scientific correspondence

Cyclophosphamide plus granulocyte colony stimulating fáctor (G-CSF) is more effective thán G-CSF álone in mobilizing hemopoietic progenitor cells in severe, refractory rheumatoid arthritis

In seven patients with rheumatoid arthritis, candidates for autologous hemopietic stem cell transplantation, cyclophos-phamide (4 g/m²) plus G-CSF proved to be more effective than G-CSF alone for stem cell mobilization allowing ex vivo manipulations aimed at reducing T-cells in the graft. Furthermore, cyclophosphamide induced a significant improvement in arthritis, lasting 1 to 19+ months.

Autologous hematopoietic stem cell transplantation (AHSCT) has been proposed as a treatment for severe, refractory rheumatoid arthritis (RA).1 Although it needs to be clarified by controlled studies in this setting, AHSCT with ex vivo T-cell deple-tion might be more effective than an unmanipulated graft reducing the reinfusion of autoreactive T-cells.² Peripheral blood stem cells are now replacing bone marrow cells as a source of hematopoietic progenitors. Release of a large number of hematopoietic stem cells as required for engraftment can be obtained by granulocyte colony-stimulating factor (G-CSF) either alone or in combination with chemotherapy.¹³ In patients with malignancies, mobilization with cyclophosphamide and G-CSF allows the collection of a larger number of stem cells than G-CSF alone.³ This may be useful when T-cell depletion is planned, as ex vivo graft manipulation is associated with a reduction of stem cell content.⁴ Previous studies have looked at the combination of cyclophosphamide plus G-CSF in RA,^{1,5} however direct comparisons between combination treatment and G-CSF alone have not been formally undertaken.

After signing informed consent, seven patients with severe RA refractory to conventional therapy were enrolled in a clini-cal trial approved by the ethical committee of the Maugeri Foundation Institute for Clinical Research. Bone marrow examination was normal in all cases; one patient (#6) had developed stage I non-Hodgkin's lymphoma (treated with surgery and radiotherapy) 3 years before this study. Three patients (#1-3) received I.V. cyclophosphamide (4 g/m²) followed by lenograstim 10 µg/kg/d starting from day 4 until stem cell collection. Four patients (#4-7), matched for sex, age, disease activity and duration, received lenograstim 10 μ g/kg/d until stem cell collection. CD34⁺ cell count in the peripheral blood was monitored daily by Facscalibur (Becton Dickinson Immunocytometry Systems, San José, CA, USA); when CD34⁺ cells exceeded 20/µL, stem cell collection was performed by a Cobe Spectra cell separator (Cobe, Denver, CO, USA). Positive immunoselection was performed using a Isolex 300i cell separator device (Baxter Health Care, Deerfield, IL, USA). Since the number of CD34+ cells required for safe hematopoi-etic recovery is $\geq 2.5 \times 10^6$ /kg and considering that immunoselection may cause a loss of hematopoietic progenitors, this procedure was performed only in case of harvesting ≥5×10⁶ CD34+ cells/kg. An aliquot of the CD34+ cells exceeding 5×106/kg was stored unselected as a back-up graft. Stem cell mobilization was highly effective in patients receiv-

ing cyclophosphamide plus growth factor as compared to G-CSF alone, so that CD34+ cell immunoselection could be performed only in the former patients (Table 1). No patient experienced flares of the disease; neutropenic fever was observed in patient #3 but no infections or bleeding were documented and no patient required blood transfusions. Patients who received cyclophosphamide had complete hair loss lasting 3 months. The clinical outcomes of RA following mobilization are shown in Table 2 according to the core set criteria of the American College of Rheumatology.⁶ The number of CD34⁺ cells in the peripheral blood of RA

Table 1. Stem cell mobilization, collection and immunoselection in seven patients with severe, refractory rheumatoid arthritis after cyclophosphamide plus G-CSF (patients #1-3) or G-CSF alone (patients #4-7). CD34* cell positive selection to obtain partial T-cell depletion was performed only in case of harvesting at least 5x106 CD34+ cells/kg.

Pts.	age		Circulating CD34+ cells (peak value/µL)	CD34+ cells c collected (x10°/kg)	CD34+ cells stored as unselected graft (x10¢/kg)	after selection		Log of T-cell depletion
1	F/ 58	7.2	512	53.5	20.1	23.5	1.38	3.5
2	F/ 47	4.5	402	51.8	17.4	15.3	1.7	3.34
3	F/ 55	10	334	31.6	11.6	14.5	0.82	3.82
4	F/ 49	7.7	24	2.56	2.56	-	_	_
5	F/ 58	8	29	3.13	3.13	-	_	_
6	F/ 56	5.1	11			_	_	_
7	F/ 53	3.8	37	4.22	4.22	-	-	-

Table 2. Clinical outcome in patients with severe refractory rheumatoid arthritis following stem cell mobilization. Patients #1-3, who received cyclophosphamide plus G-CSF, experi-enced a significant clinical improvement lasting 13 months, 19+ months and 1 month, respectively. Patients #4-6, who received G-CSF alone, did not show any change in disease activity.

Pt	. Time of assessment	Current therapy	Swollen/tender joint count	HAQ	CRP mg/L	Pain	by	sment by phys.
1	mobilization	Mtx, HCQ, P 15 mg	10/28	2.0	140	8.7	10	8.5
	1 month	HCQ, P 5 mg	0/2	1.5	19	2.1	2.0	4.5
	13 months	HCQ, P 5 mg	0/2	1.5	23	2.2	2.2	4.6
	19 months	Mtx, HCQ, P 10 mg	10/22	1.8	98	8.9	8.5	7.5
2	mobilization	Mtx, HCQ, CyA 5mg/kg, P10mg	g 20/38	1.8	133	7.2	9.1	6.9
	1 month	None	0/7	0.6	11	1.5	1.7	0.5
	19 months	CyA 3mg/Kg, P 5mg	0/7	0.6	14	2.3	1.5	1.0
3	mobilization	Mtx,HCQ,CyA,P10mg	13/29	1.5	30	4.5	5.3	5.7
	1 month	P 5mg	0/0	0	2	0.7	1.1	0
	3 months	CyA, P5mg,IA steroids	4/6	0.6	9	3.9	4.8	2.9
	5 months	Mtx, CyA, P 5mg	4/14	0.8	11	4.3	4.5	3.0
	15 months	Mtx,HCQ,CyA,P10mg	8/26	1.1	48	6.5	7.1	4.9
4	mobilization	Mtx,HCQ,CyA,P10mg	24/34	2.1	172	8.1	8.2	6.8
	1 month	Mtx,HCQ,CyA,P10mg	20/29	2.0	114	7.7	8.1	6.7
5	mobilization	Mtx, HCQ, CyA, P 10 mg	14/23	1.8	131	5.3	6.4	6.1
	1 month	Mtx, HCQ, SSZ, P 10 mg	14/24	1.8	135	6.1	6.0	6.3
6	mobilization	HCQ, SSZ, P 15 mg	12/25	1.6	38	5.5	4.9	5.9
	1 month	HCQ, SSZ, P 15 mg	12/18	1.5	44	3.8	4.5	5.5
7	mobilization	Mtx, HCQ, CyA, P 10 mg	15/28	1.3	147	6.6	7.5	6.0
	1 month	Mtx, HCQ, CyA, P 10 mg	16/26	1.3	113	6.3	7.5	6.2

Pts.= patients; phys.= physicians; Mtx= methotrexate; HCQ= hydroxychloroquine; P=prednisone; CyA=cyclosporin A; SSZ=sulphasalazine; IA=intra-articular; HAQ=health assessment questionnaire; CRP=C-reactive protein

scientific correspondence

patients after cyclophosphamide + G-CSF mobilization is very high compared with the numbers observed in cancer patients by our group⁷ and others.³ Breban et al.⁵ recently reported CD34⁺ cell collections of up to 35×10⁶/kg in four RA patients treated with 4 g/m² cyclophosphamide and 5 µg/kg/d G-CSF. In our study stem cell mobilization was even more marked, probably due to the higher doses of G-CSF.

Mobilization with G-CSF alone, as also reported by Snowden et al.,8 allows the collection of about 3.0-3.5×106 stem cells /kg hampering any ex vivo graft manipulation. G-CSF appears to be less effective in RA patients than in healthy donors;⁷ this is in accordance with the evidence of markedly affected myelopoiesis in advanced RA.9 Stem cell mobilization by G-CSF alone was unsuccessful in one of our RA patients who had had lymphoma.

At present there is no definite proof that AHSCT may cure RA. High-dose cyclophosphamide is often effective in refractory autoimmune rheumatic diseases, and a recent study has shown that clinical improvement after unmanipulated AHSCT is dependent on the dose of cyclophosphamide used as conditioning regimen.¹⁰ Our results show that 4 g/m² cyclophosphamide may induce a sustained clinical improvement in some patients with refractory RA. Recurrence of the disease was found in all 3 cases but in two of them it was successfully controlled by low-dose conventional therapy for 13 and 19+ months.

In conclusion cyclophosphamide plus G-CSF is superior to G-CSF alone for stem cell mobilization in RA. Furthermore, clinical improvement can be obtained in some patients after mobilizing cyclophosphamide therapy, allowing a wait-and-see policy before AHSCT.

Roberto Caporali, Cesare Perotti,* Paolo Pedrazzoli,° Gian Antonio Da Prada,° Stefano Bernuzzi,* Carlomaurizio Montecucco

Cattedra di Reumatologia dell'Università di Pavia and *Servizio di Immunoematologia e Trasfusione, IRCCS Policlinico

S. Matteo, Pavia, Italy; "Divisione di Oncologia Medica, IRCCS Fondazione S. Maugeri, Istituto di Pavia, Italy

Key words: rheumatoid arthritis, hematopoietic stem cell transplantation, CD34+ cells, cyclophosphamide, granulocyte-colony stimulating factor.

Correspondence: Carlomaurizio Montecucco, M.D., Cattedra di Reumatologia, Policlinico S. Matteo, 27100 Pavia, Italy. Phone: international +39.0382.502419 – Fax: international +39.0382. 526341 - E-mail: montecucco@smatteo.pv.it

References

- 1. Tyndall A, Gratwohl A. Blood and marrow stem cell transplants in autoimmune disease: a consensus report written on behalf of the European League against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 1997; 19:643-5.
- Euler HH, Marmont AM, Bacigalupo A, et al. Early recurrence or persistence of autoimmune diseases after unma-nipulated autologous stem cell transplantation. Blood 1996; 88:3621-5.
- Bensinger W, Appelbaum F, Rowley S, et al. Factors that influence collection and engraftment of autologous periph-eral-blood stem cells. J Clin Oncol 1995; 13:2547-55. Locatelli F, Perotti C, Torretta L, et al. Mobilization and selection of peripheral blood hematopoietic progenitors in bildres with evolution and peripheral blood hematopoietic progenitors in
- children with systemic sclerosis. Haematologica 1999; 84:839-43.
- 5. Breban M, Dougados M, Picard F, et al. Intensified-dose (4 g/m²) cyclophosphamide and granulocyte colony-stimulating factor administration for hematopoietic stem cell mobilization in refractory rheumatoid arthritis. Arthritis Rheum 1999; 42:2275-80.
- Felson DT, Anderson JJ, Boers M, et al. American College of 6. Rheumatology. Preliminary definition of improvement in
- rheumatoid arthritis. Arthritis Rheum 1995; 38:727-35. Torretta L, Perotti C, Dornini G, et al. Circulating progeni-tor cell collection: experience from 275 leukaphereses in 7. various malignancies and in healthy donors. Haematologica 1996; 81:208-15.
- Snowden JA, Biggs JC, Milliken ST, et al. A randomised, blinded, placebo-controlled, dose-escalation study of the tolerability and efficacy of filgrastim for haemopoietic stem 8. cell mobilisation in patients with severe active rheumatoid
- arthritis. Bone Marrow Transplant 1998; 22:1035-41. Danova M, Caporali R, Rosti V, et al. Apoptosis and cell 9 cycle status of hematopoietic progenitor cells in patients with severe refractory rheumatoid arthritis candidates to autografting. Blood 1999; 94 (Suppl 1):318b. Snowden JA, Biggs JC, Milliken ST, Fuller A, Brooks PM. A phase I/II dose escalation study of intensified cyclophos-
- 10 phamide and autologous blood stem cell rescue in severe, active rheumatoid arthritis. Arthritis Rheum 1999; 42: 2286-92.