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Abstract: How one builds, checks, validates and interprets a model depends on its ‘purpose’. This is true even
if the samemodel code is used for di�erent purposes. This means that a model built for one purpose but then
used for another needs to be re-justified for the new purpose and this will probably mean it also has to be re-
checked, re-validatedandmaybeeven re-built in adi�erentway. Herewe reviewsomeof thedi�erentpurposes
for a simulationmodel of complex social phenomena, focusing on seven in particular: prediction, explanation,
description, theoretical exploration, illustration, analogy, and social interaction. The paper looks at some of
the implications in terms of the ways in which the intended purpose might fail. This analysis motivates some
of the ways in which these ‘dangers’ might be avoided or mitigated. It also looks at the ways that a confusion
of modelling purposes can fatally weakenmodelling projects, whilst giving a false sense of their quality. These
distinctions clarify some previous debates as to the best modelling strategy (e.g. KISS and KIDS). The paper
ends with a plea for modellers to be clear concerning which purpose they are justifying their model against.
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Introduction

1.1 A common view of modelling is that one builds a ‘life-like’ reflection of some system, which then can be relied
upon to act like that system. This is a correspondence view of modelling where the details in the model corre-
spond in a roughly one-one manner1 with those in the modelling target — as if the model were some kind of
‘picture’ of what it models. We suggest that this picture analogy is not helpful when it comes to the justification
or judging of models2.

1.2 Rather, we suggest a more pragmatic approach, where models are judged as tools designed for specific pur-
poses — the goodness of the model being assessed against how good it is for its declared purpose3. Models
therefore have been characterized as “purposeful representation” (Starfield et al. 1990): we are not modelling
systems per se, but only with respect to a particular purpose. This purpose can act as a kind of filter, or cus-
tomer, which helps us decide: is this element of the real system possibly important for our purpose? Thus, a
forest model designed for estimating the amount of timber production will, almost certainly, be very di�erent
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from a forest model focussing on biodiversity — and one would not expect them to be the same, despite the
fact they are modelling the same thing.

1.3 Although a model designed for one purpose may turn out to be OK for another, it is more productive to use a
tool designed for the job in hand. Onemay be able to use a kitchen knife for shapingwood, but it ismuch better
to use a chisel. In particular, we argue that evenwhen amodel (ormodel component) turns out to be useful for
more than one purpose it needs to be re-justified with respect to each of the claimed purposes separately. To
extend the previous analogy: a tool with the blade of a chisel but the handle of a kitchen knifemay satisfy some
of the criteria for a tool to carvewood and some of the criteria for a tool to carve cookedmeat, but not bemuch
good for either purpose — it fails as either. If one did come up with a new tool that is good at both, this would
be because it could be justified for each purpose separately.

1.4 In his paper ‘Why Model?’, Epstein (2008) lists 17 di�erent reasons for making a model: from the abstract, ‘dis-
cover new questions’, to the practical ‘educate the general public’. This illustrates both the usefulness of mod-
elling but also the potential for confusion. As Epstein points out, the power of modelling comes from making
an informal set of ideas formal. That is, they are made precise using unambiguous code or mathematical sym-
bols. This lack of ambiguity has huge benefits for the process of science, since it allows researchers to more
rigorously explore the consequences of their assumptions and to share, critique, and improve models without
transmission errors (Edmonds 2010). However, in many social simulation papers the purpose that the model
was developed for, or more critically, the purpose under which it is being presented is o�en le� implicit or
confused. Maybe this is due to the prevalence of the ‘correspondence picture’ of modelling discussed above,
maybe the authors optimistically conceive of their creations being useful in many di�erent ways, or maybe
they simply developed the model without a specific purpose in mind. However, regardless of the reason, the
consequence is that readers do not know how to judge the model when presented. This can have the result
thatmodelsmight avoid proper judgement— demonstrating partial success in di�erent ways with respect to a
number of purposes, but not adequacy against any. The recent rise of standard protocols likeODD (Grimmet al.
2006, 2010; Müller et al. 2013) for describing publishedmodelsmay help improving this inconvenient situation:
stating the purpose of the model constitutes the first part of the framework, but so far ODD does not provide
specific categories of purposes, so that o�en the “Purpose” section of ODD model descriptions is not specific
enough to enable a reader to decide how to judge it.

1.5 Our use of language helps cement this confusion: we talk about a ‘predictive model’ as if it is something in
the code that makes it predictive (forgetting the role of the mapping between the model and what it predicts).
Rather we are suggesting a shi� from the code as a thing in itself, to code as a tool for a particular purpose. This
marks a shi� from programming, where the focus is on the nature and quality of the code, tomodelling, where
the focus is on the relationship of the behaviour of some code to what is being modelled. Using terms such as
‘explanatory model’ is OK, as long as we understand that this is shorthand for ‘a model which establishes an
explanation’ etc.

1.6 Producing, checking and documenting code is labour intensive (Janssen 2017). As a result, we o�en wish to
reuse some code produced for one purpose for another purpose. However, this o�en causes asmuch newwork
as it saves due to the e�ort required to justify code for a new purpose, and— if this extra work is not done— the
risk that time and energy ofmany researchers arewasted due to the confusions that can result4. In practice, we
have seen very little code that does not need to be re-written when one has a new purpose in mind5. Ideas can
be transferred andwell-honed libraries reused for verywell defined purposes, but not the core code thatmakes
up a model of complex social phenomena6. This is partly because di�erent uses imply di�erent assumptions
and be open to di�erent risks (as we will argue below).

1.7 Although one can have many possible purposes for a model, in this paper, we will look at seven. These are:

• prediction,

• explanation,

• description,

• theoretical exploration,

• illustration,

• analogy7,

• and social learning8.
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1.8 The first three of these are empirical — that is, they have a well-defined relationship with observed evidence9.
The others are not directly related to what is observed, but concern ways of thinking about things, theoretical
properties or communication. The point of this paper is to distinguish the di�erent kinds of purpose, even if in
common usage wemay conflate them. The reason is that these di�erent purposes imply very di�erent ways of
judging, justifying, checking, and even building models.

1.9 There are, of course, many other reasons for modelling (e.g. Epstein 2008) but the above seven seem to be the
main ones that concern the papers in the field of social simulation (Squazzoni et al. 2014; Hauke et al. 2017).
Given the pluralist and pragmatist intent of this paper, we have avoided trying to theorise too much as to how
these purposes relate or cluster, but rather simply aim to distinguish them and discuss the more practical as-
pects that relate to each. There will be other purposes formodelling that we have not covered, or even thought
of — this is fine, the main aim of the paper is to get authors to make their purpose crystal clear so that readers
know on what basis their model should be judged in any presentation of their work.

1.10 Each of these purposes is discussed, in turn, below. For each purpose a brief ‘risk analysis’ is presented— some
of the ways one might fail to achieve that purpose — along with some ways of mitigating these risks (which
involve di�erent activities, such as validation or verification10). In the penultimate section, some common con-
fusions of purpose are illustrated and discussed, ending with a brief summary and plea to make one’s purpose
clear. There is also a discussion of the role of modelling strategies and how these might relate to the di�erent
purposes but in order not to muddy our central point this is mostly relegated to an appendix. There are many
endnotes, reflecting points the reviewers and authors want included, but you do not have to read them to get
the sense of this paper.

1.11 In the discussion below, we focus on modelling within social simulation (broadly conceived) rather than mod-
elling in general. Although we strongly suspect that very similar arguments could be made about modelling in
other fields, we are not experts in those fields.

1.12 Our purpose for all this is to advance the culture, and practice, of social simulation modelling of all kinds. This
kind of thing only works if it has direct benefits for themodeller adhering to it, which is the case here: by being
explicit about the purpose of your model, its design will improve, as well as its reception and, possibly, further
development.

Prediction

Motivation

2.1 If one can reliably predict anything that is not already known, this is undeniably useful regardless of the nature
of the model (e.g. whether its processes are a reflection of what happens in the observed system or not11). For
instance, the gas laws (stating e.g. that at a fixed pressure, the increase in volume of gas is proportional to the
increase of temperature) were discovered long before the reason why they worked.

2.2 However, there is another reason that prediction is valued: it is considered the gold standard of science — the
ability of a model or theory to predict is taken as the most reliable indicator of a model’s truth. This might be
because this purpose leaves the least room for deceiving ourselves as to whether a model succeeds or fails —
all other kinds are more amenable to tweaking the model until it is presentable.

2.3 Prediction is done in two principle ways: (a) model A fits the evidence better than model B — a comparative
approach12 or (b) model A is falsified (or not) by the evidence — a falsification approach. In either, the idea is
that, given a su�icient supply of di�erent models, better models will be gradually selected over time, either
because the bad ones are discarded or outcompeted by better models.

Definition

2.4 By ‘prediction’,wemean theability to reliablyanticipatewell-definedaspectsofdata that isnot currently known
to a useful degree of accuracy via computations using the model.

2.5 Unpacking this definition:

• It has to do it reliably— that is under some known (but not necessarily precise) conditions themodel will
work; otherwise one would not knowwhen one could use it.
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• The data it anticipates has to be unknown to themodeller. ‘Predicting’ out-of-sample data is not enough,
since pressures to re-do amodel and get a better fit are huge and negative results are di�icult to publish.
It may be that a model tested on only known data does, in fact, predict well on unknown data, but this
fact can not be demonstrated until it predicts unknowndata. We should suspend judgement until it does.

• The aspects of the data that it predicts might be a numerical value, but also it might also be a pattern or
a relationship (Grimm et al. 2005; Thorngate & Edmonds 2013; Watts 2014) — almost anything as long as
this can be unambiguously checked to see if it holds. Talking about “aspects” is necessary due to the fact
that data is almost never anticipated exactly, but only in some respects — e.g. taking into account noise,
or only the distribution of the data.

• The anticipation has to be to a useful degree of accuracy. This will depend upon the purpose to which
it is being put, e.g. as in weather forecasting. What counts as useful is a tricky subject and one that we
do choose to discuss here, except to point out that it would be useful if authors specified what a useful
degree of accuracy would be for their purposes.

• Sometimes a model can predict a completely unexpected pattern or outcome which can subsequently
be empirically checked13. This is not the same as finding general phenomena that would seem to confirm
the understanding suggested by a model — that is not prediction in our sense.

2.6 Unfortunately, there are at least two di�erent uses of the word ‘predict’ (Troitzsch 2009). Almost all scientific
models ‘predict’ in the weak sense of being used to calculate or compute some result given some settings or
data, but this is di�erent from correctly anticipating unknown data14. For this reason, some use the term ‘fore-
cast’ for anticipating unknown data and use the word ‘prediction’ for almost any inference of one aspect from
anotherusingamodel15. However, this causes confusions inotherways so thisdoesnotnecessarilymake things
clearer. Firstly, ‘forecasting’ implies that the unknown data is in the future (which is not always the case), sec-
ondly, large parts of science use the word ‘prediction’ for the process of anticipating unknown data, and thirdly
it confuses thosewho use thewords in an interchangeablemanner. For example, if amodeller says theirmodel
‘predicts’ something when they simplymean that it outputs it, thenmost of the audiencemaywell assume the
author is claimingmore utility than is intended. Thus, we do not think this particular distinction is at all helpful.
Others use prediction to include any kind of direct empirical relationship, whilst here we find it more helpful to
distinguish between them.

2.7 As Watts (2014) points out, useful prediction does not have to be a ‘point’ prediction of a future event. For ex-
ample, one might predict that some particular thing will not happen, the existence of something in the past
(e.g. the existence of Pluto), something about the shape or direction of trends or distributions (Thorngate & Ed-
monds 2013), comparative future performance (Klingert & Meyer 2018) or even qualitative facts. The important
fact is that what is being predicted is not known beforehand by themodeller, and that it can be unambiguously
checked a�er it is known.

An example

2.8 Nate Silver is a forecaster, that is he aims to predict future social phenomena, such as the results of elections
and the outcome of sports competitions. He gained fame when he correctly predicted the outcomes of all 50
electoral colleges inObama’s election. This is adata-hungry activity,which involves the long-termdevelopment
of simulations that carefully see what can be inferred from the available data. As well as making predictions,
his unit tries to establish the level of uncertainty in those predictions — being honest about the probability of
those predictions coming about given the likely levels of error and bias in the data. Thesemodels tend to be of
a mostly statistical nature but can include elements of individual-based modelling (e.g. electoral colleges). As
described in his book (Silver 2012) this involves a number of properties and activities, including:

• Repeated testing of the models against unknown data;

• Keeping themodels fairly simple and transparent so one canunderstand clearlywhat they are doing (and
what they do not cover);

• Encoding into themodel aspects of the target phenomena that one is relatively certain about (such as the
structure of the US presidential electoral college);

• Being heavily data-biased (as compared to theory-biased) in its method, that is requiring a lot of data to
help eliminate sources of error and bias;
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• Producing probabilistic predictions, giving a good idea about the level of uncertainty in any prediction;

• Being clear about what kind of factors are not covered in the model, so the predictions are relative to a
clear set of declared assumptions and one knows the kind of circumstances in which one might be able
to rely upon the predictions.

2.9 Post hoc analysis of predictions— explainingwhy it worked or not— is kept distinct from the predictivemodels
themselves — this analysis may inform changes to the predictive model but is not then incorporated into the
model. The analysis is thus kept independent of the predictive model so it can be an e�ective check. Making a
good predictive model requires a lot of time getting it wrong with real, unknown data, and trying again before
one approaches qualified successful predictions.

Risks

2.10 Prediction (as we define it) is very hard for any complex social system. For this reason, it is rarely attempted16.
Many re-evaluations of econometric models against data that has emerged since publication have revealed a
high rate of failure For example, Meese & Rogo� (1983) looked at 40 econometric models where they claimed
they were predicting some time-series. However, 37 out of 40models failed completely when tested on newly-
available data from the same time series that they claimed to predict. Clearly, although presented as being
predictivemodels, they did not actually predict unknown data. Many of these used the strategy of first dividing
the data into in-sample and out-of-sample data, and then parameterising themodel on the former and exhibit-
ing the fit against the latter. Although we do not know for sure, presumably what happened was as follows.
The apparent fit of the 37 models was not simply a matter of bad luck, but that all of these models had been
(explicitly or implicitly) fitted to theout-of-sampledata, because theout-of-sampledatawasknown to themod-
eller before publication. That is, if the model failed to fit the out-of-sample data the first time the model was
tested, it was then adjusted until it did work, or alternatively, only those models that fitted the out-of-sample
data were published (a publishing bias). Thus, in these cases themodels were not tested against predicting the
out-of-sample data even though they were presented as such. Fitting known data is simply not a su�icient test
for predictive ability17.

2.11 There aremany reasonswhypredictionof complex social systems fails18, but threeof those specific to the social
sciences are as follows: (1) it is unknown what processes are needed to be included in the model, (2) a lack of
enough quality data of the right kinds and (3) having the right kind of data. Wewill discuss each of these in turn.

1. In the physical sciences, there are o�en well-validated micro-level models (e.g. fluid dynamics in the
case of weather forecasting) that tell us what processes are potentially relevant at a coarser level and
which are not. In the social sciences this is not the case — we do not know what the essential processes
are. Here, it is o�en the case that there are other processes that the authors have not considered that, if
included, would completely change the results. This is due to two di�erent causes: (a) we simply do not
knowmuch about how andwhy people behave in di�erent circumstances and (b) di�erent limitations of
intended context will mean that di�erent processes are relevant.

2. Unlike in the physical sciences, there has been a paucity of the kind of data we would need to check
the predictive power of models. This paucity can be due to (a) there is not enough data (or data from
enough independent instances) to enable the iterative checking and adapting of themodels on new sets
of unknown data each time we need to, or (b) the data is not of the right kind to do this. What can o�en
happen is that one has partial sets of data that require some strong assumptions in order to compare
against the predictions in question (e.g. the datamight only be a proxy of what is being predicted, or you
need assumptions in order to link sets of data). In the former case, (a), one simply has not enough to
check the predictive power in multiple cases so one has to suspend judgement as to whether the model
predicts in general, until the data is available. In the latter case, (b), the success at prediction is relative
to the assumptions made to check the prediction.

3. There is a further point. We may appear to have su�icient data of what seems to be the right kind. How-
ever, the data may contain relatively small amounts of true information. For example, Ormerod & Moun-
field (2000) show, usingmodern signal processingmethods, thatdata series inmacroeconomicsaredom-
inated by noise rather than by information. They suggest that this is a key explanation for the very poor
forecasting record in macroeconomics.

2.12 A more subtle risk is that the conditions under which one can rely upon a model to predict well might not be
clear. If this is the case then it is hard to rely upon the model for prediction in a new situation, since one does
not know its conditions of application — i.e. when it predicts well19.
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Mitigatingmeasures

2.13 To ensure that a model does indeed predict well, one can seek to ensure the following:

• That themodel has been tested on several caseswhere it has successfully predicted data unknown to the
modeller (at the time of prediction);

• That information about the following are included: exactly what aspects it predicts, guidelines on when
the model can be used to predict and when not, some guidelines as to the degree or kind of accuracy it
predicts with, any other caveats a user of the model should be aware of;

• That a clear distinction between tweaking (calibration, model selection) and independent prediction is
made.

• That the model code is distributed so others can explore when and howwell it predicts.

Explanation

Motivation

3.1 O�en, especially with complex social phenomena, one is particularly interested in understanding why some-
thing occurs — in other words, explaining it. Even if you cannot predict something before it is known, you still
might be able to explain it a�erwards. This distinctionmirrors that in thephysical scienceswhere there are both
phenomenological aswell as explanatory laws (Cartwright 1983)— the formermatch the data, the latter explain
why they came about. O�en we have good predictive or good explanatory models but not both. For example,
the gas laws that linkmeasurements of temperature, pressure and volumewere known before the explanation
in terms of molecules of gas bouncing randomly around, and similarly Darwin’s explanatory Theory of Natural
Selection was known long before the Neo-Darwinist synthesis with genetics that allowed for predictive mod-
els20.

3.2 Understanding is important for managing complex systems as well as for understanding when predictivemod-
els might work. Whilst generally with complex social phenomena explanation is easier than prediction, some-
times prediction comes first (however if one can predict then this invites research to explainwhy the prediction
works).

3.3 If onemakes a simulation inwhich certainmechanisms or processes are built in, and the outcomes of the simu-
lationmatch some (known) data, then this simulation can support an explanation of the data using the built-in
mechanisms. The explanation itself is usually of amore general nature and the traces of the simulation runs are
examples of that account. Simulations that involve complicated processes can thus support complex explana-
tions — that are beyond natural language reasoning to follow. The simulations make the explanation explicit,
even if we cannot fully comprehend its detail. The formal nature of the simulationmakes it possible to test the
conditions and cases under which the explanation works, and to better its assumptions.

Definition

3.4 By ‘explanation’ wemean establishing a possible causal chain from a set-up to its consequences in terms of the
mechanisms in a simulation.

3.5 Unpacking some parts of this:

• The possible causal chain is a set of inferences or computations made as part of running the simulation
— in simulations with random elements, each run will be slightly di�erent. In this case, it is either a pos-
sibilistic explanation (A could cause B), so one just has to show one run exhibiting the complete chain,
or a probabilistic explanation (A probably causes B, or A causes a distribution of outcomes around B), in
which case one has to look at an assembly of runs, maybe summarising them using statistics or visual
representations.

• For explanatory purposes, the structure of themodel is important, because that limits what the explana-
tion consists of. For example, if social norms were a built-in mechanism in a simulation and it resulted in
some cooperation, then that cooperation could be explained (at least partially) in terms of social norms.
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If, on the other hand, the model consisted of mechanisms that are known not to occur, any explanation
one established would be in terms of these non-existent mechanisms — which is not very helpful. If one
has parameterised the simulation on some in-sample data (found the values of the free parameters that
made the simulation fit the in-sample data) then the explanation of the outcomes is also in terms of the
in-sample data, mediated by these free parameters21.

• The consequences of the simulations are generally measurements of the outcomes of the simulation.
These are compared with the data to see if it ‘fits’. It is usual that only some of the aspects of the target
data and the data the simulation produces are considered significant — other aspects might not be (e.g.
might be artefacts of the randomness in the simulation or other factors extraneous to the explanation).
The kind of fit between data and simulation outcomes needs to be assessed in a way that is appropriate
towhich aspects of the data are significant andwhich are not. For example, if it is the level of the outcome
that is key then a distance or error measure between this and the target data might be appropriate, but
if it is the shape or trend of the outcomes over time that is significant then other techniques will bemore
appropriate (e.g. Thorngate & Edmonds 2013).

Example

3.6 Stephen Lansing spent time in Bali as an anthropologist, researching how the Balinese coordinated their water
usage (among other things). He and his collaborator, James Kramer, build a simulation to show how the Ba-
linese system of temples acted to regulate water usage, through an elaborate system of agreements between
farmers, enforced through the cultural and religious practices at those temples (Lansing & Kremer 1993). Al-
though their observations could cover many instances of localities using the same system of negotiation over
water, they were necessarily limited to all their observations being within the same culture. Their simulation
helped establish the nature and robustness of their explanation by exploring a close universe of ‘what if’ ques-
tions, which vividly showed the comparative advantages of the observed system that had developed over a
considerable period. The model does not predict that such systems will develop in the same circumstances,
but it substantially adds to the understanding of the observed case.

Risks

3.7 Clearly, there are several risks in the project of establishing a complex explanation using a simulation — what
counts as a good explanation is not as clear-cut as what is a good prediction.

3.8 Firstly, the fit to the target data to be explainedmight be a very special case. For example, if many other param-
eters need to have very special values for the fit to occur, then the explanation is, at best, brittle and, at worst,
an accident.

3.9 Secondly, theprocess that is unfolded in the simulationmight bepoorly understood so that theoutcomesmight
depend upon some hidden assumption encapsulated in the code. In this case, the explanation is dependent
upon this assumption holding, which is problematic if this assumption is very strong or unlikely.

3.10 Thirdly, there may be more than one explanation that fits the target data. So, although the simulation estab-
lishes one explanation it does not guarantee that it is the only candidate for this.

Mitigatingmeasures

3.11 To improve the quality and reliability of the explanation being established:
• Ensure that the mechanisms built into the simulation are plausible, or at least relate to what is known
about the target phenomena in a clear manner;

• Be clear about which aspects of the outcomes are considered significant in terms of comparison to the
target data — i.e. exactly which aspects of that target data are being explained;

• To reduce the risk of getting the right results for the wrong reasons, try to get themodel reproducemulti-
ple patterns simultaneously (e.g. observed at di�erent levels of organisations and di�erent scales). Each
pattern serves as a filter of unrealistic parameter values and process representations. While single filters
canbe ine�icient, for example cyclic dynamics, which are easy to generate, entire sets of patterns, usually
3-5, are muchmore di�icult to reproduce. Thereby the risks of tweaking are not eliminated, but reduced
(Grimm et al. 2005, 2010; Railsback & Grimm 2012);
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• Probe the simulation to find out the conditions for the explanation holding using sensitivity analysis,
addition of noise,multiple runs, changingprocesses not essential to the explanation22 to see if the results
still hold, and documenting assumptions;

• Do experiments in the classic way, to check that the explanation does, in fact, hold for your simulation
code — i.e. check your code and try to refute the explanation using carefully designed experiments with
the model.

Description

Motivation

4.1 An important, but currently under-appreciated, activity in science is that of description. Charles Darwin spent
a long time sketching and describing the animals he observed on his travels aboard the HMS Beagle. These
descriptions and sketches were not measurements or recordings in any direct sense, since he was already se-
lecting from what he perceived and only recording an abstraction of what he thought of as relevant. Later on,
these were used to illustrate and establish his theoretical abstraction — his theory of evolution of species by
natural selection. The purpose of the descriptions were to record, in a coherent way, a set of selected aspects
of the phenomena under observation. These might be used to inform later models with a di�erent purpose or,
if there are many of them, be the basis fromwhich induction is done.

4.2 One candescribe things using natural language, or pictures, but these are inadequate for dynamic and complex
phenomena, where the essence of what is being described is how several mechanisms might relate over time.
An agent-based simulation framework allows for a direct representation (one agent for one actor) without the-
oretical restrictions. It allows for dynamic situations as well as complex sets of entities and interactions to be
represented (as needed). This can make it an ideal complement to scenario development because it ensures
consistency between all the elements and the outcomes. It is also a good base for future generalisations when
the author can access a set of such descriptive simulations.

Definition

4.3 Adescription (usinga simulation) is anattempt to partially representwhat is important of a specific observed case
(or small set of closely related cases).

4.4 Unpacking some of this:
• This is not an attempt to produce a 1-1 representation of what is being observed but only of the features
thought to be relevant for the intended kind of study. It will leave out some features, however a descrip-
tion tends to err on the side of including aspects rather than excluding them (for simplicity, communica-
tion etc.).

• It is not in any sense general, but seeks to capture a restricted set of cases — it is specific to these and no
kind of generality beyond these can be assumed.

• The simulation has to relate in an explicit andwell-documentedway to a set of evidence, experiences and
data. This is the opposite of theoretical exposition and should have a direct and immediate connection
with observation, data or experience.

• This kind of purpose may involve the integration, within a single picture, of many di�erent kinds of ev-
idence, including: qualitative, expert opinion, social network data, survey data, geographic data, and
longitudinal data.

Examples

4.5 In 1993, François Bousquet and colleagues (Bousquet et al. 1993) developed a simulation23 whose purpose was
described as follows:

“Wehave developeda simulator to represent both social, economic and ecological knowledge to con-
tribute to a synthesis of the multidisciplinary knowledge âĂę As a result of the simulations, focus can
be put on the relation between space sharing rules and the evolution of the ecological equilibrium.
The simulator is considered as a discussion tool to lead to interdisciplinary meetings.”
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4.6 Thus this is not designed to explain or predict but to represent and formalise, aiming to formalise some of the
relationships and dynamics of the situation.

4.7 Moss (1998) describes amodel that captures some of the interactions in a water pumping station during crises.
This came about through extensive discussions with stakeholders within a UKwater company about what hap-
pens in particular situations during such crises. The model sought to directly reflect this evidence within the
dynamic formof a simulation, including cognitive agentswho interact to resolve the crisis. This simulation cap-
tured aspects of the physical situation, but also tackled some of the cognitive and communicative aspects. To
do this, he had to represent the problem solving and learning of key actors, so he inevitably had to use some ex-
isting theories and structures—namely, AlanNewell andHerbert Simon’s general problem solving architecture
(Newell &Simon 1972) andCohen’s endorsementmechanism (Cohen 1985). However, this is allmadeadmirably
explicit in the paper. The paper is suitably cautious in terms of any conclusions, saying that the simulation

“indicate[s] a clear need for an investigationof appropriate organizational structures andprocedures
to deal with full-blown crises.”

Risks

4.8 Any system for representation will have its own a�ordances — it will be able to capture some kinds of aspect
muchmore easily than others will. This inevitably biases the representations produced, as those elements that
are easy to represent aremore likely to be captured than those which aremore di�icult. Thus, themediumwill
influence what is captured and what is not.

4.9 Since agent-based simulation is not theoretically constrained24, there are a large number of ways in which any
observed phenomena could be expressed in terms of simulation code. Thus, it is almost inevitable that any
modeller will use some structures or mechanisms that they are familiar with in order to write the code25. Such
a simulation is, in e�ect, an abduction with respect to these underlying structures andmechanisms— the phe-
nomena are seen through these and expressed using them.

4.10 Finally, a reader of the simulationmaynot understand the limitations of the simulation andmake false assump-
tions as to its generality. In particular, the inference within the simulations may not include all the processes
that exist in what is observed — thus it cannot be relied upon to either predict outcomes or justify any specific
explanation of those outcomes.

Mitigatingmeasures

4.11 As long as the limitations of the description (in terms of its selectivity, inference and biases) are made clear,
there are relatively few risks here, since notmuch is being claimed. If it is going to be useful in the future as part
of a (slightly abstracted) evidencebase, then its limitations andbiasesdoneed tobeexplicit. Thedata, evidence
or experience it is based upon also needs to be made clear. Thus, good documentation is the key here — one
does not know how any particular description will be used in the future so the thoroughness of this is key to its
future utility. Here it does not matter if the evidence is used to specify the simulation or to check it a�erwards
in terms of the outcomes, all that matters is that the way it relates to evidence is well documented. Standards
for documentations (such as the ODD and its various extensions (Grimm et al. 2006, 2010) help ensure that all
aspects are covered.

Theoretical Exposition

Motivation

5.1 If one has a mathematical model, one can do analysis upon its mathematics to understand its general prop-
erties. This kind of analysis is both easier and harder with a simulation model; to find out the properties of
simulation code one just has to run the code— but this just gives one possible outcomes from one set of initial
parameters. Thus, there is the problem that the runs one sees might not be representative of the behaviour in
general. With complex systems, it is not easy to understand how the outcomes arise, evenwhen one knows the
full and correct specification of their processes, so simply knowing the code is not enough. Thus with highly
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complicated processes, where the human mind cannot keep track of the parts unaided, one has the problem
of understanding how these processes unfold in general.

5.2 Where mathematical analysis is not possible, one has to explore the theoretical properties using simulation —
this is the goal of this kind ofmodel. Of course, withmany kinds of simulation onewants to understand how its
mechanismswork, but here this is the only goal: to rigorously explore the consequences of assumptions, using
mathematics and computer simulation. Thus, this purpose could be seen as more limited than the others,
since some level of understanding the mechanisms is necessary for the other purposes (except maybe black-
box predictive models). However, with this focus on just the mechanisms, there is an expectation that a more
thorough exploration will be performed — how these mechanisms interact and when they produce di�erent
kinds of outcome.

5.3 Thus, the purpose here is to give somemore general idea of how a set of mechanisms work, so that modellers
can understand them better when used inmodels for other purposes. If themechanisms and exploration were
limited it would greatly reduce the usefulness of doing this. General insights are what is wanted here.

5.4 In practice, this means a mixture of inspection of data coming from the simulation, experiments and maybe
some inference upon or checking of the mechanisms. In scientific terms, one makes a hypothesis about the
working of the simulation —why some kinds of outcome occur in a given range of conditions — and then tests
that hypothesis using well-directed simulation experiments.

5.5 The complete set of simulationoutcomesover all possible initialisations (including randomseeds) does encode
the complete behaviour of simulation, but that is too vast and detailed to be comprehensible. Thus, some
general truths covering the important aspects of the outcomes under a given range of conditions is necessary
— the complete and certain generality established by mathematical analysis might be infeasible with many
complex systems but we would like something that approximates this using simulation experiments.

Definition

5.6 ‘Theoretical exposition’ means establishing then characterising (or assessing) hypotheses about the general be-
haviour of a set of mechanisms (using a simulation).

5.7 Unpacking some key aspects here.

• One may well spend some time illustrating the discovered hypothesis (especially if it is novel or surpris-
ing), followed by a sensitivity analysis, but the crucial part is showing the hypotheses are refuted or not
by a sequence of simulation experiments.

• The hypotheses need to be (at least somewhat) general to be useful.

• A use for theoretical exposition can be to refute a hypothesis, by exhibiting a concrete counter-example,
or to establish a hypothesis. Whilst some theoretical exposition work involves mapping the outcomes
systematically, it is nice to have explicit hypotheses about the results formulated and then tested with
specific experiments designed to try and falsify them.

• Another use of theoretical exposition is when assumptions are tested or compared — for example by
weakening or changing an assumption or mechanism in an existing model and seeing if the outcomes
change in significant ways from the original26.

• Although any simulation has to have somemeaning for it to be amodel (otherwise it would just be some
arbitrary code) this does not involve any other relationshipwith the observedworld in terms of a defined
mapping to data or evidence.

Example

5.8 De�uant et al. (2002) study the behaviour of a class of continuous opinion dynamic models. This paper does
multiple runs, mapping the outcomes over the parameter space using some key indicators (e.g. relative mean
influenceof ‘extremist agents’). Fromthese it summarises theoverall behaviourof this class inqualitative terms,
dividing the outcomes into a number of categories. Later De�uant & Weisbuch (2007) use probability distribu-
tionmodels to try and study thebehaviour of a class of continuousopiniondynamicmodels, approximating the
agent-basedmodels using equations. These analyticmodelswere then tested against the agent-basedmodels.
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Although the work is vaguely motivated with reference to observed phenomena, the described research is to
understand the overall behaviour of a class of models (Flache et al. 2017).

Risks

5.9 In theoretical exposition one is not relating simulations to the observed world, so it is fundamentally an easier
and ‘safer’ activity27. Since a near complete understanding of the simulation behaviour is desired this activity
is usually concerned with relatively simple models. However, there are still risks — it is still easy to fool oneself
with one’s own model. Thus, the main risk is that there is a bug in the code, so that what one thinks one is
establishing about a set of mechanisms is really about a di�erent set of mechanisms (i.e. those including the
bug).

5.10 A second area of risk lies in a potential lack of generality, or ‘brittleness’ of what is established. If the hypothesis
is true, but only holds under very special circumstances, then this reduces the usefulness of the hypothesis in
terms of understanding the simulation behaviour.

5.11 Lastly, there is the risk of over-interpreting the results in terms of saying anything about the observed world.
Themodelmight suggest a hypothesis about the observedworld, but it does not provide any level of empirical
support for this.

Mitigatingmeasures

5.12 Themeasures that should be taken for this purpose are quite general andmaybe best understood by the com-
munity of simulators.

• One needs to check one’s code thoroughly (see Galán et al. 2017 for a review of techniques).

• Oneneeds to beprecise about the code and its documentation— the code should bemadepublicly avail-
able. This might include comments in the code, ODD style documentation in addition to a narrative ac-
count, and how the code relates to the theoretical assumptions.

• Be clear as to the nature and scope of the hypotheses established.

• A very thorough sensitivity check should be done, trying various versions with extra noise added, testing
for extreme conditions etc.

• It is good practice to illustrate the simulation so that the readers understand its key behaviours but then
follow this with a series of attempted refutations of the hypotheses about its behaviour to show its ro-
bustness.

• Be very careful about not claiming that this says anything about the observed world.

Illustration

Motivation

6.1 Sometimes one wants to make an idea clear or show it is possible, then an illustration is a good way of doing
this. It does this by exhibiting a concrete example that might be more readily comprehended. Complex sys-
tems, especially complex social phenomena, can be di�icult to describe, including multiple independent and
interactingmechanisms and entities. A well-cra�ed simulation can help people see these complex interactions
at work and hence appreciate these complexities better. As with description, this purpose does not support
any significant claims. If the theory is already instantiated as a simulation (e.g. for theoretical exposition or
explanation) then the illustrative simulation might well be a simplified version of this.

6.2 Illustration goes to the heart of the power of formal modelling, since it is the instantiation of a set of ideas in a
structure that can be indefinitely inspected and critiqued. This example can then be used to make precise the
meaning of the terms used to express that idea. It also shows the possibility of the process being illustrated (but
nothingabout its likelihood). Onepowerful useof an illustration is asacounter-example toa setof assumptions.
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Definition

6.3 An illustration (using a simulation) is to communicate or make clear an idea, theory or explanation.

6.4 Unpacking this.

• Here the simulation does not have to fully express what it is illustrating, it is su�icient that it gives a sim-
plified example. So it may not domore than partially capture the idea, theory or explanation that it illus-
trates, and it cannot be relied upon for the inference of outcomes from any initial conditions or set-up.

• The clarity of the illustration is of over-riding importance here, not its veracity or completeness.

• An illustration should not make any claims, even of being a description. If it is going to be claimed that it
is useful as a theoretical exposition, explanation or other purpose then it should be justified using those
criteria — that it seems clear to the modeller is not enough.

Example

6.5 Schelling developed his famousmodel for a particular purpose — he was advising the Chicago district on what
might be done about the high levels of segregation there. The assumption was that the sharp segregation ob-
served must be a result of strong racial discrimination by its inhabitants. Schelling’s model (Schelling 1969,
1971) showed that segregation could result from just weak preferences of inhabitants for their own kind — that
even a wish for 30% of people of the same trait living in the neighbourhood could result in segregation. This
was not obvious without building a model. The model was a clear counter example to the assumption.

6.6 What the model did not do is say anything about what actually caused the segregation in Chicago — it might
well be the result of strong racial prejudice — the model was not empirically connected with the case to say
anything about this. What it did was illustrate an ideal about how segregation might occur. The model did not
predict anything about the level of segregation, nor did it explain it. All it did was provide a counter-example to
the current theories as to the cause of the segregation, showing that this was not necessarily the case28.

Risks

6.7 Themain risk here is that youmight deceive people using the illustration into readingmore into the simulation
than is intended. Just because a model’s outputs mimics an observed pattern (e.g. a Lotka-Volterra cycle)
there is no indication how much this model is relevant to similar examples of those patterns. One illustration
is simply not enough to show a useful empirical relationship. There is also a risk of confusion if it is not clear
which aspects are important to the illustration and which are not. A simulation for illustration will show the
intended behaviour, but (unlike when its theory is being explored) it has been tested only for a restricted range
of possibilities, indeed the claimed results might be quite brittle to insignificant changes in assumption.

Mitigatingmeasures

6.8 Be very clear in the documentation that the purpose of the simulation is for illustration only, maybe giving
pointers to fuller simulations that might be useful for other purposes. Also be clear in precisely what idea is
being communicated, and so which aspects of the simulation are relevant for this purpose.

Analogy

Motivation

7.1 Analogy is apowerfulwayof thinkingabout things. Roughly, it applies ideasor a structure fromonedomainand
projects it onto another (Hofstadter 1995). This can be especially useful for thinking about new or unfamiliar
phenomenaor as a guide to thedirectionofmore rigorous thought. Sometimes it can result in new insights that
are later established in a more rigorous way. There is some evidence that analogical thinking is very deeply
entrenched in the whole way we think and communicate (Lako� 2008). Almost anything can be used as an
analogy, including simulation models.
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7.2 Playing aboutwith simulations in a creative but informalmanner canbe very useful in termsof informing the in-
tuitions of a researcher. In a sense, the simulation has illustrated an idea to its creator29. Onemight then exhibit
a version of this simulation to help communicate this idea to others. How humans do analogy is not very well
understood, but this does not mean that the simulation achieves any of the other purposes described above,
and it is thus doubtful whether that idea has been established to be of public value (justifying its communi-
cation in a publication) until this happens. This is not to suggest that analogical thinking is not an important
process in science. Providing new ways of thinking about complex mechanisms or giving us new examples to
consider is a very valuable activity. However, this does not imply its adequacy for any other purpose.

Definition

7.3 An analogy (using a simulation) is when processes illustrated by a simulation are used as a way of thinking about
something in an informal manner.

7.4 Unpacking this.

7.5 Figures 1, 2 and 3 illustrate the di�erence between common sense, scientific (i.e. empirical) and analogical
understanding, respectively. The di�erence between empirical and analogical relationships is that in the latter
there is no direct relationship between the analogy (in this case the simulation) and the evidence, but only
indirectly through one’s intuitive understanding. An empirical relationship may be staged (model⇔ data⇔
observations) but these are well-defined and testable.

Figure 1: Common-sense mappings.
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Figure 2: Scientific mappings.

Figure 3: Analogical mappings.

7.6 It is not fully understood what the mind does when using an analogy to think, but it does involve taking the
structure of someunderstanding fromone domain and applying it to another. Humans have an innate ability to
thinkusinganalogiesando�endo itunconsciously. Here the relationshipbetweensimulationand theobserved
is re-imagined for each domain in which it is applied30 — thus this relationship is not well defined but flexible
and creative.

7.7 The modelling purposes of analogy and illustration can be confused due to the fact that a simulation that il-
lustrates an idea can later be used as an analogy (applying that idea to a new domain). However, the purposes
are di�erent — illustration is tomake an idea clear and give a specific example of it; an analogy is when an idea
is applied to other domains in an informal manner. Thus, there are substantive di�erences. For example, an
illustrated ideamight later be then tested in an explanatorymodel in awell-definedmanner against somedata,
since how the illustration represents is precise. To take another example, an analogymight gowell beyond that
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required of an illustration in terms of mapping many possibilities but without any well-defined relationship
with the real world.

7.8 Specifically:

• An analogy might not be clear or well defined but an illustration should be;

• An illustration can be a single instance or example but an analogymight cover a whole class of processes
or phenomena (albeit informally);

• A good analogy suggests a useful way of thinking about things, maybe producing new insights, a good
illustration does not have to do this;

• An illustration can be used as a counter example to some widely held assumptions, whilst an analogy
cannot.

Example

7.9 In his book, Axelrod (1984) describes a formalised computational ‘game’ where di�erent strategies are pitted
against each other, playing the iterated prisoner’s dilemma. Some di�erent scenarios are described, where it
is shown how the tit for tat strategy can survive against many other mixes of strategies (static or evolving). The
conclusions are supported by some simple mathematical considerations, but the model and its consequences
werenot explored inanywidespreadmanner31. In thebook, thepurposeof themodel is toopenupanewwayof
thinking about the evolution of cooperation. The book claims the idea ‘explains’many observedphenomena32,
but in an analogical manner — no precise relationship with any observedmeasurements is described. There is
no validation of themodel here or in themore academic paper that described these results (Axelrod&Hamilton
1981). In the academic paper there are somemathematical argumentswhich show the plausibility of themodel
but the paper, like the book, progresses by showing the idea is coherent with some reported phenomena—but
it is the ideas rather than the model that are so related. Thus, in this case, the simulation model is an analogy
to support the idea, which is related to evidence in a qualitative manner — the relationship of the model to
evidence is indirect (Edmonds 2001). Thus, the role of the simulation model is that of a way of thinking about
the processes concerned and themodel does not qualify for either explaining specific data, predicting anything
unknown or exploring a theory.

Risks

7.10 These simulations are just a way of thinking about other phenomena. However, just because you can think
about some phenomena in a particular way does not make it true. The human mind is good at creating, ‘on
the fly’, connections between an analogy and what it is considering — so good that it does it almost without us
being aware of this process. The danger here is of confusing being able to think of some phenomena using an
idea, and that idea having any force in terms of a possible explanation or method of prediction. The apparent
generality of an analogy tends to dissipate when one tries to specify precisely the relationship of a model to
observations, since an analogy has a di�erent set of relationships for each situation it is applied to — it is a
supremely flexible way of thinking. This flexibility means that it does not work well to support an explanation
or predict well, since both of these necessitate an explicit and fixed relationship with observed data.

Mitigatingmeasures

7.11 The obvious mitigation is to make clear when one is using a model as an analogy and that no rigorous rela-
tionship with evidence is intended. Analogies can be a very productive way of thinking as long as one does not
infer anything more from them — analogies can be very misleading and are not firm foundations from which
inference can be safely made.
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Social Learning

Motivation

8.1 Sometimes our simulations are not about the observed world at all, but (at least substantially) designed to
reflect anactor’s viewof thatworld. Such simulations canbedevelopedcollectively by agroupof people. In this
case, themodel can act as amediator betweenmembers of the group and can result in a shared understanding
of theworld (or at least a clear ideawhere themembers agreeanddi�er). This sharedunderstanding is explicitly
encapsulated in themodel for all to discuss, avoiding themisunderstandings that can come frommore abstract
discussion.

8.2 When theparticipatorydimensionof themodellingprocess is to the fore, theoverridingpurpose canbe referred
to as promoting social learning, e.g. increasing the knowledge of individuals through social learning and pro-
cesses within a social network and favouring the acquisition of collective skills (Reed et al. 2010). To build and
use models in a collaborative way is here a means for: generating a shared level of information among partici-
pants, to create commonknowledge, explore commongoals, andunderstand theviews, interests, and rationale
of opposing parties about the target system. Approaches, such asmediatedmodelling (Van den Belt 2004) and
companion modelling (Barreteau et al. 2003; Etienne 2014), have been applied to pursuing this goal in the do-
mainof environmental sciences, andmore specifically to tackle problems related to the collectivemanagement
of renewable resources. As pointed out by Elinor Ostrom (2009), when users of a given socio-ecological system
(SES) share common knowledge of relevant SES attributes as well as how their actions a�ect each other, they
can more easily self-organise. There is here a radical shi� from the purpose of using models for prediction for
the purpose of seeking an optimal solution within a command-and-control structure, to the purpose of collec-
tive learning (Brugnach 2010), related to the concept of adaptive co-management which leitmotiv is learning to
manage andmanaging to learn (Olsson et al. 2004).

Definition

8.3 A simulation is a tool for social learning when it encapsulates a shared understanding (or set of understandings)
of a group of people.

8.4 Unpacking this.

8.5 Developing a model as a tool for social learning is distinct from when one uses people as a source of evidence
in the form of their expert or personal opinion for a descriptive of explanatorymodel. In this case, although the
source is human and might be subjectively biased, the purpose is to produce an objectively justifiable model.
Although a model produced as part of a participatory social learning process might have other uses, these are
not what such a process is designed for.

8.6 Developing models to support social learning in the domain of environmental management is a kind of partic-
ipatory approach that can be very time-consuming (Barreteau et al. 2013). This is related to the wickedness of
problems such as those encountered in environmentalmanagement, which are characterized by a high degree
of scientific uncertainty and a profound lack of agreement on values (Balint et al. 2011). To confront such com-
plex policy dilemmas requires developing learning networks (Stubbs & Lemon 2001) of stakeholders to create
a cooperative decision-making environment in which trust, understanding, and mutual reliance develop over
time.

8.7 Scientists are part of the group of people. To make the most of collaboration between them and other stake-
holders, their role needs to be redefined towards scientists as stakeholders and participants, as has been sug-
gested by Ozawa (1991), rather than scientists as an objective third party.

8.8 Usingmodels to promote social learning implies a need to recontextualize uncertainty in a broader way— that
is, relative to its role, meaning, and relationship with participants in decision-making (Brugnach et al. 2008).
Instead of trying to eliminate or reduce uncertainties by collectingmore data, the post-modern view of science
(Funtowicz & Ravetz 1993) suggests that we should try to illuminate them (one of the purposes mentioned by
Epstein in his 2008 paper), for their better recognition and acceptance by stakeholders who are then enabled
to make informed collective decisions33.

8.9 Ambiguity is a distinct type of uncertainty that results from the simultaneous presence of multiple valid, and
sometimes conflicting, ways of framing a problem. As such, it reflects discrepancies in meanings and interpre-
tations. Under the presence of ambiguity, it is not clear what problem is to be solved, who should be involved
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in the decision processes or what is an appropriate course of action (Brugnach & Ingram 2012). The co-design
of a model may be a way to explore ambiguity among stakeholders through a constructivist approach (Salliou
et al. 2017).

Example

8.10 To mitigate the looming conflict in land use between government agencies seeking to rehabilitate the forest
cover in upper watersheds of northern Thailand and smallholders belonging to ethnic minorities exploiting
grasslands/fallows with an extensive cattle-rearing system a participatory modelling approach was applied.
This involved an iterative series of collaborative agent-based simulation activities that was implemented in
Nan Province (Dumrongrojwatthana et al. 2011). The exchange and integration of local empirical knowledge
on the vegetation dynamics and extensive cattle rearing system was fostered by the co-design of the inter-
active simulation tools used to explore innovative land use options consistent with the dual interests of the
parties in conflict. Herders requested the researchers to modify the model to explore new cattle management
techniques, especially rotations of ‘ruzi grass’ (Brachiaria ruziziensis) pastures. These collaborative modelling
activities, implemented with a range of local stakeholders (some of whom initially refused to even meet the
herders), established a communication channel between herders, foresters and rangers. The dialogue led to
an improvedmutual understanding of their respective perceptions of land-use dynamics, objectives and prac-
tices. The improvement of trust between the villagers and the forest conservation agencies was also noticeable
and translated into the design of a joint field experiment on artificial pastures.

Risks

8.11 Finding the rightway to engage stakeholders in co-designing amodel of a complex system is tricky. Using easily
accessible tools like role-playing games (Bousquet et al. 2002) canbebetter suited to grassroots people than for
policy-makers (who tend to discard them as not serious enough). On the other hand, using conceptual designs
and computer-implemented simulationswith participantswhodidnot receive any formal educationmayprove
to be di�icult. Beyond the risk of not selecting appropriate tools to support the co-design, there is also a risk
that the models remain too generic and too abstract to get the interest of participants concerned by real-life
problems. On the other hand, if one sticks to some particularities of a specific situation without stepping back
su�iciently may not be enough to facilitate constructive discussions.

8.12 Without paying attention to power asymmetries, there is a risk that the most powerful stakeholders will have
greater influence on the outcomes of the participatory modelling process thanmarginalized stakeholders.

8.13 In the same line, when there is an initial demand expressed by one of the stakeholders, there is a risk that the
modellers bias the implementation of the process to fit their own perspectives (manipulation). As with any
purpose, there is a danger that models are used to further the interests of a particular set of stakeholders over
others, but this is a well known issue in the art and science of this kind of modelling.

8.14 Finally, there is a danger that goodness for this purpose implies a model is useful for other purposes, such as
explanation or prediction. Truly participating in the development of amodel can be a powerful experience and
can give those involved a false impression of a model’s empirical support for other purposes.

Mitigatingmeasures

8.15 Barnaud & Van Paassen (2013) advocate a critical companion posture, which strategically deals with power
asymmetries to avoid increasing initial power imbalances. The goal of this is to shi�more power from themod-
ellers to the stakeholders. This posture suggests that designers of participatorymodelling processes, intending
tomitigate conflicts, shouldmake explicit their assumptions and objectives regarding the social context so that
local stakeholders can choose to accept them as legitimate or to reject them.

Some Confusions of Purpose

9.1 It should be abundantly clear by now that establishing a simulation for one purpose does not justify it for an-
other, and that any assumptions to the contrary risk confusion and unreliable science. However, the field has
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many examples of such confusions and conflations, so we will discuss this a bit further. It is true that a sim-
ulation model justified for one purpose might be used as part of the development of a simulation model for
another purpose — this can be how science progresses. However, just because a model for one purpose sug-
gests a model for another, does not mean it is a good model for that new purpose. If it is being suggested that
a model can be used for a new purpose, it should be separately justified for this new purpose. To drive home
this point further, we look at some common confusions of purpose. Each time some code is mistakenly relied
upon for a purpose other than has been established for it.

1. Theoretical exposition→ Explanation. Once one has immersed oneself in a model, there is a danger
that theworld looks like thismodel to its author. This is a strong kind of Kuhn’s ‘Theoretical Spectacles’34,
and results from the intimate relationship that simulation developers have with their model. Here the
temptation is to jump from a theoretical exposition, which has no empirical basis, to an explanation of
something in theworld. An example of this is in the use of Lokta-Volterramodels of species communities.
Their realism is not only unclear, but actually not an issue at all, because they are just an illustration of an
idea (what happens if, at equilibrium, abundance of species A a�ects growth rate of species B in that and
that way?). This can bewrongly interpreted as an explanation of observed phenomena. Themodelsmay
play a key conceptual role butmiss out toomuch to be directly empirical. A simulation can provide away
of looking at somephenomena, but just because one can view somephenomena in a particularway does
not make it a good explanation. Of course, one can form a hypothesis from anywhere, including from a
theoretical exposition, but it remains only a hypothesis until it is established as a good explanation as
discussed above (which would almost certainly involve changing the model).

2. Description→ Explanation. In constructing a simulation for the purpose of describing a small set of
observed cases, one has deliberately made many connections between aspects of the simulation and
evidence of various kinds. Thus, one can be fairly certain that, at least, some of its aspects are realistic.
Someof this fitting to evidencemight be in the formof comparing the outcomesof the simulation to data,
in which case it is tempting to suggest that the simulation supports an explanation of those outcomes.
The trouble with this is twofold: (a) the work to test which aspects of that simulation are relevant to the
aspects being explained has not been done; (b) the simulation has not been established against a range
of cases — it is not general enough to make a good explanation.

3. Explanation→ Prediction. A simulation that establishes an explanation traces a (complex) set of causal
steps from the simulation set-up to outcomes that compare well with observed data. It is thus tempting
to suggest that one can use this simulation to predict this observed data. However, the process of using
a simulation to establish and understand an explanation inevitably involves iteration between the data
being explained and the model specification — that is the model is fitted to that particular set of data.
Model fitting is not a good way to construct a model useful for prediction, since it does not distinguish
betweenwhat is essential for the prediction and the ‘noise’ (what cannot be predicted). Establishing that
a simulation is good for prediction requires its testing against unknown data several times — this goes
way beyondwhat is needed to establish a candidate explanation for some phenomena. This is especially
true for social systems, where we o�en cannot predict events, but we can explain them a�er they have
occurred.

4. Illustration→ Theoretical exposition. A neat illustration of an idea suggests a mechanism. Thus, the
temptation is to use a model designed as an illustration or playful exploration as being su�icient for the
purpose of a theoretical exposition. A theoretical exposition involves the extensive testing of code to
check the behaviour and the assumptions therein, an illustration, however suggestive, is not that rigor-
ous. For example, it may be that an illustrated process is a very special case and only appears under
very particular circumstances, or it may be that the outcomes were due to aspects of the simulation that
were thought to be unimportant (such as the nature of a random number generator). The work to rule
out these kinds of possibility is what di�erentiates using a simulation as an illustration from a theoretical
exposition.

5. Illustration→ Prediction. In 1972 a group of academics under the auspices of ‘The Club of Rome’ pub-
lished a systems dynamicsmodel that illustrated how laggy feedback between key variables could result
in a catastrophe (in terms of a dramatic decrease in the variable for world population) (Meadows et al.
1972). By today’s standards this model was very simple and omitted many aspects, including any price
mechanismand innovation35. Unfortunately, this stark andmuchneeded illustrationwaswidely taken as
predictiveand themodel criticisedon thesegrounds36. Thebookdoesnot stopasserting that thepurpose
was illustrative, “e.g. . . . in themost limited sense of theword. These graphs are not exact predictions of the
values of the variables at any particular year in the future. They are indications of the system’s behavioural
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tendencies only” (Meadows et al. 1972, pp. 92–93). However, the book also o�en conflates talk about the
variables in their model and what those variables represent, e.g. “Our world model was built specifically
to investigate fivemajor trends of global concern—accelerating industrialization, rapid populationgrowth,
widespread malnutrition, depletion of non-renewable resources, and a deteriorating environment” (p. 21).
It does claim that the model was not purely theoretical, since it says “We feel that the model described
here is already su�iciently developed to be of some use to decision-makers. . .” (p. 22), however the way
in which it would be of use to decision-makers was not made clear. This was an illustration of a possible
future and not a prediction37.

6. Social learning→ Prediction. Having been involved in a companion modelling process implemented
in the National Park of Cevennes in the South of France (Etienne et al. 2003), a group of farmers, who
had been sensitized to the process of pine encroachment of their pastures through participating in role-
playing game sessions, decided to engage into an incentivized collective action plan. To specify theman-
agement plan, they requested to use as a decision support tool the agent-based model that had been
designed to support the role-playing game sessions. The model was clearly not meant for such a use. A
new version of the model was then designed, with a refined spatial resolution.

9.2 There is a natural progression in terms of purpose attempted as understanding develops: from illustration to
description or theoretical exposition, from description to explanations and from explanations to prediction.
However, each stage requires its own justification and probably a complete re-working of the simulation code
for this new purpose. It is the lazy assumption that one purpose naturally or inevitably follows from another
that is the danger.

Modelling strategies

9.3 As well as a declared purpose for a model, most modellers will also employ a number ofmodelling strategies
to guide themodel development to achieve this purpose. Amodelling strategy is an ‘rule of thumb’ that can be
used as a guide as to how to develop themodel. It is an informal meta-rule for themodelling processes, a story
to help the modellers cut down the overwhelming number of choices presented to them to something more
manageable. A modelling strategy is more about the process of model development, the modelling purpose is
more about its justification. This is essentially the same as the classic distinction in the philosophy of science
between the ‘context of discovery’ and the ‘context of justification’ (Reichenbach&Richardson 1938). Examples
ofmodelling strategies include “KISS” (Keep It SimpleStupid) and “KIDS” (Keep ItDescriptiveStupid) (Edmonds
& Moss 2005).

9.4 Although there hasbeenmuchdebate about these strategies (e.g.Meadowset al. 1967; Loehle 1990; Edmonds&
Moss 2005; Grimm et al. 2005; Edmonds 2010; Sun et al. 2016; Jager 2017), in this paper wewant to concentrate
on model purpose. Since, usually, we are not privy to the process of model development but only the justi-
fication of models we o�en do not know which strategies people are actually using38, but we feel we should
be explicitly and clearly told the modelling purpose. Also modelling strategy is more of a matter of personal
style. However, distinguishing di�erent purposes illuminates the debate on strategy so we discuss how di�er-
ent strategies might be appropriate for di�erent purposes in the Appendix.

Using Models with Di�erent Purposes Together

10.1 Clearly one sometimes needs to be able to achievemore than one of the above purposes with respect to some
phenomena. In such circumstances one might be tempted to imagine a model that mirrors reality so well that
it can be used for many purposes (e.g. to both predict and explain). In the above, we have argued that, even if
that were achievable, you would need to justify the model for each purpose separately.

10.2 However, we further suggest that this is usually better done with separate, but related models. The reason
for this should have become clear during the discussion as to what modelling strategies might be helpful to
achieve each purpose— each purpose has di�erent concerns and hence di�erent strategies are helpful. Even if
one had amodel of something as simple as an ideal gas, with a di�erent entity for each gas particle, itmight not
be a very practical model for prediction39. Rather one would probably use the gas laws that connect volume,
temperature and pressure that approximate this individual-basedmodel.

10.3 Cartwright (1983) argues that, in physics, there is a distinction between explanatory and phenomenological
laws. That is, in theabove language, themodels that explainand themodels thatpredict aredi�erent. However,
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in a mature science, the relationship between these di�erent models is well understood. Cartwright describes
someexampleswhere an explanatory theory is used as the starting point for generating anumber of alternative
predictive models and the predictions are only trusted when the alternate routes to that prediction roughly
agree.

10.4 In the social sciences, the phenomena aremore complex than those usually tackled in physics. For this reason,
we should expect there to be many di�erent models that achieve di�erent purposes in respect to some phe-
nomena, di�erent versions of these models for di�erent assumptions one might make, and maybe di�erent
versions to address di�erent aspects of those phenomena. Thus, wemight expect that awhole cluster of di�er-
ent models might be used to get a better picture of any particular phenomenon, each with di�erent purposes.
The idea that wemight have only onemodel that is adequate for one target is probably infeasible.

10.5 An example of using di�erent models for di�erent purposes is when models of di�erent levels of abstraction
are used to ‘stage’ abstraction. Following a KIDS kind-of strategy, one can start with a relatively complex or
descriptive model and then seek to approximate this with simpler models that one can get a better theoretical
understanding of. This was tried in Fieldhouse et al. (2016); Lafuerza et al. (2016b,a).

10.6 By keeping models for di�erent purposes separately but defining/describing the relationship between them,
we can get many of the advantages of combining models but with less chance of confusion of purpose.

Conclusion

11.1 In Table 1 we summarise themost important points of the above distinctions. This does not include all the risks
of each kindofmodel, but simply pickswhatwe see as themost pertinent ones. Youwill notice that the features
and risks are sometimes associated with validation and sometimes verification activities; this is because the
relative importance of validation and verification (and indeed other activities such as interpretation) change
dependent on themodel purpose. If one is aiming at using amodel for prediction, then validation is crucial (an
essential feature), but if it is for theoretical exploration then verification is key.

Modelling Purpose Essential features Particular risks (apart from that of
lacking the essential features)

Prediction Anticipates unknown data Conditions of application unclear
Explanation Uses plausible mechanisms to match

outcome data in awell-definedmanner
Model is brittle, sominor changes in the
set-up result in bad fit to explaineddata;
bugs in the code

Description Relates directly to evidence for a set of
cases

Unclear provenance; over generalisa-
tion from cases described

Theoretical exposition Systematically maps out or establishes
the consequences of somemechanisms

Bugs in the code; inadequate coverage
of possibilities

Illustration Shows an idea clearly as a particular ex-
ample

Over interpretation to make theoretical
or empirical claims; vagueness

Analogy Provides a way of thinking about some-
thing; gives insights

Taking it seriously for any other purpose

Social learning Facilitates communication or agree-
ment

Lackof engagement; confusionwith ob-
jective modelling

Table 1: A brief summary of the discussedmodelling purposes

11.2 As should be clear from the above discussion, being clear about one’s purpose in modelling is central to how
one goes about developing, checking and presenting the results. Di�erent modelling purposes imply di�erent
risks, and hence di�erent activities to avoid these. If one is intending the simulation to have a public function
(in terms of application or publication), then one should have taken action to minimise the particular risks to
achieving its purpose, so that others can rely on the model for this purpose (at least to some extent).

11.3 This does not includeprivatemodelling, whosepurpose ismaybeplayful or exploratory anddoneonly between
consenting adults (or alone). However, in this case one should not present the results or model as if they have
achieved anything more than an illustration, otherwise one risks wasting other people’s time and attention. If
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one finds something of value in the exploration it should then be re-worked so it can be justified for a particular
purpose to be sure it is worth public attention.

11.4 This isnot to say thatmodels thathavebeenpublishedwithoutaclearpurpose shouldnothavebeenpublished,
but that now the field hasmaturedwe should aim for higher andmore scientifically productive standards – one
of these standards is that an audience should know under what purpose a model is being justified, so they
know how to judge it (and hence in what ways they might rely on it in their work). Perhaps journals should
encourage authors to clarify the purpose of their models from the beginning of the submission process, so that
editors, reviewers and (later) readers will know how to critique the research and avoid some of the potential
misunderstandings.

A confused, conflated or unclearmodelling purpose leads to amodel that is hard to check, can create
misleading results, and is hard for readers to judge — in short, it is a recipe for bad science.
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Appendix: About Modelling Strategies

Amodelling strategy is an informal ‘rule of thumb’ that might be used to guidemodel development and check-
ing. Thus, the following discussion is more speculative than the rest of the paper, which is why it is relegated to
an Appendix. Such strategies are not something that can be proved right or wrong, merely more or less helpful
in the experience of individual modellers. However, as already noted, discussion about these strategies have
pervaded the literature, so it is worth saying what light distinguishing between di�erent model purposes has
on this debate.

Some of these strategies are as follows.

• Keep it Simple Stupid (KISS). This is the strategy of starting as simple as one can get awaywith and then
only adding complication when necessary. Thus, one starts with relatively simple models and develops
from there. This is a well-established principle in engineering since it maintains the maximum control
and understanding of the system as it develops, and hence reduces the possibility of making mistakes.
A particular example of KISS is the TAPAS strategy, namely “Take a Previous Model and Add Something”
(Frenken 2006) where you start from a previously publishedmodel40.

• Minimise the Number of Parameters (MNP). This is where one has as few parameters for the model as
possible. This is slightly di�erent from KISS in terms of both purpose and practice. Under MNP, you can
have complex processes as long as the number of parameters is small because the point is to reduce the
space of output behaviours. A randomnumber generatormay be implemented using a complex process,
but has only one parameter (its seed). A linear equation with many variables is simple but has many
parameters.

• Minimise theNumberofFreeParameters (MNFP). A freeparameter isone that isnotdeterminableusing
measurement from the target ofmodelling, even in principle. Thesemight be scaling factors (e.g. relating
di�erent time scales) or represent unknown aspects (e.g. the parameters of some learning algorithm
that an agent uses). Having fewer free parameters makes observed data di�icult to ‘fit’ just by adjusting
parameters. Free parameters are sometimes estimated by fitting amodel to in-sample data, but then one
is not clear which aspects of that data are being used and that in-sample data becomes (in e�ect) a huge
set of parameters.
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• Keep it Descriptive Stupid (KIDS). This is the strategy of starting from the evidence41 — if there is em-
pirical evidence for some aspect of the phenomena of interest then you include this in your model by
default. It is important that this is not just how one thinks things are— otherwise this strategy can degen-
erate intoMTMMLTP (below). One then starts themodel exploration from this point, and thenmaybe tries
the model without some of the elements and seeing if it makes any significant di�erence to the model
behaviour. However, as with the KISS strategy, one might equally find one needs even more detail. This
is described in (Edmonds & Moss 2005).

• Make theModelMoreLike thePhenomena (MTMMLTP42). This is the strategyofmaking themodelmore
like how we think things are. In other words, to use the correspondence view of modelling (discussed at
the beginning) as a guide to model development. We suspect that most of us use this strategy to some
extent, whether we are aware of it or not. This, we claim, is the source of much misunderstanding — just
because we think of amodel as being like some part of reality does necessarily notmake themodel good
for any particular purpose. The strength of this strategy depends critically on howmuch our view of how
things are is informed by empirical evidence— this is the important di�erence between this and the KIDS
strategy.

• Enhancing the Realism of Simulation (EROS). This might seem to be a specific sub-case of MTMMLTP,
since it advocates expanding the cognitivemodels used in simulations to bemore psychologically plausi-
ble (Jager 2017). However, bothWander Jager andRosaria Conte operationalize this bymaking the cogni-
tivemodels in their simulations consistentwith someaspect of psychological theories— thus this ismore
of theoretical constraint of one subject upon another rather than psychological realism. This is obviously
useful if youwant an explanation to be in terms of such psychological theories, but are ultimately only as
strong as these theories.

• Keep It a Learning Tool (KILT). This is the strategy of maximising the relevance and accessibility of a
model so that participants can engagewith themodel andbewilling to help specify or improve it (Le Page
& Perrotton 2017). This is somewhat di�erent to the other strategies here, since it is tied in with the pur-
pose of social learning. Social learning is a case where the process of model building is its point, and not
its subsequent justification.

These strategies are not something that can ever be proved or disproved, but rather only shown as helpful or
otherwise during the processes of modelling — especially the extent to which a model’s purpose is achieved
and demonstrated using them. To some extent, these are a matter of taste and personal style, but we argue
that they are also di�erently relevant to di�erent modelling purposes. We consider each purpose in turn.

Prediction

For the bare purpose of prediction it actually does not matter why your model predicts, just that it does43.
However, one does need some understanding of the code, because in practice the only way to find a predictive
model is a process of trial and error, adapting the code until it predicts — if one does not understand the code
it is hard to know how to adapt this to improve it for the next trial. Thus, KISS plays a role here. What is more
important to this purpose is (a) being able to set the parameters correctly for a casewhere onewants to predict
and (b) that the sensitivity of the key outcomes to those parameters canbe established so that one knows to the
likely accuracyof theprediction. For (a), MNFP is important so themodel canbe set up correctly for aprediction.
For (b), MNP is important so that the sensitivity (including joint sensitivity) of the predictions to the parameters
can be established using a Monte Carlo approach (or similar). If there is very reliable evidence for key parts of
the process one is simulating (e.g. the electoral college method of electing a president of the US) then it might
be sensible to fix that in your code. Thus, KIDS does have a small role here. MTMMLTP is not necessarily relevant
here and could result from adding more parameters, which would be counter-productive.

Explanation

When explaining somemeasured phenomena using a model, one does so in terms of the processes and struc-
tures that are built into the model. If those process and structures are not strongly related to those observed
one gets an explanation in terms that are not so relevant to what is being explained. Rather for explanation, it
is vital that those aspects of the phenomena that we want the explanation to be in terms of, are in the model.
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Explanation di�ers from that of analogy because it has a well-defined relationship between the model and ev-
idence of what is observed, so that the KIDS strategy is very important here. It is desirable to have few free
parameters, as otherwise there is a danger that the ‘fit’ to observed outcomes was due to these having special
values, so MNFP plays a role. Social phenomena are o�en quite complex so explanatorymodels are o�en com-
plex (hence KISS is not relevant) and o�en have many parameters, but these should be based on evidence so
theremight bemany of these, so that MNP is not so relevant here. MTMMLTPmight lead one to include aspects
for which there is no direct empirical evidence, which would increase the number of free parameters, so MT-
MMLTP could also be counter-productive here. However, if one wants some empirical outcomes explained in
terms of psychological theories then EROS is appropriate.

Description

In a description you are just trying to record the observed aspects of some phenomena for latter use and in-
spection. Ideally you should not be projecting what you ‘think’ is there but focussing onwhat is observed— i.e.
what there is evidence for. Thus it is KIDS and not MTMMLTP that is more relevant here. The number of param-
eters (MNP) is not important, but having lots of free parameters is an indication you are including unobserved
aspects into your description, so MNFP is. A description should be as simple or as complex as what is being
described so KISS is not relevant here either.

Theoretical exposition

When trying to systematically characterise the behaviour of a model, there are essentially two techniques:

1. to systematically map out the space of behaviours by running the model many times

2. to approximate the behaviour with a simpler model (e.g. an analytic model, a social network analysis or
a simpler simulation).

The first of these becomes more di�icult with an increasing number of parameters that need to be mapped.
Thus, MNP is core here. Whether the parameters are free or not is not really relevant to a theoretical exposition
(so MNFP is not very important here). The second of these is harder the more complicated and complex the
original model is, thus KISS is also key. Although theoreticiansmay have an eye to the eventual applicability of
their work, the relationship of theirmodel towhat is observed is not important. Whilst evidence fromobserved
systems might be a helpful guide to whether one is on the right track, it is well known that trying to add too
many features just because that is how one thinks of a system can be fatal to a good exposition (thus MTMMLTP
is unhelpful here).

Illustration

A good illustration is as simple as possible to capture what is needed. Thus, KISS has to be the over-riding prin-
ciple here and it probably does not havemany parameters. It can help if the illustration is plausible (MTMMLTP).
An illustration is o�en of an idea rather than an observed process, so KIDS does not usually come into this.

Analogy

Agoodanalogy is relatively simple (KISS) but is flexible as to its relationshipwithwhat is observed. Indeed some
of the point of an analogy is that it can be applied to completely unforeseen situations (so not KIDS). It helps if
it is plausible (MTMMMLTP). Since analogies are o�en used in social learning KILT is relevant here (although we
mediate so naturally using analogies that there is less need for a ‘science’ of this).

Social learning

Regarding the suitability of the tools and thedegreeofmodel complication (Sunet al. 2016), LePage&Perrotton
(2017) advocate using an intermediate level of stylized but empirically based models and proposed the motto
Keep It a Learning Tool (KILT) to stress the importance of sticking to the announcedpurpose of promoting social
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learning among participants. The KISS approach can initiate the process with an over-simplified stylized yet
empirically groundedmodel that enables tackling the complexity of the target socio-ecosystemwith a tool that
has the status of a sketch. It provides the main features of the final version; however, it is clearly unfinished:
there remains an important work of progressive shaping and improvement so that it acquires its final form and
becomes usable with people who were not involved in its design. The crudeness of the initial version of the
model is actually a strategy to stimulate the involvement of the participants targeted as potential co-designers.

This strategy includes elements of MTMMLTP since aspects of what is being represented in themodel (those as-
sumed by all those involved) need to be recognisable by the stakeholders, especially if they structure themore
contentious elements (e.g. geographical layout, or seasons of the year) — there does not have to be evidence
for these since it is the perception of participants that counts, but there might be. The processes involved do
need to be comprehensible enough to be understood and criticisable by the participants, so KISS does play
a role here but not a central one. On the other hand, having many parameters (free or otherwise) can be an
advantage since these might be adjusted to enhance the plausibility or ‘realism’ of a simulation, so MNP is not
helpful here.

Summary of strategies

Table 2 summarises the above discussion in terms of the rough importance of the various strategies for achiev-
ing the various model purposes. This is not definitive, since strategy is partly a matter of taste. It can not be a
prescription but a rule of thumb that might be helpful.

Modelling Purpose Probably Important Can be Helpful Possibly Unhelpful

Prediction MNFP, MNP KISS, KIDS MTMMLTP
Explanation KIDS MNFP, EROS MTMMLTP
Description KIDS, EROS MTMMLTP, MNFP KISS
Theoretical exposition MNP, KISS KIDS MTMMLTP
Illustration KISS MTMMLTP, MNP EROS
Analogy KISS MTMMLTP, KILT KIDS, EROS
Social learning KILT MTMMLTP, KISS MNP

Table 2: Discussed relevance of strategies for the development of models with respect to the various purposes
heck your code and try to refute the explanation using carefully designed experiments with the model.

Notes

1Zeigler (1976) describes this as not one-one but as a homomorphism (a one-many) relationship so that
parts of the model correspond to sets of elements in what is observed, but this is e�ectively the same.

2With the exception of the purpose of description where a model is intended to reflect what is observed.
3We prefer the idea of a tool to that of a mediator (Morgan et al. 1999) since a model as a mediator is too

vagueand frustratesanyassessmentofgoodness forpurpose (except for thepurposeof social interactionwhere
people are goodat assessing thequality of communicationbetween themselves, andhencehowuseful amodel
was in facilitating this).

4Thiele & Grimm (2015) recommend to re-implement existingmodels, or parts of them, instead of just using
the code.

5See discussion about this problem in Bell et al. (2015).
6We are not ruling out the possibility of re-usablemodel components in the future using some clever proto-

col, we have now readmany proposals improving the re-usability of model code, but not seen any cases where
this works for anyone except for the teammaking these proposals.

7“Thinking about things analogically” would be amore precise title but that is too long.
8Short alternatives for this might be social learning, collaborative learning or the French word concertation.

We went with the broadest term.
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9In ecology, for example, they are the most common model purposes, together with “theoretical explo-
ration”.

10Validation is when one checks a model against its real world data, verification is when one checks that the
simulation does correspond to what we intended (Ormerod & Rosewell 2009).

11It would not really matter even if the code had a bug in it, if the code reliably predicts (though it might
impact upon the knowledge ofwhenwe can rely upon it or not).

12Where model B may be a random or null model but also might be a rival model.
13This kind of prediction is somewhat problematic, since it is o�en only apparent a�er additional empirical

work has revealed it to be correct and thus might be better characterized as a kind of explanation. However, it
is themost commonly confirmed kind of prediction for complex simulationmodels, and it is possible that some
predictions were put in print before they were checked for, so we included it.

14In ecological modelling, for example, it is common practice to plot model output versus data and refer to
this as “predicted vs. observed”, although in virtually all cases those “predictions” are based on heavy calibra-
tion, i.e. tweaking.

15There is a sense in which anymodel output can be re-cast as a conditional prediction (Boschetti et al. 2011)
but in many cases (e.g. where a model is not empirically based) the conditions are so unlikely as to be mean-
ingless. Thus we are not convinced that this interpretation of models is very useful —many models are simply
not intended to predict.

16Tobeprecise, somepeople have claimed topredict various social phenomena, but there are very few cases
where thepredictions aremadepublic before thedata is knownandwhere thenumber of failedpredictions can
bechecked. HoweverPolhill (2018) argues for the importanceofprediction, despite thedi�iculties. SeeStillman
et al. (2014) for a discussion of this in ecology.

17Goodpracticemight be to separate the training data (that informs yourmodelling), calibration data (where
free parameters are estimated),model selection data (forwhether onewould pick thatmodel to publish it), and
performance assessment data (which gives an idea of its objective performance.

18On top of these are those common to all kinds of complex system, including chaos, second-order emer-
gence etc.

19This is, in general di�icult to tell without also a good explanation of why a model predicts well. However,
as we pointed out the lack of a good explanation does not necessarily stop prediction being possible, as with
some “deep learning” models trained on bid data.

20In a mature science one will have both explanatory and predictive models, as well as how these are re-
lated, but as science develops one might come before the other, which is one of the reasons it is important to
distinguish these.

21We are being a little disparaging here, it may be that these have a definite meaning in terms of relating
di�erent scales or some such, but too o�en they do not have any clearmeaning but just help themodel fit stu�.

22Whilst ideally, processes that are not thought essential to the explanation shouldnot be included inmodels
designed for the purpose of supporting explanations, in practice it is o�en impossible not to include some, if
only to make the simulation run.

23The core of this was essentially François’ doctoral research.
24Tobeprecise, it does assume there are discrete entities or objects and that there are processeswithin these

that can be represented in terms of computations, but these are not very restrictive assumptions.
25Thus making modelling path- and culture-dependent.
26As in so called ‘Model to Model’ analysis (Hales et al. 2003).
27In the sense of not being vulnerable to being shown to be wrong later.
28Later, it stimulated a growing category of illustrative counter-examplemodels of unintendedmacro conse-

quences (Hegselmann 2017).
29Lotka describedmodelling as translating a verbal idea into an “animated object”, which has a life of its own

and can surprise.
30To be exact, the relationship is between some part of the understanding of the working of a simulation to

the domain of application.
31Indeed the work spawned a whole industry of papers doing just such an exploration.
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32For example, the spontaneous outbreaks of non-hostility across the trenches in World War I.
33Which might include a recognition of the need to collect more data.
34Kuhn (1962) pointed out the tendency of scientists to only see the evidence that is coherentwith an existing

theory — it is as if they have ‘theoretical spectacles’ that filter out other kinds of evidence.
35The model was heavily criticised by economists from soon a�er its publication, on the grounds that it did

not allow feedback from the price mechanism which would in principle encourage the conservation of scarce
resources and provide an incentive to innovate.

36For example http://foreignpolicy.com/2009/11/09/the-dustbin-of-history-limits-to-growth/, which mocks
the quality of predictions.

37We are aware that there are some that argue that, in fact, it was pretty good as a predictive model (e.g.
https://www.theguardian.com/commentisfree/2014/sep/02/limits-to-growth-was-right-new-research-shows-were-
nearing-collapse), but the model only ‘predicts’ in some and not other aspects over a short time frame and in
the absence of major turning points in the data.

38Grimm et al. (2014) argue that we should record and make public the process of model development in
‘TRACE’ documents.

39Of course, it is possible that an individual-basedmodelmight be useful for predicting other things, such as
howmuch gas might leak through a particular shaped hole.

40This has the added advantage ofmaking it easier to publish in some fields, but that is beside the point here.
41Wemust admit that the acronym is a bit of amisnomer since here it is evidence rather than representation

that is key to it, however KIEB (Keep It Evidence Based) was not such a good acronym and would have ruined
the title of Edmonds & Moss (2005).

42OK, we admit it — wemade this acronym long and unpronounceable so that it would not catch on.
43It is important to knowwhen and where amodel works as a predictive model, e.g. which of two predictive

models one should use for any particular situation. This is why some knowledge about the conditions of appli-
cation of predictive models is important — even if this is just a rule of thumb. Sometimes such knowledge can
be provided by a good explanation, but sometimes this is the result of past trial and error.
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