BN-PAGE separation of membrane protein complexes from 

Streptococcus thermophilus strain DSM20617 as extracted with different concentrations of EDDM. 

Electrophoresis was performed on a gel casted with an acrylamide gradient of 5-12% T. Gels were 

stained by using a Coomassie blue-silver-based procedure. Commercially available molecular mass 

markers for the 1D-BN-PAGE are indicated on the left. 
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Salzano et al., Supplementary Figure S1 
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Salzano et al., Supplementary Figure S2 
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Biological significance 

Combined proteomic procedures have been applied to the characterization of heteromultimeric and 
homomeric protein complexes from the membrane fraction of Streptococcus thermophilus. Protein 
machineries involved in polysaccharide biosynthesis, molecular uptake, energy metabolism, cell 
division, protein secretion, folding and chaperone activities were identified; information on 
hypothetical and moonlighting proteins were also derived. This study is original in the lactic 
bacteria context and may be considered as preliminary to a deeper functional characterization of the 
corresponding protein complexes. Due to the large use of Streptococcus thermophilus as a starter 
for dairy productions, the data reported here may facilitate future investigations on protein 
complexes assembly and composition under different experimental conditions or for bacterial 
strains having specific biotechnological applications.   
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Graphical abstract 
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Highlights 

1D-BN-PAGE, 2D-BN/urea-PAGE and 2D-BN/SDS-PAGE resolved membrane complexes of S. 
thermophilus 

 

Sixty-five heteromeric and 30 homomeric complexes were characterized by nLC-ESI-LIT-MS/MS 

 

Protein machineries involved in various molecular functions were identified  

 

Information on moonlighting and hypothetical proteins was also derived  


