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We discuss the renormalization of the electroweak Standard Model at one loop using the leptonic
effective weak mixing angle as one of the input parameters. We evaluate the impact of this choice in the
prediction of the forward-backward asymmetry for the neutral current Drell-Yan process. The proposed
input scheme is suitable for a direct determination of the effective leptonic weak mixing angle from the
experimental data.
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I. INTRODUCTION

The weak mixing angle [1–4] is a fundamental parameter
of the theory of the electroweak (EW) interaction, as it
determines the combination of the gauge fields associated
to the third component of the weak isospin and to the
hypercharge, yielding the photon and the Z boson fields.
The leptonic effective weak mixing angle sin2 ϑleff , defined
at the Z resonance, has been proposed [5–10] as a quantity
sensitive to new physics, offering the opportunity of a
stringent test of the Standard Model (SM). The measure-
ment at LEP/SLD [11,12] was later challenged by the CDF
and D0 determinations [13] at the Fermilab Tevatron and
more recently by the results from the LHC collaborations
ATLAS [14], CMS [15], and LHCb [16]. Two conceptually
different strategies can (and should) be pursued for the
direct determination of sin2 ϑleff : with, whenever possible, a
model independent as well as a pure SM approach. The
latter will be useful as an internal self-consistency check of
the SM, through the comparison of the direct determination
with the most precise available calculations of sin2 ϑleff . In
this paper we discuss the renormalization of the EW SM at

one-loop level, using sin2 ϑleff , as defined at LEP/SLD, as
one of the input parameters in the EW gauge sector. Any
simulation code implementing such a scheme will be able
to provide theoretical templates for a direct sensible
comparison with the experimental data, with the leptonic
effective weak mixing angle used as a fit parameter and
consistently treated in the evaluation of next-to-leading-
order (NLO) and higher-order corrections. The use of
sin2 ϑleff as input parameter of the electroweak sector has
also been proposed in Refs. [17–21] in the framework of
the high-precision measurements at the Z boson resonance
and higher energies at future eþe− colliders.

II. INPUT SCHEMES AND RENORMALIZATION

The choice of an input scheme in the EW gauge sector of
the SM is relevant for two distinct reasons:

(i) In a theoretical perspective, the prediction of an
observable should be affected by the smallest
possible parametric uncertainty. This goal can be
achieved by using the best known measured con-
stants, like, for instance, the fine structure constant
α, the Fermi constant Gμ, and the Z boson massMZ.
Furthermore, the convergence of the perturbative
expansion used to predict an observable is an addi-
tional criterium to judge whether the chosen inputs
describe the process already in lowest order with
good accuracy and reabsorb in their definition large
radiative corrections. This is the case, for instance,
of the scheme which uses Gμ, MZ, and the W boson
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mass MW , to describe processes at the electroweak
and higher scales.

(ii) The determination of a fundamental constant at
high-energy colliders can be achieved through the
comparison of kinematical distributions computed in
a theoretical model, the so-called templates, with the
experimental data. The fundamental constant must
be a free parameter of the model and is varied in the
fitting procedure. Only the input parameters of the
model can be unambiguously determined, because
they are the only ones which can be freely varied
without spoiling the accuracy of the calculation,
while any other quantity is a prediction expressed in
terms of them. Typical examples have been MZ at
LEP1 and MW at LEP2, Tevatron, and LHC.

Following the second perspective, we discuss in this
paper the formulation of a renormalization scheme which
includes the leptonic effective weak mixing angle sin2 ϑleff
[5] as one of the input parameters. Such a schemewill allow
us to exploit the Tevatron and LHC (and in particular the
future HL-LHC) potential to provide very high precision
measurements of the neutral channel (NC) Drell-Yan (DY)
process and, in turn, of sin2 ϑleff .

A. Input scheme definitions

A set of three commonly adopted SM Lagrangian input
parameters in the gauge sector is e;MW;MZ; they have to
be expressed in terms of three measured quantities, whose
choice defines a renormalization scheme. The relation
between e;MW;MZ and the reference measured quantities
has to be evaluated at the same perturbative order of the
scattering amplitude calculation at hand and allows us to fix
the renormalization conditions. The usual sets of reference
measured quantities are α;MW;MZ, which defines the on-
shell scheme; αðMZÞ;MW;MZ, which is a variant of the
on-shell scheme and reabsorbs the large logarithmic con-
tributions due to the running of the electromagnetic
coupling from the scale 0 to MZ [22]; Gμ, MW , MZ, which
defines the Gμ scheme and is particularly suited to describe
DY processes at hadron colliders because it allows one to
include a large part of the radiative corrections in the
LO predictions, guaranteeing a good convergence of the
perturbative series. For a detailed description of these
schemes see Ref. [26]. The presence of MW among the
input parameters is a nice feature in view of a direct MW
determination at hadron colliders via a template fit method,
as described above. On the other hand, these schemes are
not suited for high-precision predictions, because of the
“large” parametric uncertainties stemming from the present
experimental precision on the knowledge of MW . In fact,
for NC DY precise predictions, a LEP style scheme with
α; Gμ;MZ would be preferred. However, in view of a direct
SM determination of the quantity sin2 ϑleff, also this scheme
has its own shortcomings, because sin2 ϑleff is a calculated

quantity and cannot be treated as a fit parameter. With the
aim of a direct sin2 ϑleff SM determination, we discuss an
alternative scheme, which includes the weak mixing angle
as a SM Lagrangian input parameter, sin2 ϑ, together with e
and MZ. The experimental reference data are the Z boson
mass value measured at LEP, the fine structure constant α,
and sin2 ϑleff as defined at LEP at the Z resonance. An
additional possibility discussed in the following is to
replace α with Gμ. We will refer to these two choices as
the ðα;MZ; sin2 ϑleffÞ and the ðGμ; sin2 ϑleff ;MZÞ input
schemes. At tree level sin2 ϑ ¼ sin2 ϑleff . The quantity
sin2 ϑleff is defined in terms of the vector and axial-vector
couplings of the Z boson to leptons glV;A, measured at the Z
boson peak, or alternatively the chiral electroweak cou-
plings glL;R and reads (at tree level) [27]

sin2ϑ ¼ sin2ϑleff ¼
Il3
2Ql

�
1 −

glV
glA

�
¼ Il3

Ql

�
−glR

glL − glR

�
; ð1Þ

where

glL ¼ Il3 − sin2ϑleffQl

sin ϑleff cosϑ
l
eff

; glR ¼ −
sin ϑleff
cosϑleff

Ql: ð2Þ

Il3 ¼ − 1
2
is the third component of the weak isospin and Ql

is the electric charge of the lepton in units of the positron
charge.

B. Renormalization

We implement the one-loop renormalization of the
three input parameters by splitting the bare ones into
renormalized parameters and counterterms

M2
Z;0 ¼ M2

Z þ δM2
Z; ð3Þ

sin2 ϑ0 ¼ sin2 ϑleff þ δ sin2 ϑleff ; ð4Þ

e0 ¼ eð1þ δZeÞ; ð5Þ

where the bare parameters are denoted with subscript 0.
The counterterms δM2

Z and δZe are defined as in the usual
on-shell scheme. Complete expressions are given in
Eqs. (3.19) and (3.32) of Ref. [28]. The counterterm
δ sin2 ϑleff is defined by imposing that the tree-level relation
equation (1) holds to all orders. Considering the Zlþl−

vertex and neglecting the masses of the lepton l, the
couplings glL;R are replaced by the form factors Gl

L;Rðq2Þ [9]
once radiative corrections are accounted for. The effective
weak mixing angle has been defined at LEP/SLD by taking
the form factors at q2 ¼ M2

Z:
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sin2 ϑleff ≡ Il3
Ql

Re

�
−Gl

RðM2
ZÞ

Gl
LðM2

ZÞ − Gl
RðM2

ZÞ
�
: ð6Þ

The form factors Gl
i can be computed in the SM in any

input scheme that does not contain sin2 ϑleff as input
parameter, yielding in turn, via Eq. (6), a prediction for
sin2 ϑleff , as discussed at length in Refs. [29,30].
In this paper instead we consider the weak mixing angle

as an input parameter. In order to fix its renormalization
condition, we write Eq. (6) at one loop,

sin2 ϑleff ¼
Il3
Ql

Re

�
−glR − δglR

glL − glR þ δglL − δglR

�
; ð7Þ

where δglL;R represent the effect of radiative corrections,
expressed in terms of renormalized quantities and related
counterterms, including δ sin2 ϑleff . We do not consider
NLO QED corrections because they factorize on form
factors and therefore do not affect the sin2 ϑleff definition.
The effective weak mixing angle is defined to all orders by
the request that the measured value coincides with the tree-
level expression. The counterterm δ sin2 ϑleff is fixed by
imposing that the one-loop corrections to Eq. (1) vanish,
namely,

1

2

glLg
l
R

ðglL − glRÞ2
Re

�
δglL
glL

−
δglR
glR

�
¼ 0: ð8Þ

We remark that at one loop the condition in Eq. (8) holds
also if sin2 ϑleff is defined from the ratio of the real parts of
GV and GA. Moreover, Eq. (8) remains unchanged if the
complex-mass scheme [31–33] is used for the treatment
of unstable particles. In fact, MZ becomes complex but
sin2 ϑleff and, consequently, glL and glR remain real.
Therefore Eq. (8) is valid also in the complex-mass scheme
without modifications.
From the OðαÞ corrections to the vertex Zlþl− we

obtain

δsin2ϑleff
sin2ϑleff

¼ Re

�
−
1

2

cosϑleff
sin ϑleff

δZAZ þ
�
1 −

Ql

Il3
sin2ϑleff

�

× ½δZl
L þ δVL − δZl

R − δVR�
�
; ð9Þ

where δZAZ contains the fermionic and bosonic contribu-
tions to the γZ self-energy corrections, while the second
line of Eq. (9) stems from the vertex corrections and
counterterm contributions. We remark that the γZ self-
energy does not contain enhanced terms proportional tom2

t .
The bosonic contributions in Eq. (9) form a gauge invariant
set because they are a linear combination of the corrections
to the left- and right-handed components of the Z decay
amplitude into a lepton pair. The expressions of δZAZ and

δZl
L=R are given in Eqs. (3.19) and (3.20) of Ref. [28],

respectively. If the complex-mass scheme is used, the
expression of δZAZ can be found in Eqs. (4.7) and
(4.30) of Ref. [32]. In δZl

L=R we suppressed the lepton

family indices. The vertex corrections δVL=R are given by

δVL ¼ ðglLÞ2
α

4π
Vað0;M2

Z; 0;MZ; 0; 0Þ

þ 1

2s2W

gνL
glL

α

4π
Vað0;M2

Z; 0;MW; 0; 0Þ

−
cW
sW

1

2s2W

1

glL

α

4π
Vbð0;M2

Z; 0; 0;MW;MWÞ

δVR ¼ ðglRÞ2
α

4π
Vað0;M2

Z; 0;MZ; 0; 0Þ ð10Þ

and the vertex functions Va and Vb are given in Eqs. (C.1)
and (C.2) of Ref. [28], respectively.
The renormalization condition that the measured effec-

tive leptonic weak mixing angle matches the tree-level
expression to all orders in perturbation theory applies,
following the LEP definition, to the real part of the ratio of
the vector and axial-vector form factors. The latter develop,
order by order, an imaginary part which is computed in
terms of the input parameters and contributes to the
scattering amplitude.

C. The Gμ scheme

The muon decay amplitude allows to establish a relation
between α, Gμ, MZ, and sin2 ϑleff which reads

sin2 ϑleff cosϑ
2
effM

2
Z ¼ παffiffiffi

2
p

Gμ

ð1þ Δr̃Þ; ð11Þ

with the following expression for Δr̃,

Δr̃ ¼ ΔαðsÞ − Δρþ Δr̃rem; ð12Þ

Δr̃rem ¼ ReΣAAðsÞ
s

−
�
δM2

Z

M2
Z
−
ΣZZ
T ð0Þ
M2

Z

�

þ s2W − c2W
c2W

δs2W
s2W

þ 2
cW
sW

ΣAZ
T ð0Þ
M2

Z

þ α

4πs2W

�
6þ 7 − 4s2W

2s2W
logðc2WÞ

�
; ð13Þ

where sW ¼ sinϑleff and cW ¼ cosϑleff , respectively. We
note the appearance of the combination ΔαðsÞ − Δρ,
which differs from the corresponding one for Δr in the

ðα;MWMZÞ on-shell scheme ΔαðsÞ − c2W
s2W
Δρ. The Δr̃rem

correction does not contain any terms enhanced by a mt
2

factor, nor large logarithmically enhanced contributions.
For the sake of clarity, we report the expressions of

ΔαðsÞ and Δρ:
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ΔαðsÞ ¼
�∂ΣAA

T ðsÞ
∂s

�
js¼0

−
ReðΣAA

T ðsÞÞ
s

; ð14Þ

Δρ ¼ ΣZZ
T ð0Þ
M2

Z
−
ΣW
T ð0Þ

c2WM
2
Z
; ð15Þ

where ΣAA
T ðsÞ, ΣAZ

T ðsÞ, ΣZZ
T ðsÞ, and ΣW

T ðsÞ can be found in
Eqs. (B.1)–(B.4) of Ref. [28].
Using Eq. (11) to derive an effective electromagnetic

coupling, it is possible to convert results computed in the
(α, MZ, sin2ϑleff ) scheme to the corresponding ones in the
(Gμ, sin2 ϑleff ,MZ) scheme. The Δρ term present at OðαÞ in
Eq. (11) accounts for one-loop quantum corrections grow-
ing likemt

2. For convenience we can introduce the quantity

Δρð1Þ ¼ α
4π

3
4s2Wc2W

m2
t

M2
Z
, which represents the m2

t dependent

part of Δρ defined in Eq. (15). This can be resummed to all
orders, together with the irreducible two-loop contributions
Δρð2Þ, computed in the heavy top limit in Ref. [34]. In the
following predictions for the (Gμ, sin2 ϑleff ,MZ) scheme, we
include the effect of the universal mt

2 corrections at two
loops with the replacement Gμ → Gμð1þ Δρð1Þ þ Δρð2ÞÞ
after subtracting theΔρð1Þ contributions already included in
the one-loop calculation.

III. THE DRELL-YAN PROCESS

We study at NLO EW the NC DY process, in the
setup described in [35] but without acceptance cuts on the
lepton transverse momentum and pseudorapidity, with
MZ¼91.1876GeV, ΓZ¼2.4952GeV, mt ¼ 173.5 GeV,
MH ¼ 125 GeV, and sin2 ϑleff ¼ 0.23147. For the numeri-
cal simulations with the ðGμ;MW;MZÞ scheme, we adopt
MW ¼ 80.385 GeV.
The distributions are simulated with the POWHEG code

(Z_BMNNPV processes svn revision 3652, under the
POWHEG BOX v2 framework) [36], focusing on the lep-
ton-pair invariant mass forward-backward asymmetry
AFBðM2

lþl−Þ, defined as ðF − BÞ=ðF þ BÞ, where F ¼R
1
0 dcdσ=dc and B ¼ R

0
−1 dcdσ=dc, for a given value of

M2
lþl− with c the cosinus of the scattering angle in the

Collins-Soper frame. Given the gauge invariant separation
of photonic and weak corrections, we focus on the latter to
discuss the main features of the (Gμ, sin2 ϑleff , MZ)
schemes, in view of a direct determination of sin2 ϑleff .
The absolute change of AFB computed with two sin2 ϑleff

values differing by Δ sin2 ϑleff ¼ 5 × 10−4, for a fixed
choice of all the other inputs, is shown in Fig. 1. The
observed AFB shift sets the precision goal of a measurement
that aims at the determination of sin2 ϑleff at the level of
Δ sin2 ϑleff . Taking as a reference Δ sin2 ϑleff ¼ 1 × 10−4 as
a final precision goal at the LHC, the results of Fig. 1 must
be rescaled, in first approximation, by a factor 5.

The absolute change ΔAFB of AFBðM2
ZÞ computed with

NLO weak virtual corrections with respect to the LO result,
and the variation obtained with improved couplings with
respect to the NLO case are shown in Fig. 2 for the (Gμ,
sin2 ϑleff ,MZ) scheme (red lines) and for the (Gμ,MW ,MZ)
scheme (blue lines). The comparison of the blue and red
lines shows a reduction by almost 1 order of magnitude in
the (Gμ, sin2 ϑleff ,MZ) scheme for the value of ΔAFB due to
the inclusion of the NLO corrections; we observe a
negligible residual correction due to higher-order terms
(h.o.), at variance with the (Gμ, MW , MZ) case, where we
have a shift at the few parts 10−4 level in the Z peak region.
The universal h.o. corrections in the (Gμ,MW ,MZ) scheme
are estimated according to Ref. [26].

FIG. 1. The absolute variation of the predictions for the
forward-backward asymmetry by changing sin2 ϑleff by Δ ¼
�5 × 10−4 with respect to the value 0.23147d0, using the (Gμ,
sin2 ϑleff , MZ) scheme, at NLO-h.o. and LO accuracies.

FIG. 2. The absolute deviation of NLO (NLO-h.o.) with
respect to LO (NLO) predictions on the lepton forward-
backward asymmetry, in the renormalization scheme with
Gμ, sin2 ϑleff as input.
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The size of NLO and higher-order radiative correc-
tions, smaller than in the (Gμ, MW , MZ) case, can be
ascribed to the choice as input parameters of the quan-
tities that parametrize the Z resonance in terms of
normalization (Gμ), position (MZ) and shape (sin2 ϑleff ),
the latter two being defined at the Z resonance and
thus reabsorbing a good fraction of the quantum
corrections.
One of the main sources of parametric uncertainties is

given, in any scheme with Gμ as input, by the value of mt.
In Fig. 3 we show the absolute variation of ΔAFB with
respect to a change of �1 GeV of mt around its central
value, taken at mt ¼ 173.5 GeV, using the NLO accuracy
with higher-order effects included, evaluated in the (Gμ,
sin2 ϑleff , MZ) (red lines) and (Gμ, MW , MZ) (blue lines)
schemes. In the (Gμ, sin2 ϑleff , MZ) scheme, the effect is
well below the 2 × 10−5 scale for AFB in the [60, 120] GeV
mass range, almost vanishing in the Z peak region, while
in the (Gμ, MW , MZ) case a variation of mt by �1 GeV
induces a shift ΔAFB of order 2 × 10−4. The very small

dependence of AFB on the mt value is due to the
cancellation of the overall normalization factor of the
squared matrix element, between numerator and denomi-
nator of AFB, where the factor with the mt

2 dependence is
present. Radiative corrections, logarithmic in mt, are by
construction small at the Z peak, so that also the residualmt
dependence is milder than in other invariant mass regions.
In the (Gμ, MW , MZ) case instead the mt

2 dependence
enters via the corrections to MW and affects the precise
value of the on-shell weak mixing angle and, in turn, the
shape of the AFB distribution.
In conclusion, we have presented an EW scheme that

has sin2 ϑleff , with exactly the same definition adopted at
LEP/SLD, among the input parameters of the gauge sector
and discussed its one-loop renormalization. In such a
scheme the predictions of the NC DY process exhibit a
faster convergence of the perturbative expansion and
smaller mt parametric uncertainties, with respect to the
(Gμ, MW , MZ) scheme. The presence of sin2 ϑleff among
the inputs allows its direct determination at hadron
colliders and a closure test with a comparison against
its best theoretical prediction in the SM based on the
ðα; Gμ;MZÞ input scheme. Such a scheme will allow the
preparation of templates and the quantitative evaluation of
the impact of radiative corrections and other theoretical
uncertainties, in analogy with the study presented in
Ref. [37] in the MW case. We implemented the scheme
in the Z_BMNNPV svn revision 3652 processes under the
POWHEG BOX v2 framework, but it can be easily imple-
mented in any other code.
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