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RATIONAL ORBITS ON THREE-SYMMETRIC PRODUCTS
OF ABELIAN VARIETIES

ALBERTO ALZATI AND GIAN PIETRO PIRÓLA

Abstract. Let A be an «-dimensional Abelian variety, n > 2 ; let CH0(^)

be the group of zero-cycles of A , modulo rational equivalence; by regarding an

effective, degree k , zero-cycle, as a point on S* (.4) (the A>symmetric product

of A), and by considering the associated rational equivalence class, we get a

map y: Sk(A) —► CHo(^), whose fibres are called y-orbits.

For any n > 2 , in this paper we determine the maximal dimension of the

y-orbits when k = 2 or 3 (it is, respectively, 1 and 2), and the maximal

dimension of families of y-orbits; moreover, for generic A , we get some re-

finements and in particular we show that if dim(A) > 4, S3(A) does not

contain any y-orbit; note that it implies that a generic Abelian four-fold does

not contain any trigonal curve. We also show that our bounds are sharp by some

examples.

The used technique is the following: we have considered some special fami-

lies of Abelian varieties: At = EtxB (Et is an elliptic curve with varying mod-

uli) and we have constructed suitable projections between Sk(At) and Sk(B)

which preserve the dimensions of the families of y-orbits; then we have done

induction on n . For n = 2 the proof is based upon the papers of Mumford

and Roitman on this topic.

1. Introduction

Let X be a ¿/-dimensional smooth algebraic variety; a cycle Z of codi-

mension r in X is defined to be an element of the free Abelian group C(X)

generated by the irreducible subvarieties of codimension r on X. We are in-

terested in zero-cycles, i.e. when r = d. Two zero-cycles Z\ and Z2 of X are

rationally equivalent if there exists a cycle Z on X x A1 , which intersects each

fibre X x {t} in some points such that Z\ and Z2 are obtained respectively

by intersecting Z with the fibres X x {0} and X x {1}. Note that this is in

fact an equivalence relation and that the zero-cycles rationally equivalent to 0
(the zero of Cd(X)) form a subgroup of Cd(X), (see [H, R,]).

We denote by CH0(X) the (Chow) group of zero-cycles on X , modulo ra-

tional equivalence. If Z = JZ niPi is a zero-cycle, where the P¡ are points of

X, we define the degree of Z to be Y, ni ■ It is convenient to regard an effective
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966 ALBERTO ALZATI AND G. P. PIRÓLA

zero-cycle Z = £ «,P, i.e. one where all the n, > 0, as a point on the kth

symmetric product Sk(X) of X, where /c = deg(Z). Then by taking the as-

sociated rational equivalence class, we obtain a map y: Sk(X) —> CH0(X) ; the

fibres of this map will be called y-orbits; the irreducible, connected, components

of a y-orbit will be called y-components, (y-curves if they have dimension 1,

y-surfaces if they have dimension 2, etc.).

Now let A be an Abelian variety, if we consider the Albanese morphism

ak: Sk(A) -> AltyS*^)] = A (i.e. ak(x\, x2, ... , xk) = x(+X2H-hx^), we

have that the fibres of ak axe all isomorphic and that every y-orbit of Sk(A) is

contained in exactly one fibre of ak . Then, if we want to study the y-orbits of

Sk(A), we have only to consider the y-orbits contained in Kk(A) = ker(a^).

In [P] the author showed that for a generic Abelian variety A, with
dim(A) > 3, its Kummer variety, K(A), does not contain any rational curve.

By remarking that K(A) is K2(A) in the previous notations, you can think that

in S2(A) there are no one-dimensional y-orbits, (where "dimension" means:

maximal dimension of the y-components of the y-orbit, see §3). In fact, as

Clemens pointed out, the technique used in [P] is related to the famous Mum-
ford's paper [M] about the rational equivalence of zero cycles on a surface. So

that, by those arguments, it is possible to show:

Theorem (1.1). Let A be an Abelian variety, dim(^l) > 2, then
(a) S2(A) does not contain any two-dimensional y-orbit;

(b) if A is generic and dim(A) > 3, S2(A) does not contain any one-

dimensional y-orbit.

The proof of (1.1) is essentially contained in [P]: you have only to change

the words "rational curve" into " y-curve", (see also (7.1)).

In this paper we study the y-orbits of S3(A), dixn(A) > 2, and we obtain

the following results:

Theorem (1.2). Let A be an Abelian variety, dim(A) > 2, then

(a) in S3(A) there are no d-dimensional y-orbits with d>3;

(b) in K^(A) there are no one-dimensional families of two-dimensional y-

orbits;

(c) if dim(^) — 2, in K^(A)  there are no three-dimensional families of

one-dimensional y-orbits.

Remark (1.3). If dim(^l) = 2, in S3(A) there are some two-dimensional y-

orbits and some two-dimensional families of one-dimensional y-orbits, see Ex-

amples (5.2) and (5.3); so that (1.2) is sharp.

Theorem (1.4). Let A be a generic Abelian variety, dim(^) > 3, then

(a) if dixn(A) = 3, in S3(A) there are no two-dimensional y-orbits;

(b) if dim(^4) = 3, in K-$(A) there are no two-dimensional families of one-

dimensional y-orbits ;
(c) if dim(^4) > 4, in S3(A) there are no one-dimensional y-orbits.

The proof of ( 1.2), in §5, is based upon the results of Mumford and Roitman

(see §3); but, to apply them, we have needed some linear algebra which we have

condensed in §4.
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To prove (1.4) we have considered some special families of Abelian varieties

of this type: At = Et x B (where E is usually an elliptic curve with varying

moduli), and we have used the projections between S3(At) and S3(B) which

preserve the dimension of the families of y-orbits, then we have applied (1.2)

to S3(B), (see §7).
Unfortunately we did not find an easy way to show that such projections

do exist, not even when A is isogenous to a product of elliptic curves. So we

were forced to prove the lemmas in §6; actually some proof could be shortened

by using the De Franchis-Severi theorem (for curves and for surfaces, see [D-

M]), but we have avoided this theorem, firstly since it is not strictly necessary,

secondly since we hope to generalize our results to Sk(A), k > 4.

Our theorems have the following corollary, which solves the problem put at

the end of [P]:

Corollary (1.5). Let A be a generic g-dimensional Abelian variety, g>4. Then

A is not a quotient of a Jacobian of a trigonal curve, in other words A does not

contain trigonal curves.

Proof. Let C be a trigonal curve such that there exists a surjective map

f:J{C)->A.

By composing / with the Abel-Jacobi map, we get a nontrivial map C -> A,

hence we have a finite map: S3(C) -* S3(A) ; as C is trigonal we have another

obvious map: P1 —► S3(C) —► S3(A) ; this gives rise to a rational curve in

S3(A), but it is not possible by (1.4)(c).   D

Remark (1.6). Obviously the Jacobian of a trigonal curve contains a trigonal

curve: the curve itself; (1.5) shows that, among Abelian varieties, the Jacobians

of genus 4 curves are special also under this point of view.

Acknowledgments. We wish to thank H. Clemens who called all these problems

to our attention and the referee for his suggestions.

2. Notations and conventions

direct sum of vector spaces,

)   C-vector space generated by X[, x2, ... ,

by this term we mean a projective complex variety,

«-dimensional variety (not necessarily smooth),

two-fold,

one-fold,

by this word we mean: outside a countable union of proper

analytic subvarieties,

canonical divisor of the variety V when it is smooth,

Cartesian product of the variety V with itself,

A:-Cartesian product of the variety V,

A:-symmetric product of the variety V,

Siegel space of «-dimensional Abelian varieties.

(Xl , X2 , .

variety

«-fold

surface

curve

generic

Kv

VxV

vk

Sk(V)

at?
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968 ALBERTO ALZATI AND G. P. PIRÓLA

3. Rational equivalence of zero-cycles

In this paragraph we recall the results of Roitman and Mumford we need in

the sequel.

Proposition (3.1) (see [R2]). Let Z be a degree k effective zero-cycle on a

smooth variety X, then the y-orbit of X containing Z is a countable union

of closed subsets of Sk(X) ; such a set is usually called c-closed.

We can define the dimension of a c-closed set as the maximal dimension of

its irreducible components. In this way it is possible to define the dimension of

the image: y(Sk(X)) ç CHn(X), even though it is not an algebraic variety, as

dk = dim(Sk(X)) - min{dimension of a fibre of y}.

We say that CHo(X) is finite dimensional if ihe set of integers dk is bounded,

otherwise we say that CHo(X) is infinite dimensional.

In [M] Mumford proved that if X is a surface with geometric genus pg >

0, then CHo(X) is infinite dimensional. In [R2] Roitman gave the following

generalization:

Theorem (3.2). Let X be a smooth variety; then there are integers d(X) and

j(X) > 0, and an integer ko, such that for all k > kç, we have dk = kd(X) +
j(X). Moreover d(X) < dim(X), and d(X) = 0 if and only if CH0(X) is finite
dimensional.

In [Ri and R2] Roitman proved the following:

Theorem (3.3). Let X be a smooth variety, suppose that, for some positive integer

q, there exists a nonzero global q-form to on X. Then a> induces a q-form
cok on Sk(X) whose restriction to any y-component of Sk(X) is zero. Hence

d(X) > q.

We recall that the <?-form ook quoted in (3.3) is defined as follows: we

consider Xk and for any i - \ ,2, ... ,k we consider the natural projection

onto the ¿th factor p¡: Xk —> X, now the <?-form ¿^p*o» is well defined at the

generic point of Sk(X) because it is invariant under the action of the symmetric

group; so we set œk = ¿>2p*oj. In the same papers Roitman also shows the

following:

Theorem (3.4). Let f\, f2 be two maps between a smooth variety V and Sk(X)

such that Vi> 6 V f\(v) is rationally equivalent to f2(v); let œ be a q-form

defined on X ; then f*(cok) = f2((ok).

The previous theorem allows us to prove this corollary.

Corollary (3.5). Let V be a smooth n-dimensional variety; let f: V —> Sk(X)

be a map; suppose that there exists a map p: V —> B, where B is an « -

t dimensional variety, such that Vè e B,  f[p~l(b)] is a t-dimensional y-

component of Sk(X);  let œ be a q-form defined on X.   Then f*a>k = 0 if
q > n - t.

Proof. We can always choose a suitable subvariety W of V such that p\w

is finite over B; let V* be V xB W (fibre product). Let p*:V*^W and

n* : y* —» V the induced projections and a : W —> V# be the canonical section

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RATIONAL ORBITS ON THREE-SYMMETRIC PRODUCTS 969

of p* ; now we consider the maps h, g: V* —> Sk(X) suchthat h(v) = f[it*(v)\

and g(v) - h{o\p*(v)]}. Obviously h(v) is rationally equivalent to g(v)

Vu e V*, and therefore, by (3.4), h*œk = g*œk . But g*cok = (p*)*o*h*wk
and o*h*œk = 0 if q > « - t, as n* is finite on V, f*cok = 0.   D

4. Some linear algebra

Let V be C2, and let {dz, dw} be a basis for V*. Let L2 be the kernel
of the map a: V ®V ®V -> V given by summation. Consider the following

two-form on L2 :

(~)       [dzi Adwi+dz2Adw2 + dz3AdWi]\L2

= \2dz\ A dw\ + 2ú?z2 A dw2 + dz\ A dw2 + i/z2 A dw\\Ll

= [dz\ A ̂ (2^! + w2) + í/(zi + 2z2) A dw2]\L2.

As (~~) has maximal rank on L2 , we have that any locally isotropic subspace

of V @V @V for (~), has dimension 2 at most. In fact there are such two-

dimensional maximal subspaces, for instance: {(v, p\, p2\), v e V, p e C

with 1 + p + p2 = 0} .
Now let W be C" , « > 2, and let L„ be the kernel of the map o:W@

W © W -+ IT as before. Let £/ be a linear subspace of L„ such that for

all projections W —► V, the induced map Ln —> L2 sends U into a totally

isotropic subspace of L2 for (~). Then dim(C/) < «. In fact, for « = 2

this is true, for « > 3 we can proceed by induction on n : every projection

Ln —> L„_! has kernel of dimension 2, so that dixn(U) < n + 1 ; moreover if

dixn(U) = n + 1, the kernel of every projection Ln -» L„_i would lie in U,

and this is not possible.

Note that dim(t/) = « is possible, for instance if U = {(w, pw, p2w),

w e W, p e C with 1 + p + p2 = 0} ; we will see in (4.2) that it is the only
possibility. Now we can prove the following:

Proposition (4.1). In the same notation as before, let n = 3, let {dz, dw, du}
be a basis for W* ;  consider the following three-form:

(    ) dz\ A dw\ A du\ + dz2 A dw2 A du2 + dz$ A dw->, A du^

and suppose that U is totally isotropic for (~~). Then dim(U)<2.

Proof. By contradiction we suppose that dim(i7) = 3, then by projecting W

to V three times along the respective axes we see that:

U = ((a, ,0,0), (a2, 0, 0), (a3, 0, 0)) + ((0, bx, 0), (0, b2, 0), (0, ¿>3, 0))

+ ((0,0,ci),(0,0,c2),(0,0,c3))

with: 2"Zûi = Y,bi = Y,c¡ = 0. So the vectors a = (ai), b = (b¡), c =
(c¡) in C3 lie in the plane P defined by the equation: ^x, = 0. Since for

all projections W -+ V, the induced map L„ -+ L2 sends U into a totally

isotropic subspace of L2 for (~), we have: £ fliA' = 12 b¡ci - Yl c¡ai — 0 •

Since the symmetric bilinear form on C3 which has the identity associated

matrix (with respect to the standard base) has rank 2 on P, we conclude from

the above equations that either a, b or c is 0, (this is impossible as we have

supposed that dim({7) = 3) or a, b and c are all multiples of the same vector
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w with ¿2wi — Yj(wí)2 = 0. So that w can be taken to be some permutation

of (1, p, p2). Hence we can write: a = Aw, b = By/ and c = Cw for some

nonzero complex numbers A, B , C. But if we apply ( ) to these three

vectors we have that the result is zero if and only if ABC — 0, contradiction!   G

By (4.1) it is very easy to prove the following:

Proposition (4.2). In the previous notation: let n > 4. Then UC{(v/, pw, p2vt),

w e W, p e C with 1 + p + p2 = 0} and if all projections of W into C3 send
U into a totally isotropic subspace for (    ), we have that dirn(U) < 2.

5. Proof of (1.2) and some examples

Let A be an «-dimensional Abelian variety. Firstly we want to recall some

useful facts about Sk(A).

There is an action of the additive group A on the variety Sk(A) : for every

a e A we have Ta: Sk(A) —> Sk(A) such that for every (xi, X2, ... , x¿) e

Sk(A) (Ta(x\, x2, ... , xk) = (xi + a, x2 + a, ... , xk + a). For every ae A,

Ta is an isomorphism of Sk(A) which we will call translation, by abuse of

language.

If we consider the «^-dimensional Abelian variety Ak , we have that there

is a (A:!)-covering p: Ak —> Sk(A) which is obviously ramified on the points

(xi, X2,... , xk) of Sk(A) such that the x, are not all distinct. Moreover there

is another obvious (fc!)-covering it: Ak~l —► Kk(A) (Kk(A) is the kernel of the
Albanese map, see §1) such that n(xi, x2, ... , xk_x) = (x\, x2, ... , x¿_i,
-xi - X2-Xfc_i). Remark that any rf-dimensional y-component in Kk(A)

gives rise to a d-fo\d in Ak~l via n.

Now we are able to prove (1.2); recall that, by the argument of §1, we have
to study the y-orbits contained in K$(A).

Proof of ( 1.2)(a). Let V be the dual of the Lie algebra of A, dim(F) =
dim(A) = n, and we recall that, for any Abelian variety A, Vq > 1, Hq'°(A) =
A"(V).

For any co e Aq(V), q > 2, we consider the #-form (¡>(a>) induced by œ

on S3(A) in the following way: <p(co) = p*(p¡íú + p^w->r p^ù)), where

p:A3^S3(A)

and Pi, p2, Pi axe the projections of A x A x A on A .

The tangent space U at every smooth point of any y-orbit of K$(A) lies in

Ln (see §4); <j>(a)) has to vanish on U, by Theorem (3.3), for any œ e Aq(V),

q = 2, 3, ... , n; this means that the assumptions of (4.2) about the projections

of U axe satisfied. Hence dim(i7) < 2 ; therefore every y-orbit has dimension

2 at most.   D

Remark (5.1). The previous proof is based on the fact that all the forms be-

longing to <f>(Aq(V)), q — 2,3, ... , n, have to vanish on the tangent spaces

at the smooth points of any y-component of K^(A). So we can say that, if a

d-fo\d, contained in K3(A), has the same properties, then d < 2.
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Proof of (\.2)(b). If there would be such a family {St} , t e C, then in K^(A)
we would get a three-fold T which would be filled by two-dimensional y-

components. By using the same notations as in the proof of (1.2)(a), we have

that, by Corollary (3.5), the forms belonging to <p(Aq(V)), q — 2,3, ... , n ,
have to vanish on the tangent spaces at the smooth points of T, but this implies

that dim(T) < 2 by Remark (5.1): contradiction!   D

Proof of (\.2)(c). If there would be a family {Cr} , r e C3, of one-dimensional

y-orbits in K.$(A) then K^A) would be filled by one-dimensional y-components

and this is not possible by (3.2) and (3.3).   D

Now we prove, by some examples, that, when dim(yl) = 2, the one-dimen-

sional y-orbits can span a three-fold in S3(A), and that there are two-dimen-

sional y-orbits.

Example (5.2). Let A be an Abelian surface; let C be a nonhyperelliptic genus

3 (smooth, irreducible) curve on A . If we consider the divisor L supported by

C, we get L2 = 4 by the genus formula, and h°(L) = 2 by the Riemann-Roch

and Kodaira vanishing theorems.

So C moves in a pencil {Cß} which has four base points: A, B, C, D.

The adjunction formula yields: KL = L\L ; so that A + B + C + D is a canonical

divisor on every curve Cß of the pencil.

The canonical model C'ß of Cß is a smooth plane quartic whose canonical

series is cut by the lines, therefore the divisor of C'ß corresponding to A + B +

C + D is cut on C'ß by a line.

Now we consider a point Pß on Cß and the linear series g\ corresponding

to the linear series g\ cut on C'ß by the lines passing through the point corre-

sponding to Pß . So that for every X e P1 we have a divisor: Pn+Qßx+Rßi+Sßi

on Cfi. We choose an Abel map aß: Cß —* J(Cß) such that aß(Pß) = 0, hence,

by Abel theorem, aß(Qßi + Rßi + SßX) = tp>ß is constant with respect to X.

The 3-ples: aß(QßA), aß(Rß>) , cxß(Sß!i) in J(Cß) gives rise to a rational curve

in S3[J(Cß)] as X moves in P1 .

We consider the following commutative diagram

Cß     -ÍS- A

J(CM)

in which if, is the embedding of Cß in A and fß is the homomorphism

between Abelian varieties induced by aß . By using fß we get a rational curve

in S3(A) ; by translating this curve by fß(xp ß) we get a rational curve yp ß in

KM)-
Now we let P vary on Cß : for every point P we get a curve yp,ß in Ki(A) ;

these curves are all distinct because the used linear series g\ on C'ß are distinct.

Now let P vary on Cß and let p vary in P1 : for every couple P, p we get

a curve yp,ß in K^(A) ; these curves are all distinct because they are made by

points lying on different curves Cß of A .
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Obviously every curve yptß is contained in a y-orbit of K$(A) and this

example shows that in K-$(A) there exist y-orbits whose span is a three-fold.

Example (5.3). The previous example also shows that in K$(A) there exist some

y-orbits whose span is a surface. In fact for every curve Cß of the previous

example we can fix the point A, (one of the base points of the pencil {Cß}),

and for every p ePl we get a rational curve yA,¡¿ = Yß in K^(A) ■

In this case, by recalling the construction of the linear series g¡ , we have

that for every p e P1 there exists a X e P1 such that Qßi - B, Rßk = C,

SßX = D. Therefore: aß(B+C+D) = ta>i¡ and fß[aß(B+C+D)] = fß(xA,ß) =
iß(B + C + D) is independent from p, hence the obtained curves in S3(A)

belong to

{(x,y,z)e S3(A)\x + y + z = iß(B + C + £>)}

and all pass through the point:  (iß(B), ip,(C), iß(D)) in S3(A).
So that the translated curves yß in K3(A) all intersect between them. There-

fore the curves yß span a rational surface in K$(A) which is contained in a

y-orbit.

6. The lemmas

In this paragraph we prove some lemmas which will be useful in §7. We

will need to study the projections of ¿/-dimensional y-components which are

induced by natural projections between K^(VxW) and K$(W), where V and

W will be suitable Abelian varieties.
By the commutativity of the following diagram

(V xW)x(V x W) -► W x W

K3(V x W) ->  K3(W)

we have to study the natural projections (V x W) x (V x W) —► W x W, this

is the aim of the following two lemmas.

Let X be a smooth irreducible d-fo\d and let A be an «-dimensional

Abelian variety; let a : X —> A x A be a map, birational onto its image, such
that a(X) generates Ax A. Assume that A is isogenous to DxDxB where D

and B are Abelian varieties of dimension q and (n-2q) respectively. We fix

two "dual" isogenies DxDxB^A^DxDxB such that their composition

is the multiplication by an integer; in this way we get a map foo.X^BxB

by composing the natural projection / with a ; let Y be f[o(X)] ; assume that

, .        the natural projection   f: A x A   —*   B x B   is such that

^ '       Y = f[a(X)] is a ¿-dimensional subvariety of B x B .

Now let vf. D —► D x D -> A be the composition of an embedding of D

in D x D with the previously chosen isogeny; we can suppose that /' varies

in a countable set, in fact among all embeddings D —> D x D there are the

following morphisms of algebraic groups: d —> (ad, bá) (for any à e D and

for a fixed couple of coprime integers a, b). We set B¡ = [(D x D)/u¡(D)] x B
and let X¡ be the image of X under the composition of the natural projection

A x A —» B, x B¡ with o .
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In this situation we have the maps:    q*: HX(X¡,Q) -> Hl(X,Q)  and

a* : H1 (A x A, Q) -► Hx (X, Q) ; let A, be the image of q*, then

Lemma (6.2). With the previous notations, there exists an index i at least (hence

an embedding of D in D x D) such that A, contains the image of a*.

Proof. Note that this proof actually shows more, i.e. A, contains the image of

Hx (A x A, Q) in Hx (X, Q) save for a finite number of i.

For every i we have a diagram of equidimensional ¿-folds

X->Xi

V
(the map X¡ —> Y is obtained by using the natural projection

Bt -» Bi/[(D x D)/u¡(D)]

and by remarking that B¡/[(D x D)/i>¡(D)] is isogenous to B). It follows that:

K[Y] c K[Xj] c K[X] so that there are only a finite number of birational

models for the X¡. The maps in the following diagram are defined in the

obvious way:

Hl(BxB,Q) -► Hl(BixBi,Q) -► Hx(AxA,Q)

HX(Y,Q)     -►     Hl(Xi,Q)      -►     HX(X,Q)

and we remark that, as a(X) generates A x A and the natural projection

A x A -» Bi x B¡ is surjective, the map Hx (B¡ x B¿, Q) -> Hx (X, Q) is in-

jective for any i. Now if we choose two distinct, transverse, embeddings of

D in D x D for which the corresponding fields A^[X,i] and K[Xi2], con-

tained in K[X], coincide, then we have that Hl(Xn,Q) -» Hl(X,Q)
and Hl(Xj2,Q) -* Hl(X,Q) axe the same map; by the injectivity of
Hl(Bu x Bjj,Q) -» Hl(X,Q), j = 1,2, we have that A;1 = A¡2 must

contain the span of the images of Hl(Bn x Bn , Q) and Hl(Bi2 x Bi2, Q) in

Hl(X, Q), hence A,i = A,2 must contain the image of HX(A x A, Q) in

HX(X,Q).   n

Lemma (6.3). With the same assumptions as in (6.2), we get the same thesis

if we consider FlHl(_ , C), (in the sense of mixed Hodge structures, see [G]),

instead of Hx(-, Q).

Remark (6.4). Note that, if dim(X) = 1, (*) is always satisfied, (save, obvi-

ously, when A = E x E x B, E elliptic curve, and X — E).
Now let A be an analytic scheme (0 e A), and h : A —► A a proper fibration

such that h~x(t), t e A, is an Abelian variety isogenous to D, x B, B fixed,

(h~x(0) isogenous to D0 x B).

The infinitesimal variation of the Hodge structures induces the following

map (/>: Hl'°(D0) -» Hom(rA(0), H°-1(Dq)) , such that for any p e //10(D0)

and for any t 6 TA(0), <t>(p)(t) is the derivative of p along t. We have the

following:
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Lemma (6.5). With the previous assumptions, consider the commutative diagram

Qt '■ Xt     -► Z

■\

/t:D,xB -> B

where X, are varieties parametrized by t, ot are maps birational onto their

images, ot(Xt) generates D, xB for any t, ft is the natural projection, qt is
induced by f, i is an inclusion and Z is fixed. Assume that cp is injective;

then
aS[Hl>0(D0)]nqSFlHl(Z) = 0 e FlHl(X0).

Proof. If p belongs to that intersection, <f>(p) = 0 as FXHX(Z) is independent

from t ; as <j) is injective we have p = 0.   D

Now let A be an open set of %fn, (0 e A), we will call a "(A, m, G)-

situation" (for ßf„) the following data:

(i) a bundle of Abelian varieties over A: AxAAxA- • • x G (m times) where A

is the tautological Abelian bundle over A and G is a constant Abelian variety;
(by abuse of notation we write G = G x A and Am x G = A xA A xA • • • x G

(m times));

(ii) a family of ¿-dimensional varieties k : X -> A over A ;

(iii) a morphism of A families a : X —> Am x G, i.e. a commutative diagram

as follows:
X-> Am x G

(we set X, = k-x(t) and h~x(t) = (A,)m x G for any te A);

(iv) the assumption that the image at(Xt) generates (A,)m x G as a group,

for any t e A.

We remark that, if conditions (i), (ii), (iii) are satisfied, the bundle of Abelian

varieties generated by the images ot(Xt) must be isomorphic to Am'xG' where

m' < m and G' is an Abelian subvariety of G ; so that, by changing the bundle,

we always get a (A, m!, C7')-situation. With the above warning we can say that

to have a (A, m, (j)-situation is equivalent to have a ¿-dimensional variety in

Am x G where A is generic in A ; (i.e. for any / e A we have a ¿-fold Xt in

(At)m x G). Actually we usually will consider only the case: m = 2, G = 0,

(hence h = h xA h) ; for the sake of simplicity, from now on, this case will be

simply called " A-situation."

Lemma (6.6). We suppose to be in a A-situation; we choose A isogenous to

D x D x B, (as in Lemma (6.2)), and for any linear embedding ut: D —> D x D

we fix an isogeny between A and v¡(D) x [(D x D)fui(D)] x B.

Let A, = {t e A\ the fibre of h xA « is At x A, where A, is isogenous to

v¡(D) x Dt x B, Dt e <%%,}; let Aq be isogenous to A by the isogeny induced

by the previously fixed one. This defines an embedding v* : %fq -► ̂ , such that

A,- = A n [i>;(^)] ;  we set B¡ = u¡(D) x B.

For any t e A¡, let fit: At x At —> B¡ x B¡ be the natural projection; if we

assume (*) for the natural projection f!<0:AxA—*BxB and oq(Xo) , we have
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that, save a finite number of i at most, fj[ot(Xt)] is not a fixed subvariety of
Bi x Bi.

Proof. We proceed by contradiction: if (6.6) is false, then for any i, fi,t[ot(Xt)]

is a fixed ¿-fold X¡ in B¿ for any t, and X¡ generates B¡. Then we have the

following commutative diagram:

Qi,o'- Xo -►      Xi

I"
fi>0: (DxDx B)2 -► B¡ x B¡.

Note that we can apply Lemma (6.5) because we are in a A-situation, so we
have that oj¡[Hl-°(D*)] n (qi^)*ExHx(X¡) = 0 e FXHX(X0) but, by Lemma

(6.3), (qi,o)*FlHl(Xi) contains o¡¡[Hl'°(D*)] except for a finite number of

i, contradiction!   D

Lemma (6.7). We are supposed to be in a A-situation; but now we choose A

isogenous to Dm x B, and we consider the countable set of the linear embeddings

vc. Dp -» Dm (p < m, positive integers, D e ß^q, Be iï^-mq) ■ For any

embedding u¡ we fix an isogeny between A and Vi(Dp) x [Dm/ui(Dp)] x B;

let Ai = {t e A| the fibre of h xA h is At x At where At is isogenous to
Ft x [DmIVi(Dp)\ x B, Ft e ^¡,q}, Ao is isogenous to A as in the previous cases.

This defines an embedding v*: !%fpq -* %?n such that: A, = A n [v*(%¡,q)\; we

set: Bi = [Dm/vi(Dp)]xB.

For any t e A¡, let ftt: At x At -> 5, x B¡ be the natural projection; if we

assume (*) for the natural projection f^'- Ax A —> BxB and <7o(^o) > we have

that, save a finite number of i at most, f t[at(Xt)] is not a fixed subvariety of

Bi.

Proof. See the proof of (6.6).   D

To apply the above lemmas we need condition (*) ; this is a crucial point: it
allows us to avoid the use of the De Franchis-Severi theorem. When X is of

general type and ¿ = 1 or 2, this theorem would assure the existence of a finite

number of subfields K[X¡] of K[X] (see the proof of Lemma (6.2)), without

the assumption that / is generically finite, i.e., roughly speaking, without fixing

a shield Y = f[a(X)].
We use the following remark: consider diagram (6.1): our natural projections

between (V x W) x (V x W) and W x W axe induced by natural projections

between K$(V x W) and K^(W), so that to verify (*) it suffices to verify the

corresponding statement for projections between K$(V x W) and K^(W), and

vice versa. This explains the statements of the following other lemmas.

Lemma (6.8). Let S be a y-surface in K^(E x E) where E is a generic elliptic

curve (in the sense of moduli); let S' be the pullback of S in E2 x E2 ; let Epq

be a fixed embedding of E x E in E2 x E2 such that Epq = {px, qx, py, qy)
where (x, y) e ExE and p, q are coprime integers. Then there exist infinitely

many couples (p, q) such that Epq intersects S' properly. In these cases the

natural projection E2 xE2 —> (E2 xE2)/Epq is generically finite on S' (and the

induced map K^(E x E) —» K^[(E x E)/{px, qy}] is generically finite on S).
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Proof. We will prove that there exists a couple (p, q) at least, such that Epq

intersects S' properly, but, in fact, our proof will also show that the intersection

is proper save for a finite number of couples.

We proceed by contradiction; we recall that if two surfaces in E4 does not

intersect properly then, for every generic point of the first surface, there passes
a translate of the second one which intersects the former one along a curve. In

fact the intersection cycle of two surfaces in E4 depends only on their homology

class, and the homology class is invariant under translations.

We fix a generic point P of S', if every Epq does not intersect 5" properly

then, Vp, q, there exists a translate of Epq passing through P and cutting

S' along a curve; hence, by looking at the tangent spaces, we have that in the

Lie algebra of E4 there are: a vector space generated by (p, q,0,0) and

(0,0, p, q), Vp, q , and the vector space ((a\, a2, a-¡, a4), (b\ ,b2,b3, b4))
(corresponding to the tangent space to S' at P), such that the matrix:

p 0 a\ b\
q 0 a2 b2

0 p a-s Z>3
0 q a4 bi,

is always singular. Now we show that, for generic E, this situation is not

possible.
As (a\, a2,a3, a4) and (b\, b2, ô3, b4) are independent, it is possible to

choose a base for the Lie algebra such that: a\ = b2 = 1, b\ = a2 = 0 ;
otherwise is not possible that the previous matrix is singular Vp, q . Now it is

easy to see that it is possible only if ¿3 = a4 — 0 and b4 = a?, = p, with p eC.

As S' is the pullback in ExExExE of a y-component S in K3(ExE) which
is not contained in the branching locus of n, the skew symmetric two-form (~)

considered in §4 has to vanish on the tangent space at the generic point P of
S' by (3.3), hence:   1 + p + p2 = 0 and p is a constant, independent from P.

This means that the only surfaces in E4 which does not intersect properly

Epq V/7, q, axe, up to translations, those Abelian surfaces S' which are the

embeddings of E x E in E4 such that S' = {x, y, px, py} where (x, y) e

E x E and p e C with 1 + p + p2 = 0 ; but this implies that E has an
endomorphism: x —> px Vxe£, with 1 + p + p2 = 0, and this is not possible

for generic E.   D

Lemma (6.9). Let S be a y-surfacein K^ExExE) where E is a generic elliptic

curve; let S' be the pullback of S in E3 x E3 ; let E(p, q, r, p', q', r') be a
fixed embedding of E2 x E2 in E3 x E3 such that E(p, q, r, p', q', r') = {px +
p'y, qx + q'y, rx + r'y, pz +p'w, qz + q'w , rz + r'w} where (x, y, z, w) e

E2xE2, and (p, q, r), (p', q', r') are triple ofcoprime integers, and such that

the following matrix has rank 2 :

p    q    r

p'   q'   r'.

Then there exist infinitely many choices (p, q, r, p', q', r') such that

E(p, q, r, p', q', r') intersects S' properly. In these cases the natural projection

E3xE3^ (E3 x E3)/E(p,q,r,p',q',r')
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is generically finite on S',

(K3(E xExE)^ K3[(E xEx E)/{px +p'y, qx + q'y, rx + r'y}]

is generically finite on S).

Proof. We can proceed as in the proof of Lemma (6.8).   D

Lemma (6.10). Let E be a generic elliptic curve and let T be a three-fold in

K3(E3) which is filled by a two-dimensional family of y-curves; let V be the

pullback of T in E3 xE3; let Epqr be a fixed embedding of ExE in E3 x E3
such that Epqr = {px, qx, rx, py, qy, ry} where (x, y) e ExE and p, q, r

are coprime integers. Then there exist infinitely many triples (p, q, r) such that

Epqr does not intersect V or intersects V in a finite number of points. In these

cases the natural projection E3 x E3 —> (E3 x E3)/Epqr is generically finite on

V (and the induced map K3(E3) —► K3[E3/{px, qx, rx}] is generically finite
on T).

Proof. By arguing as in Lemma (6.8) we get that the only three-folds in E3 x E3

which does not intersect properly Epqr \/p, q, r axe, up to translations, those

Abelian three-folds V which are the embeddings of E x E x E in E3 x E3
such that V = {x, y, z, sx, sy, sz} where (x,y,z)eExExE and s eC

with s(s+ 1) = 0.

This would imply that, in K3(E3), T would be given by the unordered

triples: {P, sP, -(s + 1 )P} , where s = 0 or 5 = -1 and P e E3 ; in any case
we could define an embedding X: T -» K2(E3) such that

X({P,sP,-(s+l)P}) = {P,-P};

X(T) would be a three-fold filled out by y-curves; but this is not possible by

(l.l)(b): recall that E is generic and the locus of nonsimple Abelian three-folds
is dense in ß%.

7. Proof of (1.4)

For the sake of simplicity, in every A-situation considered in §7 we will

identify Xt with ot(Xt).

Proof of '(1.4)(a). We proceed by contradiction: we assume that for any three-

dimensional Abelian variety A, S3(A), and therefore K3(A), contains a y-

surface; by their pullback via n we have a surface in any A2, so we are in a

A-situation. Then we can construct a fibration h xA h: A xA A -> A c 3% as

in §6. We want to apply Lemma (6.6) with D = B = E, E generic elliptic

curve. To have (*) we use Lemma (6.9): we can fix an Abelian variety A

isogenous to ExExE, suchthat, when we project the y-surface X contained in

K3(ExExE) into K3(E) (the last factor), by the natural projection, we obtain

another y-surface Y. This means that the natural projection f.AxA^BxB

satisfies (*).
Now let Epq be the image in E x E of the embedding vpq of E such that

vpq(x) — (px, qx) Vx e E, (p, q) is a couple of coprime integers. We fix
an isogeny between A and Epq x Bpq where Bpq is [(E x E)/Epq] x E. Let

Apq = An \v*(%\)] the open subset of A such that the fibre over t e Apq is
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AtxAt where At is isogenous to EtxBpq (A0 isogenous to A by the previously

fixed isogeny) and Et is an elliptic curve whose moduli depend on t.

Let q>t be the natural projection between K3(At) and K3(Bpq), by our as-

sumption there is a y-surface Xt in every At and X0 = X. For small t, we

can assume that Yt = <pt(Xt) is a y-surface of K3(Bpq) ; in fact Y0 = tpo(Xo) =

<Po(X) is a surface in K3(Bpq) because X projects into a surface in K3(E).

By Lemma (6.6), we can choose (p, q) such that {Yt} is a one-dimensional

family of y-surfaces of K3(Bpq) (i.e. the union of the Yt span a three-fold in

K3(Bpq)) ; but dim(Bpq) = 2 and this is a contradiction with (1.2)(b).   D

Remark (7.1). Here we want to give a short outline of the proof of (l.l)(b)

when dim(^4) = 3. Firstly we need (l.l)(a) for dimension 2: this is just an

application of (3.2) and (3.3): if (l.l)(a) were false, for the generic point of

S2(A) would pass a positive dimensional y-orbit, but then ¿2 would be strictly

less than 4.
Now we proceed by contradiction: we assume that for the generic Abelian

three-fold A, S2(A), and therefore K2(A) (which is the Kummer variety K(A)

of A), contains a y-curve. By their pullback via n we get a curve in any A ;

by using these we can build a family of curves that gives rise to a A-situation.

By arguing as in the proof of (1.4)(a) we can choose a suitable projection from

K2(At) — K(At) onto K(ExE), where At is isogenous to EtxExE, E generic

elliptic curve, in such a way that the images of our curves cover K(ExE). Since

the image of a y-orbit is a y-orbit, we get a contradiction with (1.1)(a).

Proof of (IA)(b). We proceed by contradiction: we assume that for any three-

dimensional Abelian variety S3(A), and therefore K3(A) contains a three-fold

filled by y-curves: by their pull-back via n we have a three-fold in any A2. So

we are in a A-situation and we can construct a fibration «xA«:AxAA—>Ac^

as in §6. Pay attention: now we proceed in a very similar way to the proof of

(1.4)(a), but we cannot use Lemma (6.6) in that manner.

We fix an Abelian variety A isogenous to E x E x E, E generic elliptic

curve. Let Epqr be the image in E x E x E of the embedding vpqr of E such

that vpqr(x) = (px, qx, rx) Vxe£, (p, q, r) is a triple of coprime integers;

let Fpqr be (E x E x E)/Epqr, we fix an isogeny between A and Epqr x Fpqr.

By Lemma (6.10) we can assume that, when we project the three-fold T,

filled by y-curves, contained in K3(E x E x E), into K3(Fpqr), by the natural

projection, we obtain another three-fold T# with the same property.

Let Apqr = A n \vpqr(%\)] the open subset of A such that the fibre over

t e Apqr is At x At where At is isogenous to Et x Fpqr (A0 isogenous to A)

and Et is an elliptic curve whose moduli depend on t.

Let <pt be the natural projection between K3(At) and K3(Fpqr), by our as-

sumption there is a three-fold Tt, filled by y-curves, in every At and To = T.

Moreover (po(To) = (po(T) = T# is a three-fold in K3(Fpqr) by the previous re-

marks. Therefore, by choosing a smaller disk, we can assume that Tf — <ßt(Tt)

is three-fold in K3(Fpqr).

We can use Lemma (6.6) (and Remark (6.4)), to assure that there exist triples

(P, Q > f) (for instance with r = 0) such that every one-dimensional family {C,}

of y-curves of K3(At) projects into another similar family of K3(Fpqr). We

choose one of these triples.
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Now we consider two cases: if Tf is a variable three-fold in K3(Fpqr), by

the previous condition, we would get a three-dimensional family of y-curves in

Kz(Fpqr), but dim(Fpqr) = 2 and this is forbidden by (1.2)(c).

If Tf = Tq is a fixed three-fold in K3(Fpqr) then, by the previous condition,

infinitely many y-components pass through any point of T* , hence we would

have a one-dimensional family of y-surfaces in K3(Fpqr) at least, and this is

not possible by (1.2)(b).   D

Proof of '(1.4)(c). Firstly we assume that dim(^4) = 4 and we proceed by contra-

diction: we assume that for any four-dimensional Abelian variety A, S3(A),

and therefore K3(A) contains a y-curve; by their pullback via % we have a

curve in any A2 . So we have a A-situation and then we can construct a fibra-

tion h xA h : A xA A -+ A c %?4 as in §6.

We want to use Lemma (6.7) with D = B = E, E generic elliptic curve,

p = 2, m = 3; note that (*) is satisfied by Remark (6.4).
We fix an Abelian variety A isogenous to ExExExE. For any embedding

u¡: E2 —> E3 let A, = A n \v*(%?2)] the open subset of A such that the fibre

over r e A, is Ar x AT where AT is isogenous to Dr x [E3/v¡(E2)] x E (A$

isogenous to A as usual), Dr is an Abelian surface and Do is isogenous to

E x E ; in this case we set: 5, = [E3¡Vi(E2)] x E. By our assumptions there

exists a one-dimensional y-component Cr in any K3(AT).

Now we use Lemma (6.7) and we have that, for all i except a finite number,

when we project K3(Ar) into K3(B¡), by the natural projection, we get that every

one-dimensional family of y-curves projects into a one-dimensional family of
y-curves.

So we get a three-dimensional family of y-curves in K3(B¡) ; they cannot

cover all K3(Bt) by Theorem (3.2) (recall that B¡ is isogenous to E2) ; they

cannot cover a three-fold, otherwise this three-fold would be filled by y-surfaces

and this is not possible by (1.2)(b); so the only possibility is the following: they

all project in a fixed surface S in K3(B¡), which is a y-component.

Note that, by Lemma (6.8), we can suppose that S project into a fixed surface

S~ when we project K3(B¡) = K3([E3/u¡(E2)] x E) into K3(E) by the natural
projection on the last factor, hence S"" is K3(E).

Now we choose Dr = EaxEs (a, s belonging to the moduli space of elliptic

curves) and generic embeddings v¡ in infinitely many different ways; for any

choice, by using all the previous arguments, we get

—a y-curve Ca%s in any K3(Ea x Es x E x E),

—a surface Ss in K3(ES x E x E), (Ss covered by y-curves),

—a fixed surface S in K3(E x E) into which all Ss project,

—a fixed surface S~ in K3(E) into which S projects,

(we always use natural projections).

We want to prove that this is a contradiction to Lemma (6.6).

These facts create a situation which is very similar to a A-situation, (see

§6): actually, in this case, we have only a one-dimensional family of Abelian

varieties: As x As = (Es x E x E) x (Es x E x E) and a surface in every As x As

which is the pullback, via n , of the surface S^ contained in K3(ES x E x E).

So we have a fibration defined only over an open set A\ c %[ and the surfaces

{Ss} axe the fibres over A'¡. However, by looking at the proof of (6.6), it is

obvious that it is true even in this case.
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But, in our case, we also have that, if we choose A isogenous to E x E x E,

there are infinitely many embeddings ppq : E^E2 (VxeE ppq(x) = (px, qx),

p, q coprime integers, the ppq are induced by the i/¡) such that, when we choose

a family {As x As} , s belonging to a suitable open set Apq c %?\, (depending

on A'¡), such that Vs e Apq , As is isogenous to Es x ppq(E) x E (as usual Ao

is isogenous to [E2/ppq(E)] x ppq(E) x E, isogenous to A), then

—K3(AS) contains a surface Ss for any s,

—So projects into a surface S' in K3(E) by the natural projection on the

last factor, (hence condition (*) is satisfied),

—all surfaces Ss project into a fixed surface S in K3[ppq(E) x E].

This is a contradiction to Lemma (6.6)!

Now we assume that dim(A) = « > 5 and we proceed by induction on « .

Suppose that for any «-dimensional Abelian variety A, S3(A), and therefore

K3(A) contains a y-curve; then it is true for those Abelian «-folds which are

isogenous to E x B where E is a generic elliptic curve and B is a generic

Abelian (« - l)-fold. It is easy to see that, by choosing a suitable isogeny,

we also get a y-curve in K3(B), and this is a contradiction to our induction
hypothesis.   D
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