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ABSTRACT 

 

Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of 

microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of 

neuronal cell development and functioning. This review gives an overview about the current understanding of brain and 

neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. 

We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix 

(ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion 

complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial 

approaches mimicking essential ECM features help to understand these processes and how they can be used to control 

and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods 

will be highlighted that have been crucial for the study of neuronal mechanobiology. 
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1. INTRODUCTION 

 

For a long time, research on neuronal cell development and functioning was principally concentrated on the influence of 

biochemical factors, but in recent years accumulating evidence made clear that taking a biophysical perspective on these 

processes is intriguing and promising for various reasons. One outstanding attribute of neuronal cells is the extreme 

polarisation and compartmentalisation that is taking place during neuronal differentiation and maturation. It requires 

highly coordinated and dynamic cytoskeletal actions and cell/microenvironment interactions to realise neuronal 

migration, neurito- and synaptogenesis, as well as neural network formation and plasticity (Flynn, 2013),(Kerstein et al., 

2015),(Leterrier et al., 2017),(Park and Goda, 2016),(Lilja and Ivaska, 2018). Developing neurons possess growth cones 

which are sensory compartments at the tip of neurites or axons, built for the exploration of the microenvironment by 

their capacity to integrate chemical and mechanical cues (Chan and Odde, 2008),(Lowery and Van Vactor, 

2009),(Myers et al., 2011),(Vitriol and Zheng, 2012),(Franze et al., 2013),(Kerstein et al., 2015), and specialised to 

operate in the soft brain tissue (Chan and Odde, 2008),(Betz et al., 2011),(Kerstein et al., 2015). Also when neurons 

reached their terminal differentiation and maturation stage with a complex morphology; characterised by an axon and 

several dendrites equipped with numerous fine structures such as synapses and spines, they maintain a remarkable 

plasticity to enable the processing of incoming information. This plasticity is highly dependent on integrin-mediated 

interaction with the microenvironment (Park and Goda, 2016),(Lilja and Ivaska, 2018). 

 Biophysical aspects, and in particular integrin-mediated mechanotransductive processes, involved in the 

regulation of neuronal cell development and functioning, will be a focus of this review. Special attention will be drawn 

to what is happening in the cell/microenvironment interface as these events are, literally and functionally, at the base of 

the mechanotransductive signalling and its impact on cellular behaviour. Throughout the review, various examples of 

bioengineering approaches are indicated that were useful to gain insight into the influence of mechanotransduction on 

neuronal differentiation and/or exploit mechanotransductive mechanisms to guide neuronal cell behaviour in a 

controlled manner. Finally, this review will highlight some methods that are used to study biophysical aspects of 

(neuronal) cells and their environment. For further reading, the reader will be pointed to reviews that accentuate specific 

aspects of the different arguments in more detail.   

 

2. MICROENVIRONMENTAL CUES INFLUENCING NEURONAL CELL DEVELOPMENT 

 

2.1 Biophysical, structural and compositional peculiarities of the extracellular matrix of the central nervous 

system 

The extracellular matrix (ECM) of the central nervous system (CNS) has some distinctive and unique features regarding 

mechanics, structure and composition that differ substantially from the ECM of other organs and tissues (Fig. 1a-d). 

 Regional mechanical heterogeneity within brain and spinal cord compartments has been reported (Elkin et al., 

2007),(Christ et al., 2010),(Koser et al., 2015),(Antonovaite et al., 2018) (Fig. 1b), but the CNS is characterised by a 

general softness compared to other tissues (Franze et al., 2013),(Barnes et al., 2017) (Fig. 1c). Interesting observations 

in this regard are the stiffening of the human brain tissue due to ageing (Sack et al., 2011) and changes in mechanical 

properties in neurodegenerative diseases (e.g., in multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s 

disease) and brain cancer (e.g. in glioblastoma) (Tyler, 2012),(Barnes et al., 2017),(Tanner, 2018) (Fig. 1c).  

 The ECM composition of the CNS is furthermore characterised by a high abundance of hyaluronic acid and 

other glycosaminoglycans, glycoproteins (such as tenascins, reelin or laminins, the latter particularly in the region of the 
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blood-brain-barrier) and proteoglycans (such as lectican family members) (Fig. 1a) which are highly intertwined at the 

nanoscale (Fig. 1d). The non-fibrillary type IV collagen is present in the brain ECM but the amount of fibrillary 

proteins (such as collagen I) is instead relatively low (Ruoslahti, 1996),(Dityatev et al., 2010b),(Lau et al., 2013). 

 Apart from the interstitial neural matrix, the brain ECM possesses also some special partitions with specific 

tasks and locations. In the subventricular zone of the adult brain, heparan sulphate proteoglycan and laminin-rich 

structures called fractones can be found close to the brain blood vessels that serve as neural stem cell niches and 

neurogenic zones (Kerever et al., 2007),(Mercier, 2016) (Fig. 1a). Another particular brain ECM structure is the 

perineuronal net; a specialised scaffold surrounding the neuronal cell body and proximal processes of many neurons in 

the CNS that is essential for the synaptic structure and regulates synaptic plasticity (especially crucial components, such 

as tenascin-C and –R, brevican and neurocan) (Pizzorusso et al., 2002),(Geissler et al., 2013),(Sorg et al., 2016) (Fig. 

1a,d).  

 ECM constituents and integrin/microenvironment interactions are strongly involved in all steps of neuronal 

development (Long and Huttner, 2019), which will be further outlined throughout the review, in particular in 

“Mechanotransductive processes and signalling in neuronal cell development and functioning”. Furthermore, alterations 

in the brain ECM composition and organisation have been found in neurodegeneration and brain cancer (Bonneh-

Barkay and Wiley, 2009),(Lau et al., 2013),(Miyata and Kitagawa, 2017),(Barnes et al., 2017),(Tanner, 2018). 

 

Fig. 1 Compositional, mechanical and structural features of the brain extracellular matrix 

(a) The cartoon illustrates principal components of the brain extracellular matrix (ECM). Image with permission from 

Lau et al. (Lau et al., 2013), Copyright (2013) Springer Nature. (b) Two examples of the mechanical properties (elastic 

modulus) in different brain compartments (top: mouse hippocampus, bottom: rat cerebellum, scale bar: 400 µm) are 

shown that were obtained by atomic force microscopy-based recordings. Images from Antonovaite et al. (Antonovaite 

et al., 2018), and with permission from Christ et al. (Christ et al., 2010), Copyright (2010) Elsevier. (c) The graphic 

highlights the general softness of the brain tissue in comparison to other body tissues and indicates the stiffening in case 

of brain tumours. Image with permission from Barnes et al. (Barnes et al., 2017), Copyright (2017) Company of 

Biologists LTD. (d) The upper image demonstrates a stochastic optical reconstruction microscopy super-resolution 

recording of perineuronal nets (chondroitin sulphate proteoglycans stained with Wisteria floribunda agglutinin-

Dy749P1) in the mouse visual cortex. Image courtesy of Xiaowei Zhuang (Harvard University, Cambridge, MA, USA) 
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(Sigal et al., 2019). The lower image shows a scanning electron microscopic recording of the configuration of 

decellularised hippocampal ECM. Image from Tajerian et al. (Tajerian et al., 2018). 

 Decellularised brain ECM (an example can be seen in Fig. 1d) that are applied as substrates (either as 2D 

coating or 3D hydrogel) foster neurite outgrowth (Medberry et al., 2013) and functional neural network formation (Lam 

et al., 2019) better than equivalent decellularised ECM substrates from other tissues. A recent study furthermore shows 

that decellularised brain ECM increases the neuronal reprogramming efficiency of mouse embryonic fibroblasts into 

induced neurons, compared to 2D laminin-coated substrates. The promotive effect was already observable when the 

brain-derived ECM was also presented as a 2D coating, but strongly pronounced when it was applied as a 3D hydrogel 

environment (Jin et al., 2018). This emphasised the importance of appropriate microenvironmental biophysical and 

topographical cues, even in the presence of the same biochemical components.  

 The ECM building blocks and their interactions/crosslinking define the biophysical configuration of the 

intricate meshwork and determine its specific mechanical and structural properties, i.e. rigidity and nanotopography 

(Gasiorowski et al., 2013),(Young et al., 2016) (Fig. 1a-d). In the next paragraphs, it will be detailed how these two 

principal biophysical cues deriving from the in vivo microenvironment, or from engineered biomaterials that are 

mimicking these pivotal features, impact on the neuronal cell behaviour and functioning.  

 

2.2 Rigidity 

Generally speaking, the interaction of (neural) stem cells (shown for embryonal and induced pluripotent stem cells, as 

well as foetal and adult neural stem or progenitor cells) with substrates that possess brain-like rigidity (usually ≤1kPa 

elastic modulus, Fig. 1c) favours neuronal viability (Georges et al., 2006) and directs their fate towards neuronal lineage 

commitment (Saha et al., 2008),(Leipzig and Shoichet, 2009),(Teixeira et al., 2009),(Banerjee et al., 2009),(Seidlits et 

al., 2010),(Keung et al., 2011),(Keung et al., 2012),(Keung et al., 2013),(Franze et al., 2013),(Mammadov et al., 

2013),(Musah et al., 2014),(Sun et al., 2014).  

 Numerous studies furthermore indicated a promotive effect of softer substrates on neurite outgrowth for a 

variety of neuronal cell types and different gel materials used as substrates (Balgude et al., 2001),(Willits and Skornia, 

2004),(Kostic et al., 2007),(Jiang et al., 2008), (Teixeira et al., 2009),(Sundararaghavan et al., 2009),(Cheng et al., 

2011),(Man et al., 2011),(Koch et al., 2012),(Hopkins et al., 2013),(Franze et al., 2013),(Kerstein et al., 2015),(Mosley 

et al., 2017). However, it should be mentioned that also some conflicting results regarding neuron sensitivity towards 

substrate rigidity have been reported; in some studies (e.g. with PC12 cells (Leach et al., 2007), cortical neurons 

(Norman and Aranda-Espinoza, 2010) or hippocampal neurons (Koch et al., 2012)) neurite outgrowth was insensitive to 

the tested mechanical substrate properties, or in one case for cortical neurons, an even stronger outgrowth on stiffer 

substrates was noted (Stabenfeldt and LaPlaca, 2011). Furthermore, it has been shown that the mechanosensitivity 

varies between different neuronal cell types (Koch et al., 2012). Certainly, the plethora of utilised combinations 

between substrate materials and ligands/adhesive agents (e.g. (hydro)gels made from agarose, collagen I, 

polyacrylamide, polydimethylsiloxane, silk fibroin, polyethylene glycol, or methylcellulose, functionalised with often 

varying concentrations of collagen I, laminin, fibronectin, matrigel, or poly-lysine; taking into account only some of the 

cited references) complicates a comparison of the results. The contradictory effects could be due to not considered 

aspects such as structural differences in porosity, crosslinking and mesh size, which could have led to changes in 

topographical parameters. These topographical parameters affect also strongly neurite outgrowth, as will be highlighted 

in the next paragraph.  
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2.3 Topography 

A widely demonstrated impact of accordingly designed anisotropic micro- or nanotopographical features on neuronal 

cell behaviour (shown for various neuronal cell types and (neural) stem cells during neuronal differentiation) is the 

alignment of cell polarity and neurite/axon outgrowth (Hoffman-Kim et al., 2010),(Kim et al., 2013),(Simitzi et al., 

2017), e.g. along ridges (Rajnicek et al., 1997),(Johansson et al., 2006),(Ferrari et al., 2010),(Lee et al., 2010),(Ferrari et 

al., 2011),(Béduer et al., 2012),(Yang et al., 2013),(Yang et al., 2014),(Baek et al., 2018), electrospun fibres (Xie et al., 

2009),(Lim et al., 2010),(Wang et al., 2010),(Gertz et al., 2010),(Smith Callahan et al., 2013), pillar arrays (M. Park et 

al., 2016) or elliptical cones (Simitzi et al., 2015). This contact guidance was attributed to focal adhesion confinement 

and alignment (Ferrari et al., 2010),(Ferrari et al., 2011),(Tonazzini et al., 2013),(Yang et al., 2014),(Baek et al., 2018), 

favouring in this manner the effective neurite outgrowth in a specific direction. This phenomena is of high biomedical 

interest and already exploited to improve nerve guidance conduits utilised to promote the regeneration of peripheral 

nerve cells (Hoffman-Kim et al., 2010),(Sarker et al., 2018). 

 However, the potential impact of appropriate nanotopographical features goes beyond these more 

geometrically guiding effects; since they can also influence the neuronal program, i.e. gene/protein expression and 

differentiation, as specific instructive cues (Xie et al., 2009),(Lee et al., 2010),(Lim et al., 2010),(Yang et al., 

2013),(Smith Callahan et al., 2013),(Yang et al., 2014); similar to the effects described for soft substrates. In fact, even 

isotropic and disordered nanotopographies (made by quite different methods and materials, such as e.g. silica 

nanobeads, carbon nanotubes, silicon nanowires, assembled zirconia nanoclusters, nanorough glass surfaces generated 

by reactive-ion etching or platinum-coated polystyrene nanopattern) have been reported to promote neuritogenesis, 

neuronal differentiation and neural network maturation (Migliorini et al., 2011),(Kang et al., 2012),(Fabbro et al., 

2012),(Bugnicourt et al., 2014),(Schulte et al., 2016c),(Schulte et al., 2016b),(Chen et al., 2018),(Baek et al., 

2018),(Schulte et al., 2018). Nanotopographies with a suitable dimensionality have the ability to modulate integrin 

adhesion complexes (IAC) in a way that impacts on neuronal cell decision making, programming and fate (Yang et al., 

2013),(Yang et al., 2014),(Schulte et al., 2016c),(Schulte et al., 2016b),(Maffioli et al., 2017),(Chen et al., 2018),(Baek 

et al., 2018).  

  

 In the last decades, it has been unravelled that mechanotransductive processes are at the basis of these 

biophysical cue effects on (neuronal) cell development. The next paragraphs will therefore focus on how the cellular 

mechanotransductive machinery actually senses and interprets microenvironmental biophysical features in 

“Mechanosensing and mechantransduction” (Fig. 2a-d), highlighting in particular also what is known about the 

neuronal context in “Mechanotransductive processes and signalling in neuronal cell development and function” (Fig. 3). 

 

3. MECHANOSENSENSING IN THE CELL/MICROENVIRONMENT INTERFACE AND NEURONAL 

MECHANTRANSDUCTIVE PROCESSES AND SIGNALLING 

 

The adhesive structures in the cell/microenvironment interface that enable the cell to perceive the biophysical 

configuration of its microenvironment and to translate the information into appropriate cellular responses are highly 

intricate. We will concentrate on the fundamental mechanotransducers of the cells, i.e. integrin adhesion complexes 

(IAC), although various cell surface receptors are known to contribute to mechanosensing and mechanotransduction 

(such as GPI-anchored proteins (Kalappurakkal et al., 2019) (e.g. uPAR (Ferraris et al., 2014),(Schulte et al., 2016a)), 

CD44 (Seidlits et al., 2010),(Kim and Kumar, 2014), syndecans (Bass et al., 2007),(Morgan et al., 2013), or receptor 
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tyrosine kinases (Yang et al., 2016)), which often cooperate in some way with integrins. First, we will detail processes 

of mechanosensing in the cell/microenvironent interface in general (Fig. 2a-c) and the decisive extracellular matrix 

parameters that influence them (Fig. 2d). It should be noted that, for the most part, this understanding on 

mechanosensing and mechanotransduction reported in the paragraph below was not specifically obtained from studies 

on neurons, but it is likely that the general mechanisms are largely comparable in neurons.    

 

3.1 Mechanosensing and mechanotransduction 

The integrin family consists of heterodimeric transmembrane receptors with one α- (18 types exist) and one β-subunit (8 

types) that can assemble in 24 different combinations. They possess large extracellular domains and short cytoplasmic 

tails (with the exception of α6β4 integrin that has a longer β-subunit tail). Despite some redundancy, the different 

integrin heterodimers have distinct binding specificities to ligands (such as the RGD motif) present in the numerous 

proteins of the ECM (or in some cases receptors in the membrane of other cells) rendering possible the versatility of 

integrin signalling and its broad involvement in many cell biological events. However, there are common features of 

integrin-mediated cell adhesion realising mechanosensing and interpretation of the microenvironment by 

mechanotransductive processes (Changede and Sheetz, 2017),(Gauthier and Roca-Cusachs, 2018),(Sun et al., 

2019),(Kechagia et al., 2019) (Fig. 2a-d).  

 Integrin activation, i.e. the transition from low to high ligand affinity state by changing the integrin 

conformation from bent and closed to extended and open with separated cytoplasmic tails (Shattil et al., 2010),(Zhu et 

al., 2013), can either be induced and/or stabilised by integrin ligand binding itself (outside-in signalling), by 

intracellular events (inside-out signalling, often through signals arriving from G-protein coupled receptors) (Sun et al., 

2019),(Kechagia et al., 2019), or by modulation of the membrane tension (Wang and Ha, 2013),(Ferraris et al., 

2014),(Paszek et al., 2014),(Schulte et al., 2016a),(Gauthier and Roca-Cusachs, 2018). In any case, the adaptor proteins 

talin and kindlin are recruited to the cytoplasmic tail of the integrin β-subunit, which is essential for integrin activation 

(Jiang et al., 2003),(Theodosiou et al., 2016). The glycocalyx, a pericellular sugar coat that surrounds the cell membrane 

and is attached to proteoglycans, glycolipids and glycoproteins, is another important player in the 

cell/microenvironment interface that influences integrin properties. Its compression in the vicinity of integrin/substrate 

binding sites leads to mechanical loading of the integrins through force application towards the cell membrane. The 

compressed glycocalyx acts furthermore as a steric kinetic trap that impacts on lateral integrin diffusion and promotes 

integrin clustering (Paszek et al., 2014). These initial processes are independent of actomyosin contraction (Choi et al., 

2008),(Wang and Ha, 2013),(Changede et al., 2015) (Fig. 2a).  

 However, the talin rod can bind to filamentous actin (f-actin), which connects the ECM to the actin 

cytoskeleton in the nascent adhesions (Jiang et al., 2003), engaging in this manner also the molecular clutch by linking 

the integrins to the retrograde actin flow and its forces generated by actin polymerisation and actomyosin contraction  

(Chan and Odde, 2008),(Zhang et al., 2008),(Schulte et al., 2016a) (Fig. 2a). An interesting historic side note in the 

context of this review is the fact that the molecular clutch hypothesis was first developed (Mitchison and Kirschner, 

1988) and decisively elaborated (Chan and Odde, 2008) studying neuronal growth cones. However, whether this initial 

structure disassembles immediately or instead is reinforced and matures by recruitment of further proteins and integrin 

clustering depends on the extent of force loading within the molecular clutch (Wang and Ha, 2013),(Oria et al., 2017) 

(Fig. 2a-b). At sufficient force loading, different stabilising events can take place. Forces in the low piconewton (pN) 

range are sufficient to maintain integrins in their extended conformation (which can happen very quickly in less than a 

second) (Strohmeyer et al., 2017),(Li and Springer, 2017). At forces in the order of tens of pN, the ECM/integrin 
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binding can further strengthen by catch bond formation, shown e.g. for α5β1 and αVβ3 integrin, increasing thus the 

lifetime of the bond (Kong et al., 2009),(Chen et al., 2017). Talin can be activated by stretching of the talin rod (starting 

from forces of ~5 pN to tens of pN) which leads to unfolding of cryptic binding sites for vinculin, first near the 

membrane and integrins and later closer to the f-actin. Vinculin is recruited to these uncovered sites, leading to its 

movement towards f-actin at higher force loading (>5-25 pN). During these events, vinculin is activated itself and its 

tail forms a catch bond with f-actin (maximally stable at ~8 pN), thereby additionally stabilising the nascent adhesions 

(del Rio et al., 2009),(Grashoff et al., 2010),(Ciobanasu et al., 2014),(Yao et al., 2014),(Case et al., 2015),(Elosegui-

Artola et al., 2016),(Huang et al., 2017) (Fig. 2a). This force-dependent reinforcement and the consequential increase in 

lifetime allows the recruitment of further essential IAC components (Carisey et al., 2013),(Case et al., 2015). The 

forming IAC organise into modular nanometric units (with dimensions of ~80-120 nm containing 20-50 integrins 

(Changede et al., 2015)) with a stratified nanoarchitecture composed of 3 layers, i.e. an integrin signalling layer 

(containing e.g. paxillin, integrin-linked kinase (ILK), focal adhesion kinase (FAK), p130Cas, and src), a force 

transduction layer (mainly talin and vinculin) and an actin regulatory layer (e.g., f-actin, α-actinin, zyxin, or VASP) 

(Case et al., 2015) (Fig. 2b-c). In further maturation steps, the modules can group into structures with increasing 

dimensions, i.e. first in focal complexes then focal adhesions, but their dimension and especially composition are quite 

versatile depending on the cell biological context. The recruitment of many adaptor and signalling proteins; such as 

paxillin, ILK, FAK, src, p130cas, PAK, or ERK, transforms the IAC into signalling hubs capable of controlling and 

influencing cell signalling, decision making and fate in many ways. Integrin downstream signalling controls actin 

cytoskeletal dynamics through modulation of RhoGTPase activity (in particular RhoA, Rac1, and Cdc42). Changes in 

the cytoskeletal organisation, in turn, impact on the localisation of mechanosensitive transcription factors, such as 

YAP/TAZ (yes-associated protein/transcriptional coactivator with PDZ-binding motif) and MRTF-A (myocardin-

related transcription factor-A). RhoGTPase activity influences also proliferation and differentiation by activation of the 

ERK/MAPK pathway (Sun et al., 2019),(Kechagia et al., 2019),(Humphries et al., 2019),(Green and Brown, 2019). The 

remodelling of the cytoskeleton can furthermore lead to alterations in the nuclear architecture by its connection via the 

LINC (Linker of Nuclear and Cytoskeleton) complex, which affects the spatial chromosome organisation and gene 

expression by mechanoregulatory transcription factors (Uhler and Shivashankar, 2017).   

  Whether sufficient force loading within the molecular clutch permits the different steps of reinforcement and 

IAC maturation depends decisively on critical mechanical and structural microenvironmental parameters; i.e. the 

substrate rigidity and the spatial organisation of integrin adhesion sites (in particular in terms of ligand spacing, density 

and distribution, as well as topography) (Fig. 2d), or their combination (Gauthier and Roca-Cusachs, 2018),(Kechagia 

et al., 2019). In general, the lower the rigidity, the (s)lower is the force loading per integrin. If the rigidity is too low, the 

initial adhesion is likely to disassemble before the mentioned force thresholds in the molecular clutch can be achieved 

because the integrin/ligand bond lifetime is too short. Higher rigidities instead enable a stronger force transmission 

along the ECM/integrin/talin/f-actin axis surpassing the force thresholds and favouring thus IAC reinforcement and 

maturation processes (Elosegui-Artola et al., 2016) (Fig. 2a). Furthermore, it has been observed that IAC maturation is 

not taking place if the ligand spacing distance exceeds a certain threshold (>60-70 nm) on rigid substrates (Arnold et al., 

2004). Until very recently, this was attributed to a potential direct measurement of the ligand spacing by an adaptor 

protein (with talin as a potential candidate) that works as a molecular ruler, but new data indicate instead that the force 

loading within the molecular clutch is actually the principal decisive factor. Considering both parameters (i.e. rigidity 

and spatial organisation and distribution of adhesion sites) in combination, there are indeed counter-intuitive effects 

(Oria et al., 2017). High rigidity substrates with ligand spacing distances that are too large can increase the force load 
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per integrin to an extremely high, i.e. eventually too high, level, which causes an adhesion collapse (Liu et al., 

2014),(Oria et al., 2017); most probably due to limitations in the maximal integrin recruitment impeding sufficient force 

redistribution. On lower substrate rigidities, an increase in ligand spacing distance can lead to an augmentation of force 

load per integrin above the critical force thresholds, enabling IAC maturation (Oria et al., 2017). However, a minimal 

adhesion unit of ~3-6 integrins binding ligands in certain vicinity (i.e. in the high tens of nm) promotes integrin 

clustering, including also the recruitment of unligated integrins. This accentuates the importance of the distribution of 

the adhesion sites in terms of order, and explains why introducing disorder in the adhesion site distribution (and local 

differences in ligand spacing) can change again the whole outcome in regards to whether IAC maturation takes place or 

not (Jiang et al., 2003),(Huang et al., 2009),(Schvartzman et al., 2011),(Oria et al., 2017),(Changede et al., 2019). 

Recently, it has furthermore been shown that nanotopographical features impact on cell migration in dependency of 

actomyosin and RhoGTPase activity (J. Park et al., 2016) (Fig. 2a-d).    

 

 

Fig. 2 Integrin-mediated mechanosensing and mechanotransductive sequence with influencing parameters of the 

extracellular matrix 

(a) The cartoon illustrates the initial ECM-integrin-talin-actin linkage in the nascent adhesions and how the force 

loading within this molecular clutch determines whether this structure disassembles (in case of too low force loading) or 

reinforces (in case of sufficient force loading) and (b) matures into integrin adhesion complexes (IAC) by recruitment 

of further proteins. (c) In this graphic, the stratified nanoarchitecture of mature IAC with its different layers is shown. 

(d) The extent of force loading and IAC maturation is determined by biophysical cues of the extracellular matrix, in 

particular the rigidity and the spatial organisation of the integrin adhesion sites (in terms of spacing, distribution, 

(dis)order, (an)isotropy and nanotopography). Further details on IAC maturation are outlined in “Mechanosensing and 

mechanotransduction”. The figure contains adapted elements of images with permission from Case et al. (Case et al., 
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2015) and Case and Waterman (Case and Waterman, 2015), Copyright (2015) Springer Nature; Barnes et al. (Barnes et 

al., 2017), Copyright (2017) Company of Biologists LTD; and an adapted element with permission from Borghi et al. 

(Borghi et al., 2018), Copyright (2018) American Chemical Society.  

 

 Actually these processes in the cell/microenvironment interface are even more complex with various further 

levels of regulation, such as mechanisms to modulate the cell surface availability of integrins by endocytosis (clathrin-

dependent or –independent (CLIC/GEEC) routes), trafficking/recycling, and degradation, as well as talin 

competitors/inhibitors or talin cleavage. The interested reader can find further details on certain aspects in recent 

reviews of Gauthier and Roca-Cusachs (Gauthier and Roca-Cusachs, 2018), Green and Brown (Green and Brown, 

2019), Humphries et al. (Humphries et al., 2019), Sun et al. (Sun et al., 2019) and Kechagia et al. (Kechagia et al., 

2019). 

 These events in the cell/microenvironment interface contribute essentially to the regulation of many cell 

biological behaviours, and aberrations therein can cause numerous pathophysiological cell states and diseases, also in 

the CNS (Winograd-Katz et al., 2014). The next paragraph will outline the current understanding about the involvement 

of the mechanotransductive pathway in neuronal cell behaviour (some examples are highlighted in Fig. 3). Considering 

the aforementioned local heterogeneity and complexity of biophysical cues in the brain ECM (Fig. 1), these insights are 

also highly relevant in regards to the optimisation of biomaterial approaches that are based on exploitation of 

mechanotransductive mechanisms (Fig. 4).  

 

Fig. 3 Mechanotransductive processes in neuronal development and functioning  

 (a) The graphic illustrates the different phases of neuronal cell development (in this case during cortex formation) 

starting from self-renewal and neurogenesis, passing to neuronal migration, neuritogenesis, and ending with terminal 

differentiation and maturation with synaptogenesis and network integration (VZ: Ventricular zone, SVZ: Subventricular 
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zone, IZ: Intermediate zone, CP: Cortical plate). Examples of extracellular matrix and cellular proteins related to 

mechanotransductive processes that are known to influence different phases of these events are indicated in bold and 

underlined. Further details can be found in “Mechanotransductive processes and signalling in neuronal cell development 

and functioning”. The figure contains elements of an image from Schulte et al. (Schulte et al., 2016b). (b) The panel 

shows in vivo mechanosensitivity of a growing axon in the Xenopus brain. The colour code indicates (a) the stiffness 

(elastic modulus) of the brain tissue measured by atomic force microscopy-based recordings or (b) the stiffness changes 

over time in the same region. The fluorescently labelled axon was tracked and outlined in blue and documents the 

directed axon movement towards the softer region (Scale bars = 100 µm). The image has been reproduced from 

Thompson et al. (Thompson et al., n.d.). (c) The panel demonstrates the modulations along the mechanotransductive 

sequence induced by the interaction of neuron-like PC12 cells with ECM-mimicking nanotopographical zirconia 

substrates produced by the nanofabrication technique supersonic cluster beam deposition, compared to flat zirconia 

surfaces. In the transmission electron images it can be seen that the cells interact only with the apical part of the 

nanotopographical asperities which restricts the dimension of the nanometric adhesion sites (indicated by the white 

arrows) to smaller sizes with respect to the situation on flat zirconia. Also the integrin adhesion complexes (vinculin 

staining in green recorded by total internal reflection microscopy) remain of small dimensions (focal contact/point 

contact size, see white arrows with dashed lines) whereas mature focal adhesions form only on the flat substrate (see 

white arrows). Consequently, on the nanostructured zirconia no stress fibre formation (epifluorescence of phalloidin 

staining in red) can be noted, while there are abundant stress fibres on the flat zirconia (examples marked by white 

asterisks). The cells on the nanotopographical substrate are softer than on the flat surface (quantified by atomic force 

microscopy-based analysis, the colour code indicates the Young’s modulus (YM)) and neurite outgrowth was visible 

(black arrow). The image was adapted with permission from Schulte et al. (Schulte et al., 2017), Copyright (2017) 

American Chemical Society.  

  

3.2 Mechanotransductive processes and signalling in neuronal cell development and functioning 

 

Albeit many details remain elusive, it is evident that the ECM configuration and integrin-mediated mechanosensing/-

transduction participate in the control of neuronal cell development and functioning at all stages (Franze et al., 

2013),(Stukel and Willits, 2015),(Park and Goda, 2016),(Barnes et al., 2017),(Lilja and Ivaska, 2018),(Long and 

Huttner, 2019),(Xu et al., 2019) (Fig. 3-4). 

 Integrin/microenvironment interactions and RhoGTPase signalling play an important role during neurogenesis 

and the subsequent neuronal long-range migration when the neuronal progenitors move towards the final destination 

and terminally differentiate into neurons (Tate et al., 2004),(Fietz et al., 2012),(Long and Huttner, 2019),(Xu et al., 

2019). The regulation of neural progenitor proliferation in the stem cell niche during neurogenesis depends on α6β1 

integrin-mediated laminin (predominantly laminin-111) binding which activates MAPK signalling (Campos et al., 

2004),(Flanagan et al., 2006),(Haubst et al., 2006),(Lathia et al., 2007),(Ma et al., 2008),(Shen et al., 2008),(Long and 

Huttner, 2019). Interestingly, it has been shown that the mechanosensitive protein YAP sustains the proliferation of 

neural progenitors and negatively regulates their neuronal differentiation (shown for the postnatal mouse retina (Zhang 

et al., 2012) and chicken neural tube (Cao et al., 2008)). Recently, it was furthermore demonstrated that α3β1 

integrin/laminin-511 interaction-dependent YAP activation fosters survival of immature dopaminergic midbrain 

neurons in their niche (Zhang et al., 2017). Also another prominent mechanosensitive transcription factor, i.e. MRTF-A 

(together with SRF (serum response factor)), is known to be involved in the regulation of neuronal migration and 

differentiative processes, in particular neuritogenesis (Mokalled et al., 2010), by controlling the expression of actin 

cytoskeleton-related target genes (Knöll and Nordheim, 2009) (Fig. 3a and Fig. 4b). 

 During mammalian cerebral cortex development, neuronal progenitors leave the (sub)ventricular zone after 

neurogenesis and undergo a multipolar-bipolar transition before they start to migrate along the radial glia cell (RGC) 

fibres. The cytoskeletal and morphological changes of this transition are orchestrated by a complex spatiotemporal 
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regulation of RhoGTPase activity (Konno et al., 2005),(Xu et al., 2019). Later on, the brain ECM glycoprotein reelin is 

decisively involved in the control of neuronal cell adhesiveness. It regulates another shift in neuronal migration mode, 

by inhibiting the bipolar α3β1 integrin-dependent migration of the immature neurons along the RGC (Anton et al., 

1999),(Hong et al., 2000),(Dulabon et al., 2000),(Schmid et al., 2004) and activating instead the RGC-independent α5β1 

integrin/fibronectin binding-dependent terminal translocation during lamination of the developing neocortex (Sekine et 

al., 2012). Dynamic and precisely coordinated RhoGTPase signalling (Xu et al., 2019), actomyosin activity and traction 

forces (Solecki et al., 2009),(Jiang et al., 2015) are required to enable neuronal migration. Loss of Rac1 in the forebrain 

leads to apoptosis of neural progenitors and newborn neurons, as well as to defects in migratory competence, axonal 

guidance and terminal neuronal differentiation (Chen et al., 2007),(Chen et al., 2009). Lowering RhoA activity instead 

fosters neuronal lineage commitment (Keung et al., 2011), as well as neurite initiation and outgrowth, in many neuronal 

cell models (Yamaguchi et al., 2001),(Dergham et al., 2002),(Da Silva et al., 2003),(Fournier et al., 2003),(Schulte et 

al., 2010),(Gu et al., 2013). In line with this, RhoGTPase signalling has been found to be involved in various 

biomaterial-induced (either rigidity or topography-based approaches) effects on neuronal differentiation (Georges et al., 

2006),(Saha et al., 2008),(Teixeira et al., 2009),(Seidlits et al., 2010),(Keung et al., 2011),(Yang et al., 2014),(Schulte et 

al., 2016c),(Maffioli et al., 2017),(Chen et al., 2018) (Fig. 3a).  

 Recently, in vivo data obtained in the developing Xenopus brain demonstrated that retinal ganglion cell axons 

are sensitive to rapidly changing mechanical properties within the brain tissue that lead to stiffness gradients, causing a 

directional growth of the axons towards softer areas (Koser et al., 2016),(Thompson et al., n.d.) (Fig. 3b). The 

directional collective migration of Xenopus neural crest cells can instead be induced by stiffening of the underlying 

head mesoderm via integrin-dependent mechanosensing (Barriga et al., 2018).  

 Interesting insights on the processes in the neuron/microenvironment interface and mechanotransductive 

signalling were obtained from studies that use biomaterials with topographical surfaces (examples in Fig. 4d). 

Nanotopographical features that restrict the maturation of IAC to dimensions beneath focal adhesion size and 

consequentially also decrease stress fibre formation (Bugnicourt et al., 2014),(Schulte et al., 2016c),(Baek et al., 

2018),(Baek et al., 2019) and cell rigidity (Schulte et al., 2016c) foster neuronal differentiation (Fig. 3c). These types of 

neuron/nanotopography interactions modulated the expression and phosphorylation levels of proteins that are known to 

be important components of the IAC and mechanotransductive machinery/signalling sequence (e.g., FAK 

phosphorylation and ILK signalling) (Schulte et al., 2016c),(Schulte et al., 2016b),(Maffioli et al., 2017),(Baek et al., 

2018). A study performed with a microtopographical substrates indicated that the ubiquitin E3a ligase, a protein which 

targets several integrin signalling/mechanotransduction-related proteins (such as, e.g., src family members) for 

degradation and whose deficiency leads to the neurodevelopmental disorder Angelman syndrome, is involved in neurite 

contact guidance and neuronal topography sensing (Tonazzini et al., 2016). Furthermore, it has been reported that 

nanotopography- and soft substrate-promoted neuronal differentiation was accompanied by an increase in Ser127 

phosphorylation of YAP and its cytoplasmic retention in an actin cytoskeleton-dependent manner (Musah et al., 

2014),(Sun et al., 2014),(Baek et al., 2018). 

 Consistent with their function as explorative compartments of developing neurons, neurite growth cones are 

particularly influenced and controlled by mechanotransductive processes. The extent of molecular clutch engagement to 

the retrograde actin flow-generated forces regulates neurite/axon guidance and pathfinding. Within growth cones 

dynamic and small (focal complex size) integrin-mediated interaction sites are formed with microenvironmental cues, 

called point contacts. Their spatiotemporal dynamics are tightly governed by a balanced signalling interplay involving 

diverse IAC signalling-related components, such as RhoGTPases, src, PAK and FAK (Robles et al., 2005),(Woo and 
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Gomez, 2006),(Medeiros et al., 2006),(Myers et al., 2011),(Vitriol and Zheng, 2012),(Santiago-Medina et al., 

2013),(Kerstein et al., 2015),(Nichol et al., 2016) (Fig. 4b, on the right). Growth cones are soft structures (with low 

elastic modulus around hundreds of Pa and a tension in the range of hundreds of pN (Betz et al., 2011)) and produce 

relatively weak forces (compared to other cell types, such as e.g. fibroblasts or epithelial cells). The traction forces are 

in the range of tens of pN per µm2, executed in particular in the peripheral regions of the growth cone (such as filopodia 

and lamellipodial edges) (Hällström et al., 2010),(Betz et al., 2011),(Koch et al., 2012),(Franze et al., 2013),(O’Toole et 

al., 2015), and largely myosin II-dependent (Bridgman et al., 2001). Peripheral neurons seem to generate stronger 

traction forces than CNS neurons (Koch et al., 2012). The protrusive forces, measured for retinal ganglion cell growth 

cones, are in the order of 100 pN (Fuhs et al., 2013).  

 Also later on during neuronal maturation, mechanoregulatory processes are potentially highly relevant in 

controlling the spatiotemporal dynamics of synaptogenesis and activity-dependent synapse plasticity. Postsynaptic 

terminals of synapses are rich in mechanotransductively-active components, such as cell adhesion molecules and 

regulators of actin dynamics and organisation (e.g., cofilin, drebrin α-actinin and cortactin) (McGeachie et al., 

2011),(Sheng and Kim, 2011),(Kilinc, 2018). Cofilin, e.g., is strongly recruited to dendritic spines during long-term 

potentiation and involved in the remodelling of the synapse structure (Bosch et al., 2014). The configuration and 

composition of the ECM and dynamic integrin/ECM (dis)engagement modulates the activity-dependent functional 

plasticity of synaptic connectivity and neural circuitry (Chavis and Westbrook, 2001),(Dityatev et al., 2010a), 

(McGeachie et al., 2011),(Orlando et al., 2012),(Kerrisk et al., 2013),(Bikbaev et al., 2015),(Park and Goda, 

2016),(Kilinc, 2018).  

  

 More details about brain ECM and RhoGTPase signalling during neuronal development are outlined in reviews 

by Long and Huttner (Long and Huttner, 2019) and Xu et al. (Xu et al., 2019), respectively. Brain tissue mechanics are 

covered in detail by Franze et al. (Franze et al., 2013) and Barnes et al. (Barnes et al., 2017). The involvement of 

integrins in synapse formation and  plasticity is highlighted in reviews from Park and Goda (Park and Goda, 2016) and 

Lilja and Ivaska (Lilja and Ivaska, 2018).  
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Fig. 4 Biomaterial and biophysical approaches to study and/or control mechanotransductive processes that 

regulate neuronal cell development and functioning 

(a) The scheme illustrates important stages during neuronal cell development. (b) The graphic outlines schematically 

principal (extra)cellular structures and processes of interest within the integrin adhesion complex-mediated 

mechanotransductive sequence in neuronal cells (on the right the axon/neurite growth cone is highlighted) and (c) some 

biophysical methods (AFM: Atomic Force Microscopy, TFM: Traction Force Microscopy) that are used to study them 

(see also “BIOPHYSICAL METHODS TO STUDY NEURONAL MECHANOBIOLOGY”). (d) Examples of different 

bioengineering approaches are listed that are used for the production of biomaterials which mimic biophysical 

extracellular matrix (ECM) features, such as hydrogels derived from decellularised brain ECM (Jin et al., 2018), 

hydrogels made of polymers (in this case polyacrylamide gels with different stiffness ranges, Young’s modulus: left; 

<14.5 kPa, middle: 14.5-29 kPa, right: >29 kPa) (Hadden et al., 2017), electrospinning, lithographic methods and 

pattern transfer, as well as reactive-ion etching (RIE) (Chen et al., 2014), carbon nanotubes (Cellot et al., 2011) and 

assembly of zirconia nanocluster by supersonic cluster beam deposition (Schulte et al., 2017). Various approaches are 

referenced throughout the review in which these types of substrates are applied and exploited to study and guide 

neuronal cell mechanotransduction and development. (a-d) Together these mechanobiological approaches can 

contribute to a better understanding of how mechanotransductive processes impact on neuronal cell development and 

functioning. The figure contains adapted elements of images with permission from Jin et al. (Jin et al., 2018), Copyright 

(2018) Springer Nature; Chen et al. (Chen et al., 2014), Copyright (2014) Elsevier; as well as elements from Hadden et 

al. (Hadden et al., 2017), Cellot et al. (Cellot et al., 2011), Schulte et al. (Schulte et al., 2016c),(Schulte et al., 2016b), 

and Maffioli et al. (Maffioli et al., 2017). 

 

 

 

 



15 
 

4. BIOPHYSICAL METHODS TO STUDY NEURONAL MECHANOBIOLOGY 

 

The aim of research in cellular mechanobiology is to understand how biophysical properties of the cells and the 

surrounding microenvironment are intertwined and influence each other mutually to regulate cell morphology and fate 

(Fig. 4). In light of this premise, it is fundamental to obtain a precise quantification of the structural and mechanical 

properties of the microenvironment, cells or tissues. The exploration of mechanotransductive processes relies 

furthermore on the ability to apply accurately controlled physical stimuli to living cells and to measure the forces of 

their mechanobiological actions (Iskratsch et al., 2014), in particular also for the understanding of neuronal cell 

behaviour (Athamneh and Suter, 2015).  

 The study of biophysical aspects of cells and their microenvironment and/or the nature of their interaction 

requires specific instrumentation (Fig. 4c). This paragraph will give a short overview about some principal experimental 

techniques that often were essential to gain the insights into mechanotransductive processes outlined throughout this 

review.  

 

Optical/Magnetic Tweezers  

Optical and magnetic tweezers were amongst the first tools that enabled cell biologists to quantitatively measure the 

weak forces produced by cells, or to apply corresponding forces to the cells (Iskratsch et al., 2014). 

 The optical tweezers technique consists in using a suitably functionalised µm-sized dielectric bead as a probe, 

and exploiting the restoring force generated by the interaction of a laser with the dielectric sphere to control the position 

of the bead (Fig. 4c). Measuring the probe displacement in experimental conditions provides a measure of the applied 

force. The bead diameter can range from few hundreds of nm to tens of µm depending on the contact region and the 

applied pressure required in the experiments. The limitations in bead dimensions are due to the fact that the trapping 

force decreases with the bead diameter. The tweezers can be calibrated accurately to know how much force is required 

to remove the trapped bead from its focal centre. The optical traps can generate forces ranging from tens to hundreds of 

pN and the effective force constant of the tweezer is typically in the range of pN/m, providing extreme sensitivity to pN 

forces (Moffitt et al., 2008),(Neuman and Nagy, 2008),(Capitanio and Pavone, 2013),(Siedlik et al., 2016).  

 The magnetic tweezers approach relies on the same principle of action as the optical tweezer, but in this case 

magnets are used to position or apply forces on para-ferromagnetic beads. The advantage of the magnetic control is that 

many beads can be affected simultaneously (Neuman and Nagy, 2008),(Siedlik et al., 2016),(De Vlaminck and Dekker, 

2012),(Le et al., 2016), and it is also possible to induce twisting to the beads, allowing to test different degrees of 

freedom of the system under investigation (Wang et al., 1993),(Strick et al., 2000). The drawback is that the spatial 

variation of the field results in a non-uniform force applied to the beads; careful design of the magnetic tweezer 

apparatus permits nowadays for nearly constant gradient fields over more than hundreds of microns (Neuman and Nagy, 

2008),(Siedlik et al., 2016),(De Vlaminck and Dekker, 2012),(Le et al., 2016).  

 An early use of magnetic tweezers in cell biological research led to one of the seminal works for the 

mechanobiology field by Wang et al. in 1993 (Wang et al., 1993), showing the mechanosensitivity of integrins and 

mechanotransduction through the actin cytoskeleton. In 1995, Dai and Sheetz (Dai and Sheetz, 1995) characterised the 

mechanical properties of the neuronal growth cone by means of optical tweezers, demonstrating the role of the actin 

cytoskeleton in affecting the elastic properties of the membrane. Similar experiments were performed later on to 

determine the forces exerted by growing filopodia and lamellipodia (Cojoc et al., 2007) or axons (Moore et al., 

2009),(Kilinc et al., 2014) during neuronal differentiation, or to compare forces generated by the growth cones of 
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neurons from the central nervous system (hippocampal neurons) and the peripheral nervous system (dorsal root ganglia) 

(Amin et al., 2013). 

 Moving the stage in xy-direction or the focus of the laser spot in z-direction in a finely tuned and precisely 

controlled manner enables also the application of static or oscillatory forces (in the range of a few pN), in order to study 

e.g. the rheological behaviour of cells. With this method, it was recently demonstrated that mechanical stimuli with pN 

forces activate calcium channels (Falleroni et al., 2018) and that viscoelastic properties of soma and neurite differ and 

that in neurites these properties change in dependency of the substrate rigidity (Grevesse et al., 2015). 

 Additional details on optical and/or magnetic tweezer-based approaches, focussing on applications relevant for 

biophysics and mechanotransduction, can be found in Capitanio and Pavone (Capitanio and Pavone, 2013), Siedlik et 

al. (Siedlik et al., 2016) and Le et al. (Le et al., 2016).  

 

Atomic Force Microscopy  

AFM belongs to the branch of scanning probe microscopy (SPM). In recent years, it has gained increasing importance 

in the mechanobiology field as an instrument with versatile application modes that allow high resolution morphological 

imaging (i.e., surface topography) and characterisation of mechanical properties (e.g., stiffness or viscoelasticity) of 

biological samples, also simultaneously (Puricelli et al., 2015),(Haase and Pelling, 2015),(Gavara, 2017),(Alcaraz et al., 

2018),(Krieg et al., 2019).  

 The probes are attached to an elastic lever (cantilever) that flexes under the interaction forces between the 

probe and the surface of the sample. The corresponding cantilever deflections are measured by a quadrant photodiode 

that detects the displacement of a laser reflecting from the exterior part of the cantilever. The probe shape and 

dimension can be modified according to the needs of the measurement and the information to be obtained. Pyramidal or 

narrow conical tips are usually exploited for high resolution imaging application (Krieg et al., 2019). More spherical 

(Indrieri et al., 2011),(Puricelli et al., 2015), or even cylindrical (Rico et al., 2007), probes instead are more suitable for 

mechanical characterisations of cells, ECM or tissues due to the fine control of the probe/sample contact geometry (Fig. 

4c). This system can be run in different modes depending on which structural and/or mechanical parameters of the 

measured samples are to be characterised (Haase and Pelling, 2015),(Gavara, 2017),(Alcaraz et al., 2018),(Krieg et al., 

2019).  

 During the scan, by keeping the cantilever deflection constant through a feedback circuit, the surface 

morphology of the sample can be reconstructed. This standard imaging application is widely used to image the 

nanotopography of cells (also neuronal cells and their compartments, such as growth cones (Parpura et al., 

1993),(Grzywa et al., 2006),(Xiong et al., 2009)), natural extracellular matrices (Abrams et al., 2000),(Last et al., 

2010),(Gasiorowski et al., 2013), or nanostructured biomaterials (Cellot et al., 2011),(Schulte et al., 2016c),(Schulte et 

al., 2016b)). It is also possible to apply forces by pushing the probe into the sample. Measuring the flexure of the 

cantilever through the extent of laser dislocation, the upward force acting on the tip can be calculated and mechanical 

properties of the sample can be determined. Varying the cantilever geometry allows covering more than six orders of 

magnitude in force sensitivity (from tens of pN to tens of µN). The nanomechanical analysis of soft biological samples 

(such as cells and many tissues or extracellular matrices) with AFM is still to-date not straightforward. Attention must 

be drawn to the choice of the right experimental conditions for the application of contact mechanics models (such as 

Hertz (Hertz, 1882) or Sneddon (Sneddon, 1965)) and also in the data analyses (Puricelli et al., 2015),(Schillers et al., 

2017). In the neuroscience field, by means of these types of AFM-based characterisations, it was possible to determine 

the mechanical properties (Young’s modulus) of substrates that are able to promote neuronal differentiation processes 
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(Saha et al., 2008),(Leipzig and Shoichet, 2009),(Teixeira et al., 2009),(Banerjee et al., 2009),(Seidlits et al., 

2010),(Keung et al., 2012),(Keung et al., 2013),(Musah et al., 2014),(Sun et al., 2014), as well as the mechanics of brain 

tissue or spinal cord (Elkin et al., 2007),(Christ et al., 2010),(Koser et al., 2016),(Koser et al., 2015),(Antonovaite et al., 

2018) (Fig. 1b and Fig. 3b) and different types of neuronal cells (Lu et al., 2006),(Grzywa et al., 2006),(Spedden et al., 

2012),(Schulte et al., 2016c), including changes due to mechanotransductive processes (Koser et al., 2016),(Schulte et 

al., 2016c),(Thompson et al., n.d.) (as detailed also in precedent paragraphs) (Fig. 3b,c). 

 Instead of applying forces to the cell with the AFM probe to deform the cell in order to analyse the cellular 

mechanical properties, AFM can also be used to measure cellular adhesion forces (e.g., integrin/ligand binding 

(Strohmeyer et al., 2017)) by the force spectroscopy technique. There are two principal approaches to apply this 

technique. In one case (single-cell force spectroscopy), a cell is attached to a tipless cantilever (using basically the cell 

as probe) and brought smoothly into contact with a substrate of interest (Taubenberger et al., 2007),(Helenius et al., 

2008) or even another cell (Puech et al., 2006). In a second approach, an AFM probe is functionalised in a suitable 

manner (e.g., with proteins of the ECM) and brought gently into contact with the cell membrane. In both cases, after a 

sufficient time of contact to enable the desired interaction, the probe is then retracted in order to break the generated 

bonds. From the obtained force versus distance curves, typically exhibiting a complex pattern of sudden jumps and 

plateaux, it is possible to measure the number of ruptured bonds and the distribution of their strength. Several 

configurations have been adopted to study cell adhesion and its mechanisms and biomolecular determinants. Depending 

on the probe and type of functionalisation even adhesion forces at the single molecule level can be measured (single 

molecule force spectroscopy) (Müller et al., 2009),(Dufrêne et al., 2011).  

 Further information on AFM methodologies and applications in mechanobiology research is available in more 

specific reviews from Haase and Pelling (Haase and Pelling, 2015), Gavara (Gavara, 2017), Alcaraz et al. (Alcaraz et 

al., 2018) or Krieg et al. (Krieg et al., 2019).  

 

Traction Force Microscopy  

The first cellular reaction to biophysical stimuli in the microenvironment takes place in the interface between cell 

membrane (and its embedded receptors) and the ECM.  

 Traction force microscopy (TFM) aims at measuring the traction forces exerted by the cell towards the 

substrate it interacts with. This can be achieved by different approaches, either fluorescent microspheres embedded into 

deformable hydrogel substrates or pillar arrays are used (Fig. 4c). When the cells apply forces on these substrates, as a 

consequence, the beads or the pillars are displaced. Tracking the displacement microscopically and knowing the 

stiffness of the hydrogel, or the pillars, permits an estimate of the applied traction forces and the reconstruction of a 

traction force field. The spatial resolution of TFM is limited by the optical set up and by the relative density of the 

beads, respectively pillars. Several models have been proposed to accurately convert the strain field into a stress field 

(Schwarz and Soiné, 2015). In the neuronal context, TFM has been used, e.g., to investigate the forces involved in the 

growth cones of neurons (Chan and Odde, 2008),(Betz et al., 2011) or during neuronal migration (Jiang et al., 2015). A 

combined TFM/AFM approach was recently applied to study the correlation between cellular rigidity, viscoelasticity, 

and the contractile prestress, highlighting the role of the actomyosin machinery (Schierbaum et al., 2019). 

 Another tool to measure the mechanical forces exerted by the cell are molecular tension probes. The 

functioning of these probes is based on an extendable linker (which can be build up by adequate polymers, or 

biomacromolecules (oligonucleotide or protein)) flanked by a spectroscopic ruler, consisting of a fluorophore and a 

quencher (Fig. 4c). If a sufficient force is applied to the probe, bonds within the linker region sequentially break and the 
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linker extents, leading to a displacement and separation of the fluorophore and quencher. The extent of linker extension 

is usually measured by fluorescence resonance energy transfer. Knowing the bond strengths inside the linker region, the 

applied force can be quantified (Jurchenko and Salaita, 2015),(Liu et al., 2017). These tension probes can be utilised as 

immobilised sensors on a substrate (Liu et al., 2014) or also intracellularly if they are integrated into proteins, an 

example is the vinculin tension sensor (Grashoff et al., 2010),(Jurchenko and Salaita, 2015).  

 

5. CONCLUSION AND OUTLOOK 

 

In this review, we attempted to outline the crucial involvement of mechanobiological aspects in physiological brain and 

neuronal cell development and functioning. In recent years, there are furthermore increasing indications that aberrations 

in the brain ECM organisation and mechanotransductive processes of neuronal cells strongly contribute to various 

neuronal pathologies, such as neurodegenerative diseases (e.g., in multiple sclerosis, amyotrophic lateral sclerosis and 

Alzheimer’s disease) and neurodevelopmental disorders (such as autism spectrum disorders and schizophrenia) (Tyler, 

2012),(Lau et al., 2013),(Franze et al., 2013),(Park and Goda, 2016),(Lilja and Ivaska, 2018),(Barnes et al., 2017), or 

primary brain cancers (e.g., in glioblastoma) (Barnes et al., 2017),(Tanner, 2018). The research in this field is often still 

in its infancy, gaining a deeper insight into neuronal cell mechanotransduction by means of biophysical approaches is 

therefore essential (Fig. 4) and will help to understand better how abnormal mechanotransductive processes contribute 

to the aetiology of brain disorders (Tyler, 2012),(Franze et al., 2013),(Barnes et al., 2017),(Lilja and Ivaska, 

2018),(Tanner, 2018). The biomedical significance of research in this direction is underlined by a very recent study 

which suggests a glycocalyx/IAC mechanosignalling feedback loop regulated by tension in glioblastoma multiforme 

that might be causal for the high recurrence of this tumour after current chemotherapy treatments (Barnes et al., 2018).  
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