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Abstract

Antibody-drug conjugates are generally believed to crucially rely on internalization into cancer 

cells for therapeutic activity. Here, we show that a non-internalizing antibody-drug conjugate, 

based on the F16 antibody specific to the alternatively spliced A1 domain of tenascin-C, mediates 

a potent therapeutic activity when equipped with the anthracycline PNU159682. The peptide 

linker, connecting the F16 antibody in IgG format at a specific cysteine residue to the drug, was 

stable in serum but could be efficiently cleaved in the subendothelial extracellular matrix by 

proteases released by the dying tumor cells. The results indicate that there may be a broader 

potential applicability of non-internalizing antibody-drug conjugates for cancer therapy than what 

had previously been assumed.
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1 Introduction

The majority of small molecule anticancer therapeutics, conventionally used for cancer 

therapy, typically fail to localize to solid tumors.1,2 This pharmacokinetic limitation, which 

is becoming increasingly clear as a result of positron emission tomography studies with 

radiolabeled drugs in cancer patients,3 may prevent dose escalation to therapeutically active 

regimens and cause undesired toxicity. Antibody-drug conjugates (ADCs) have been 

proposed as a general approach for the generation of novel cytotoxic products, with 

improved therapeutic index.4,5,6,7 Two ADCs have recently gained marketing 

authorization: Adcetris™ for the treatment of certain hematological malignancies and 

Kadcyla™ for the second-line treatment of HER2-positive metastatic breast cancer.8 It is 
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generally assumed that anti-cancer ADC products need to internalize into the antigen-

positive tumor cells, in order to display their therapeutic action.9,10 Both antibodies and 

linker-payload combinations for ADC development have often been selected, on the basis of 

their potential to internalize into tumor cells after antigen binding and to be processed by 

intracellular agents.11,12 However, the strict requirement for antibody internalization has 

recently been questioned, as non-internalizing ADC products directed against components of 

the tumor extracellular matrix can efficiently liberate their drug in the extracellular space 

and mediate a potent therapeutic activity.13 For example, our group has shown that non-

internalizing ADCs, carrying disulfide-linked drugs at site-specific positions on the antibody 

molecule, can release cytotoxic drugs as a consequence of tumor cell death and sub-sequent 

shedding of glutathione into the surrounding milieu.14,15

Until recently, studies on non-internalizing ADC products have been limited to tubulin-

targeting drugs. PNU159682 has emerged as a potent anthracycline derivative, with 

cytotoxic activity in the picomolar concentration range.16 This compound was identified as 

the most active product of metabolic conversion of Nemorubicin, carried out by the 

CYP3A4 enzyme.17 Recently, PNU159682 was coupled to an internalizing anti-CD22 

antibody: the resulting conjugate was administered to mice xenografted with cancer cell 

lines resistant to MMAE-bearing ADC analogues, exhibiting a significant antitumor effect.

18 In this study, we coupled a derivative of PNU159682 to the non-internalizing F16 

antibody, specific to the alternatively-spliced A1 domain of tenascin-C.19 This protein is 

one of the most abundant markers in the stroma of solid tumors,20,21,22 lymphomas23 and 

in the bone marrow of acute leukemias,24 while being virtually undetectable in normal adult 

tissues.25,26 The resulting ADC product exhibited a potent anti-tumor effect in vivo.

2 Matherials and Methods

2.1 General Remarks

Experimental details on ADC characterizations and analysis of tumor sections are included 

in the Supporting Information file, together with an appendix with supplementary figures 

and mass spectra. The IgG(F16) and IgG(KSF) antibodies and the ADC product F16-

MMAE were prepared as previously described.28 PNU159682 (1), MMAF and the linker-

drug modules Mc-Val-Cit-PNU159682 (2) and Mc-Val-Cit-MMAF were purchased from 

Levena Biopharma. Fluorescein-5-Maleimide was purchased from Sigma-Aldrich.

2.2 Drug-mAb Conjugation Protocol

IgG(F16) antibody (0,9 mg/ml, 12 mg, 84 nmol) was treated with a freshly-prepared 0.1 M 

solution of TCEP (ACBR, 1,44 mg, 5,02 μmol, 30 eq × reactive cysteine residue) in mQ 

water. The mixture was reacted overnight at 4 °C. The mixture was concentrated using 

Vivaspin™ Turbo 15 (Sartorious) and loaded on Äkta FPLC instrument (GE Healthcare), 

equipped with a HiPrep 26/10 Desalting column (GE Healthcare). The reduced protein was 

thus purified by size exclusion chromatography, using PBS as a mobile phase, with 2 ml/min 

flow rate. Protein-containing fractions were pooled and concentrated in order to keep the 

total solution volume below the capacity limit of the FPLC-loop. The purification yielded 9 

mg (70 nmol) of reduced protein, in 10 ml PBS. Compound 2 (2,2 mg, 14 μmol, 10 eq × 
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reactive cysteine residue) was dissolved in DMSO (1,1 ml) and added to the reduced protein. 

The mixture was stirred for 1 h. at RT, the reaction was then quenched with L-Cysteine 

(Fluka) at a final concentration of 1 mM for 10 min. at RT. Final ADC F16-PNU159682 was 

FPLC-purified as described above, while the ADC concentration was measured following a 

published procedure.27 The same procedure was followed for the preparation of ADC KSF-

PNU159682. ADC products were characterized by size-exclusion chromatography, SDS-

Page and Mass spectrometry, as described in the Supporting Information. The ADCs were 

concentrated to about 1 mg/ml. Sterile-filtered aliquots were flash-frozen in liquid nitrogen 

and stored at -80 °C for further use. F16-MMAE and F16-MMAF ADCs were prepared and 

characterized following a published procedure.28

2.3 Linker stability in mouse serum

F16-PNU159682 was incubated at a concentration of 150 μg/ml in mouse serum 

(Invitrogen) at 37 °C in a shaking incubator. At different time points (i.e. 48, 72, 96, 120 h), 

aliquots were purified by affinity chromatography onto an antigen-coated resin, based on 

Tenascin C-A1 coupled to CNBr-activated Sepharose (GE Healthcare), washed with PBS 

and then eluted with 0.1 M glycine solution (pH = 3), prior to analysis by mass 

spectrometry. The intensity of the intact ADC signal was compared to the one of signals 

ascribable to PNU1596982 release from the F16 mAb (e.g. m/z 23373.5, relative to the mAb 

light chain, functionalized with the hydrolyzed Val-Cit peptide). As shown in Figure S1, no 

peaks ascribable to drug release were detected after 120 h.

2.4 Cell Culture

A431 epidermoid carcinoma cells (ATCC, CRL-1555) were grown in DMEM medium 

(Gibco) supplemented with 10% FBS (Gibco) and Antibiotic-Antimycotic (Gibco) and 

incubated at 37 °C in 5% CO2 atmosphere.

2.5 Cell Viability Assays

Four human cancer cell lines (A431: epidermoid carcinoma, MDA-MB-231: metastatic 

breast cancer; U87: glioblastoma; SKRC-52: renal cell carcinoma) were incubated in 96-

well plates for 72 h at 37 °C and 5% CO2 with either PNU159682 (1) or its derivative MC-

Val-Cit-PNU159682 (2) at different concentrations. In a second experiment, A431 cells were 

seeded (5000 cells/well) and incubated for 72 h with DMEM medium (Gibco, +10 % FBS) 

containing serial dilutions of PNU159682, MMAE and MMAF (highest concentrations 

tested: 5, 500 and 500 nM, respectively). The media were replaced by a solution of MTS cell 

viability dye (Promega) in cell medium. The plates were incubated for 3 h under culture 

conditions and the absorbance at 490 nm was measured on a Spectra Max Paradigm 

multimode plate reader (Molecular Devices). Experiments were performed in triplicate and 

average cell viability was calculated as measured background corrected absorbance divided 

by the absorbance of untreated control wells. IC50 values were determined by fitting data to 

the four-parameter logistic equation, using a Prism 6 software (GraphPad Software) for data 

analysis.
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2.6 Animal Studies

Ten to twelve weeks-old female BALB/c nude mice were obtained from Janvier 

Laboratories (France). A431 cells (2.8 × 106 in 120 µL HBSS), were implanted 

subcutaneously in the flank. Tumor size was measured using a digital caliper and volume 

was calculated using the following formula: Tumor Size = (Length[mm]*Width2[mm])/2. 

Animals were sacrificed when tumors volumes reached a maximum of 2,000 mm3 or weight 

loss exceeded 15%. Experiments were performed under project licenses issued by the 

Veterinäramt des Kantons Zürich, Switzerland (Bew. Nr. 42/2012 and Nr. 027/15).

2.7 Therapy experiments

Sterile-filtered solutions were injected intravenously in BALB/c nude mice into the lateral 

tail vein, using 0.5 ml 29G insulin syringe (MicroFine™+, BD medical). Results were 

expressed as tumor volume in mm3 +/- SEM. In a first therapy, mice (n = 5) were injected 

every 3 days, 2 times in total, with F16-PNU159682 at 2 mg/kg, or with KSF-PNU159682 at 

2 mg/kg, or with vehicle (PBS). In the second therapy, mice (n = 5) were injected with F16-

PNU159682, KSF-PNU159682 and vehicle (PBS) every 3 days, 2 times in total at 1 mg/kg 

dose, whereas F16-MMAE and F16-MMAF were administered every 3 days, 4 times in total 

at 7 mg/kg dose. Mice were sacrificed when tumor volume reached 2000 mm3 or when 

-15% body weight loss was measured.

2.8 Flow cytometry analysis

A431 cells cultured in a T-150 flask were detached with Accutase (ThermoFisher) and 

stained with Fluorescein-5-Maleimide-labelled IgG(F16), IgG(KSF) and FITC-labelled anti-

CD81 (BioLegend) antibodies. All staining and washing steps were performed in 2 mM 

EDTA 0.5% BSA in PBS. Cells were sorted by FACS (CytoFLEX, Beckman Coulter) and 

analyzed using FlowJo software.

2.9 Immunohistochemistry

A431 tumors excised from mice after therapy study were embedded in OCT medium 

(Thermo Scientific), and cryostat sections (10 μm) were cut. Tumor sections were fixed with 

cold acetone before blocking with 20% FCS and 2-3% BSA in PBS. Staining of the extra-

domain A1 of tenascin C was performed with the following antibodies: IgG(F16) as primary 

antibody; rat anti-mouse CD31 (BD Biosciences) to detect endothelial cells and rabbit anti-

human Fc (Bethyl) as secondary antibodies; donkey anti-rat IgG-AlexaFluor594 (Life 

Technologies) and goat anti-rabbit IgG-AlexaFluor488 (Life Technologies) were then used 

as tertiary antibodies for microscopic detection. Nuclear staining was performed with DAPI 

(Thermo Scientific). Ex vivo detection of ADCs F16-PNU159682, KSF-PNU159682 and 

F16-MMAF was performed using the same antibodies described above, with the exclusion 

of the primary antibody.
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3 Results

3.1 Cytotoxic activity of ADC payload PNU159682

The cytotoxic activity of Nemorubicin metabolite PNU159682 (1) was compared to the one 

of the commercial derivative Mc-Val-Cit-PNU159682 (compound 2 in Figure 1), equipped 

with a maleimide functional group for coupling to cysteine residues, a Valine-Citrulline 

linker and a self-immolative spacer. The two compounds were subjected to in vitro cytotoxic 

assays, performed against the human cancer cell lines A431, MDA-MB-231, U87 and 

SKRC-52. As expected, PNU159682 displayed a potent cytotoxic activity in the 

subnanomolar concentration range, while compound 2 acted as a prodrug and exhibited a 

>100-fold reduced activity compared to the parental compound (Figure 1B).

3.2 Synthesis and characterization of ADC products

The PNU159682 derivative 2 was coupled to a recombinant version of the IgG(F16) 

antibody, which contains a single reactive cysteine residue at the C-terminal extremity of the 

light chain.28 (Figure 2). As negative control, the KSF antibody (specific to hen egg 

lysozyme) was used, with an identical immunoglobulin format.28 Figure 2B,C shows the 

analytical characterization of the resulting conjugates (termed F16-PNU159682 and KSF-

PNU159682) by SDS-PAGE, size-exclusion chromatography and mass spectrometry. The 

resulting conjugates were obtained pure, homogeneous and they displayed the expected 

drug-antibody ratio (DAR) of 2. Incubation of F16-PNU159682 in mouse serum at 37 °C 

showed that the Val-Cit linker is stable for over 5 days under these conditions (Figure S1), in 

agreement with literature data.29

3.3 Therapy experiments

The therapeutic performance of the ADC products was tested in mice bearing A431 human 

epidermoid carcinoma xenografts. This cancer cell line exhibits a strong expression of A1 

domain of tenascin-C around tumor blood vessels, as evidenced by immunohistochemical 

analysis (Figure 3A). Intravenous administration of the two new ADCs into tumor-bearing 

mice, followed by ex vivo immunofluorescence detection, revealed that F16-PNU159682 

(but not KSF-PNU159682) efficiently localized around tumor blood vessels (Figure 3C, D).

In a first therapy experiment, we treated BALB/c nude mice with A431 tumors by 

administering two i.v. injections of the ADC products (2 mg/kg) or saline, starting when the 

neoplastic lesions had reached a size of approximately 100 mm3. F16-PNU159682 displayed 

a more potent therapeutic activity, compared to KSF-PNU159682 and to the saline control 

group. Complete responses were observed in animals treated with the F16 derivative, and 

three out of five mice were cured (Figure 4A). However, substantial toxicity was revealed by 

body weight loss. In particular, 2 mice in the F16-PNU159682 group were sacrificed at day 

27 and 1 mouse in the KSF-PNU159682 at day 23. The toxicity was due, at least in part, to 

tumor lysis, as a reduced body weight loss was observed in the KSF treatment group. A 

second therapy experiment was performed, in which two injections of ADC products at 1 

mg/kg dose were administered. Although these two cycles of injections did not lead to a 

complete tumor eradication, mice treated with F16-PNU159682 experienced a significant 

stabilization (> 30 days) of the tumor volume (Figure 4B). Also in this case, control ADC 
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product KSF-PNU159682 was found to retard tumor growth, even though the tumor 

volumes progressively increased over the experiment. Importantly, under these experimental 

conditions, no acute toxicity and no significant body weight loss was observed for the 

groups of mice treated with the ADC products, as highlighted in Figure 4B.

3.4 Analysis of cell-killing mechanism

A microscopic hematoxylin/eosin (H&E) analysis of tumor sections, obtained three days 

after the second ADC injection, revealed the onset of a substantial cell death in the F16-

PNU159682 treatment group, as compared to saline treatment (Figure 5). This necrosis was 

localized mainly in the inner part of the tumor mass, whereas vital areas were localized in 

the peripheral tumor regions (i.e., where nutrients are more easily provided from blood 

stream).

To verify that the F16-PNU159682 is generally not processed by tumor cells through 

receptor-mediated endocytosis, we performed flow cytometry experiments using both F16 

and KSF antibodies, site-specifically labeled with Fluorescein-5-Maleimide at the 

engineered Cys residues. As reported in Figure 6A, the two antibodies similarly showed no 

binding to A431 cells, whereas the latter were strongly positive for a third fluorescent mAb, 

specific to the transmembrane protein CD81.30

The ability of F16-based ADCs to mediate anticancer activity in vivo through an 

extracellular payload release mechanism was also investigated by functionalizing the mAb 

with two closely-related dolastatin analogues (MMAE and MMAF), which strongly differ in 

terms of their ability to enter tumor cells. As illustrated in Figure 6B, MMAF is a 

hydrophilic derivative of monomethyl auristatin E (MMAE), in which the ephedrine moiety 

is substituted with a C-terminal phenylalanine residue. While MMAE and MMAF are 

similarly potent when released intracellularly by internalizing ADC products,31 the two 

drugs display very different cytotoxicity properties when added to the supernatant of tumor 

cell cultures. Indeed, MMAE kills various types of tumor cells in the subnanomolar 

concentration range, while its charged MMAF counterpart typically fails to induce cell death 

at concentrations below 100 nM.31 Within the ADC context, recent findings further indicate 

that the lipophilic MMAE payload diffuses more efficiently towards antigen-negative cells 

than the MMAF.32 Firstly, we incubated the A431 cancer cells with decreasing 

concentrations of free MMAE and MMAF payloads. In keeping with literature data, MMAE 

and MMAF showed IC50 values of 0.3 and 134 nM, respectively (Figure 6C). Subsequently, 

the two auristatins were coupled to the F16 antibody through a cleavable Val-Cit linker and 

injected four times into A431-bearing mice, at the dose of 7 mg/kg. The in vivo anticancer 

properties of the two ADCs were in line with the cytotoxic activities observed in vitro with 

the free payloads. While F16-MMAE induced a rapid tumor regression, the F16-MMAF 

conjugate did not display any detectable therapeutic activity (Figure 6D), in spite of its 

ability to efficiently localize to the tumor site, as indicated by ex vivo immunofluorescence 

analysis (Figure 6E).
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4 Discussion

A direct internalization into the target tumor cells has often been presented as an important 

requirement for ADC activity. From a theoretical point of view, internalizing ADCs should 

be ideally suited for the delivery of cytotoxic agents into the neoplastic cells. However, most 

ADC products described so far rely on the use of linkers (e.g., the Val-Cit dipeptide) which 

are not sufficiently stable in circulation or in the tumor microenvironment. For instance, 

Dorywalska and co-workers have recently described carboxylesterase 1C as a potential 

source of proteolytic activity for the cleavage of Val-Cit linkers in the tumor extracellular 

milieu.33

Interestingly, recent clinical data have shown that several large B-cell lymphoma patients 

expressing little-to-no CD30 antigen enjoyed complete tumor remission after monotherapy 

with Adcetris™.34 Tumor-infiltrating immune cells (e.g. macrophages)35 may also 

contribute to the extracellular activation of ADC products at the tumor site.

While the ADC internalization process can be effectively monitored in vitro, it is extremely 

difficult to quantify in vivo (e.g., in patients) the amount of payload that is released inside 

the cancer cells, rather than in the extracellular environment. Our group has reported a 

potent anti-cancer activity for non-internalizing ADC products, which are specific to 

components of the modified extracellular matrix of many tumor types. Such products exhibit 

an efficient and selective uptake at the tumor site, as demonstrated by dosimetry studies both 

in mice and humans.36,37

The experimental data presented herein, indicate that non-internalizing ADC products can be 

potently active in preclinical models of cancer. Our findings complement previous reports on 

the anti-cancer activity of non-internalizing ADC products, directed against collagen IV38 

and fibrin.39 It is conceivable that the Val-Cit linker, connecting the F16 antibody to 

PNU159682, is cleaved by proteases that are mainly intracellular (e.g., cathepsin B), but that 

are released in the extracellular space upon tumor cell death. The acidic tumor 

microenvironment may facilitate the activation of these hydrolytic enzymes, triggering drug 

release by proteolysis.40

We have recently shown that other peptide linkers, such as the Val-Ala peptide sequence, can 

be as effective as Val-Cit in releasing cytotoxic payloads in the extracellular tumor 

environment.41 Moreover, the data presented in this article indicate that lipophilic drugs 

may be the preferred type of cytotoxic payloads, as hydrophilic or charged drugs released in 

the extracellular environment fail to subsequently cross the tumor cell membrane. Thanks to 

the high potency of the anthracycline used in this study, two injections of the F16-

PNU159682 conjugate (DAR = 2) at 1 mg/kg dose were sufficient to stop tumor growth for 

more than 20 days in all treated mice. At higher doses, tumors could be eradicated, but a 

substantial loss of body weight was observed. When tubulin-interacting drugs (i.e., DM1 and 

MMAE)14,28 were used as payloads for non-internalizing antibodies, more than three 

cycles of injections at > 5 mg/kg were required in order to achieve cancer cures in the same 

animal models. It is conceivable that tubulin poisons may preferentially kill rapidly-dividing 
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cells, while anthracyclines may also act against quiescent cells, both in the tumor and in 

normal organs, thus potentially contributing to undesired toxicity.42

5 Conclusions

Various ADC products have shown encouraging anticancer activity in preclinical cancer 

models, but this novel class of therapeutic agents typically fails to induce complete 

responses in patients with metastatic solid tumors. Alternatively-spliced isoforms of 

extracellular matrix proteins (e.g., fibronectin and tenascin-C isoforms) are abundant and 

easily accessible in perivascular areas of most solid malignancies, lymphomas and 

leukemias. These antigens represent promising targets for antibody-based drug delivery 

applications, as a selective and long-lasting antibody accumulation at the neoplastic site has 

been observed both in quantitative biodistribution studies in tumor-bearing mice and in 

imaging studies in patients with cancer.36,37,43 Payloads released in the extracellular 

environment may diffuse within the tumor mass, thus leading to a pharmacodynamics effect 

which is different from the one of internalizing ADC products. Both protease-sensitive 

linkers and disulfides can be conceived for drug release in the tumor extracellular space. 

However, it is difficult to predict clinical activity on the basis of preclinical findings, as the 

concentrations of extracellular proteases could be different in the two species. The findings 

of this study may be relevant not only for the development of non-internalizing ADC 

products, but also for other classes of targeted cytotoxics. For example, we and others have 

recently observed that small ligands directed against non-internalizing antigens (such as 

carbonic anhydrase IX) may be able to selectively accumulate at the tumor site44,45 and 

could therefore be used as antibody substitutes. Also in case of non-internalizing small 

molecule-drug conjugates, a potent and selective anticancer activity was observed using both 

disulfide46 and peptide linkers.47,48
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Figure 1. 
A) Molecular structure of the anthracycline Nemorubicin, PNU159682 (1) and the Mc-Val-

Cit-PNU159682 linker-drug module (2), suitable for the drug conjugation to antibodies. B) 

Antiproliferative activity of compounds 1 and 2 against four different human cancer cell 

lines. [a] Cytotoxic activity measured after cell incubation with 1 and 2 for 72 hours; A431: 

epidermoid carcinoma; MDA-MB-231: metastatic breast cancer; U87: glioblastoma; 

SKRC-52: renal cell carcinoma.
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Figure 2. 
Characterization of F16-PNU159682 and KSF-PNU159682. A) Schematic representation of 

the ADCs, including IgG structure and site of conjugation of the linker-drug module. B) 

SDS-page, size-exclusion chromatography profile and ESI-MS spectrum (raw and 

deconvoluted data) of F16-PNU159682. C) SDS-page, size-exclusion chromatography 

profile and ESI-MS spectra of KSF-PNU159682. Lanes 1 and 2 represent the final ADC in 

non-reducing and reducing conditions, respectively. The calculated mass of F16-

PNU159682 light chain and KSF-PNU159682 light chain are 24264 (found: 24260) and 

24226 Da (found: 24224), respectively (%I = % of MS intensity).
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Figure 3. 
A) Immunohistochemistry staining image of A431 tumor section: A1 extra-domain of 

Tenascin C was stained in red via biotinylated F16 antibody; ex vivo immunofluorescence 

detection of ADC compounds in A431 tumors, 48 h after i.v. injection of F16-PNU159682 

(B) and KSF-PNU159682 (C). green: human IgG antibodies, red: mouse endothelial cells, 

blue: cell nuclei. Scale bars: 0.1 mm. While F16 was found to accumulate mainly around 

tumor blood vessels (3B), KSF was not detected within the experiment.
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Figure 4. 
Therapeutic activity of F16-PNU159682 and KSF-PNU159682 against A431 human 

epidermoid carcinoma xenografted in BALB/c nude mice, after 2 (B) administrations of 

ADCs and vehicle (PBS).in 3 days (as indicated by the arrows) at 2 (A) and 1 (B) mg/kg 

dose. Considering a body weight of 25 g, administration of 2 and 1 mg/kg of F16-

PNU159682 and KSF-PNU159682 equals to 668 and 334 pmol of free PNU159682, 

respectively. Data points represent mean tumor volume ± SEM, n = 5 per group. On the 

right, the corresponding analysis of toxicity is reported, in terms of changes in weight of 

treated mice. When tumors reached 120 mm3 volume, mice were randomly grouped (5 mice/

group) and injected intravenously.

Dal Corso et al. Page 15

J Control Release. Author manuscript; available in PMC 2018 October 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. 
H&E staining of A431 tumor sections highlighting the effects of F16-PNU159682 treatment. 

BALB/c nude mice were injected twice with PBS (A) and 2 mg/kg F16-PNU159682 (B, C), 

following the same schedule as for the therapy. Mice were sacrificed 3 days after their last 

injections (scale bar 2 mm). The cytotoxic activity displayed by F16-PNU159682 is 

associated to the widespread necrosis in sections images B and C (the decreasing vital mass 

is highlighted with black lines).
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Figure 6. 
A) Flow cytometry analysis of A431 cells after incubation with 3 fluorescently-labeled 

antibodies, specific to the A1 extra-domain of tenascin C (F16), an hen egg lysozyme (KSF) 

and the trasmembrane protein CD81; B) molecular structure of the tubulin poisons 

monomethyl auristatin E (MMAE) and F (MMAF); C) cell antiproliferative activity of free 

drugs PNU159682, MMAE and MMAF against A431 cancer cells; D) Therapeutic activity 

of F16-MMAE and F16-MMAF against A431 human epidermoid carcinoma xenografted in 

BALB/c nude mice, after 4 administrations in 12 days (as indicated by the arrows) of ADCs 

at 7 mg/kg dose and vehicle (PBS). Considering a body weight of 25 g, administration of 7 

mg/kg of F16-MMAE and F16-MMAF equals to 2.34 nmol of free drug. Data points 

represent mean tumor volume ± SEM, n = 5 per group; E) ex vivo immunofluorescence 

detection of ADC compound in A431 tumors, 24 h after i.v. injection of F16-MMAF (green: 

human IgG antibody, red: mouse endothelial cells, blue: cell nuclei; scale bar: 0.1 mm).
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