Characterization of Pharyngeal Hypocontractility Patterns During Deglutition: High Resolution Impedance Manometry Findings

Nicole Pizzorni¹, Ann Goeleven^{2,3}, Ann Moonen^{3,4}, Taher Omari⁵, Nathalie Rommel^{3,4}

¹Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy ²University Hospitals Leuven, ENT - MUCLA, Multidisciplinary Swallow Clinic, Leuven, Belgium ³University of Leuven, Neurosciences, Exp ORL, Deglutology, Leuven, Belgium ⁴University Hospitals Leuven, Gastroenterology, Multidisciplinary Swallow Clinic, Leuven, Belgium ⁵College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia

KU LEUVEN

Introduction

Adequate pharyngeal contractility is important for the clearance of the bolus, the protection of the airways, and the triggering of esophageal peristalsis (Hendrix T, 1993; Yip H et al, 2007; O'Rourke A et al, 2014; Walczak C et al, 2017).

Pharyngeal contractile vigor can be objectively measured using high resolution impedance manometry (HRIM). Historically, two HRIM metrics have been mainly used to quantify pharyngeal contractility: the mean peak pressure (PeakP) and the pharyngeal contractile integral (PhCI). The international working group (Omari T *et al,* 2019) reached a consensus on the use of the PhCI and regional pharyngeal contractile integrals to study pharyngeal contractility in HRIM.

Aim

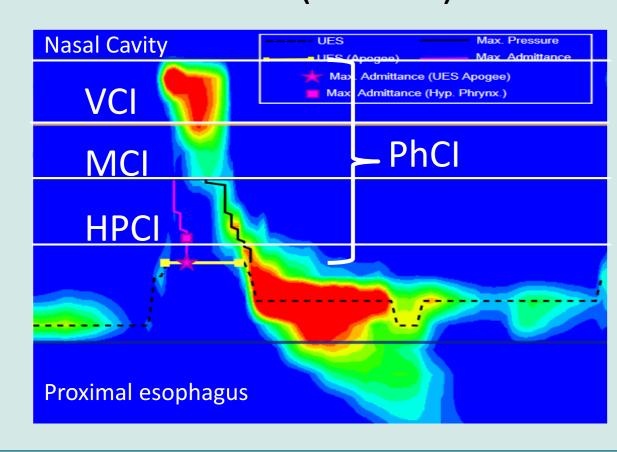
- 1. To investigate the existence of different patterns of pharyngeal hypocontractility and their distribution in patients with pharyngeal dysfunction
- 2. To investigate the association between pharyngeal hypocontractility and upper esophageal sphincter (UES) dysfunction in a clinical population

Methods

A retrospective chart review was conducted on patients consecutively for videomanometry between January 1st, 2018 and February 28th, 2019.

Inclusion criteria

Abnormal (<5th percentile; Omari T, 2018) pharyngeal contractile integral or regional contractile integrals (velo- or meso- or hypo-pharyngeal integrals).


Data acquisition

HRIM with solid state catheter 36 pressure sensors and 16 impedance segments (Unisensor USA Inc., Portsmouth, NH). Boluses with 1% NaCl. Data acquired at 20 Hz (Solar GI, MMS, The Netherlands).

HRIM analysis

Pressure flow analysis was performed on 10ml liquid swallows using the Swallow GatewayTM open access analysis portal. PFA metrics for pharyngeal contractility and UES function were derived (Table 1). Patients were classified based on a proposed HRIM scheme (Table 2).

		Metric	Abbreviation	Unit
	UES FUNCTION	UES Maximum Admittance Highest admittance value recorded during bolus flow through the UES	UES Max Adm	mS
		Intra-Bolus pressure Pressure recorded at 1 cm superior to the UES apogee at the time point of maximal admittance	IBP	mmHg
		UES Integrated Relaxation pressure Median of the lowest non-consecutive 0.20-0.25 second pressure within the UES relaxation window	UES IRP	mmHg
	. >	Pharyngeal Contractile Integral Average contractile pressure from the velopharynx to the upper margin of the UES during swallowing, multiplied by duration and length	PhCI	mmHg.cm.s
	GEAL	Velopharyngeal Contractile Integral Analogous to the PhCI in the region of the velopharynx	VCI	mmHg.cm.s
	PHARYNGEAL	Mesopharyngeal Contractile Integral Analogous to the PhCI in the region of the mesopharynx	MCI	mmHg.cm.s
		Hypopharyngeal Contractile Integral Analogous to the PhCI in the region of the hypopharynx	HPCI	mmHg.cm.s
		Hypopharyngeal Peak Pressure Average maximum contractile pressure recorded in the hypopharynx	PeakP	mmHg
	Table	1: HRIM metrics		

CATEGORY		CRITERIA	SUBCATEGORIES OF PHARYNGEAL HYPOCONTRACTILITY	
	PROPULSIVE UES	UES IRP >95 th pc		
DISORDERS OF	OUTFLOW RESTRICTION	Normal pharyngeal contractility		
	NON-PROPULSIVE UES	UES IRP >95 th pc	ABSENT PHARYNGEAL CONTRACTILITY	
OLS INLSTITICTION	OUTFLOW RESTRICTION	Pharyngeal contractility <5 th pc	PhCI = 0 mmHg	
			INEFFECTIVE PHARYNGEAL CONTRACTILITY	
			PhCI <5 th pc	
			FRAGMENTED PHARYNGEAL CONTRACTILITY	
			Normal PhCI with VCI/MCI/ HPCI <5 th pc	
DISORDERS	OF PHARYNGEAL	Normal UES IRP	ABSENT PHARYNGEAL CONTRACTILITY	
PROPULSION		Pharyngeal contractility <5 th pc	PhCI = 0 mmHg	
			INEFFECTIVE PHARYNGEAL CONTRACTILITY	
			PhCI <5 th pc	
			FRAGMENTED PHARYNGEAL CONTRACTILITY	
			Normal PhCI with VCI/MCI/ HPCI <5 th pc	
NORMAL UES	AND PHARYNGEAL	Normal UES IRP		
PRO	PULSION	Normal pharyngeal contractility		

Table 2. HRIM clinical scheme for pharyngeal swallowing

LEGEND UES IRP = integrated relaxation pressure at the upper esophageal sphincter; PhCI = pharyngeal contractile integral; VCI = velopharyngeal contractile integral; MCI = mesopharyngeal contractile integral; HPCI = hypopharyngeal contractile integral; pc = percentile

Results

In total, 38 patients were included and 137 swallows were analysed

Abnormal PhCI was found in **67%** of the patients. Regional weakness was observed in the **mesopharynx** (**95%** of the patients), the **hypopharynx** (**50%**) and the **velopharynx** (**16%**).

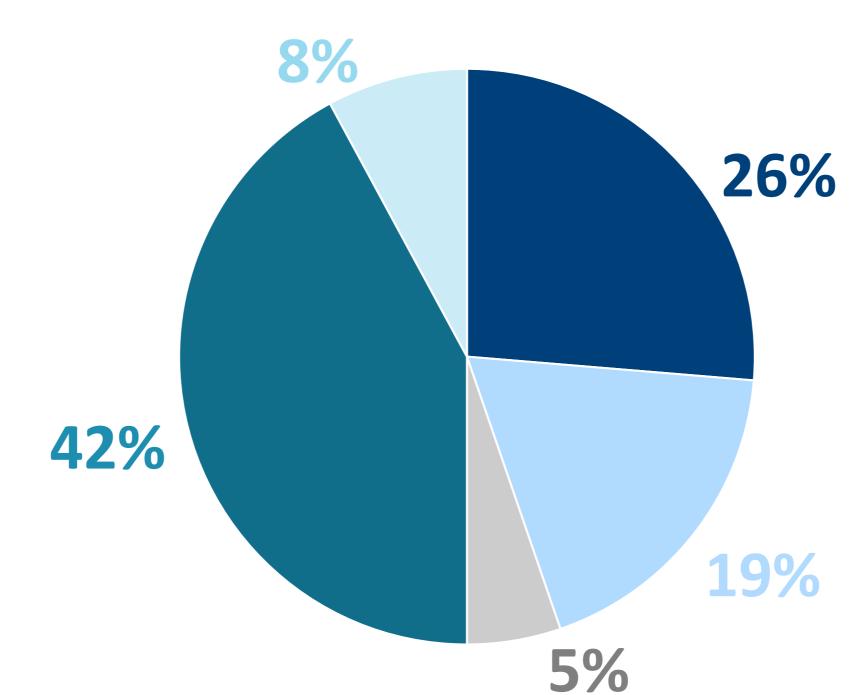


Figure 1. Distribution of patients (N=38) in the subcategories of the HRIM clinical categorization

Absent pharyngeal contractility was found in 5% of the patients, ineffective pharyngeal contractility in 68% of the patients, and fragmented pharyngeal contractility in 27% of the patients.

Disorders of pharyngeal contractility were associated to disorders of UES outflow restriction in 45% of the patients.

- Non-propulsive UES outflow restriction with ineffective pharyngeal contractility
- Non-propulsive UES outflow restriction with fragmented pharyngeal contractility
- Disorders of pharyngeal propulsion with absent pharyngeal contractility
- Disorders of pharyngeal propulsion with ineffective pharyngeal contractility
 Disorders of pharyngeal propulsion with fragmented pharyngeal contractility

UES PFA metric	Spearman's correlation		
	r	р	
UES Max Adm	-0.124	0.149	
IBP	0.247	0.004	
UES IRP	0.301	<.001	

Table 3. Correlations distributions between PhCI and UES HRIM metrics
PhCI significantly correlated to IBP and UES IRP

UES HRIM metric		Normal PhCI Abnormal PhC		CI Chi-squared	
		N=45	N=92	χ2	р
UES Max Adm	normal	37 (27%)	73 (53.3%)	1.3	.521
	abnormal	8 (5.8%)	19 (13.9%)		
IBP	normal	41 (29.9%)	86 (62.8%)	3.19	.203
	abnormal	4 (2.9%)	6 (4.4%)		
UES IRP	normal	19 (13.9%)	69 (50.4%)	14.6	.001
	abnormal	26 (19%)	23 (16.8%)		

Table 4. Chi-squared analysis of the distributions of normal and abnormal UES HRIM metrics between PhCI normalcy categories (N=137 swallows)

Patients with a fragmented pharyngeal contractility (normal PhCI) were more likely to present an abnormal UES IRP

Conclusion

Based on the pharyngeal contractile integrals, two main types of pharyngeal hypocontractility are present in the clinical population of patients: ineffective and fragmented pharyngeal contractility. Totally absent peristalsis in uncommon. In almost half of the patients, pharyngeal propulsion disorders are combined to disorders of UES restriction. Results of the study can guide clinicians and researchers to define a HRIM-based classification of pharyngeal motility disorders, analogous to the Chicago Classification of esophageal motility disorders.

Disclosure

TO and NR hold patent on AlMplot technology. No financial disclosures by all authors.

More info

nathalie.rommel@kuleuven.be deglutology@kuleuven.be