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ON THE UNIQUENESS OF A

SHEAR-VORTICITY-ACCELERATION-FREE

VELOCITY FIELD IN SPACE-TIMES

LUCA GUIDO MOLINARI, ADRIANO TACCHINI
AND CARLO ALBERTO MANTICA

Abstract. We prove that in space-times a velocity field that is shear,
vorticity and acceleration-free, if any, is unique up to reflection, with
these exceptions: generalized Robertson-Walker space-times whose space
sub-manifold is warped, and twisted space-times (the scale function is
space-time dependent) whose space sub-manifold is doubly twisted. In
space-time dimension n = 4, the Ricci and the Weyl tensors are speci-
fied, and the Einstein equations yield a mixture of two perfect fluids.

1. Introduction and statement of results

In a space-time of dimension n > 3, let uk be a smooth velocity field that
is shear-free, vorticity-free and acceleration-free:

ukuk = −1, ∇iuj = ϕ(uiuj + gij),(1)

in other words, uk is a time-like unit torse-forming vector field, with scalar
field ϕ. We enquire whether the space-time may admit other velocity fields
that are time-like unit and torse-forming,

wkwk = −1, ∇iwj = λ(wiwj + gij)(2)

besides the trivial twin vector −uk with scalar field −ϕ.
The existence of the vector field uk ensures that the space-time is Twisted

[10], i.e. there is a reference frame where the metric has the form:

ds2 = −dt2 + a(t, x)2g∗µν(x)dx
µdxν(3)

where t is the time, the scale function a(t, x) > 0 depends on time and space
coordinates, and g∗µν(x) is the metric tensor of a Riemannian sub-manifold
M∗ with space coordinates xµ. Twisted space-times were introduced by B.-
Y. Chen, to generalise the notion of warped manifolds [2][3].
In the locally “comoving” frame (3) it is u0 = 1, uµ = 0 and ϕ = ȧ/a.
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With the Christoffel symbols listed in the Appendix, the normalisation and
torse-forming conditions for another vector wi are the equations:

− w2
0 + a−2g∗µνwµwν = −1, ∂tw0 = λ(w2

0 − 1),

∂µw0 − (ȧ/a)wµ = λw0wµ, ∂twµ − (ȧ/a)wµ = λw0wµ(4)

∇∗

µwν −
aµ
a
wν −

aν
a
wµ + g∗µν(

aρ
a
wσg

∗ρσ − aȧw0) = λ(wµwν + a2g∗µν)

where ȧ = ∂ta, aµ = ∂µa, and∇∗ is the connection of the sub-space (M∗, g∗).
To investigate the existence of a non-trivial solution (besides u0 = −1,
uµ = 0, λ = ϕ) we distinguish three cases:

Case A) ∇kϕ = 0 and ϕ 6= 0, (ϕ = 0 factors space and time);

Case B) ∇kϕ = −uku
m∇mϕ ;

Case C) ∇kϕ = −uku
m∇mϕ+ vbk, with v 6= 0, bkb

k = 1, ukbk = 0.

In Cases A and B the existence of uk implies that the space-time is warped,
i.e. there is a reference frame where the metric (3) has the simpler form

ds2 = −dt2 + a(t)2g∗µν(x)dx
µdxν(5)

where the scale function only depends on the time. Such space-times are also
named generalised Robertson-Walker (GRW) (see [9] for a review, and [4]
for another covariant characterisation). They are Robertson-Walker (RW)
if the Weyl tensor is zero.

For each case we prove:

Theorem A. In a warped space-time (5) with constant non-zero ϕ, the
torse-forming velocity is unique unless (M∗, g∗) is a warped sub-manilfold,
i.e. (M∗, g∗) admits a unit vector field n∗

µ(x) such that ∇∗

µn
∗

ν = θ(x)(n∗

µn
∗

ν−
g∗µν) with ∇∗

µθ proportional to n∗

µ.

Theorem B. In a warped space-time (5) with non-constant ϕ, the torse-
forming velocity is unique.

Theorem C. In a twisted space-time (3) the torse-forming velocity is
unique unless (M∗, g∗) is a doubly-twisted sub-manifold. This is equivalent
to the requirement

∇ibj = ϕbiuj + (gij + uiuj − bibj)
∇kb

k

n− 2
(6)

The second torse-forming velocity is wi = ui coshα+ bi sinhα with:

tanhα = −
2Riju

ibj

Rij(uiuj + bibj)
(7)

λ = ϕ coshα+
∇kb

k

n− 2
(8)

The property | tanhα| ≤ 1 poses a restriction.
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Theorems A, B and C correct Prop.2.3 in our paper [10] that claimed

uniqueness in all cases. In its short proof, the sign in front of (ḟ/f) sinh aVµ

in the centred equation is wrong. With the correct (minus) sign, the proof
by reductio ad absurdum does not work. The error does not affect the rest
of the paper.

Cases A, B and C will be discussed separately, case B being simpler
and preparatory for case A. For all cases, some preliminary identities that
simplify the discussion are first obtained.

Lovelock’s identity in n = 4 and the existence of a second torse-forming
vector, determine the electric component of the Weyl tensor and thus the
Ricci and Weyl tensors. By the Einstein equations, an energy-momentum
tensor Tij is obtained, that describes a mixture of two perfect fluids with
non collinear velocities, studied by Coley and McManus [5][6]. In their work,
the request that one velocity is torse-forming (no restriction for the other
velocity), implies that the subspace M∗ admits an umbilical foliation i.e. it
is doubly twisted [12][3]. In the present study, the mixture of perfect fluids
arises in n = 4 as a consequence of having two torse-forming vectors and
only one of them, in general, is the velocity of one of the fluids.

2. Preliminary results

Suppose that, besides uk with scalar field ϕ, there exists another time-like
unit torse-forming vector field wk with scalar field λ, eq.(2), not collinear
with uk.

Remark. We are assuming (ukwk)
2 6= 1, otherwise wk would be space-like.

The following identities with the Riemann tensor, [∇i,∇j ]uk = Rijkmum

and [∇i,∇j]wk = Rijkmwm, are evaluated with (1) and (2):

Rijkmu
m = (ujuk + gjk)∇iϕ− (uiuk + gik)∇jϕ+ ϕ2(ujgik − uigjk)(9)

Rijkmw
m = (wjwk + gjk)∇iλ− (wiwk + gik)∇jλ+ λ2(wjgik − wigjk)(10)

Contraction of both equations with gik gives identities with the Ricci tensor:

Rjmum = (ujuk + gjk)∇
kϕ+ (n− 1)(ϕ2uj −∇jϕ)(11)

Rjmwm = (wjwk + gjk)∇
kλ+ (n− 1)(λ2wj −∇jλ)(12)

Transvect (9) with wi and (10) with ui. In the second one use the symme-
tries of the Riemann tensor: Rijkmuiwm = Rmkjiu

iwm = Rikjmwium, then
exchange k with j:

Rijkmw
ium = (ujuk + gjk)w

i∇iϕ− (wiuiuk +wk)∇jϕ+ ϕ2(ujwk − wiuigjk)

Rijkmu
mwi = (wjwk + gjk)u

i∇iλ− (uiwiwj + uj)∇kλ+ λ2(wkuj − uiwigjk).

Subtract one equation from the other:

gjk[w
i∇iϕ− (ϕ2 − λ2)wiui − ui∇iλ] + ujuk(w

i∇iϕ)− (wiuiuk + wk)∇jϕ

+(ϕ2 − λ2)ujwk − wjwk(u
i∇iλ) + (uiwiwj + uj)∇kλ = 0.
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Contraction with a non-zero vector orthogonal to uj , wj and ∇jϕ gives the
equation

wi∇iϕ− ui∇iλ = (uiwi)(ϕ
2 − λ2)(13)

and, after simplification, the following one:

ujuk(w
i∇iϕ)− (wiuiuk + wk)∇jϕ+ (ϕ2 − λ2)ujwk(14)

−wjwk(u
i∇iλ) + (uiwiwj + uj)∇kλ = 0.

The trace of the latter is: (wiui)(ϕ
2 − λ2 + wj∇jλ − uj∇jϕ) + 2(ui∇iλ −

wj∇jϕ) = 0, with the aid of eq. (13) we obtain, after cancellation of ujwj 6=
0:

uj∇jϕ+ ϕ2 = wj∇jλ+ λ2(15)

Hereafter we denote

ξ = (n− 1)(uj∇jϕ+ ϕ2)(16)

Contraction of (14) with uj or with wk and use of (15), give:

uk[w
i∇iϕ+ wiui(u

j∇jϕ)] + wk[w
j∇jλ+ uiwi(u

j∇jλ)] = [(uiwi)
2 − 1]∇kλ

(17)

uj [u
i∇iϕ+ wkuk(w

i∇iϕ)] + wj [u
i∇iλ+ uiwi(w

k∇kλ)] = [(uiwi)
2 − 1]∇jϕ

(18)

3. Proof of Theorem B

Lemma 3.1. If ∇iϕ = −uiu
k∇kϕ, then ∇iλ = −wiw

k∇kλ.

Proof. Eq.(17) simplifies to wk[w
j∇jλ + uiwi(u

j∇jλ)] = [(uiwi)
2 − 1]∇kλ,

showing that∇kλ is collinear to wk. It follows that∇kλ = −wk(w
j∇jλ). �

This result simplifies eqs.(11) and (12), showing that uk and wk are both
eigenvectors of the Ricci tensor with eigenvalue ξ:

Riju
j = ξui, Rijw

j = ξwi

Now, the problem is about degeneracy of the eigenvalue of the Ricci tensor:

Proposition 3.2. In a warped space-time, for the eigenvalue ξ of the Ricci
tensor to be degenerate, it is necessary that ȧ(t)/a(t) = At + B, with con-
stants A and B.

Proof. Let us consider the eigenvalue equation Rijw
j = ξwi in the warped

frame (5). The components of the Ricci tensor can be read in [10].
The equation R00w

0 = ξw0 is −(n−1)(ä/a)w0 = ξw0, then ξ = (n−1)(ä/a)
as w0 6= 0. In the equation Rµ0w

0 + Rµνw
ν = ξwµ one has Rµ0 = 0 and

Rµν = R∗

µν + g∗µν [(n − 2)ȧ2 + aä]. A solution is always u0 = 1, uµ = 0 (the
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given vector). Other solutions have non-zero space components wµ solving
the eigenvalue equation:

R∗

µνw
ν =ξwµ − [(n− 2)ȧ2 + aä]g∗µνw

ν

=(n− 2)

(

d

dt

ȧ

a

)

wµ

where we lowered an index: a2g∗µνw
ν = wµ. In the warped frame the Ricci

tensor R∗

µν of M∗ does not depend on time, and so must the eigenvalue.
Then (ȧ/a) = At+B where A and B do not depend on space coordinates,
as the warping function does not. �

Lemma 3.3. If ∇iϕ = −uiu
k∇kϕ then: ∇kξ = −uk(u

j∇jξ).

Proof. Evaluate: ∇kϕ
2 = 2ϕ∇kϕ = 2ϕ(−uku

j∇jϕ) = −uku
j∇jϕ

2. Next:
∇k(u

j∇jϕ) = ϕ(uku
j+δk

j)∇jϕ+uj∇j∇kϕ; the first term is zero, the second

one is: uj∇j(−uku
ℓ∇ℓϕ) = −uk[u

j∇j(u
ℓ∇ℓϕ)]. Add results and multiply

by (n− 1). �

The same assertion holds for the torse-forming velocity wk: ∇kξ = −wkw
j∇jξ.

Comparison of assertions gives: if ξ is not a constant scalar, then the torse-
forming velocities uj and wj are collinear i.e. uj is unique.

What remains to discuss is the case that ξ is a constant scalar and is
a degenerate eigenvalue. Proposition 3.2 imposes ϕ = At + B i.e. ξ =
(n− 1)[(At+B)2 +A]. Then ξ is constant if A = 0 i.e. ϕ is constant, which
is case A.
This proves Theorem B.

4. Proof of theorem A

Lemma 4.1. If ϕ is a non-zero constant, and if wk exists not parallel to
uk, then λ = ϕ.

Proof. If λ is constant, eq.(15) implies λ = ϕ.
Now suppose that λ is not a constant. Eq.(17) with constant ϕ gives:
wk[w

j∇jλ+uiwi(u
j∇jλ)] = [(uiwi)

2 − 1]∇kλ. Then ∇kλ is proportional to
wk i.e. ∇kλ = −wkw

j∇jλ.
Then both uj and wj are eigenvectors of the Ricci tensor with the same
eigenvalue ξ = (n− 1)ϕ2. Given wj not collinear with uj, there is a warped

frame where w0 = 1, wµ = 0, and scale factor ã(t) such that ˙̃a/ã = λ.
As in Proposition 3.2 the condition that ξ is degenerate and constant puts
˙̃a/ã = λ constant in space-time, and this is against the hypothesis. �

Being ȧ/a = ϕ a non-zero constant, we can set a(t) = exp(ϕt)/ϕ. The
torse-forming conditions (4) simplify

∂tw0 = ϕ(w2
0 − 1) ∂µw0 = ϕwµ(w0 + 1) ∂0wµ = ϕwµ(w0 + 1)

∇∗

µwν = ϕ[wµwν + a(t)2(w0 + 1)g∗µν ]
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The first three equations are solved by

w0(x, t) =
1 + C2(x) exp(2ϕt)

1− C2(x) exp(2ϕt)
, wµ(x, t) =

1

ϕ

(∂µC
2) exp(2ϕt)

1− C2(x) exp(2ϕt)

where the function C2(x) is determined by the last differential equation:

∂µ∂νC
2(x)− Γ∗ρ

µν∂ρC
2(x) = 2g∗µν(x) i.e. ∇∗

µ∇
∗

νC
2 = 2g∗µν

The normalization condition −1 = −w2
0 + ϕ2e−2ϕtg∗µνwµwν gives:

4C2 = g∗µν(∂µC
2)(∂νC

2)

If we put ∂µC = n∗

µ, then: g∗µνn∗

µn
∗

ν = 1 and ∇∗

µn
∗

ν = 1
C
(g∗µν − n∗

µn
∗

ν) i.e.

n∗

µ is unit and torse-forming in (M∗, g∗). Since also ∂µ(1/C) = −n∗

µ/C
2

the Riemannian subspace (M∗, g∗) is warped, i.e. there is a choice of space
coordinates such that g∗µνdx

µdxν = (dx1)2 + f2(x1)ds2, where ds2 involves

the coordinates x2, ..., xn−1.

5. Proof of theorem C

If ∇kϕ is not collinear with uk, the coefficient of wk in eq.(18) cannot be
zero, and the same equation shows that ∇kϕ is a linear combination of uk
and wk. Eq.(17) shows that also ∇kλ is a linear combination of uk and wk.
If ∇kϕ + uk(u

i∇iϕ) = vbk, where v 6= 0, bjbj = 1, bju
j = 0, then wk

is spanned by the vectors uk and bk. It is convenient to introduce the
hyperbolic rotation of the orthogonal pair (u, b) to the orthogonal pair (w, c):

{

wi = ui coshα+ bi sinhα

ci = ui sinhα+ bi coshα
α 6= 0(19)

Then: w2 = −1, ckw
k = 0, ckck = 1, uiuj − bibj = wiwj − cicj . The choice

that w has a component parallel to u is not a limitation: if w exists, also
−w is time-like torse-forming with scalar field −λ.

Proposition 5.1. The only possible hyperbolic rotation is

tanhα = −
2Riju

ibj

Rij(uiuj + bibj)
(20)

Proof. Contraction of (11) with ui and of (12) with wi give: Riju
iuj =

Rijw
iwj = −ξ. Then: 0 = Rij(w

iwj−uiuj) = sinhα[Rij(u
iuj+bibj) sinhα+

2(Riju
ibj) coshα]. If α 6= 0, the result is obtained. �

Let us write the condition (2) in terms of the hyperbolic components:

∇i(uj coshα+ bj sinhα)

= λ[uiuj cosh
2 α+ bibj sinh

2 α+ (uibj + ujbi) coshα sinhα+ gij ]

(∇iα)(uj sinhα+ bj coshα) + ϕ coshα(uiuj + gij) + (∇ibj) sinhα

= λ[uiuj cosh
2 α+ bibj sinh

2 α+ (uibj + ujbi) coshα sinhα+ gij ]
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Contraction with uj , and the hypothesis sinhα 6= 0 give:

∇iα = λ(ui sinhα+ bi coshα)− ϕbi

Insertion in the previous equation gives, after simple algebra,

sinhα(∇ibj) = (λ− ϕ coshα)(uiuj + gij − bibj) + ϕbiuj sinhα

The trace of the equation gives the expression (8) for the parameter λ and,
if sinhα 6= 0, the equation (6).

Proposition 5.2. Condition (6) is equivalent to the requirement that the
space submanifold (M∗, g∗) admits a unit vector n∗

µ(x) such that

∇∗

µn
∗

ν =
∇∗

ρn
∗ρ

n− 2
(g∗µν − n∗

µn
∗

ν) + n∗

µn
∗′

ν(21)

where n∗′

ν = n∗ρ∇∗

ρn
∗

ν.

Proof. In the comoving frame where u0 = 1 (and b0 = 0) the normalization
bkbk = 1 and the conditions (6) become:

a−2g∗µνbµbν = 1

∂0bµ − Γν
0µbν = 0

∂µbν − Γρ
µνbρ = 1

n−2(a
2g∗µν − bµbν)

1

a2
g∗ρσ(∂ρbσ − Γτ

ρσbτ )

The second equation is ∂t(bµ/a) = 0. Then, the vector n∗

µ = bµ/a is normal-
ized and independent of time (it is a vector field of M∗). The last equation,
with some algebra and use of the Christoffel symbols in [10] becomes

∇∗

µn
∗

ν =
∇∗

ρn
∗ρ

n− 2
(g∗µν − n∗

µn
∗

ν) + n∗

µ

1

a
(aν − n∗

νn
∗

ρa
ρ)

Contraction with n∗µ gives n∗′

ν = 1
a
(aν − n∗

νn
∗

ρa
ρ), and (21) is obtained. �

Eq.(21) coincides with eq.(7.9) by Coley and McManus [5], in n = 4. The
existence of the normalized vector n∗

µ with condition (21) (i.e. shear and
vorticity free, but not geodesic) implies that (M∗, g∗) is a doubly twisted
manifold, i.e. there are space coordinates and functions f1, f2 such that

g∗µν(x)dx
µdxν = f1(x)

2(dx1)2 + f2(x)
2ds2

where ds2 only refers to coordinates x2, ..., xn−1 (see Table 1 in Borowiec
and Wojnar [1] and Corollary 1 in Ferrando et al. [7]). In particular, the
space manifold (M∗, g∗) is twisted if and only if the vector fields aµ and n∗

µ

are also parallel.

In a twisted manifold, the general form of the Ricci tensor is [10]:

Rij =
R− nξ

n− 1
uiuj +

R− ξ

n− 1
gij + (n− 2)v(uibj + ujbi)− (n− 2)Eij(22)
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where v = bk∇kϕ. If another torse-forming vector wi exists, eq.(19), the
same Ricci tensor is:

Rij =
R− nξ

n− 1
wiwj +

R− ξ

n− 1
gij + (n− 2)v′(wicj + wjci)− (n− 2)E′

ij

where E′

ij = wrwsCrijs and v′ = ck∇kλ.

Lemma 5.3. v′ = −v.

Proof. Contract of Eq.(17) with ck and use ckwk = 0:

ckuk[w
i∇iϕ+ wiui(u

j∇jϕ)] = [(uiwi)
2 − 1]v′

It is ckuk = − sinhα 6= 0, wkuk = − coshα. Then:

(coshαui + sinhαbi)∇iϕ− coshα(uj∇jϕ) = − sinhαv′

Simplify and use bi∇iϕ = v. �

Proposition 5.4. If ui and wi are non-collinear torse-forming vector fields,
then the Weyl tensor Cjklm has the constraint

(urus + brbs)Crijs = (uiuj + bibj)(b
kblEkl)(23)

where Eij = urusCrijs is the electric component of the Weyl tensor, with the
properties Eiju

i = 0 and Ei
i = 0.

Proof. Subtraction of the two expressions of the Ricci tensor and use of (19)
with α 6= 0 give:
[

R− nξ

(n− 1)(n − 2)
sinhα− 2v coshα

]

[sinhα(uiuj + bibj) + coshα(uibj + ujbi)]

= sinhα[sinhα(urus + brbs) + coshα(urbs + usbr)]Crijs

Contraction with uiuj gives:

R− nξ

(n− 1)(n − 2)
sinhα− 2v coshα = sinhα (brbsErs)

Then:

sinhα[(uiuj + bibj)(b
rbsErs)− (urus + brbs)Crijs](24)

= − coshα[(uibj + ujbi)(b
rbsErs)− (urbs + usbr)Crijs]

A torse-forming vector field has the property of being “Weyl-compatible”
[11]:

(uiCjklm + ujCkilm + ukCijlm)um = 0.

It implies Cjklmu
m = ukEjl − ujEkl. Then

(urbs + usbr)Crijs = −bsCjsiru
r + brCrijsu

s = (uiEjs + ujEis)b
s

Eq.(24) becomes:

sinhα[(uiuj + bibj)(b
rbsErs)− (urus + brbs)Crijs](25)

= − coshα[(uibj + ujbi)(b
rbsErs)− (uiEjs + ujEis)b

s]
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Contraction with ui:

sinhα[uj(b
rbsErs) + brbsuiCrijs] = − coshα[bj(b

rbsErs)− Ejsb
s]

The left-hand side of the equation is zero: brbsCrijsu
i = brbsCjsriu

i =
brbs(usEjr − ujEsr) = −uj(b

rbsErs). Then bj is eigenvector of Ejs:

Ejsb
s = bj(b

rbsErs)(26)

and the right hand side of eq.(25) is zero. �

6. n = 4, the two-fluid picture

We show that in a space-time of dimension n = 4 the presence of two
torse-forming vectors specifies, via the Einstein equations, a stress-energy
tensor that describes a mixture of two perfect fluids, with velocities ui and
u′i, studied by Coley and McManus [5].

In n = 4, as a consequence of Lovelock’s identity [8], the Weyl tensor is
fully determined by its electric component Eij = urusCrijs:

Cijkl = 2(uiulEjk−uiukEjl+ujukEil−ujulEik)+gilEjk−gikEjl+gjkEil−gjlEik

Contraction with bibl and use of (26) give:

biblCijkl = (2ujuk − 2bjbk + gjk)Ersb
rbs + Ejk

Then (23) gives Eij in terms of bi, hij = uiuj + gij and a scalar:

2Eij = 3
(

bibj −
1
3hij)(Ersb

rbs
)

.(27)

The Ricci tensor (22) becomes:

Rij =
1
3 (R− 4ξ)uiuj +

1
3 (R− ξ)gij + 2v(uibj + ujbi)(28)

−3
(

bibj −
1
3hij

)

(Ersb
rbs)

Einstein’s equations Rij−
1
2Rgij = Tij give the corresponding energy-momentum

tensor (in units that absorb the gravitational constant):

Tij =
1
3(R− 4ξ)uiuj −

1
6(R+ 2ξ)gij + 2v(uibj + ujbi)

−3
(

bibj −
1
3hij

)

(Ersb
rbs)

The tensor, besides the perfect fluid-like term, contains a current term with
vector 2vbi orthogonal to the velocity, and a peculiar stress tensor. This
expression describes a mixture of two perfect fluids [5].
Consider two perfect fluids with velocities ui and u′i = ui cosh θ + ti sinh θ,
where the tilt angle θ and the space-like unit vector ti are yet unspecified:

T
(2)
ij = (p1 + µ1)uiuj + p1gij + (p2 + µ2)u

′

iu
′

j + p2gij

= [(p1 + µ1) + (p2 + µ2)(1 +
4
3 sinh

2 θ)]uiuj + [p1 + p2 +
1
3(p2 + µ2) sinh

2 θ]gij

+ (p2 + µ2) sinh θ cosh θ(uitj + ujti) + (p2 + µ2) sinh
2 θ(titj −

1
3hij)
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If we equate Tij and T
(2)
ij , unicity of the decompositions with respect to the

velocity field ui, gives ti = bi (up to a sign) and, with little algebra:

3(p1 + µ1) + 3(p2 + µ2) = R− 4ξ + 12Ersb
rbs, 6(p1 + p2) = −R− 2ξ + 6Ersb

rbs

(p2 + µ2) sinh θ cosh θ = 2v, (p2 + µ2) sinh
2 θ = −3Ersb

rbs

The last two equations give the tilt angle between the fluid velocities u and
u′, while the tilt angle bewteen the torse-forming vectors u and w is eq.(20):

tanh θ = −
3Ersb

rbs

2v
, tanhα =

12v

R− 4ξ − 6Ersbrbs

Thus u′ and w are, in general, different time-like vectors. By expressing bi
in terms of ui and wi we obtain:

u′i = ui
sinh(α− θ)

sinhα
− wi

sinh θ

sinhα

It turns out that u′i coincides with wi if p1 + µ1 = p2 + µ2.

Appendix

We report from [10] the Christoffel symbols, and the components of the
Riemann and Ricci tensors for the metric (3) of twisted space-times.
(i, j, k, ... = 0, 1, ..., n − 1; µ, ν, ρ, ... = 1, 2, ..., n − 1).

Christoffel symbols: Γk
ij = Γk

ji =
1
2g

km(∂igjm + ∂jgim − ∂mgij).

Γ0
i,0 = 0, Γk

0,0 = 0, Γρ
µ,0 = (ȧ/a)δρµ, Γ0

µ,ν = aȧg∗µν ,(29)

Γρ
µ,ν = Γ∗ρ

µ,ν + (aν/a)δ
ρ
µ + (aµ/a)δ

ρ
ν − (aρ/a)g∗µν(30)

where ȧ = ∂ta, aµ = ∂µa and aµ = g∗µνaν .

Riemann tensor: Rjkl
m = −∂jΓ

m
k,l + ∂kΓ

m
j,l + Γp

j,lΓ
m
kp − Γp

k,lΓ
m
jp

Rµ0ρ
0 =(aä)g∗µρ(31)

Rµνρ
0 =g∗µρ(a∂ν ȧ− ȧaν)− g∗νρ(a∂µȧ− ȧaµ)(32)

Rµνρ
σ =R∗

µνρ
σ + (ȧ2 −

aλaλ
a2

)(g∗µρδ
σ
ν − g∗νρδ

σ
µ)(33)

+
2

a2
(aσaνg

∗

µρ − aσaµg
∗

νρ + aµaρδ
σ
ν − aνaρδ

σ
µ)

+
1

a

[

∇∗

µ(a
σg∗νρ − aρδ

σ
ν )−∇∗

ν(a
σg∗µρ − aρδ

σ
µ)
]
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Ricci tensor: Rjl = Rjkl
k

R00 =− (n− 1)(ä/a)(34)

Rµ0 =− (n− 2)∂µ(ȧ/a)(35)

Rµν =R∗

µν + g∗µν [(n− 2)ȧ2 + aä] + 2(n − 3)
aµaν
a2

− (n − 4)
aσaσ
a2

g∗µν(36)

− (n− 3)
1

a
∇∗

µaν −
1

a
g∗µν∇

∗

σa
σ

Curvature scalar: R = Rk
k

R =
R∗

a2
+ (n− 1)

[

(n− 2)
ȧ2

a2
+ 2

ä

a

]

(37)

− (n− 2)

[

(n− 5)
aσaσ
a4

+ 2
∇∗

σa
σ

a3

]
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