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Abstract—In contrast to single-view learning, multi-view learn-
ing trains simultaneously distinct algorithms on disjoint subsets
of features (the views), and jointly optimizes them, so that they
come to a consensus. Multi-view learning is typically used when
the data are described by a large number of features. It aims at
exploiting the different statistical properties of distinct views.
A task to be performed before multi-view learning – in the
case where the features have no natural groupings – is multi-
view generation (MVG): it consists in partitioning the feature
set in subsets (views) characterized by some desired properties.
Given a dataset, in the form of a table with a large number of
columns, the desired solution of the MVG problem is a partition
of the columns that optimizes an objective function, encoding
typical requirements. If the class labels are available, one wants
to minimize the inter-view redundancy in target prediction and
maximize consistency. If the class labels are not available, one
wants simply to minimize inter-view redundancy (minimize the
information each view has about the others). In this work, we
approach the MVG problem in the latter, unsupervised, setting.
Our approach is based on the transposition of the data table: the
original instance rows are mapped into columns (the ”pseudo-
features”), while the original feature columns become rows (the
”pseudo-instances”). The latter can then be partitioned by any
suitable standard instance-partitioning algorithm: the resulting
groups can be considered as groups of the original features,
i.e. views, solution of the MVG problem. We demonstrate the
approach using k-means and the standard benchmark MNIST
dataset of handwritten digits.

Index Terms—Multi-view learning; k-means; dual space clus-
tering; consensus clustering; bagging;

I. INTRODUCTION

In several data analytic applications, data about each train-

ing example are gathered from diverse domains or obtained

from various feature extractors and exhibit heterogeneous

statistical properties. For instance in IoT environments, data

are collected by many distinct devices, at the periphery, so

that their feature-sets can be naturally endowed with a faceted

structure [1]. Also in the web-data mining domain the intrinsic

attributes of a page, describing its textual content, those that

describe its multimedia content and the extrinsic attributes

representing meta-data are endowed with very different and

specific statistical properties. In those and in other cases, the

features of each example can be naturally partitioned into

groups: each feature group is referred to as a particular view.

Most conventional machine learning algorithms concatenate

all views into a single view, subsequently provided in input

to the learning algorithms (single-view learning). In contrast

to this approach, multi-view learning (MVL) uses a distinct

learning model for each view, with the goal of better exploiting

the diverse information of the distinct views. The different

variants of MVL try to jointly optimize all the learning models,

so that they come to a consensus [2], [3]. Given a multi-view

description of a phenomenon, one can apply both supervised

or semi-supervised learning (e.g. multi-view classification or

regression [2]–[6]) and unsupervised learning (e.g. multi-view

clustering [7], [8]).

A. Motivations and problem

Sometimes, the features do not hint at a natural partitioning.

In this case, the first task to be performed in MVL is the one

known as multi-view generation (MVG): it consists in par-

titioning the feature-set in subsets (each representing a view)

characterized by some desired properties and relationships. For

instance, among the requirements of this problem is that the

inter-view redundancy is minimal. There are at least two forms

in which the problem can be found: the supervised setting and

the unsupervised setting.

In the first setting, the class labels are available: in this

case one wants to minimize the inter-view redundancy in

target prediction (maximize uniqueness of information about

the target from each view).

If the second, unsupervised setting, class labels are not

available. This occurs for example when the labels do not

actually exist: this is the case for instance of multi-view

clustering [7] or other multi-view unsupervised tasks. This

situation can take place also in multi-view supervised or semi

supervised tasks, when the labels are determined at a later

time. The case applies also to deep multi-view representation

learning: there one has access to multiple unlabeled views of

the data for representation learning. The setting applies as well

to the case of long data analytic pipelines, where at the early

stages of analysis it is not known what are the detailed learning

tasks for which the data will be used.

In the unsupervised MVG task, one aims at achieving

minimal inter-view redundancy (minimize the information

each view has about the others). In this work we approach

the MVG problem in the latter, unsupervised, setting.
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B. General approach

Given a dataset, in the form of a table, the desired solution

of the unsupervised MVG problem is thus a partition of the

columns that optimizes some least-redundancy requirements.

Hereafter, we will refer to the following document-word-

count example for the illustration of the method. Consider a

corpus of documents, such as a literary corpus or a corpus

of web pages (for now we disregard the hyper-links and the

multimedia content and focus on text only). Each document,

under the bag-of-words representation (that disregards the

structure of the text [9]–[13]), can be represented by the count

of the occurrences of each word of a reference dictionary.

This representation can take the form of a table, where each

document corresponds to a row and each word to a column

(we call it the [row=document,column=word] repre-

sentation): each table-cell contains the count of the number of

occurrences of a word into a document. In this formulation

the words play the role of features while the documents play

the role of instances.

Suppose that we intend are to apply multi-view learning:

each view would correspond to a subset of words. Unfortu-

nately, in our example, a natural partition of the words into

views is not available. Thus, before running multi-view learn-

ing, we need to perform multi-view generation. We assume

that no labels are available for the documents: our problem

corresponds to the unsupervised MVG problem. We aim at

partitioning the words into groups that optimize the least

inter-view redundancy requirements, without any reference to

labels, but based only on the relative properties of the views.

A solution to this problem takes the form of a partition of the

feature-set (a partition of the columns).

Our approach to the unsupervised MVG problem consists a

dual-space method, based on the transposition of the data ta-

ble. The original instance rows are mapped into columns, that

we call ”pseudo-features”, while the original features columns

become rows, that we call ”pseudo-instances” (i.e. we passe

to a [row=word, column=document] representation).

After transposition, a solution of the MVG problem takes the

form of a partition of the pseudo-instances.

The key idea of our approach is the following: consider

the pseudo-instances (the rows after transposition, which are

the instances of a different problem, the dual problem), to

those rows one can apply a standard instance-partitioning

algorithms. Once the partition of the rows is obtained, one

can transpose the solution back into the original form, and get

the multi-view partition of the original features.

For the sake of simplicity, we study the approach using

the partitional clustering algorithm k-means, however any

partitional clustering algorithm could be used to the purpose.

We also chose, for demonstrative purposes, to limit ourselves

to the most straightforward case of numerical-only data: the

case of partially of fully categorical data could in principle

be dealt with, by using suitable categorical to numerical

encodings (such as the one-hot encoding). We validate the

approach using the MNIST handwritten digits dataset.

Organization of the paper. The reminder of the paper is

organized as follows. In the next section (Section II) we

provide an overview of the method, then (Section III) we

give a formal definition of the problem and of the approach.

Subsequently (Section IV), we show the results obtained

from the benchmark dataset and provide a partial validation

(Section V). The discussion of the outcomes concludes the

paper (Section VI).

II. OVERVIEW OF THE METHOD AND ISSUES

Let us refer to our illustrative document-word data table

example, with count values, i.e. numerical values in the table-

cells. The original data table has the form [row=document,
column=word]. Our method consists in taking the trans-

pose of the data table, i.e. passing to a [row=word,
column=document] representation: now the words (for-

merly acting as features) take the role of objects and are

called pseudo-instances, while the documents (formerly acting

as instances) take the role of attributes and are called pseudo-
features.

We can apply k-means to the pseudo-instances to obtain

a partitioning of the words. In the algorithm, the distances

between two words, i.e. two points (pseudo-instances), are

computed in the document space: the space in which each

dimension corresponds to a document. Two words that have a

similar (percentage) count in the same document are close

along that (document) dimension. The k-means algorithm

outputs k clusters of pseudo-instances. At this point, one can

transpose back the partition of the pseudo-instances and get

a multi-view partition of the original features. The relation of

this method with simple word clustering based on documents

or with the co-clustering approach is developed in the Discus-

sion, Conclusion and Outlook section.

1) Issues: The main issue, after the first transposition, is

that, if the original dataset is large, the number of pseudo-

features makes the problem very high-dimensional, and the

clustering algorithm potentially less effective. E.g. in a large

corpus, consisting of many documents, the transposed matrix

has a very large number of columns.

We address this issue as follows:

i) we break the whole set of pseudo-features into r smaller

disjoint subsets (in the original space they represented

object batches);

ii) we run a distinct pseudo-instance clustering on each

of the r pseudo-feature subset, so that each clustering

yields its own partition; we are left with r partitions;

iii) we aggregate the r cluster partitions to produce an

individual partition solution.

With respect to points i) and ii), the operation of breaking

down the columns should be made by choosing at random

the columns, so as to avoid possible biases resulting from

the structure of the original dataset (in our example, the

documents might have been listed by topic). Thanks to the

randomness in the choice of the pseudo-features, running

a distinct pseudo-instance clustering on each pseudo-feature

subset should provide roughly consistent clustering solutions.
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With respect to the point iii), we observe that it involves

a non-trivial problem: the reconciliation of the different par-

titions. Though, this can be performed by standard partition

consensus algorithms. The main approaches to this problem

consist either in creating the partition that shares the maximum

information with the ones available [14] or creating the solu-

tion partition by aggregation e.g. by majority voting/boosting

[15], [16] (a review of those cluster ensemble methods can be

found in [17]). We choose the second approach.

We demonstrate the overall approach using the MNIST

dataset of handwritten digits [18]. The instances of the dataset

are n = 60000. The features of each image are determined by

its pixels: each image has m = 784 pixels (they are square

images of m = p×p pixels, with p = 28): to each image-pixel

pair is associated the the gray-scale intensity of the pixel in

that image (a numerical value in the interval [0, 255]). Using

our approach, we obtain a partition of the set of pixels, into

subsets, each corresponding to a view.

With respect to the document-word-count example – that

we will continue using throughout the paper for illustrating

the method – the relevant relationships are the following: the

images of handwritten digits correspond to the documents (the

original instances); the pixels correspond to the words (the

original features); the count of the number of occurrences of

a words in a document is substituted by the gray-scale intensity

value of the pixel. The views consisting of subsets of words

are replaced by views consisting of subsets of pixels.

In principle, the views issued by our method can be later

used for multi-view learning (e.g. using the views separately

to learn relatively weak classifiers, then having the views to

coordinate into a multi-phase classification process). However

the study of the multi-view learning phase of the process

is out of the scope of the current work: the application

of our approach on the mentioned example is aimed only

at demonstrating the procedure. We return on the relation

between view splitting phase and multi-view learning phase

in the Results section.

III. FORMALIZATION OF THE METHOD

A. Notation

Let X = {x1, x2, . . . , xn} denote a set of ob-

jects/points/instances/examples. Each object corresponds to a

point in a m-dimensional feature space: the i-th object can be

represented as a row vector xi = xi∗ = (xi1, xi2, . . . , xim),
each element of the vector corresponding to an explanatory
variable or feature. The row vectors make up a data matrix

X . Each column vector of the data matrix X represents the

values taken by a feature over the different objects: the j-th

feature can be represented as x∗j = (x1j , x2j , . . . , xnj).
To represent the operations in the dual space, it is useful

to denote the transpose X� of X by a matrix Y = X�. We

treat the m features of the dataset X as instances of the dataset

Y , and call the m rows of Y pseudo-instances; similarly, we

treat the n rows of the dataset X as features of the dataset

Y , and call the n columns of Y pseudo-features. When using

a single index, we refer to a whole array: xi refers to the

i-th instance of the data matrix X , while yj refers to the j-

th pseudo-instance of the data matrix Y . The set of pseudo-
instances can be denoted by the collection of row vectors Y =
{y1, y2, . . . , ym}.
B. A dual-space approach to unsupervised MVG

The multi-view generation task consists in the following

problem. Given a dataset in the form of an n ×m matrix X
– with n, rows representing the instances, and m columns,

representing the features – find a partition of the feature set

consisting in k blocks, so as to optimize a specific objective

function of the intra-view and inter-view similarity.

The objective functions typically used in relation to this

task can encode several requirements. The main requirement

considered in literature is the following: the information

held by each view should be as much as possible unique
(maximal inter-view diversity, minimal inter-view redundancy

requirements). Those methods that have access also to the

classifiers/regressors later used in the training, can consider

also requirements such as sufficiency of the view (good

predicting power) and compatibility (the classifiers trained on

the different views, given an instance, should predict the same

label with high probability). In our case we assume we do

not have access to the classifier/regressor to be used in the

training, therefore we consider only the maximum inter-view

diversity, i.e. minimum inter-view redundancy requirement.

1) Requirements and distance definition: We pursue the

attainment of the minimum inter-view redundancy requirement

indirectly, by maximizing the intra-view redundance: features

should be grouped together if they contain partially redundant

information, or equivalently if one feature contains much

information about the other. To this purpose we try to group

together those features that are close in this pre-specified

sense: two features are close if for many objects they have
similar values (on a standardized scale): intuitively, knowing

the values of one feature (on a collection of objects) can help

guessing the value of the other feature on the other feature (on

the same array of objects). This concept can be concretized

in a variety of ways, each one dense of assumptions about

the process that generated the data. We chose to use the

above stylized definition: two features are close if they provide

similar values on many objects.

In our reference example, where the objects are documents

and the features are words, two words are considered close to

one another if they have similar (percentage of) occurrence in

several documents. Notice that we are not advocating this as a

definition of distance between two words specially meaningful

in many contexts: we just illustrate how the definition of

distance between features would translate in terms of our

example; the usefulness of this definition consists in providing

a way of creating views with high intra-view redundance.

From this definition of pairwise distance between features

one can build groupings of similar features, for instance as

centroid-based clustering algorithms do.

To this purpose, we pass from the original data matrix X to

its transpose Y = X� and considering the rows of Y as new
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Fig. 1. Illustration of the overall process based on the reference example.

data-points (the pseudo-instances) we define the pairwise row

distance as an L2 distance, i.e. an Euclidean distance dE(·, ·).
The distance between row yj and row yj′ is defined as

d(yj , yj′) = d(j, j′) =

(
n∑

i=1

(yj,i − yj′,i)
2

) 1
2

where i runs over all the pseudo-features (i.e. the former

objects). Based on this distance one can run the clustering

algorithm k-means [19] or another algorithm belonging to the

same family, such as k-medoid [20].

2) Output of a single pseudo-instance clustering and di-
mensionality problems: Running the k-means partitioning

algorithm, one obtains a solution for the problem of pseudo-

instance partitioning based on the dataset Y . This will also

be a solution of the MVG (i.e. feature partitioning) problem

based on X .

In practice, however when the number n of rows of

X is large, after transposition, the number of pseudo-

features (columns of Y ) makes the clustering problem high-

dimensional, and the clustering algorithm potentially less

effective (e.g. a significant difference of two points along

a dimension could be obfuscated by many non-significant

differences along other dimensions).

One can address the issue by breaking the set of pseudo-

features into r smaller redundant subsets of s elements each

(approximately n/r elements each), then by running the

clustering algorithm separately on the whole set of pseudo-

instances, described only by a group of s pseudo-features.

This yields r distinct cluster partitions. Eventually, the dif-

ferent partitions can be aggregated by a partition consensus

algorithm, to produce an individual partition solution.

In terms of our reference example – in which the objects are

the documents and the features are the words, and in which

the pseudo-instances are the words, while the pseudo-features

are the documents – this corresponds to breaking the corpus

into r randomly chosen groups of documents and running

the clustering algorithm r times over all the pseudo-instances

(words), using only s pseudo-features at time, then aggregating

the resulting r partitions into a single solution partition: e.g. a

word will be assigned to the partition block to which it belongs

most often.

This task is formally described in the next subsection.

C. The consensus clustering task

A clusterer Φ is a function that, given a set Y , outputs a par-

tition π under the form of a label vector λ. Different clusterers
Φ(1),Φ(2), . . . ,Φ(r), run over the same dataset Y will output,

in general, different label vectors λ(1), λ(2), . . . , λ(q), . . . , λ(r).

A collection of label vectors Λ = {λ(1), λ(2), . . . , λ(r)} can

be combined into a single label vector λ̂, called consensus
labelling, by using a consensus function Γ. Equivalently one

can say that Γ combines the corresponding collection Π of

partitions Π = {π(1), π(2), . . . , π(q), . . . , π(r)} into a single

partition π̂. Given r partitions, the λ(q) partition consisting in

k clusters/blocks, a consensus function is defined as a mapping

N
n×r → N

n taking a set of partitions into an integrated

partition, Γ : Λ→ λ̂, or equivalently Γ : Π→ π̂.

The consensus clustering problem consists in finding a new

partition π̂ of the data Y , given the partitions in Π, such that

the objects in a block/cluster of π̂ are more similar (in some

pre-specified sense) to each other, than the object in different

clusters of π̂. The solution of the problem can be defined

in different ways [17]: some are based on minimization of

information theoretic measures, some on different forms of

aggregation, such as majority voting (bagging). We will use

the latter approach. Beforehand, however we discuss a minor

technical issue.

1) Logical equivalence: The reconciliation of the different

partitions involves an ancillary issue: there are partitions that

are denoted by different arrays of labels, but that are the same

from the logical point of view (a suitable permutation of the

symbols used to denote the labels is able to transform one
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Fig. 2. Left: the first 25 images of the MNIST dataset. Right: the average
gray-level taken over the whole set: the pictures hints at a ”background” region
little or not used by the handwritten digits.

in another). Indeed, for each unique partition there are k!
equivalent representations as integer label vectors: i.e. given

two equivalent partitions there exists a permutation of the

labels such that they become equal. Formally, given the set

P of the k! permutations of [1, k], two label vectors λ(a)

and λ(b) are said to be logically identical if there exist

a permutation p ∈ P , taking λ(a) into λ(a)′ such that

λ(a)′(yj) = λ(b)(yj), ∀j ∈ [1,m]. One needs to account for

those equivalences, in order not to make the task of partition

reconciliation uselessly complex: this issue can be solved

passing to a canonical form [14]. Indeed the solution to this

potentially complex correspondence problem is very simple.

The pseudo-instances are endowed by a numerical index,

setting a natural ordering for the set of pseudo-instances. After

obtaining the r different partitions from the r clusterers, one

should rewrite, for each partition, the block labels, so that

the index of the blocks is monotonic (e.g. monotonic non-

decreasing) w.r.t. to the order of the objects. By rewriting

each partition in this way, logically identical partitions will be

mapped onto the same representation. Formally, one should

enforce for each partition the constraints (i) λ(y1) = 1 (the

first object defines the first block/cluster) and (ii) λ(yi+1) ≤
maxj=1,...,i(λ(yj))+1 ∀i = 1, 2, . . . , (n−1) (the cluster label

λ(yi+1) either has a label that occurred before, or has a label

that increases by one unit w.r.t. the highest used so far).

2) Partition reconciliation, by majority voting: Once the

r partitions are in canonical form, it is straightforward to

aggregate them into a single solution partition λ̂: one assigns

the pseudo-instance to its most frequently occurring label.

λ̂(yj) = argmax
λ

count(λ(yj))

In the reference example where the pseudo-instances are the

words, this corresponds to assigning a word to the partition

block in which it occurs most often. Ties can be resolved by

random choice. The overall process is illustrated in Figure 1

IV. RESULTS

We demonstrate the proposed approach using the MNIST

dataset containing gray-scale images of handwritten digits

[18]. With respect to the document-word reference example,

where we had documents we now have pictures, where we

had word occurrence counts we have pixel gray levels.

A. The dataset

The dataset contains n = 60, 000 gray-scale images: each

image instance represents a handwritten digit. Although the

class label for each image is available (there are 10 classes,

{0, 1, 2, . . . , 9}), it is not used in our unsupervised setting.

The features considered for each instance are the gray-scale

intensities of the pixels, each intensity takes an integer value in

the interval [0, 255]. In the original version of the dataset each

image has 28× 28 = 784 pixels (there are m = 784 features

for each instance). Thus, the dataset can be represented in

terms of a n = 60000 row and m = 784 column table.

B. The process

Our final goal was to obtain a partitioning of the columns

into k views, i.e. the whole area of the image in k pixel regions

(later to be used separately to train distinct classifiers).

Following the above described approach, we transposed the

table to obtain a table with m = 784 rows (pseudo-instances,

the pixels) and n = 60000 columns (pseudo-features, the

images); then we broke this column set in r splits (each of

s = n/r columns, i.e. images, chosen at random without
restitution); using each split we ran k-means using all the m
pseudo-instances, thus we obtained r partitions of the pseudo-

instances; finally we reconciled the r partitions into a single

partition solution, by majority voting.

Transposing back the partitioned data table we got a view

partitioning of the image features, i.e. a partitioning of the

pixels in regions that share some similarity. The similarity

defined by the application of k-means was the co-occurrence

of equal or similar gray-levels.

C. The outcomes

We experimented different values of the number-of-views

parameter k (number of pixel regions, k = {2, 3, 5, 9, 13, 17})
and the split-granularity parameter r (and consequently s =
n/r, number of images/pseudo-features contained in a pseudo-

feature split). We chose vales of r which together could

represent almost the whole range, leaving out the extremities

(the single ”split” case, with r = 1 and the one-element split,

with s = 1). The results are shown in Figure 3.

One can see, in the first row of Figure 3 (also with

reference to Figure 2) that for k = 2 views, the process

neatly distinguishes between the active region and the non-

active region (whose pixels are almost never used). For k = 3
views, one can distinguish further, inside the central active

region, two sub-regions with different importance in detailing

the digits. With k = 5 views, and up, the process issues views,

which detail the difference of the regions even further; also the

different values of s return varying shapes.

V. VALIDATION

In principle, the views thus obtained could be later used for

multi-view learning. This could consist either in unsupervised

multi-view learning, e.g. multi-view clustering, or in super-

vised ore semi-supervised multi-view learning. In the latter
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Fig. 3. Outcome of the view splitting process for three different resolutions. Each color corresponds to a cluster of pixels and represents a view. The parameter
k is the number of views. The number of instances used for the task was n = 60000. The parameters r is the number of independent k-means clustering
processes obtained by sectioning the data, then reconciliated in a single clustering partition. Finally, s = n/r. See also text of the Results Section.

case the learning phase would involve the class labels: in our

case study the symbol of the represented digit.

For instance in an hypothetical semi-supervised setting, one

might know the class label only for a subset of images and

might want to predict the class for the reminder images. This

would be carried out by training distinct models separately on

each view, and then using them to create the missing labels

by means of co-training [4]. In this case, a direct validation of

the effectiveness of our multi-view generation method could

consist in a study of the quality of the co-training phase

resulting from the use of the proposed MVG phase.

Such direct validation, however, would apply only to the

specific multi-view technique considered. On the other hand,

a wider systematic study of different multi-view techniques,

would go beyond the scope of the present paper.

Nevertheless, it is possible to perform a indirect validation

of the method, endowed by a reasonable generality, based

on the following considerations. In a supervised multi-view

setting, one requires that the views issued by the MVG phase

fulfill some natural requirements [4]:

1) each view must individually, be endowed with predicting
power,

2) each view must hold unique information about the targets,

3) the different views should achieve prevalently consistent

predictions.

An indirect validation of our method can be performed by

checking that the views generated fulfill those base require-

ments. We opted for such an indirect validation. For the sake

of simplicity, we did not consider the third requirement, which

is more complex to account for with a high number of views

and many classes. We focused on the first two requirements.

We ran two kinds of learning models on the views that were

obtained by our method: a Naı̈ve Bayesian classifier (NB) and

a Decision Tree (DT). Since the findings from the two learners

were in qualitative agreement, hereafter, for space reasons, we

report only about the NB classifier.

For each parameter setting (each sub-figure in Figure 3),

we ran the learner(s) on all the views of the n = 60000
instances MNIST training set and measured the accuracy of

the prediction using the n = 10000 instances MINT test set.

We computed both the individual accuracy in the classification

of each individual symbol/class (digits from 0 to 9) and the

average accuracy over all the classes. The results are shown in

Figure 4 for some representative combination of parameters of

the k = 3 and k = 5 views cases. For completeness we also

computed the accuracy of the classifier defined by the bagged

version of the different views. We also trained, for comparison,

a single view NB classifier. The plots allow to appreciate both

the predicting power of the individual views, and the fact that

they are endowed with unique information about the targets.
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1) Requirement 1: Predicting power.: The accuracy of the

NB classifier trained on individual views, is always (up to

the level studied of k = 17 views) much greater than the

baseline random classifier (which would have accuracy a =
0.10 for each target), and for small number of views (large

amount of information in each view) is often comparable to the

reference single view classifier accuracy, a = 0.84 (this is the

accuracy of the NB classifier applied to all the features/pixels,

gathered into a single view). Looking at specific target classes

one can observe that some views achieve a reasonably high

performance at least on one class.

2) Requirement 2: Unique information on targets: As to

this requirement, one could already qualitatively see, from

Figure 3, that the views concretize in pixel areas covering

regions, approximately corresponding to constructive elements

of the digits: for instance for k = 9 (e.g. with r = 120),

one can see distinctly that including or omitting some patches

one can build the digit 3 or the digit 9 or the digit 8. Thus,

each view holds information that is not available to others

for determining the class of the image. This is confirmed in

Figure 4. The views have different efficiencies for different

targets: each view is the top accuracy view for at least one

target. In other words, each view would have something to

teach to the others, for example within a co-training process.

In short, both main requirements are fulfilled.

VI. DISCUSSION, CONCLUSIONS AND OUTLOOK

In this work we approached the Multi View Generation

problem in an unsupervised, setting. We proposed an approach

based on the transposition of the data table: the original

instance rows are mapped into columns (the pseudo-features),

while the original feature columns become rows (the pseudo-

instances); the latter can then be partitioned by any suitable

standard instance-partitioning algorithm: the resulting groups

can be considered as groups of the original features, i.e. views,

solution problem. We demonstrated the approach using k-

means.

With reference to our document-word reference example,

notice, for the sake of comparison, that the task of ”clustering

words based on the documents to which they belong ” and the

task of ”clustering documents based on the words that they

contain” are commonly studied classical tasks. In the former

task one assigns to the words the role of instances and the

the documents the role of features; in the latter case it is the

converse. However, in both classical cases, the final aim of

the procedure is to come up with a clustering of the instances.

Our approach, on the contrary, aims at producing a partition

of the features into views (later to be used by independent

prediction models).

Furthermore, the effectiveness of the two mentioned clas-

sical tasks is quantified based on the quality of the instance

partition or in relation to another reference partition: either

based on intrinsic criteria (such as the goodness of clustering

Hubert’s r statistics) or based on external criteria by com-

paring the clusters to ground truth classes (e.g. using purity,

Rand index, Jaccard index and so on). In our case, on the

contrary, the outcome of the partition is assessed in relation

of the effectiveness of the multi-view partition in supporting

a subsequent learning procedure.
Another technique worth mentioning, for comparison, is

co-clustering [21], [22]. Co-clustering models the relation of

words and documents as a bipartite graph: the co-clustering

algorithms find sub-graphs of the initial connected component

graph, using spectral methods. It is true that the output

provides a clustering of the words and a clustering of the

documents: the words (documents) belonging to the same

subgraph are in the same word- (document-) cluster. It is also

true that the method issues a simultaneous clustering of the

features and of the instances. However, the method is radically

different from ours, since it involves a joint minimization and

in general will not provide the same results.
Our method provides an unsupervised multi view partition.

As for any unsupervised optimization task, whose output

is used in input of a supervised (or semi-supervised) task,

issue might arise that the solution of the former task is not

necessarily optimal to the latter. This is a problem that can

be found in many settings, it can take place for instance,

when using a learner after having applied Principal Component

Analysis, or any other representation learner.
The point that we wanted to make is that one can take

methods designed for working in instance space and use them

in feature space. The application of such dual-space approach

can be extended to many other situations, that will be the

object of future works.
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