RATIONAL ORBITS ON THREE-SYMMETRIC PRODUCTS OF ABELIAN VARIETIES

ALBERTO ALZATI AND GIAN PIETRO PIROLA

Abstract

Let A be an n-dimensional Abelian variety, $n \geq 2$; let $\mathrm{CH}_{0}(A)$ be the group of zero-cycles of A, modulo rational equivalence; by regarding an effective, degree k, zero-cycle, as a point on $S^{k}(A)$ (the k-symmetric product of A), and by considering the associated rational equivalence class, we get a map $\gamma: S^{k}(A) \rightarrow \mathrm{CH}_{0}(A)$, whose fibres are called γ-orbits.

For any $n \geq 2$, in this paper we determine the maximal dimension of the γ-orbits when $k=2$ or 3 (it is, respectively, 1 and 2), and the maximal dimension of families of γ-orbits; moreover, for generic A, we get some refinements and in particular we show that if $\operatorname{dim}(A) \geq 4, S^{3}(A)$ does not contain any γ-orbit; note that it implies that a generic Abelian four-fold does not contain any trigonal curve. We also show that our bounds are sharp by some examples.

The used technique is the following: we have considered some special families of Abelian varieties: $A_{t}=E_{t} \times B \quad\left(E_{t}\right.$ is an elliptic curve with varying moduli) and we have constructed suitable projections between $S^{k}\left(A_{t}\right)$ and $S^{k}(B)$ which preserve the dimensions of the families of γ-orbits; then we have done induction on n. For $n=2$ the proof is based upon the papers of Mumford and Roitman on this topic.

1. Introduction

Let X be a d-dimensional smooth algebraic variety; a cycle Z of codimension r in X is defined to be an element of the free Abelian group $\mathbf{C}^{r}(X)$ generated by the irreducible subvarieties of codimension r on X. We are interested in zero-cycles, i.e. when $r=d$. Two zero-cycles Z_{1} and Z_{2} of X are rationally equivalent if there exists a cycle Z on $X \times \mathbf{A}^{1}$, which intersects each fibre $X \times\{t\}$ in some points such that Z_{1} and Z_{2} are obtained respectively by intersecting Z with the fibres $X \times\{0\}$ and $X \times\{1\}$. Note that this is in fact an equivalence relation and that the zero-cycles rationally equivalent to 0 (the zero of $\mathbf{C}^{d}(X)$) form a subgroup of $\mathbf{C}^{d}(X)$, (see $\left[H, \mathrm{R}_{1}\right]$).

We denote by $\mathrm{CH}_{0}(X)$ the (Chow) group of zero-cycles on X, modulo rational equivalence. If $Z=\sum n_{i} P_{i}$ is a zero-cycle, where the P_{i} are points of X, we define the degree of Z to be $\sum n_{i}$. It is convenient to regard an effective

Received by the editors July 9, 1990 and, in revised form, December 10, 1990 and March 25, 1991.

1991 Mathematics Subject Classification. Primary 14C25; Secondary 14K99.
Key words and phrases. Abelian varieties, rational equivalence, zero-cycles.
Both authors are members of G.N.S.A.G.A. of the Italian C.N.R.
This research has been done within the framework of the national project "Geometria Algebrica".
zero-cycle $Z=\sum n_{i} P_{i}$ i.e. one where all the $n_{i}>0$, as a point on the k th symmetric product $S^{k}(X)$ of X, where $k=\operatorname{deg}(Z)$. Then by taking the associated rational equivalence class, we obtain a map $\gamma: S^{k}(X) \rightarrow \mathrm{CH}_{0}(X)$; the fibres of this map will be called γ-orbits; the irreducible, connected, components of a γ-orbit will be called γ-components, $(\gamma$-curves if they have dimension 1 , γ-surfaces if they have dimension 2 , etc.).

Now let A be an Abelian variety, if we consider the Albanese morphism $\alpha_{k}: S^{k}(A) \rightarrow \operatorname{Alb}\left[S^{k}(A)\right]=A$ (i.e. $\left.\alpha_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{1}+x_{2}+\cdots+x_{k}\right)$, we have that the fibres of α_{k} are all isomorphic and that every γ-orbit of $S^{k}(A)$ is contained in exactly one fibre of α_{k}. Then, if we want to study the γ-orbits of $S^{k}(A)$, we have only to consider the γ-orbits contained in $K_{k}(A)=\operatorname{ker}\left(\alpha_{k}\right)$.

In [P] the author showed that for a generic Abelian variety A, with $\operatorname{dim}(A) \geq 3$, its Kummer variety, $K(A)$, does not contain any rational curve. By remarking that $K(A)$ is $K_{2}(A)$ in the previous notations, you can think that in $S^{2}(A)$ there are no one-dimensional γ-orbits, (where "dimension" means: maximal dimension of the γ-components of the γ-orbit, see $\S 3$). In fact, as Clemens pointed out, the technique used in [P] is related to the famous Mumford's paper [M] about the rational equivalence of zero cycles on a surface. So that, by those arguments, it is possible to show:

Theorem (1.1). Let A be an Abelian variety, $\operatorname{dim}(A) \geq 2$, then
(a) $S^{2}(A)$ does not contain any two-dimensional γ-orbit;
(b) if A is generic and $\operatorname{dim}(A) \geq 3, S^{2}(A)$ does not contain any onedimensional γ-orbit.

The proof of (1.1) is essentially contained in [P]: you have only to change the words "rational curve" into " γ-curve", (see also (7.1)).

In this paper we study the γ-orbits of $S^{3}(A), \operatorname{dim}(A) \geq 2$, and we obtain the following results:

Theorem (1.2). Let A be an Abelian variety, $\operatorname{dim}(A) \geq 2$, then
(a) in $S^{3}(A)$ there are no d-dimensional γ-orbits with $d \geq 3$;
(b) in $K_{3}(A)$ there are no one-dimensional families of two-dimensional γ orbits;
(c) if $\operatorname{dim}(A)=2$, in $K_{3}(A)$ there are no three-dimensional families of one-dimensional γ-orbits.

Remark (1.3). If $\operatorname{dim}(A)=2$, in $S^{3}(A)$ there are some two-dimensional γ orbits and some two-dimensional families of one-dimensional γ-orbits, see Examples (5.2) and (5.3); so that (1.2) is sharp.

Theorem (1.4). Let A be a generic Abelian variety, $\operatorname{dim}(A) \geq 3$, then
(a) if $\operatorname{dim}(A)=3$, in $S^{3}(A)$ there are no two-dimensional γ-orbits;
(b) if $\operatorname{dim}(A)=3$, in $K_{3}(A)$ there are no two-dimensional families of onedimensional γ-orbits;
(c) if $\operatorname{dim}(A) \geq 4$, in $S^{3}(A)$ there are no one-dimensional γ-orbits.

The proof of (1.2), in $\S 5$, is based upon the results of Mumford and Roitman (see $\S 3$); but, to apply them, we have needed some linear algebra which we have condensed in $\S 4$.

To prove (1.4) we have considered some special families of Abelian varieties of this type: $A_{t}=E_{t} \times B$ (where E is usually an elliptic curve with varying moduli), and we have used the projections between $S^{3}\left(A_{t}\right)$ and $S^{3}(B)$ which preserve the dimension of the families of γ-orbits, then we have applied (1.2) to $S^{3}(B)$, (see $\left.\S 7\right)$.

Unfortunately we did not find an easy way to show that such projections do exist, not even when A is isogenous to a product of elliptic curves. So we were forced to prove the lemmas in $\S 6$; actually some proof could be shortened by using the De Franchis-Severi theorem (for curves and for surfaces, see [DM]), but we have avoided this theorem, firstly since it is not strictly necessary, secondly since we hope to generalize our results to $S^{k}(A), k \geq 4$.

Our theorems have the following corollary, which solves the problem put at the end of $[\mathrm{P}]$:

Corollary (1.5). Let A be a generic g-dimensional Abelian variety, $g \geq 4$. Then A is not a quotient of a Jacobian of a trigonal curve, in other words A does not contain trigonal curves.
Proof. Let C be a trigonal curve such that there exists a surjective map

$$
f: J(C) \rightarrow A
$$

By composing f with the Abel-Jacobi map, we get a nontrivial map $C \rightarrow A$, hence we have a finite map: $S^{3}(C) \rightarrow S^{3}(A)$; as C is trigonal we have another obvious map: $\mathbf{P}^{1} \rightarrow S^{3}(C) \rightarrow S^{3}(A)$; this gives rise to a rational curve in $S^{3}(A)$, but it is not possible by (1.4)(c).

Remark (1.6). Obviously the Jacobian of a trigonal curve contains a trigonal curve: the curve itself; (1.5) shows that, among Abelian varieties, the Jacobians of genus 4 curves are special also under this point of view.
Acknowledgments. We wish to thank H. Clemens who called all these problems to our attention and the referee for his suggestions.

2. Notations and conventions

\oplus	direct sum of vector spaces,
$\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right\rangle$	C-vector space generated by $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$,
variety	by this term we mean a projective complex variety,
n-fold	n-dimensional variety (not necessarily smooth),
surface	two-fold, curve one-fold, generic
	by this word we mean: outside a countable union of proper analytic subvarieties,,
K_{V}	canonical divisor of the variety V when it is smooth,
$V \times V$	Cartesian product of the variety V with itself,
V^{k}	k-Cartesian product of the variety V,
$S^{k}(V)$	k-symmetric product of the variety V,
$\mathscr{H} n$	Siegel space of n-dimensional Abelian varieties.

3. Rational equivalence of zero-cycles

In this paragraph we recall the results of Roitman and Mumford we need in the sequel.

Proposition (3.1) (see $\left[\mathrm{R}_{2}\right]$). Let Z be a degree k effective zero-cycle on a smooth variety X, then the γ-orbit of X containing Z is a countable union of closed subsets of $S^{k}(X)$; such a set is usually called c-closed.

We can define the dimension of a c-closed set as the maximal dimension of its irreducible components. In this way it is possible to define the dimension of the image: $\gamma\left(S^{k}(X)\right) \subseteq \mathrm{CH}_{0}(X)$, even though it is not an algebraic variety, as

$$
d_{k}=\operatorname{dim}\left(S^{k}(X)\right)-\min \{\text { dimension of a fibre of } \gamma\}
$$

We say that $\mathrm{CH}_{0}(X)$ is finite dimensional if the set of integers d_{k} is bounded, otherwise we say that $\mathrm{CH}_{0}(X)$ is infinite dimensional.

In [M] Mumford proved that if X is a surface with geometric genus $p_{g}>$ 0 , then $\mathrm{CH}_{0}(X)$ is infinite dimensional. In [R_{2}] Roitman gave the following generalization:

Theorem (3.2). Let X be a smooth variety; then there are integers $d(X)$ and $j(X) \geq 0$, and an integer k_{0}, such that for all $k \geq k_{0}$ we have $d_{k}=k d(X)+$ $j(X)$. Moreover $d(X) \leq \operatorname{dim}(X)$, and $d(X)=0$ if and only if $\mathrm{CH}_{0}(X)$ is finite dimensional.

In [R_{1} and R_{2}] Roitman proved the following:
Theorem (3.3). Let X be a smooth variety, suppose that, for some positive integer q, there exists a nonzero global q-form ω on X. Then ω induces a q-form ω_{k} on $S^{k}(X)$ whose restriction to any γ-component of $S^{k}(X)$ is zero. Hence $d(X) \geq q$.

We recall that the q-form ω_{k} quoted in (3.3) is defined as follows: we consider X^{k} and for any $i=1,2, \ldots, k$ we consider the natural projection onto the i th factor $p_{i}: X^{k} \rightarrow X$, now the q-form $\sum p_{i}^{*} \omega$ is well defined at the generic point of $S^{k}(X)$ because it is invariant under the action of the symmetric group; so we set $\omega_{k}=\sum p_{i}^{*} \omega$. In the same papers Roitman also shows the following:

Theorem (3.4). Let f_{1}, f_{2} be two maps between a smooth variety V and $S^{k}(X)$ such that $\forall v \in V \quad f_{1}(v)$ is rationally equivalent to $f_{2}(v)$; let ω be a q-form defined on X; then $f_{1}^{*}\left(\omega_{k}\right)=f_{2}^{*}\left(\omega_{k}\right)$.

The previous theorem allows us to prove this corollary.
Corollary (3.5). Let V be a smooth n-dimensional variety; let $f: V \rightarrow S^{k}(X)$ be a map; suppose that there exists a map $p: V \rightarrow B$, where B is an $n-$ t dimensional variety, such that $\forall b \in B, f\left[p^{-1}(b)\right]$ is a t-dimensional γ component of $S^{k}(X)$; let ω be a q-form defined on X. Then $f^{*} \omega_{k}=0$ if $q>n-t$.
Proof. We can always choose a suitable subvariety W of V such that $p_{\mid W}$ is finite over B; let $V^{\#}$ be $V \times_{B} W$ (fibre product). Let $p^{\#}: V^{\#} \rightarrow W$ and $\pi^{\#}: V^{\#} \rightarrow V$ the induced projections and $\sigma: W \rightarrow V^{\#}$ be the canonical section
of $p^{\#}$; now we consider the maps $h, g: V^{\#} \rightarrow S^{k}(X)$ such that $h(v)=f\left[\pi^{\#}(v)\right]$ and $g(v)=h\left\{\sigma\left[p^{\#}(v)\right]\right\}$. Obviously $h(v)$ is rationally equivalent to $g(v)$ $\forall v \in V^{\#}$, and therefore, by (3.4), $h^{*} \omega_{k}=g^{*} \omega_{k}$. But $g^{*} \omega_{k}=\left(p^{\#}\right)^{*} \sigma^{*} h^{*} \omega_{k}$ and $\sigma^{*} h^{*} \omega_{k}=0$ if $q>n-t$, as $\pi^{\#}$ is finite on $V, f^{*} \omega_{k}=0$.

4. Some linear algebra

Let V be \mathbf{C}^{2}, and let $\{d z, d w\}$ be a basis for V^{*}. Let L_{2} be the kernel of the map $\sigma: V \oplus V \oplus V \rightarrow V$ given by summation. Consider the following two-form on L_{2} :

$$
\begin{align*}
{\left[d z_{1}\right.} & \left.\wedge d w_{1}+d z_{2} \wedge d w_{2}+d z_{3} \wedge d w_{3}\right]_{\mid L_{2}} \\
& =\left[2 d z_{1} \wedge d w_{1}+2 d z_{2} \wedge d w_{2}+d z_{1} \wedge d w_{2}+d z_{2} \wedge d w_{1}\right]_{\mid L_{2}} \\
& =\left[d z_{1} \wedge d\left(2 w_{1}+w_{2}\right)+d\left(z_{1}+2 z_{2}\right) \wedge d w_{2}\right]_{\mid L_{2}}
\end{align*}
$$

As (\wedge) has maximal rank on L_{2}, we have that any locally isotropic subspace of $V \oplus V \oplus V$ for (\sim), has dimension 2 at most. In fact there are such twodimensional maximal subspaces, for instance: $\left\{\left(\mathbf{v}, \rho \mathbf{v}, \rho^{2} \mathbf{v}\right), \mathbf{v} \in V, \rho \in \mathbf{C}\right.$ with $\left.1+\rho+\rho^{2}=0\right\}$.

Now let W be $\mathbf{C}^{n}, n \geq 2$, and let L_{n} be the kernel of the map $\sigma: W \oplus$ $W \oplus W \rightarrow W$ as before. Let U be a linear subspace of L_{n} such that for all projections $W \rightarrow V$, the induced map $L_{n} \rightarrow L_{2}$ sends U into a totally isotropic subspace of L_{2} for (\wedge). Then $\operatorname{dim}(U) \leq n$. In fact, for $n=2$ this is true, for $n \geq 3$ we can proceed by induction on n : every projection $L_{n} \rightarrow L_{n-1}$ has kernel of dimension 2 , so that $\operatorname{dim}(U) \leq n+1$; moreover if $\operatorname{dim}(U)=n+1$, the kernel of every projection $L_{n} \rightarrow L_{n-1}$ would lie in U, and this is not possible.

Note that $\operatorname{dim}(U)=n$ is possible, for instance if $U=\left\{\left(\mathbf{w}, \rho \mathbf{w}, \rho^{2} \mathbf{w}\right)\right.$, $\mathbf{w} \in W, \rho \in \mathbf{C}$ with $\left.1+\rho+\rho^{2}=0\right\}$; we will see in (4.2) that it is the only possibility. Now we can prove the following:
Proposition (4.1). In the same notation as before, let $n=3$, let $\{d z, d w, d u\}$ be a basis for W^{*}; consider the following three-form:

$$
(\sim \sim) \quad d z_{1} \wedge d w_{1} \wedge d u_{1}+d z_{2} \wedge d w_{2} \wedge d u_{2}+d z_{3} \wedge d w_{3} \wedge d u_{3}
$$

and suppose that U is totally isotropic for $(\sim \sim)$. Then $\operatorname{dim}(U) \leq 2$.
Proof. By contradiction we suppose that $\operatorname{dim}(U)=3$, then by projecting W to V three times along the respective axes we see that:

$$
\begin{aligned}
U= & \left\langle\left(a_{1}, 0,0\right),\left(a_{2}, 0,0\right),\left(a_{3}, 0,0\right)\right\rangle+\left\langle\left(0, b_{1}, 0\right),\left(0, b_{2}, 0\right),\left(0, b_{3}, 0\right)\right\rangle \\
& +\left\langle\left(0,0, c_{1}\right),\left(0,0, c_{2}\right),\left(0,0, c_{3}\right)\right\rangle
\end{aligned}
$$

with: $\sum a_{i}=\sum b_{i}=\sum c_{i}=0$. So the vectors $\mathbf{a}=\left(a_{i}\right), \mathbf{b}=\left(b_{i}\right), \mathbf{c}=$ $\left(c_{i}\right)$ in \mathbf{C}^{3} lie in the plane P defined by the equation: $\sum x_{i}=0$. Since for all projections $W \rightarrow V$, the induced map $L_{n} \rightarrow L_{2}$ sends U into a totally isotropic subspace of L_{2} for (\wedge), we have: $\sum a_{i} b_{i}=\sum b_{i} c_{i}=\sum c_{i} a_{i}=0$.

Since the symmetric bilinear form on \mathbf{C}^{3} which has the identity associated matrix (with respect to the standard base) has rank 2 on P, we conclude from the above equations that either \mathbf{a}, \mathbf{b} or \mathbf{c} is $\mathbf{0}$, (this is impossible as we have supposed that $\operatorname{dim}(U)=3$) or \mathbf{a}, \mathbf{b} and \mathbf{c} are all multiples of the same vector
\mathbf{w} with $\sum w_{i}=\sum\left(w_{i}\right)^{2}=0$. So that \mathbf{w} can be taken to be some permutation of ($1, \rho, \rho^{2}$). Hence we can write: $\mathbf{a}=A \mathbf{w}, \mathbf{b}=B \mathbf{w}$ and $\mathbf{c}=C \mathbf{w}$ for some nonzero complex numbers A, B, C. But if we apply ($\sim \wedge$) to these three vectors we have that the result is zero if and only if $A B C=0$, contradiction!

By (4.1) it is very easy to prove the following:
Proposition (4.2). In the previous notation: let $n \geq 4$. Then $U \subseteq\left\{\left(\mathbf{w}, \rho \mathbf{w}, \rho^{2} \mathbf{w}\right)\right.$, $\mathbf{w} \in W, \rho \in \mathbf{C}$ with $\left.1+\rho+\rho^{2}=0\right\}$ and if all projections of W into \mathbf{C}^{3} send U into a totally isotropic subspace for $(\sim \wedge)$, we have that $\operatorname{dim}(U) \leq 2$.

5. Proof of (1.2) and some examples

Let A be an n-dimensional Abelian variety. Firstly we want to recall some useful facts about $S^{k}(A)$.
There is an action of the additive group A on the variety $S^{k}(A)$: for every $a \in A$ we have $T_{a}: S^{k}(A) \rightarrow S^{k}(A)$ such that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in$ $S^{k}(A) \quad\left(T_{a}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(x_{1}+a, x_{2}+a, \ldots, x_{k}+a\right)\right.$. For every $a \in A$, T_{a} is an isomorphism of $S^{k}(A)$ which we will call translation, by abuse of language.

If we consider the $n k$-dimensional Abelian variety A^{k}, we have that there is a (k !)-covering $p: A^{k} \rightarrow S^{k}(A)$ which is obviously ramified on the points $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of $S^{k}(A)$ such that the x_{i} are not all distinct. Moreover there is another obvious (k !)-covering $\pi: A^{k-1} \rightarrow K_{k}(A)\left(K_{k}(A)\right.$ is the kernel of the Albanese map, see $\S 1)$ such that $\pi\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=\left(x_{1}, x_{2}, \ldots, x_{k-1}\right.$, $\left.-x_{1}-x_{2} \cdots-x_{k-1}\right)$. Remark that any d-dimensional γ-component in $K_{k}(A)$ gives rise to a d-fold in A^{k-1} via π.

Now we are able to prove (1.2); recall that, by the argument of $\S 1$, we have to study the γ-orbits contained in $K_{3}(A)$.

Proof of (1.2)(a). Let V be the dual of the Lie algebra of $A, \operatorname{dim}(V)=$ $\operatorname{dim}(A)=n$, and we recall that, for any Abelian variety $A, \forall q \geq 1, H^{q, 0}(A)=$ $\Lambda^{q}(V)$.

For any $\omega \in \Lambda^{q}(V), q \geq 2$, we consider the q-form $\phi(\omega)$ induced by ω on $S^{3}(A)$ in the following way: $\phi(\omega)=p_{*}\left(p_{1}^{*} \omega+p_{2}^{*} \omega+p_{3}^{*} \omega\right)$, where

$$
p: A^{3} \rightarrow S^{3}(A)
$$

and p_{1}, p_{2}, p_{3} are the projections of $A \times A \times A$ on A.
The tangent space U at every smooth point of any γ-orbit of $K_{3}(A)$ lies in L_{n} (see $\S 4$); $\phi(\omega)$ has to vanish on U, by Theorem (3.3), for any $\omega \in \Lambda^{q}(V)$, $q=2,3, \ldots, n$; this means that the assumptions of (4.2) about the projections of U are satisfied. Hence $\operatorname{dim}(U) \leq 2$; therefore every γ-orbit has dimension 2 at most.

Remark (5.1). The previous proof is based on the fact that all the forms belonging to $\phi\left(\Lambda^{q}(V)\right), q=2,3, \ldots, n$, have to vanish on the tangent spaces at the smooth points of any γ-component of $K_{3}(A)$. So we can say that, if a d-fold, contained in $K_{3}(A)$, has the same properties, then $d \leq 2$.

Proof of $(1.2)(\mathbf{b})$. If there would be such a family $\left\{S_{t}\right\}, t \in \mathbf{C}$, then in $K_{3}(A)$ we would get a three-fold T which would be filled by two-dimensional γ components. By using the same notations as in the proof of (1.2)(a), we have that, by Corollary (3.5), the forms belonging to $\phi\left(\Lambda^{q}(V)\right), q=2,3, \ldots, n$, have to vanish on the tangent spaces at the smooth points of T, but this implies that $\operatorname{dim}(T) \leq 2$ by Remark (5.1): contradiction!

Proof of $(1.2)(\mathrm{c})$. If there would be a family $\left\{C_{\mathbf{r}}\right\}, \mathbf{r} \in \mathbf{C}^{3}$, of one-dimensional γ-orbits in $K_{3}(A)$ then $K_{3}(A)$ would be filled by one-dimensional γ-components and this is not possible by (3.2) and (3.3).

Now we prove, by some examples, that, when $\operatorname{dim}(A)=2$, the one-dimensional γ-orbits can span a three-fold in $S^{3}(A)$, and that there are two-dimensional γ-orbits.
Example (5.2). Let A be an Abelian surface; let C be a nonhyperelliptic genus 3 (smooth, irreducible) curve on A. If we consider the divisor L supported by C, we get $L^{2}=4$ by the genus formula, and $h^{0}(L)=2$ by the Riemann-Roch and Kodaira vanishing theorems.

So C moves in a pencil $\left\{C_{\mu}\right\}$ which has four base points: A, B, C, D. The adjunction formula yields: $K_{L}=L_{\mid L}$; so that $A+B+C+D$ is a canonical divisor on every curve C_{μ} of the pencil.

The canonical model C_{μ}^{\prime} of C_{μ} is a smooth plane quartic whose canonical series is cut by the lines, therefore the divisor of C_{μ}^{\prime} corresponding to $A+B+$ $C+D$ is cut on C_{μ}^{\prime} by a line.

Now we consider a point P_{μ} on C_{μ} and the linear series g_{3}^{1} corresponding to the linear series g_{3}^{1} cut on C_{μ}^{\prime} by the lines passing through the point corresponding to P_{μ}. So that for every $\lambda \in \mathbf{P}^{1}$ we have a divisor: $P_{\mu}+Q_{\mu \lambda}+R_{\mu \lambda}+S_{\mu \lambda}$ on C_{μ}. We choose an Abel map $\alpha_{\mu}: C_{\mu} \rightarrow J\left(C_{\mu}\right)$ such that $\alpha_{\mu}\left(P_{\mu}\right)=0$, hence, by Abel theorem, $\alpha_{\mu}\left(Q_{\mu \lambda}+R_{\mu \lambda}+S_{\mu \lambda}\right)=\tau_{P, \mu}$ is constant with respect to λ. The 3-ples: $\alpha_{\mu}\left(Q_{\mu \lambda}\right), \alpha_{\mu}\left(R_{\mu \lambda}\right), \alpha_{\mu}\left(S_{\mu \lambda}\right)$ in $J\left(C_{\mu}\right)$ gives rise to a rational curve in $S^{3}\left[J\left(C_{\mu}\right)\right]$ as λ moves in \mathbf{P}^{1}.

We consider the following commutative diagram

in which i_{μ} is the embedding of C_{μ} in A and f_{μ} is the homomorphism between Abelian varieties induced by α_{μ}. By using f_{μ} we get a rational curve in $S^{3}(A)$; by translating this curve by $f_{\mu}\left(\tau_{P, \mu}\right)$ we get a rational curve $\gamma_{P, \mu}$ in $K_{3}(A)$.

Now we let P vary on C_{μ} : for every point P we get a curve $\gamma_{P, \mu}$ in $K_{3}(A)$; these curves are all distinct because the used linear series g_{3}^{1} on C_{μ}^{\prime} are distinct. Now let P vary on C_{μ} and let μ vary in \mathbf{P}^{1} : for every couple P, μ we get a curve $\gamma_{P, \mu}$ in $K_{3}(A)$; these curves are all distinct because they are made by points lying on different curves C_{μ} of A.

Obviously every curve $\gamma_{P, \mu}$ is contained in a γ-orbit of $K_{3}(A)$ and this example shows that in $K_{3}(A)$ there exist γ-orbits whose span is a three-fold.

Example (5.3). The previous example also shows that in $K_{3}(A)$ there exist some γ-orbits whose span is a surface. In fact for every curve C_{μ} of the previous example we can fix the point A, (one of the base points of the pencil $\left\{C_{\mu}\right\}$), and for every $\mu \in \mathbf{P}^{1}$ we get a rational curve $\gamma_{A, \mu}=\gamma_{\mu}$ in $K_{3}(A)$.

In this case, by recalling the construction of the linear series g_{3}^{1}, we have that for every $\mu \in \mathbf{P}^{1}$ there exists a $\lambda \in \mathbf{P}^{1}$ such that $Q_{\mu \lambda}=B, R_{\mu \lambda}=C$, $S_{\mu \lambda}=D$. Therefore: $\alpha_{\mu}(B+C+D)=\tau_{A, \mu}$ and $f_{\mu}\left[\alpha_{\mu}(B+C+D)\right]=f_{\mu}\left(\tau_{A, \mu}\right)=$ $i_{\mu}(B+C+D)$ is independent from μ, hence the obtained curves in $S^{3}(A)$ belong to

$$
\left\{(x, y, z) \in S^{3}(A) \mid x+y+z=i_{\mu}(B+C+D)\right\}
$$

and all pass through the point: $\left(i_{\mu}(B), i_{\mu}(C), i_{\mu}(D)\right)$ in $S^{3}(A)$.
So that the translated curves γ_{μ} in $K_{3}(A)$ all intersect between them. Therefore the curves γ_{μ} span a rational surface in $K_{3}(A)$ which is contained in a γ-orbit.

6. The lemmas

In this paragraph we prove some lemmas which will be useful in $\S 7$. We will need to study the projections of d-dimensional γ-components which are induced by natural projections between $K_{3}(V \times W)$ and $K_{3}(W)$, where V and W will be suitable Abelian varieties.

By the commutativity of the following diagram

we have to study the natural projections $(V \times W) \times(V \times W) \rightarrow W \times W$, this is the aim of the following two lemmas.

Let X be a smooth irreducible d-fold and let A be an n-dimensional Abelian variety; let $\sigma: X \rightarrow A \times A$ be a map, birational onto its image, such that $\sigma(X)$ generates $A \times A$. Assume that A is isogenous to $D \times D \times B$ where D and B are Abelian varieties of dimension q and $(n-2 q)$ respectively. We fix two "dual" isogenies $D \times D \times B \rightarrow A \rightarrow D \times D \times B$ such that their composition is the multiplication by an integer; in this way we get a map $f \circ \sigma: X \rightarrow B \times B$ by composing the natural projection f with σ; let Y be $f[\sigma(X)]$; assume that
the natural projection $f: A \times A \rightarrow B \times B$ is such that $Y=f[\sigma(X)]$ is a d-dimensional subvariety of $B \times B$.
Now let $\nu_{i}: D \rightarrow D \times D \rightarrow A$ be the composition of an embedding of D in $D \times D$ with the previously chosen isogeny; we can suppose that i varies in a countable set, in fact among all embeddings $D \rightarrow D \times D$ there are the following morphisms of algebraic groups: $\mathbf{d} \rightarrow(a \mathbf{d}, b \mathbf{d})$ (for any $\mathbf{d} \in D$ and for a fixed couple of coprime integers $a, b)$. We set $B_{i}=\left[(D \times D) / \nu_{i}(D)\right] \times B$ and let X_{i} be the image of X under the composition of the natural projection $A \times A \rightarrow B_{i} \times B_{i}$ with σ.

In this situation we have the maps: $q_{i}^{*}: H^{1}\left(X_{i}, \mathbf{Q}\right) \rightarrow H^{1}(X, \mathbf{Q})$ and $\sigma^{*}: H^{1}(A \times A, \mathbf{Q}) \rightarrow H^{1}(X, \mathbf{Q})$; let Λ_{i} be the image of q_{i}^{*}, then

Lemma (6.2). With the previous notations, there exists an index i at least (hence an embedding of D in $D \times D$) such that Λ_{i} contains the image of σ^{*}.
Proof. Note that this proof actually shows more, i.e. Λ_{i} contains the image of $H^{1}(A \times A, \mathbf{Q})$ in $H^{1}(X, \mathbf{Q})$ save for a finite number of i.

For every i we have a diagram of equidimensional d-folds

(the map $X_{i} \rightarrow Y$ is obtained by using the natural projection

$$
B_{i} \rightarrow B_{i} /\left[(D \times D) / \nu_{i}(D)\right]
$$

and by remarking that $B_{i} /\left[(D \times D) / \nu_{i}(D)\right]$ is isogenous to $\left.B\right)$. It follows that: $K[Y] \subset K\left[X_{i}\right] \subset K[X]$ so that there are only a finite number of birational models for the X_{i}. The maps in the following diagram are defined in the obvious way:

and we remark that, as $\sigma(X)$ generates $A \times A$ and the natural projection $A \times A \rightarrow B_{i} \times B_{i}$ is surjective, the map $H^{1}\left(B_{i} \times B_{i}, \mathbf{Q}\right) \rightarrow H^{1}(X, \mathbf{Q})$ is injective for any i. Now if we choose two distinct, transverse, embeddings of D in $D \times D$ for which the corresponding fields $K\left[X_{i 1}\right]$ and $K\left[X_{i 2}\right]$, contained in $K[X]$, coincide, then we have that $H^{1}\left(X_{i 1}, \mathbf{Q}\right) \rightarrow H^{1}(X, \mathbf{Q})$ and $H^{1}\left(X_{i 2}, \mathbf{Q}\right) \rightarrow H^{1}(X, \mathbf{Q})$ are the same map; by the injectivity of $H^{1}\left(B_{i j} \times B_{i j}, \mathbf{Q}\right) \rightarrow H^{1}(X, \mathbf{Q}), j=1,2$, we have that $\Lambda_{i 1}=\Lambda_{i 2}$ must contain the span of the images of $H^{1}\left(B_{i 1} \times B_{i 1}, \mathbf{Q}\right)$ and $H^{1}\left(B_{i 2} \times B_{i 2}, \mathbf{Q}\right)$ in $H^{1}(X, \mathbf{Q})$, hence $\Lambda_{i 1}=\Lambda_{i 2}$ must contain the image of $H^{1}(A \times A, \mathbf{Q})$ in $H^{1}(X, \mathbf{Q})$.

Lemma (6.3). With the same assumptions as in (6.2), we get the same thesis if we consider $F^{1} H^{1}(-, \mathbf{C})$, (in the sense of mixed Hodge structures, see [G]), instead of $H^{1}(-, \mathbf{Q})$.

Remark (6.4). Note that, if $\operatorname{dim}(X)=1,(*)$ is always satisfied, (save, obviously, when $A=E \times E \times B, E$ elliptic curve, and $X=E$).

Now let Δ be an analytic scheme $(0 \in \Delta)$, and $h: \mathbf{A} \rightarrow \Delta$ a proper fibration such that $h^{-1}(t), t \in \Delta$, is an Abelian variety isogenous to $\mathbf{D}_{t} \times \mathbf{B}, \mathbf{B}$ fixed, $\left(h^{-1}(0)\right.$ isogenous to $\left.\mathbf{D}_{0} \times \mathbf{B}\right)$.

The infinitesimal variation of the Hodge structures induces the following $\operatorname{map} \phi: H^{1,0}\left(\mathbf{D}_{0}\right) \rightarrow \operatorname{Hom}\left(T_{\Delta}(0), H^{0,1}\left(\mathbf{D}_{0}\right)\right)$, such that for any $\mu \in H^{1,0}\left(\mathbf{D}_{0}\right)$ and for any $t \in T_{\Delta}(0), \phi(\mu)(\mathbf{t})$ is the derivative of μ along \mathbf{t}. We have the following:

Lemma (6.5). With the previous assumptions, consider the commutative diagram

where X_{t} are varieties parametrized by t, σ_{t} are maps birational onto their images, $\sigma_{t}\left(X_{t}\right)$ generates $\mathbf{D}_{t} \times \mathbf{B}$ for any t, f_{t} is the natural projection, q_{t} is induced by f_{t}, l is an inclusion and Z is fixed. Assume that ϕ is injective; then

$$
\sigma_{0}^{*}\left[H^{1,0}\left(\mathbf{D}_{0}\right)\right] \cap q_{0}^{*} F^{1} H^{1}(Z)=0 \in F^{1} H^{1}\left(X_{0}\right)
$$

Proof. If μ belongs to that intersection, $\phi(\mu)=0$ as $F^{1} H^{1}(Z)$ is independent from t; as ϕ is injective we have $\mu=0$.

Now let Δ be an open set of $\mathscr{H}_{n},(0 \in \Delta)$, we will call a " (Δ, m, G) situation" (for \mathscr{H}_{n}) the following data:
(i) a bundle of Abelian varieties over Δ : $\mathbf{A} \times{ }_{\Delta} \mathbf{A} \times{ }_{\Delta} \cdots \times G$ (m times) where \mathbf{A} is the tautological Abelian bundle over Δ and G is a constant Abelian variety; (by abuse of notation we write $G=G \times \Delta$ and $\mathbf{A}^{m} \times G=\mathbf{A} \times \Delta \mathbf{A} \times \Delta \times G$ (m times));
(ii) a family of d-dimensional varieties $k: \mathbf{X} \rightarrow \Delta$ over Δ;
(iii) a morphism of Δ families $\sigma: \mathbf{X} \rightarrow \mathbf{A}^{m} \times G$, i.e. a commutative diagram as follows:

(we set $X_{t}=k^{-1}(t)$ and $\mathbf{h}^{-1}(t)=\left(A_{t}\right)^{m} \times G$ for any $t \in \Delta$);
(iv) the assumption that the image $\sigma_{t}\left(X_{t}\right)$ generates $\left(A_{t}\right)^{m} \times G$ as a group, for any $t \in \Delta$.

We remark that, if conditions (i), (ii), (iii) are satisfied, the bundle of Abelian varieties generated by the images $\sigma_{t}\left(X_{t}\right)$ must be isomorphic to $\mathbf{A}^{m^{\prime}} \times G^{\prime}$ where $m^{\prime} \leq m$ and G^{\prime} is an Abelian subvariety of G; so that, by changing the bundle, we always get a $\left(\Delta, m^{\prime}, G^{\prime}\right)$-situation. With the above warning we can say that to have a (Δ, m, G)-situation is equivalent to have a d-dimensional variety in $A^{m} \times G$ where A is generic in Δ; (i.e. for any $t \in \Delta$ we have a d-fold X_{t} in $\left.\left(A_{t}\right)^{m} \times G\right)$. Actually we usually will consider only the case: $m=2, G=0$, (hence $\mathbf{h}=h \times_{\Delta} h$); for the sake of simplicity, from now on, this case will be simply called " Δ-situation."
Lemma (6.6). We suppose to be in a Δ-situation; we choose A isogenous to $D \times D \times B$, (as in Lemma (6.2)), and for any linear embedding $\nu_{i}: D \rightarrow D \times D$ we fix an isogeny between A and $\nu_{i}(D) \times\left[(D \times D) / \nu_{i}(D)\right] \times B$.

Let $\Delta_{i}=\left\{t \in \Delta \mid\right.$ the fibre of $h \times_{\Delta} h$ is $A_{t} \times A_{t}$ where A_{t} is isogenous to $\left.\nu_{i}(D) \times D_{t} \times B, D_{t} \in \mathscr{H}_{q}\right\}$; let A_{0} be isogenous to A by the isogeny induced by the previously fixed one. This defines an embedding $\nu_{i}^{*}: \mathscr{H}_{q} \rightarrow \mathscr{H}_{n}$, such that $\Delta_{i}=\Delta \cap\left[\nu_{i}^{*}\left(\mathscr{H}_{q}\right)\right] ;$ we set $B_{i}=\nu_{i}(D) \times B$.

For any $t \in \Delta_{i}$, let $f_{i, t}: A_{t} \times A_{t} \rightarrow B_{i} \times B_{i}$ be the natural projection; if we assume (*) for the natural projection $f_{i, 0}: A \times A \rightarrow B \times B$ and $\sigma_{0}\left(X_{0}\right)$, we have
that, save a finite number of i at most, $f_{i, t}\left[\sigma_{t}\left(X_{t}\right)\right]$ is not a fixed subvariety of $B_{i} \times B_{i}$.
Proof. We proceed by contradiction: if (6.6) is false, then for any $i, f_{i, t}\left[\sigma_{t}\left(X_{t}\right)\right]$ is a fixed d-fold X_{i} in B_{i} for any t, and X_{i} generates B_{i}. Then we have the following commutative diagram:

Note that we can apply Lemma (6.5) because we are in a Δ-situation, so we have that $\sigma_{0}^{*}\left[H^{1,0}\left(D^{4}\right)\right] \cap\left(q_{i, 0}\right)^{*} F^{1} H^{1}\left(X_{i}\right)=0 \in F^{1} H^{1}\left(X_{0}\right)$ but, by Lemma (6.3), $\left(q_{i, 0}\right)^{*} F^{1} H^{1}\left(X_{i}\right)$ contains $\sigma_{0}^{*}\left[H^{1,0}\left(D^{4}\right)\right]$ except for a finite number of i, contradiction!

Lemma (6.7). We are supposed to be in a Δ-situation; but now we choose A isogenous to $D^{m} \times B$, and we consider the countable set of the linear embeddings $\nu_{i}: D^{p} \rightarrow D^{m} \quad\left(p \leq m\right.$, positive integers, $\left.D \in \mathscr{H}_{q}, B \in \mathscr{H}_{n-m q}\right)$. For any embedding ν_{i} we fix an isogeny between A and $\nu_{i}\left(D^{p}\right) \times\left[D^{m} / \nu_{i}\left(D^{p}\right)\right] \times B$; let $\Delta_{i}=\left\{t \in \Delta \mid\right.$ the fibre of $h \times_{\Delta} h$ is $A_{t} \times A_{t}$ where A_{t} is isogenous to $\left.F_{t} \times\left[D^{m} / \nu_{i}\left(D^{p}\right)\right] \times B, F_{t} \in \mathscr{H}_{p q}\right\}, A_{0}$ is isogenous to A as in the previous cases. This defines an embedding $\nu_{i}^{*}: \mathscr{H}_{p q} \rightarrow \mathscr{H}_{n}$ such that: $\Delta_{i}=\Delta \cap\left[\nu_{i}^{*}\left(\mathscr{H}_{p q}\right)\right]$; we set: $B_{i}=\left[D^{m} / \nu_{i}\left(D^{p}\right)\right] \times B$.

For any $t \in \Delta_{i}$, let $f_{i, t}: A_{t} \times A_{t} \rightarrow B_{i} \times B_{i}$ be the natural projection; if we assume (*) for the natural projection $f_{i, 0}: A \times A \rightarrow B \times B$ and $\sigma_{0}\left(X_{0}\right)$, we have that, save a finite number of i at most, $f_{i, t}\left[\sigma_{t}\left(X_{t}\right)\right]$ is not a fixed subvariety of B_{i}.
Proof. See the proof of (6.6).
To apply the above lemmas we need condition $(*)$; this is a crucial point: it allows us to avoid the use of the De Franchis-Severi theorem. When X is of general type and $d=1$ or 2 , this theorem would assure the existence of a finite number of subfields $K\left[X_{i}\right]$ of $K[X]$ (see the proof of Lemma (6.2)), without the assumption that f is generically finite, i.e., roughly speaking, without fixing a shield $Y=f[\sigma(X)]$.

We use the following remark: consider diagram (6.1): our natural projections between $(V \times W) \times(V \times W)$ and $W \times W$ are induced by natural projections between $K_{3}(V \times W)$ and $K_{3}(W)$, so that to verify (*) it suffices to verify the corresponding statement for projections between $K_{3}(V \times W)$ and $K_{3}(W)$, and vice versa. This explains the statements of the following other lemmas.
Lemma (6.8). Let S be a γ-surface in $K_{3}(E \times E)$ where E is a generic elliptic curve (in the sense of moduli); let S^{\prime} be the pullback of S in $E^{2} \times E^{2}$; let $E_{p q}$ be a fixed embedding of $E \times E$ in $E^{2} \times E^{2}$ such that $E_{p q}=\{p x, q x, p y, q y\}$ where $(x, y) \in E \times E$ and p, q are coprime integers. Then there exist infinitely many couples (p, q) such that $E_{p q}$ intersects S^{\prime} properly. In these cases the natural projection $E^{2} \times E^{2} \rightarrow\left(E^{2} \times E^{2}\right) / E_{p q}$ is generically finite on S^{\prime} (and the induced map $K_{3}(E \times E) \rightarrow K_{3}[(E \times E) /\{p x, q y\}]$ is generically finite on $\left.S\right)$.

Proof. We will prove that there exists a couple (p, q) at least, such that $E_{p q}$ intersects S^{\prime} properly, but, in fact, our proof will also show that the intersection is proper save for a finite number of couples.

We proceed by contradiction; we recall that if two surfaces in E^{4} does not intersect properly then, for every generic point of the first surface, there passes a translate of the second one which intersects the former one along a curve. In fact the intersection cycle of two surfaces in E^{4} depends only on their homology class, and the homology class is invariant under translations.

We fix a generic point P of S^{\prime}, if every $E_{p q}$ does not intersect S^{\prime} properly then, $\forall p, q$, there exists a translate of $E_{p q}$ passing through P and cutting S^{\prime} along a curve; hence, by looking at the tangent spaces, we have that in the Lie algebra of E^{4} there are: a vector space generated by $(p, q, 0,0)$ and $(0,0, p, q), \forall p, q$, and the vector space $\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}\right)\right\rangle$ (corresponding to the tangent space to S^{\prime} at P), such that the matrix:

p	0	a_{1}	b_{1}
q	0	a_{2}	b_{2}
0	p	a_{3}	b_{3}
0	q	a_{4}	b_{4}

is always singular. Now we show that, for generic E, this situation is not possible.

As $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and ($b_{1}, b_{2}, b_{3}, b_{4}$) are independent, it is possible to choose a base for the Lie algebra such that: $a_{1}=b_{2}=1, b_{1}=a_{2}=0$; otherwise is not possible that the previous matrix is singular $\forall p, q$. Now it is easy to see that it is possible only if $b_{3}=a_{4}=0$ and $b_{4}=a_{3}=\rho$, with $\rho \in \mathbf{C}$. As S^{\prime} is the pullback in $E \times E \times E \times E$ of a γ-component S in $K_{3}(E \times E)$ which is not contained in the branching locus of π, the skew symmetric two-form (\sim) considered in $\S 4$ has to vanish on the tangent space at the generic point P of S^{\prime} by (3.3), hence: $1+\rho+\rho^{2}=0$ and ρ is a constant, independent from P.

This means that the only surfaces in E^{4} which does not intersect properly $E_{p q} \forall p, q$, are, up to translations, those Abelian surfaces S^{\prime} which are the embeddings of $E \times E$ in E^{4} such that $S^{\prime}=\{x, y, \rho x, \rho y\}$ where $(x, y) \in$ $E \times E$ and $\rho \in \mathbf{C}$ with $1+\rho+\rho^{2}=0$; but this implies that E has an endomorphism: $x \rightarrow \rho x \quad \forall x \in E$, with $1+\rho+\rho^{2}=0$, and this is not possible for generic E.

Lemma (6.9). Let S be a γ-surface in $K_{3}(E \times E \times E)$ where E is a generic elliptic curve; let S^{\prime} be the pullback of S in $E^{3} \times E^{3}$; let $E\left(p, q, r, p^{\prime}, q^{\prime}, r^{\prime}\right)$ be a fixed embedding of $E^{2} \times E^{2}$ in $E^{3} \times E^{3}$ such that $E\left(p, q, r, p^{\prime}, q^{\prime}, r^{\prime}\right)=\{p x+$ $\left.p^{\prime} y, q x+q^{\prime} y, r x+r^{\prime} y, p z+p^{\prime} w, q z+q^{\prime} w, r z+r^{\prime} w\right\}$ where $(x, y, z, w) \in$ $E^{2} \times E^{2}$, and $(p, q, r),\left(p^{\prime}, q^{\prime}, r^{\prime}\right)$ are triple of coprime integers, and such that the following matrix has rank 2 :

$$
\begin{array}{ccc}
p & q & r \\
p^{\prime} & q^{\prime} & r^{\prime} .
\end{array}
$$

Then there exist infinitely many choices $\left(p, q, r, p^{\prime}, q^{\prime}, r^{\prime}\right)$ such that $E\left(p, q, r, p^{\prime}, q^{\prime}, r^{\prime}\right)$ intersects S^{\prime} properly. In these cases the natural projection

$$
E^{3} \times E^{3} \rightarrow\left(E^{3} \times E^{3}\right) / E\left(p, q, r, p^{\prime}, q^{\prime}, r^{\prime}\right)
$$

is generically finite on S^{\prime},

$$
\left(K_{3}(E \times E \times E) \rightarrow K_{3}\left[(E \times E \times E) /\left\{p x+p^{\prime} y, q x+q^{\prime} y, r x+r^{\prime} y\right\}\right]\right.
$$

is generically finite on S).
Proof. We can proceed as in the proof of Lemma (6.8).
Lemma (6.10). Let E be a generic elliptic curve and let T be a three-fold in $K_{3}\left(E^{3}\right)$ which is filled by a two-dimensional family of γ-curves; let T^{\prime} be the pullback of T in $E^{3} \times E^{3}$; let $E_{p q r}$ be a fixed embedding of $E \times E$ in $E^{3} \times E^{3}$ such that $E_{p q r}=\{p x, q x, r x, p y, q y, r y\}$ where $(x, y) \in E \times E$ and p, q, r are coprime integers. Then there exist infinitely many triples (p, q, r) such that $E_{p q r}$ does not intersect T^{\prime} or intersects T^{\prime} in a finite number of points. In these cases the natural projection $E^{3} \times E^{3} \rightarrow\left(E^{3} \times E^{3}\right) / E_{p q r}$ is generically finite on T^{\prime} (and the induced map $K_{3}\left(E^{3}\right) \rightarrow K_{3}\left[E^{3} /\{p x, q x, r x\}\right]$ is generically finite on T).
Proof. By arguing as in Lemma (6.8) we get that the only three-folds in $E^{3} \times E^{3}$ which does not intersect properly $E_{p q r} \forall p, q, r$ are, up to translations, those Abelian three-folds T^{\prime} which are the embeddings of $E \times E \times E$ in $E^{3} \times E^{3}$ such that $T^{\prime}=\{x, y, z, s x, s y, s z\}$ where $(x, y, z) \in E \times E \times E$ and $s \in \mathbf{C}$ with $s(s+1)=0$.

This would imply that, in $K_{3}\left(E^{3}\right), T$ would be given by the unordered triples: $\{P, s P,-(s+1) P\}$, where $s=0$ or $s=-1$ and $P \in E^{3}$; in any case we could define an embedding $\lambda: T \rightarrow K_{2}\left(E^{3}\right)$ such that

$$
\lambda(\{P, s P,-(s+1) P\})=\{P,-P\} ;
$$

$\lambda(T)$ would be a three-fold filled out by γ-curves; but this is not possible by $(1.1)(b)$: recall that E is generic and the locus of nonsimple Abelian three-folds is dense in \mathscr{H}_{3}.

7. Proof of (1.4)

For the sake of simplicity, in every Δ-situation considered in $\S 7$ we will identify X_{t} with $\sigma_{t}\left(X_{t}\right)$.

Proof of $(1.4)(a)$. We proceed by contradiction: we assume that for any threedimensional Abelian variety $A, S^{3}(A)$, and therefore $K_{3}(A)$, contains a γ surface; by their pullback via π we have a surface in any A^{2}, so we are in a Δ-situation. Then we can construct a fibration $h \times_{\Delta} h: \mathbf{A} \times_{\Delta} \mathbf{A} \rightarrow \Delta \subset \mathscr{H}_{3}$ as in §6. We want to apply Lemma (6.6) with $D=B=E, E$ generic elliptic curve. To have (*) we use Lemma (6.9): we can fix an Abelian variety A isogenous to $E \times E \times E$, such that, when we project the γ-surface X contained in $K_{3}(E \times E \times E)$ into $K_{3}(E)$ (the last factor), by the natural projection, we obtain another γ-surface Y. This means that the natural projection $f: A \times A \rightarrow B \times B$ satisfies (*).

Now let $E_{p q}$ be the image in $E \times E$ of the embedding $\nu_{p q}$ of E such that $\nu_{p q}(x)=(p x, q x) \quad \forall x \in E,(p, q)$ is a couple of coprime integers. We fix an isogeny between A and $E_{p q} \times B_{p q}$ where $B_{p q}$ is $\left[(E \times E) / E_{p q}\right] \times E$. Let $\Delta_{p q}=\Delta \cap\left[\nu_{p q}^{*}\left(\mathscr{H}_{1}\right)\right]$ the open subset of Δ such that the fibre over $t \in \Delta_{p q}$ is
$A_{t} \times A_{t}$ where A_{t} is isogenous to $E_{t} \times B_{p q}$ (A_{0} isogenous to A by the previously fixed isogeny) and E_{t} is an elliptic curve whose moduli depend on t.

Let φ_{t} be the natural projection between $K_{3}\left(A_{t}\right)$ and $K_{3}\left(B_{p q}\right)$, by our assumption there is a γ-surface X_{t} in every A_{t} and $X_{0}=X$. For small t, we can assume that $Y_{t}=\varphi_{t}\left(X_{t}\right)$ is a γ-surface of $K_{3}\left(B_{p q}\right)$; in fact $Y_{0}=\varphi_{0}\left(X_{0}\right)=$ $\varphi_{0}(X)$ is a surface in $K_{3}\left(B_{p q}\right)$ because X projects into a surface in $K_{3}(E)$.

By Lemma (6.6), we can choose (p, q) such that $\left\{Y_{t}\right\}$ is a one-dimensional family of γ-surfaces of $K_{3}\left(B_{p q}\right)$ (i.e. the union of the Y_{t} span a three-fold in $\left.K_{3}\left(B_{p q}\right)\right) ;$ but $\operatorname{dim}\left(B_{p q}\right)=2$ and this is a contradiction with (1.2)(b).

Remark (7.1). Here we want to give a short outline of the proof of (1.1)(b) when $\operatorname{dim}(A)=3$. Firstly we need (1.1)(a) for dimension 2: this is just an application of (3.2) and (3.3): if (1.1)(a) were false, for the generic point of $S^{2}(A)$ would pass a positive dimensional γ-orbit, but then d_{2} would be strictly less than 4.

Now we proceed by contradiction: we assume that for the generic Abelian three-fold $A, S^{2}(A)$, and therefore $K_{2}(A)$ (which is the Kummer variety $K(A)$ of A), contains a γ-curve. By their pullback via π we get a curve in any A; by using these we can build a family of curves that gives rise to a Δ-situation. By arguing as in the proof of (1.4)(a) we can choose a suitable projection from $K_{2}\left(A_{t}\right)=K\left(A_{t}\right)$ onto $K(E \times E)$, where A_{t} is isogenous to $E_{t} \times E \times E, E$ generic elliptic curve, in such a way that the images of our curves cover $K(E \times E)$. Since the image of a γ-orbit is a γ-orbit, we get a contradiction with (1.1)(a).

Proof of $(1.4)(b)$. We proceed by contradiction: we assume that for any threedimensional Abelian variety $S^{3}(A)$, and therefore $K_{3}(A)$ contains a three-fold filled by γ-curves: by their pull-back via π we have a three-fold in any A^{2}. So we are in a Δ-situation and we can construct a fibration $h \times_{\Delta} h: \mathbf{A} \times_{\Delta} \mathbf{A} \rightarrow \Delta \subset \mathscr{H}_{3}$ as in $\S 6$. Pay attention: now we proceed in a very similar way to the proof of (1.4)(a), but we cannot use Lemma (6.6) in that manner.

We fix an Abelian variety A isogenous to $E \times E \times E, E$ generic elliptic curve. Let $E_{p q r}$ be the image in $E \times E \times E$ of the embedding $\nu_{p q r}$ of E such that $\nu_{p q r}(x)=(p x, q x, r x) \quad \forall x \in E,(p, q, r)$ is a triple of coprime integers; let $F_{p q r}$ be $(E \times E \times E) / E_{p q r}$, we fix an isogeny between A and $E_{p q r} \times F_{p q r}$.

By Lemma (6.10) we can assume that, when we project the three-fold T, filled by γ-curves, contained in $K_{3}(E \times E \times E)$, into $K_{3}\left(F_{p q r}\right)$, by the natural projection, we obtain another three-fold $T^{\#}$ with the same property.

Let $\Delta_{p q r}=\Delta \cap\left[\nu_{p q r}^{*}\left(\mathscr{H}_{1}\right)\right]$ the open subset of Δ such that the fibre over $t \in \Delta_{p q r}$ is $A_{t} \times A_{t}$ where A_{t} is isogenous to $E_{t} \times F_{p q r} \quad\left(A_{0}\right.$ isogenous to $\left.A\right)$ and E_{t} is an elliptic curve whose moduli depend on t.

Let φ_{t} be the natural projection between $K_{3}\left(A_{t}\right)$ and $K_{3}\left(F_{p q r}\right)$, by our assumption there is a three-fold T_{t}, filled by γ-curves, in every A_{t} and $T_{0}=T$. Moreover $\varphi_{0}\left(T_{0}\right)=\varphi_{0}(T)=T \#$ is a three-fold in $K_{3}\left(F_{p q r}\right)$ by the previous remarks. Therefore, by choosing a smaller disk, we can assume that $T_{t}^{\#}=\varphi_{t}\left(T_{t}\right)$ is three-fold in $K_{3}\left(F_{p q r}\right)$.

We can use Lemma (6.6) (and Remark (6.4)), to assure that there exist triples (p, q, r) (for instance with $r=0$) such that every one-dimensional family $\left\{C_{t}\right\}$ of γ-curves of $K_{3}\left(A_{t}\right)$ projects into another similar family of $K_{3}\left(F_{p q r}\right)$. We choose one of these triples.

Now we consider two cases: if $T_{t}^{\#}$ is a variable three-fold in $K_{3}\left(F_{p q r}\right)$, by the previous condition, we would get a three-dimensional family of γ-curves in $K_{3}\left(F_{p q r}\right)$, but $\operatorname{dim}\left(F_{p q r}\right)=2$ and this is forbidden by (1.2)(c).

If $T_{t}^{\#}=T_{0}^{\#}$ is a fixed three-fold in $K_{3}\left(F_{p q r}\right)$ then, by the previous condition, infinitely many γ-components pass through any point of $T_{0}^{\#}$, hence we would have a one-dimensional family of γ-surfaces in $K_{3}\left(F_{p q r}\right)$ at least, and this is not possible by (1.2)(b).

Proof of $(1.4)(\mathrm{c})$. Firstly we assume that $\operatorname{dim}(A)=4$ and we proceed by contradiction: we assume that for any four-dimensional Abelian variety $A, S^{3}(A)$, and therefore $K_{3}(A)$ contains a γ-curve; by their pullback via π we have a curve in any A^{2}. So we have a Δ-situation and then we can construct a fibration $h \times_{\Delta} h: \mathbf{A} \times_{\Delta} \mathbf{A} \rightarrow \Delta \subset \mathscr{H}_{4}$ as in $\S 6$.

We want to use Lemma (6.7) with $D=B=E, E$ generic elliptic curve, $p=2, m=3$; note that ($*$) is satisfied by Remark (6.4).

We fix an Abelian variety A isogenous to $E \times E \times E \times E$. For any embedding $\nu_{i}: E^{2} \rightarrow E^{3}$ let $\Delta_{i}=\Delta \cap\left[\nu_{i}^{*}\left(\mathscr{H}_{2}\right)\right]$ the open subset of Δ such that the fibre over $\mathbf{r} \in \Delta_{i}$ is $A_{\mathbf{r}} \times A_{\mathbf{r}}$ where $A_{\mathbf{r}}$ is isogenous to $D_{\mathbf{r}} \times\left[E^{3} / \nu_{i}\left(E^{2}\right)\right] \times E \quad\left(A_{\mathbf{0}}\right.$ isogenous to A as usual), D_{r} is an Abelian surface and D_{0} is isogenous to $E \times E$; in this case we set: $B_{i}=\left[E^{3} / \nu_{i}\left(E^{2}\right)\right] \times E$. By our assumptions there exists a one-dimensional γ-component C_{r} in any $K_{3}\left(A_{\mathrm{r}}\right)$.

Now we use Lemma (6.7) and we have that, for all i except a finite number, when we project $K_{3}\left(A_{\mathrm{r}}\right)$ into $K_{3}\left(B_{i}\right)$, by the natural projection, we get that every one-dimensional family of γ-curves projects into a one-dimensional family of γ-curves.

So we get a three-dimensional family of γ-curves in $K_{3}\left(B_{i}\right)$; they cannot cover all $K_{3}\left(B_{i}\right)$ by Theorem (3.2) (recall that B_{i} is isogenous to E^{2}); they cannot cover a three-fold, otherwise this three-fold would be filled by γ-surfaces and this is not possible by $(1.2)(b)$; so the only possibility is the following: they all project in a fixed surface S in $K_{3}\left(B_{i}\right)$, which is a γ-component.

Note that, by Lemma (6.8), we can suppose that S project into a fixed surface S^{\wedge} when we project $K_{3}\left(B_{i}\right)=K_{3}\left(\left[E^{3} / \nu_{i}\left(E^{2}\right)\right] \times E\right)$ into $K_{3}(E)$ by the natural projection on the last factor, hence S^{\wedge} is $K_{3}(E)$.

Now we choose $D_{\mathrm{r}}=E_{\sigma} \times E_{s} \quad(\sigma, s$ belonging to the moduli space of elliptic curves) and generic embeddings ν_{i} in infinitely many different ways; for any choice, by using all the previous arguments, we get
-a γ-curve $C_{\sigma, s}$ in any $K_{3}\left(E_{\sigma} \times E_{s} \times E \times E\right)$,
—a surface S_{s} in $K_{3}\left(E_{s} \times E \times E\right)$, (S_{s} covered by γ-curves $)$,
-a fixed surface S in $K_{3}(E \times E)$ into which all S_{s} project,
-a fixed surface S^{\wedge} in $K_{3}(E)$ into which S projects,
(we always use natural projections).
We want to prove that this is a contradiction to Lemma (6.6).
These facts create a situation which is very similar to a Δ-situation, (see §6): actually, in this case, we have only a one-dimensional family of Abelian varieties: $A_{s} \times A_{s}=\left(E_{s} \times E \times E\right) \times\left(E_{s} \times E \times E\right)$ and a surface in every $A_{s} \times A_{s}$ which is the pullback, via π, of the surface S_{s} contained in $K_{3}\left(E_{s} \times E \times E\right)$. So we have a fibration defined only over an open set $\Delta_{i}^{\prime} \subset \mathscr{H}_{1}$ and the surfaces $\left\{S_{s}\right\}$ are the fibres over Δ_{i}^{\prime}. However, by looking at the proof of (6.6), it is obvious that it is true even in this case.

But, in our case, we also have that, if we choose A isogenous to $E \times E \times E$, there are infinitely many embeddings $\mu_{p q}: E \rightarrow E^{2} \quad\left(\forall x \in E \quad \mu_{p q}(x)=(p x, q x)\right.$, p, q coprime integers, the $\mu_{p q}$ are induced by the $\left.\nu_{i}\right)$ such that, when we choose a family $\left\{A_{s} \times A_{s}\right\}, s$ belonging to a suitable open set $\Delta_{p q} \subset \mathscr{H}_{1}$, (depending on Δ_{i}^{\prime}), such that $\forall s \in \Delta_{p q}, A_{s}$ is isogenous to $E_{s} \times \mu_{p q}(E) \times E$ (as usual A_{0} is isogenous to $\left[E^{2} / \mu_{p q}(E)\right] \times \mu_{p q}(E) \times E$, isogenous to A), then
$-K_{3}\left(A_{s}\right)$ contains a surface S_{s} for any s,
$-S_{0}$ projects into a surface S^{\prime} in $K_{3}(E)$ by the natural projection on the last factor, (hence condition (*) is satisfied),
-all surfaces S_{s} project into a fixed surface S in $K_{3}\left[\mu_{p q}(E) \times E\right]$.
This is a contradiction to Lemma (6.6)!
Now we assume that $\operatorname{dim}(A)=n \geq 5$ and we proceed by induction on n. Suppose that for any n-dimensional Abelian variety $A, S^{3}(A)$, and therefore $K_{3}(A)$ contains a γ-curve; then it is true for those Abelian n-folds which are isogenous to $E \times B$ where E is a generic elliptic curve and B is a generic Abelian $(n-1)$-fold. It is easy to see that, by choosing a suitable isogeny, we also get a γ-curve in $K_{3}(B)$, and this is a contradiction to our induction hypothesis.

References

[D-M] M. Martin-Deschamps and R. Lewin-Ménégaux, Surfaces de type général dominées par une variété fixe, Bull. Soc. Mat. France 110 (1982), 127-146.
[G] P. Griffiths, ed., Topics in transcendental algebraic geometry, Ann. of Math. Studies, no. 106, Princeton Univ. Press, 1984.
[H] R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, Proc. Sympos. Pure Math., vol. 29, Amer. Math. Soc., Providence, R.I., 1975, pp. 129-164.
[M] D. Mumford, Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9 (1969), 195-204.
[P] G. P. Pirola, Curves on generic Kummer varieties, Duke Math. J. 59 (1989), 73-80.
$\left[\mathrm{R}_{1}\right]$ A. A. Roitman, On Γ-equivalence of zero-dimensional cycles, Math. USSR-Sb. 15 (1971), 555-567.
$\left[\mathbf{R}_{2}\right] \quad$, Rational equivalence of zero-cycles, Math. USSR-Sb. 18 (1972), 571-588.
Dipartimento di Matematica, Università di Milano, via C. Saldini 50, 20133 Milano, Italy

E-mail address: alzati@vmimat.mat.unimi.it
Dipartimento di Matematica, Università di Pavia, via Strada Nuova 65, 27100 Pavia, Italy

E-mail address: piro23@ipvian.bitnet

