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Abstract. We prove that the boundary of a (not necessarily connected) bounded smooth set
with constant nonlocal mean curvature is a sphere. More generally, and in contrast with what
happens in the classical case, we show that the Lipschitz constant of the nonlocal mean curvature
of such a boundary controls its C2-distance from a single sphere. The corresponding stability
inequality is obtained with a sharp decay rate.

1. Introduction

The aim of this paper is to address a classical question in Differential Geometry, namely the
characterization of compact embedded constant mean curvature surfaces as spheres – Alexan-
drov’s theorem [4] – in the case of surfaces with constant nonlocal mean curvature. The seminal
papers [9, 11] have drawn an increasing attention to the geometry of nonlocal minimal surfaces,
i.e., boundaries of sets Ω ⊂ Rn which are stationary for the s-perimeter functional

Ps(Ω) =

∫
Ω

∫
Ωc

dx dy

|x− y|n+2 s
, Ωc = Rn \ Ω ,

corresponding to some value of s ∈ (0, 1/2) (see for instance [12, 2, 24, 5, 21, 19, 20, 18]). If Ω
is an open set with smooth boundary and A ⊂ Rn is an open set, then the condition

δPs(Ω)[X] =
d

dt
Ps(Φt(Ω)) = 0 , ∀X ∈ C∞c (A;Rn) ,

(where Φt denotes the flux defined by the vector-field X) is equivalent to require the vanishing
of the nonlocal mean curvature HΩ

s (p) of Ω at every point p ∈ A ∩ ∂Ω. More in general, we say
that HΩ

s : ∂Ω ∩A→ R is the nonlocal mean curvature of ∂Ω inside A if

d

dt
Ps(Φt(Ω)) =

∫
∂Ω
HΩ
s (x)X(x) · νx dHn−1

x ∀X ∈ C∞c (A;Rn) .

Here νx is the exterior unit normal to Ω at x ∈ ∂Ω, and Hn−1 denotes the (n − 1)-Hausdorff
measure.

Whenever ∂Ω is sufficiently smooth (say ∂Ω ∈ C1,α for some α > 2s), one can show that
the nonlocal mean curvature of ∂Ω at a point p ∈ ∂Ω is given by

HΩ
s (p) =

1

ωn−2

∫
Rn

χ̃Ω(x)

|x− p|n+2s
dx , χ̃Ω(x) = χΩc(x)− χΩ(x) , (1.1)

where χE denotes the characteristic function of a set E, ωn−2 is the measure of the (n − 2)-
dimensional sphere, and the integral is defined in the principal value sense (see for instance [20,
Theorem 6.1 and Proposition 6.3]). It is useful to keep in mind that, by means of the divergence
theorem, the nonlocal mean curvature can also be computed as a boundary integral, that is

HΩ
s (p) =

1

s ωn−2

∫
∂Ω

(x− p) · νx
|x− p|n+2s

dHn−1
x . (1.2)

Our main interest here is describing the shape of open sets Ω having constant, or almost-
constant, nonlocal mean curvature. In this direction we obtain three main results.
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The first one is a nonlocal version of the classical Alexandrov’s theorem [4]:

Theorem 1.1. If Ω is a bounded open set of class C1,2s and HΩ
s is constant on ∂Ω, then ∂Ω is

a sphere.

In our second result we prove that if HΩ
s , instead of being constant, has just a small Lipschitz

constant

δs(Ω) = sup
p,q∈∂Ω, p 6=q

|HΩ
s (p)−HΩ

s (q)|
|p− q|

, (1.3)

and if ∂Ω is of class C2,α for some α > 2s, then ∂Ω is close to a sphere, with a sharp estimate
in terms of δs(Ω). To state our result we introduce the following uniform distance from being a
ball:

ρ(Ω) = inf
{ t− s

diam(Ω)
: p ∈ Ω , Bs(p) ⊂ Ω ⊂ Bt(p)

}
.

Theorem 1.2. If Ω is a bounded open set with C2,α-boundary for some α > 2s, then there exists
a dimensional constant Ĉ(n) such that

ρ(Ω) ≤ Ĉ(n) ηs(Ω) , (1.4)

where

ηs(Ω) =
diam(Ω)2n+2s+1

|Ω|2
δs(Ω) . (1.5)

Moreover there exists η(n) > 0 such that if ηs(Ω) ≤ η(n) then, up to rescaling Ω, we can find a
bi-Lipschitz map F : ∂B1(0)→ ∂Ω satisfying(

1−C̄(n)
√
ηs(Ω)

)
|x−y| ≤ |F (x)−F (y)| ≤

(
1+C̄(n)

√
ηs(Ω)

)
|x−y| ∀x, y ∈ ∂B1(0) (1.6)

for some dimensional constant C̄(n) > 0.

Remark 1.3. Note that both ρ(Ω) and ηs(Ω) are scaling invariant quantities. Also, the estimate
(1.4) is optimal in terms of the exponent of ηs(Ω). This can be seen, for instance, by considering
the sequence of sets

Ωε :=
{
x = (x1, . . . , xn) ∈ Rn :

x2
1

(1 + ε)2
+ x2

2 + . . .+ x2
n ≤ 1

}
.

Indeed, a direct computation shows that both ρ(Ωε) ≈ ε and ηs(Ωε) ≈ ε as ε→ 0.

Remark 1.4. If Ω is an open set with C2-boundary then (1 − 2 s)HΩ
s → HΩ on ∂Ω as s →

(1/2)−, where HΩ is the classical mean curvature of ∂Ω (see [1]). Therefore, because of the
scaling factor (1 − 2s) one cannot obtain any information from Theorem 1.2 in the limit s →
(1/2)−. This is not a drawback of our result, as its local analog is false. Indeed, one can
construct examples of connected boundaries whose classical mean curvature is arbitrarily close
to a constant in C1 topology, but these sets are close (in the Hausdorff distance) to a union of
tangent spheres of equal radii [7].

Both results above are obtained by the moving planes method. Note that the use of this
method in obtaining stability estimates is well-established in the local case, see for example
[3, 15, 16] in relation to Serrin’s overdetermined problem and [17] concerning Alexandrov’s the-
orem. Also, this method has already been successfully used in some nonlocal settings to obtain
symmetry results (see for instance [23, 6] and the references therein).

Once Theorem 1.2 is proved, we can exploit the regularity theory for nonlocal equations in
order to obtain a sharp stability estimate in stronger norms. Indeed, by a careful analysis we
can conclude that ∂Ω is close in C2 to a sphere with a linear control in terms of ηs(Ω), exactly



SHARP STABILITY FOR THE NONLOCAL ALEXANDROV THEOREM 3

as in (1.4). In particular the following result improves the estimate in (1.6), although its proof
relies on more delicate tools (and actually (1.6) is needed in the proof of this result).

Theorem 1.5. Assume that Ω is a bounded open set with C2,α-boundary for some α > 2s, and
suppose that Ω has been translated and rescaled so that

B1−2ρ(Ω)(0) ⊂ Ω ⊂ B1(0). (1.7)

There exists η(n, s) > 0 such that the following holds: If ηs(Ω) ≤ η(n, s) then there is a map
F : ∂B1(0)→ Rn of class C2,τ for any τ < 2s, such that F (∂B1(0)) = ∂Ω and

‖F − Id‖C2,τ (∂B1(0)) ≤ C(n, s, τ) ηs(Ω).

In particular, if ηs(Ω) is sufficiently small then Ω is a convex domain.

We conclude this introduction by emphasizing that boundaries with constant or almost
constant mean curvature behave differently in the nonlocal and in the local case, the former
setting being much more rigid than the latter. Indeed, as proven in Theorem 1.1, even without
any connectedness assumption a boundary with constant nonlocal mean curvature is a single
sphere, whereas of course any disjoint union of spheres with equal radii has constant mean
curvature in the classical sense. Actually, even working only with connected boundaries, a
significant difference arises at the level of stability. Indeed, as already mentioned in Remark
1.4, a connected boundary with almost-constant mean curvature may be close to a compound
of nearby spheres of equal radii (unless one imposes some strong geometric constraints on the
considered set, like a uniform ball condition [17] or an upper volume density bound [14]). In
contrast with this picture, as shown in Theorems 1.2 and 1.5 above, uniformly bounded sets with
almost-constant nonlocal mean curvature must be close to a single ball without the need to any
uniform control in their geometry. This points out an interesting feature of the nonlocal case,
namely, the nonlocality of the underlying perimeter functional prevents bubbling phenomena
(in the limit δs(Ω)→ 0).

We also note that, as it will be apparent from our arguments, Theorems 1.1 and 1.2 hold
(with different constants and possibly without scale invariant statements) if in the definition of
HΩ
s one replaces the kernel |z|−n−2s with k(|z|), where

k(t) > 0 , tn+2sk(t) + tn+2s+1|k′(t)| ≤ C , sup
(0,t)

k′ ≤ c(t) < 0 , ∀ t > 0 .

For the validity of Theorem 1.5, one needs to impose the additional constraint that k(t) behaves

as a smooth perturbation of t−(n+2s) as t→ 0+.

This paper is organized as follows. In section 2 we prove a technical fact about approximat-
ing the nonlocal mean curvature in C1 with nonlocal “curvatures” coming from smooth kernels.
Then in section 3 we prove the nonlocal version of Alexandrov’s theorem, while in section 4 we
address the stability analysis.

After the writing of this paper was completed we learned that, at the very same time and
independently of us, X. Cabré, M. Fall, J. Sola-Morales, and T. Weth have proved a result
analogous to our Theorem 1.1 [8].

2. A technical lemma

In order to perform our computations, and in particular to avoid integrability issues, it will
be useful to work with smooth kernels. We thus consider the approximation Kε(x) = ϕε(|x|)
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of the kernel K(x) = 1
ωn−2
|x|−(n+2s) corresponding to a choice of ϕε ∈ C∞c ([0,∞)) such that

ϕε ≥ 0, ϕ′ε ≤ 0, and 
tn+2s ϕε(t) + tn+2s+1 |ϕ′ε(t)| ≤ C(n, s) ,

|ϕ′ε(t)| ↑
n+ 2s

ωn−2

1

tn+2s+1
as ε→ 0+,

∀ t > 0 . (2.1)

Note that this implies that, as ε→ 0,

ϕε(t) ↑
1

ωn−2 tn+2s
∀ t > 0 , (2.2)

and both ϕε and ϕ′ε converge to their limits uniformly on [t0,∞) for every fixed t0 > 0.
Let us define

HΩ
s,ε(p) =

∫
Rn
χ̃Ω(x)ϕε

(
|x− p|

)
dx , p ∈ ∂Ω . (2.3)

Then, arguing as in [20, Proposition 6.3] we find that

lim
ε→0
‖HΩ

s,ε −HΩ
s ‖C0(∂Ω) = 0 , (2.4)

provided Ω is a bounded open set with C1,α-boundary for some α > 2s. We now prove the
following technical fact.

Lemma 2.1. Assume that Ω is a bounded open set with C2,α-boundary for some α > 2s. Then
HΩ
s ∈ C1(∂Ω) and HΩ

s,ε → HΩ
s in C1(∂Ω) as ε→ 0.

Proof. Since we already know that HΩ
s,ε converge to HΩ

s in C0 (see (2.4)), it is enough to prove

that HΩ
s,ε is a Cauchy sequence in C1, that is

lim
(ε,η)→(0,0)

‖∇HΩ
s,ε −∇HΩ

s,η‖C0(∂Ω) = 0 . (2.5)

To this end we first notice that, by setting

ψε(t) = − 1

tn

∫ ∞
t

ϕε(τ) τn−1 dτ ∀ t > 0

we have

div
(
xψε(|x|)

)
= nψε(|x|) + |x|ψ′ε(|x|) = ϕε(|x|) ∀x ∈ Rn ,

hence HΩ
s,ε can be rewritten as

HΩ
s,ε(p) = −2

∫
∂Ω
ψε
(
|x− p|

)
(x− p) · νx dHn−1

x ∀ p ∈ ∂Ω . (2.6)

Note that ψε is smooth, it satisfies

tn+2s ψε(t) + tn+2s+1 |ψ′ε(t)|+ tn+2s+2 |ψ′′ε (t)| ≤ C(n, s) ∀ t > 0 (2.7)

(thanks to (2.1)), and both ψε and ψ′ε converge uniformly to their limits on [t0,∞) for every
fixed t0 > 0 as ε→ 0.

Now, given p ∈ ∂Ω and ê ∈ Tp(∂Ω) ∩ Sn−1 a tangent vector, by the smoothness of ψε one
finds

∇HΩ
s,ε(p) · ê = 2

∫
∂Ω

(
ψε
(
|x− p|

)
νx · ê+

ψ′ε
(
|x− p|

)
|x− p|

[(x− p) · νx] [(x− p) · ê]
)
dHn−1

x . (2.8)

Up to decomposing Rn = Rn−1 ×R so that x = (x̂, xn) denotes the generic point in Rn, and up
to translating p into the origin 0, we define

Dρ = {x̂ ∈ Rn−1 : |x̂| < ρ} , Cρ = Dρ × (−ρ, ρ) , (2.9)
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and we see that the smoothness of ∂Ω implies that, up to a rotation, there exist ρ > 0 and a
function f ∈ C2,α(Dρ), with f(0) = ∇f(0) = 0 and ‖f‖C2,α(Dρ) ≤ L, such that

Cρ ∩ ∂Ω =
{

(x̂, f(x̂)) : x̂ ∈ Dρ

}
= (Id× f)(Dρ)

(by compactness of ∂Ω, both ρ and L are independent of the point p ∈ ∂Ω under consideration).
Now, if we set Br = (Id × f)(Dr) for r ∈ (0, ρ), then by the uniform convergence of ψε and ψ′ε
on [r,∞) we find that∣∣∣∣ ∫

∂Ω\Br

(
ψε
(
|x|
)
νx · ê+

ψ′ε
(
|x|
)

|x|
(x · νx) (x · ê)

)
dHn−1

x

−
∫
∂Ω\Br

(
ψη
(
|x|
)
νx · ê+

ψ′η
(
|x|
)

|x|
(x · νx) (x · ê)

)
dHn−1

x

∣∣∣∣→ 0 (2.10)

as ε, η → 0.

On the other hand, having in mind (2.8) and (2.10) and noticing that νx = (−∇f(x̂),1)√
1+|∇f(x̂)|2

for

x = (x̂, f(x̂)) ∈ Br, taking into account that ê · en = 0 for every ê ∈ T0(∂Ω) we see that

2

∫
Br

(
ψε
(
|x|
)
νx · ê+

ψ′ε
(
|x|
)

|x|
(x · νx) (x · ê)

)
dHn−1

x

= 2

∫
Dr

(
−ψε

(√
|x̂|2 + f2

)
∇f · ê+

ψ′ε

(√
|x̂|2 + f2

)
√
|x̂|2 + f2

[f −∇f · x̂] (x̂ · ê)
)
dx̂ , (2.11)

where f = f(x̂) and ∇f = ∇f(x̂). To get a good control on the above quantity, we symmetrize it
with respect to x̂ by performing the change of variable x̂ 7→ −x̂ and then add the two expressions
(the one with the variable x̂ and the one with −x̂). In this way we see that the integral in (2.11)
is equal to

−
∫
Dr

ψε

(√
|x̂|2 + f(x̂)2

)(
∇f(x̂) · ê+∇f(−x̂) · ê

)
dx̂

+

∫
Dr

(
ψε

(√
|x̂|2 + f(x̂)2

)
− ψε

(√
|x̂|2 + f(−x̂)2

))
∇f(−x̂) · ê dx̂

+

∫
Dr

ψ′ε

(√
|x̂|2 + f(x̂)2

)
√
|x̂|2 + f(x̂)2

(
[f(x̂)− f(−x̂)] (x̂ · ê)− [∇f(x̂) · x̂+∇f(−x̂) · x̂] (x̂ · ê)

)
dx̂

+

∫
Dr

(ψ′ε (√|x̂|2 + f(x̂)2
)

√
|x̂|2 + f(x̂)2

−
ψ′ε

(√
|x̂|2 + f(−x̂)2

)
√
|x̂|2 + f(−x̂)2

)
[f(−x̂) +∇f(−x̂) · x̂] (x̂ · ê) dx̂.

Hence, since f(0) = ∇f(0) = 0 and recalling (2.7), we can find a constant C, depending only
on n, s, L, such that, for |x̂| < ρ,

|∇f(x̂) · ê+∇f(−x̂) · ê| ≤ C |x̂|1+α, |∇f(−x̂)| ≤ C|x̂|, |f(x̂)| ≤ C|x̂|2 ,

|f(x̂)− f(−x̂)| ≤ C |x̂|2+α, |∇f(x̂) · x̂+∇f(−x̂) · x̂| ≤ C|x̂|2+α ,∣∣∣∣ψε(√|x̂|2 + f(x̂)2
)
− ψε

(√
|x̂|2 + f(−x̂)2

)∣∣∣∣ ≤ C
∣∣f(x̂)2 − f(−x̂)2

∣∣
|x̂|n+2s+2

≤ C

|x̂|n+2s−2−α ,

∣∣∣∣ψ′ε
(√
|x̂|2 + f(x̂)2

)
√
|x̂|2 + f(x̂)2

−
ψ′ε

(√
|x̂|2 + f(−x̂)2

)
√
|x̂|2 + f(−x̂)2

∣∣∣∣ ≤ C
∣∣f(x̂)2 − f(−x̂)2

∣∣
|x̂|n+2s+4

≤ C

|x̂|n+2s−α ,
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thus ∣∣∣∣∫
Br

(
ψε
(
|x|
)
νx · ê+

ψ′ε
(
|x|
)

|x|
(x · νx) (x · ê)

)
dHn−1

x

∣∣∣∣ ≤ C rα−2s, (2.12)

where C depends only on n, s and L. Therefore, combining (2.10) and (2.12) we obtain

lim sup
ε,η→0

∣∣∇HΩ
s,ε(0) · ê−∇HΩ

s,η(0) · ê
∣∣ ≤ C rα−2s ,

for every r ∈ (0, ρ) and any unit tangent vector ê ∈ T0(∂Ω) ∩ Sn−1. Hence, by letting r → 0+

we conclude the proof. �

3. Symmetry and the Nonlocal Alexandrov Theorem

We start by introducing the notation used in exploiting the moving planes method. Given
e ∈ Sn−1, A ⊂ Rn, and µ ∈ R, we set

πµ = {x ∈ Rn : x · e = µ} a hyperplane orthogonal to e,
Eµ = {x ∈ Rn : x · e > µ} the half-space on the “positive” side (with respect to e) of πµ,
Aµ = Ω ∩ Eµ the “positive” cap of A,
x′µ = x− 2 (x · e− µ) e the reflection of x with respect to πµ,
A′µ = {x′µ : x ∈ A} the reflection of A with respect to πµ.

(3.1)
Now, if Ω is an open bounded (not necessarily connected) set in Rn with C1-boundary and
Λ = sup{x · e : x ∈ Ω}, then for every µ < Λ sufficiently close to Λ the reflection with respect to
πµ of the positive cap Ωµ is contained in Ω, so it makes sense to define

λ = inf
{
µ ∈ R : (Ωµ̃)′µ̃ ⊂ Ω for all µ̃ ∈ (µ,Λ)

}
. (3.2)

In the sequel, given a direction e ∈ ∂B1(0), πλ and Ωλ will be referred to as the critical hyperplane
and the critical cap respectively, and for the sake of simplicity we will set

x′ = x′λ = x− 2 (x · e− λ) e , Ω′ = Ω′λ = {x′ : x ∈ Ω} .
With this notation at hand, we recall from [4] that for every direction e at least one of the
following two conditions always holds:

Case 1: ∂Ω′λ is tangent to ∂Ω at some point p′ ∈ ∂Ω, which is the reflection in πλ of a point
p ∈ ∂Ωλ \ πλ;

Case 2: πλ is orthogonal to ∂Ω at some point q ∈ ∂Ω ∩ πλ.

Both our main results will be based on the analysis of these two possibilities, under the assump-
tion that δs(Ω) = 0 or that δs(Ω) is small, respectively.

We now prove the following result showing that δs(Ω) controls the L1-distance between Ω
and Ω′ (recall that, given two sets E and F , E4F denotes the symmetric difference of the two
sets, that is E4F = (E \F )∪ (F \E)). Actually, to be able to obtain a sharp stability estimate
in Theorem 1.2, it will be important to prove a stronger bound on |Ω4Ω′| when the set Ω is
already comparable to a ball of radius 1 (see statement (b) below).

Proposition 3.1. Assume Ω is a bounded open set with C2,α-boundary for some α > 2s, fix
e ∈ Sn−1, and let Ω′ denote the reflection of Ω with respect to the critical hyperplane πλ.

(a) The bound

|Ω4Ω′| ≤ C1 diam(Ω)n+s+(1/2)
√
δs(Ω) (3.3)

holds with

C1 = 2

√
2ωn−2

n+ 2s
. (3.4)
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(b) Assume in addition that dist(0, πλ) ≤ 1/8 and Br(0) ⊂ Ω ⊂ BR(0) for some radii
satisfying

1

2
≤ r ≤ R ≤ 2, R− r ≥ 16 δs(Ω). (3.5)

Then there exists a dimensional constant C(n) such that

|Ω4Ω′| ≤ C(n)
√
δs(Ω)

√
R− r. (3.6)

Proof. We first prove that∫
Ω4Ω′

dist(x, πλ) dx ≤ ωn−2

n+ 2s
diam(Ω)n+2s+2 δs(Ω). (3.7)

Without loss of generality we let e = e1. Let us first assume to be in case 1, that is, there exists
p ∈ ∂Ωλ \ πλ such that p ∈ ∂Ω ∩ ∂Ω′. Then

HΩ
s (p)−HΩ

s (p′) = HΩ
s (p)−HΩ′

s (p)

=
2

ωn−2

(∫
Ω′\Ω

1

|x− p|n+2s
dx−

∫
Ω\Ω′

1

|x− p|n+2s
dx

)
=

2

ωn−2

∫
Ω′\Ω

(
1

|x− p|n+2s
− 1

|x′ − p|n+2s

)
dx ,

(3.8)

where all the integrals are intended in the principal value sense. Since x′ = (2λ− x1, x2, ..., xn),

1

|x− p|n+2s
− 1

|x′ − p|n+2s
=

1

|x′ − p|n+2s

[( |x′ − p|
|x− p|

)n+2s
− 1
]

=
1

|x′ − p|n+2s

[(
1 +

4(x1 − λ)(p1 − λ)

|x− p|2
)n+2s

2 − 1
]
,

by the convexity of the function f(t) = (1 + t)(n+2s)/2 − 1 we get that if x ∈ Ω′ then

1

|x− p|n+2s
− 1

|x′ − p|n+2s
≥ 2(n+ 2s)(x1 − λ)(p1 − λ)

|x′ − p|n+2s|x− p|2
≥ 2(n+ 2s)(x1 − λ)(p1 − λ)

diam(Ω)n+2s+2
, (3.9)

where we used the fact that, by construction, p′ ∈ ∂Ω and therefore |x−p| = |x′−p′| ≤ diam(Ω)
for every x ∈ Ω′. Since x1 − λ ≥ 0 inside Ω′ \ Ω and |p − p′| = 2(p1 − λ), combining (3.8) and
(3.9) we find

δs(Ω) ≥ HΩ
s (p)−HΩ

s (p′)

2(p1 − λ)
≥ 2(n+ 2s)

diam(Ω)n+2s+2ωn−2

∫
Ω′\Ω

(x1 − λ) dx

=
(n+ 2s)

diam(Ω)n+2s+2ωn−2

∫
Ω′∆Ω

|x1 − λ| dx ,

which proves (3.7) in the first case.

We now assume that πλ is orthogonal to ∂Ω at some point q ∈ ∂Ω∩ πλ. Thanks to Lemma
2.1 and (2.3), setting uε(x) = ϕε(|x− q|) we have

∇HΩ
s (q) · e1 = lim

ε→0
∇HΩ

s,ε(q) · e1 = − lim
ε→0

∫
Rn
χ̃Ω(x)∇uε(x) · e1 dx = 2 lim

ε→0

∫
Ω
∇uε(x) · e1 dx

where we used that
∫
Rn ∇uε = 0. Since ∇uε(x) · e1 = ϕ′ε(|x − q|)

(x−q)·e1
|x−q| is odd with respect

to the hyperplane {x1 = λ} (notice that λ = q1) and λ is the critical value for e1, we find that∫
Ω∩Ω′ ∇uε · e1 = 0, hence

∇HΩ
s (q) · e1 = 2 lim

ε→0

∫
Ω\Ω′

ϕ′ε(|x− q|)
(x− q) · e1

|x− q|
dx .
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We now observe that Ω \ Ω′ is contained inside the half-space {x1 ≤ λ} where the function
(x−q)·e1
|x−q| is non-positive, so by (2.1) and monotone convergence we obtain

∇HΩ
s (q) · e1 = −2(n+ 2s)

ωn−2

∫
Ω\Ω′

(x− q) · e1

|x− q|n+2s+2
dx .

Since |∇HΩ
s (q) · e1| ≤ δs(Ω) and

− (x− q) · e1

|x− q|n+2s+2
≥ |x1 − q1|

diam(Ω)n+2s+2
=

|x1 − λ|
diam(Ω)n+2s+2

on Ω \ Ω′ ⊂ {x1 ≤ λ} ,

we finally get

δs(Ω) ≥ 2(n+ 2s)

diam(Ω)n+2s+2ωn−2

∫
Ω′\Ω
|x1 − λ| dx =

(n+ 2s)

diam(Ω)n+2s+2ωn−2

∫
Ω′∆Ω

|x1 − λ| dx ,

which completes the proof of (3.7).

We now prove (a). For this it is enough to combine (3.7) with Chebyshev’s inequality to get∣∣{x ∈ Ω4Ω′ : dist(x, πλ) ≥ γ
}∣∣ ≤ 1

γ

ωn−2

n+ 2s
diam(Ω)n+2s+2δs(Ω) ,

that together with the trivial bound∣∣{x ∈ Ω4Ω′ : dist(x, πλ) ≤ γ
}∣∣ ≤ 2 γ diam(Ω)n−1 ,

gives us (3.3) choosing γ =
√

ωn−2

2(n+2s) diam(Ω)s+(3/2)
√
δs(Ω).

If we know in addition that dist(0, πλ) ≤ 1/8 and that Br(0) ⊂ Ω ⊂ BR(0) for some radii
satisfying (3.5), then we can use the stronger bound∣∣{x ∈ Ω4Ω′ : dist(x, πλ) ≤ γ

}∣∣ ≤ C(n) γ (R− r) ∀ γ ≤ 1/4,

so (3.6) follows by choosing γ =
√

δs(Ω)
R−r . �

We now deduce Theorem 1.1 from Proposition 3.1.

Proof of Theorem 1.1. We begin by noticing that, thanks to the regularity theory developed
in [5] (see in particular the proof of [5, Theorem 1]), C1,2s domains with constant nonlocal
mean curvature are actually C∞, so Proposition 3.1 applies. In particular, since by assumption
δs(Ω) = 0, Proposition 3.1 implies that Ω is symmetric in any direction.

Since the barycenter b of Ω belongs to every axis of symmetry and every rotation can be
written as a composition of reflections, we have that Ω is invariant under rotations, which implies
that ∂Ω is a collection of concentric spheres centered at b. To show that ∂Ω is just one sphere,
we apply again the method of moving planes in an arbitrary direction: if ∂Ω is not connected
then the critical hyperplane must be a hyperplane of symmetry and cannot contain b, which is
a contradiction. Hence ∂Ω must have a single connected component, i.e., ∂Ω is a sphere. �

4. Stability

Before proving Theorems 1.2 and 1.5 we first show the following lemma stating that if δs(Ω)
is small then, up to a translation, all critical planes from the moving planes method pass close
to the origin. Again, as in Proposition 3.1, it will be important to show a stronger bound when
Ω is comparable to a ball of radius 1.
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Lemma 4.1. Let Ω be an open bounded set of class C2,α for some α > 2s with

diam(Ω)n+s+(1/2)

|Ω|
√
δs(Ω) ≤ min

{1

4
,

1

n

}√ n+ 2s

8ωn−2
, (4.1)

and suppose that the critical planes with respect to the coordinate directions πei coincide with
{xi = 0} for every i = 1, ..., n. Also, given e ∈ Sn−1, denote by λe the critical value associated
to e as in (3.2).

(a) The bound

|λe| ≤ C2

√
δs(Ω) (4.2)

holds with

C2 = 4 (n+ 3)
diam(Ω)n+s+(3/2)

|Ω|
C1,

where C1 is as in (3.4).
(b) Assume in addition that dist(0, πλ) ≤ 1/8 and Br(0) ⊂ Ω ⊂ BR(0) for some radii

satisfying (3.5). Then

|λe| ≤ C∗(n)
√
δs(Ω)

√
R− r (4.3)

for some dimensional constant C∗(n).

Proof. We first prove (a). To this aim, we define Ω0 = {−x : x ∈ Ω} and set

C∗1 = C1 diam(Ω)n+s+(1/2), (4.4)

where C1 is defined as in (3.4). Then, since Ω0 can be obtained from Ω by symmetrizing it with
respect to the hyperplanes {xi = 0} = πei for i = 1, . . . , n, applying Proposition 3.1 with respect
to the coordinate directions we obtain

|Ω4Ω0| ≤ nC∗1
√
δs(Ω) . (4.5)

Now, to prove (4.2) we assume that λe > 0 (the case λe < 0 being similar). We first note that

Λe = sup{x · e : x ∈ Ω} ≤ diam(Ω) . (4.6)

Indeed, if Λe > diam(Ω), then x · e ≥ 0 for every x ∈ Ω, and thus |Ω4Ω0| = 2|Ω|, which
contradicts (4.5) and (4.1). This said, we denote by Ω′ the reflection of Ω about the critical
hyperplane πλe , and deduce from Proposition 3.1 that

|Ω∆Ω′| ≤ C∗1
√
δs(Ω) . (4.7)

Now, recalling the notation Ωµ = Ω ∩ Eµ = Ω ∩ {x · e > µ}, it follows by (4.7) (which tells us
that Ω is almost symmetric with respect to πλe) that

|Ωλe | ≥
|Ω|
2
− C∗1

√
δs(Ω) . (4.8)

Since Ω is almost symmetric about 0 by (4.5), using the notation E0λe = {−x : x ∈ Eλe} we see
that (4.8) gives

|Ω ∩ E0λe | = |Ω
0 ∩ Eλe | ≥ |Ωλe | − |Ω∆Ω0| ≥ |Ω|

2
− (n+ 1)C∗1

√
δs(Ω) ,

which together with (4.8) implies

|{x ∈ Ω : −λe ≤ x · e ≤ λe}| ≤ (n+ 2)C∗1
√
δs(Ω) . (4.9)
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In other words, by combining the almost-symmetry of Ω with respect to 0 and to πλe we have
shown that Ω has small volume in the strip {|x · e| ≤ λe}. Since {λe ≤ x · e ≤ 3λe} is mapped
into {|x · e| ≤ λe} by the reflection with respect to πλe , exploiting again (4.7) and (4.9) we get

|{x ∈ Ω : λe < x · e < 3λe}| = |{x ∈ Ω′ : |x · e| ≤ λe}|

≤ |{x ∈ Ω : |x · e| ≤ λe}|+ |Ω∆Ω′| ≤ (n+ 3)C∗1
√
δs(Ω).

(4.10)

Define now

mk := |{x ∈ Ω : (2k − 1)λe ≤ x · e ≤ (2k + 1)λe}| , k ≥ 1 ,

and notice that, by the moving planes procedure, the set Ω ∩ πµ (seen as a subset of Rn−1) is
included inside Ω ∩ πµ′ whenever λe ≤ µ′ ≤ µ. In particular the function µ 7→ Hn−1(Ω ∩ πµ) is
decreasing on (λe,Λe), hence mk is a decreasing sequence and (4.10) gives us

mk ≤ m1 ≤ (n+ 3)C∗1
√
δs(Ω) ∀ k ≥ 1.

Recalling that Ω ⊂ {x · e ≤ Λe}, combining this last estimate with (4.9) and letting k0 be the
smallest natural number such that (2k0 + 1)λe ≥ Λe we get

|Ωλe | = |Ω ∩ {λe ≤ x · e ≤ Λe}| ≤
k0∑
k=1

mk ≤
1

2

(Λe
λe

+ 1
)

(n+ 3)C∗1
√
δs(Ω) ,

hence (thanks to (4.6))

|Ωλe |λe ≤ (n+ 3)C∗1 diam(Ω)
√
δs(Ω) .

Since |Ωλe | ≥ |Ω|/4 (by (4.8) and (4.1)), recalling (4.4) we get (4.2).

To prove (b) it suffices to observe that, under the assumption that dist(0, πλ) ≤ 1/8 and
Br(0) ⊂ Ω ⊂ BR(0) with r,R satisfying (3.5), we can repeat the very same proof done above
but using (3.6) in place of (3.3) to obtain (4.3). �

We now prove Theorems 1.2 and 1.5.

Proof of Theorem 1.2. Step 1: proof of (1.4). Up to a translation, we can assume that the
critical planes with respect to the coordinate directions πei coincide with {xi = 0} for every
i = 1, ..., n.

Notice that, since ρ(Ω) ≤ 1 and
√
ηs(Ω) = diam(Ω)n+s+(1/2)

|Ω|
√
δs(Ω), one can directly assume

that (4.1) holds. Moreover, setting

r = min
x∈∂Ω

|x| , R = max
x∈∂Ω

|x| , (4.11)

it is enough to control R− r (as it gives an upper bound on ρ(Ω)).
Let x, y ∈ ∂Ω be such that |x| = r and |y| = R. Assuming without loss of generality that

x 6= y, we consider the unit vector

e =
y − x
|y − x|

,

and let πλe denote the corresponding critical hyperplane. We notice that y is closer than x to
the critical hyperplane πλe , i.e.,

dist(x, πλe) ≥ dist(y, πλe) . (4.12)

Indeed, since x = y − te with t = |x− y|, the method of moving planes implies that the critical
position can be reached at most when y′ (the reflection of y with respect to πλe) is tangent to
x, which corresponds to the equality case in (4.12), while in all the other cases strict inequality
holds. Thus, by (4.12) and the fact that e is parallel to y − x we get

R− r = |y| − |x| ≤ 2 dist(0, πλe) = 2|λe| (4.13)
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that combined with (4.2) implies that

R− r ≤ 2C∗2
√
δs(Ω) = 16 (n+ 3)

√
2ωn−2

n+ 2s
ηs(Ω). (4.14)

Now, since all the quantities involved are scaling invariant, we rescale Ω so that R = 1, and we
assume without loss of generality that

R− r ≥ 16 δs(Ω)

as otherwise (1.4) trivially holds. In this way it follows from (4.14) that (3.5) holds provided
ηs(Ω) is small enough. Also, thanks to (4.2) we see that dist(0, πλe) ≤ 1/8 for all e ∈ Sn−1 if
δs(Ω) (or equivalently ηs(Ω)) is sufficiently small.

Hence, this allows us to combine (4.13) with (4.3) to get

R− r ≤ 2C∗(n)
√
δs(Ω)

√
R− r,

that is

R− r ≤ 4C∗(n) δs(Ω), (4.15)

which proves (1.4).

Step 2: a quantitative Lipschitz bound on ∂Ω. We want to show that if ηs(Ω) ≤ η(n) for some
dimensional constant η(n), then ∂Ω is Lipschitz-flat with a uniform bound.

Since all the quantities involved are scaling invariant, we assume as at the end of step 1 that
R = 1 so that

Br(0) ⊂ Ω ⊂ B1(0)

with

1− r ≤ C(n) ηs(Ω) (4.16)

(by (4.15)), and then prove (1.6) for ηs(Ω) small enough.
To this end, it is enough to show that there exists a dimensional constant M = M(n) such

that, for any x ∈ ∂Ω and y ∈ ∂B1−Mηs(Ω)(0) such that the “open” segment (x, y) is contained
outside B1−Mηs(Ω)(0), then (x, y) ⊂ Ω. Indeed, this means that for any x ∈ ∂Ω we can find a

uniform cone of opening π − C
√
ηs(Ω) with tip at x and axis parallel to x

|x| which is contained

inside Ω, and this implies that ∂Ω is locally the graph of a Lipschitz function satisfying (1.6).
Now, to prove the latter fact, assume by contradiction that there exist x ∈ ∂Ω and y ∈

∂B1−Mηs(Ω)(0) for which there exists a point z ∈ (x, y) ∩ Ωc. Set e = x−y
|x−y| and notice that,

since z ∈ Ωc, it follows that the moving planes method has to stop before reaching z, that is
λe ≥ z · e. Now, since (x, y) ⊂ B1(0) \B1−Mηs(Ω)(0) and y ∈ ∂B1−Mηs(Ω)(0), we have y · e ≥ 0.
Hence, since z − y is parallel to e and z ∈ Ωc ⊂ Br(0)c we get

λe ≥ (z − y) · e+ y · e ≥ (z − y) · e = |z − y| ≥M ηs(Ω)− (1− r).

On the other hand (4.2) gives

C(n) ηs(Ω) ≥ |λe|
(recall that 1 ≤ diam(Ω) ≤ 2 and s ∈ (0, 1)), which leads to a contradiction to (4.16) provided
M = M(n) is large enough. �

Proof of Theorem 1.5. Our goal here it to exploit the results from Theorem 1.2 to get closeness
to a ball in higher norms. For this, we need to show that our assumptions on HΩ

s imply that
∂Ω is smooth with some quantitative bounds depending only on ηs(Ω). Hence, we first formulate
the following regularity criterion that is implicitly contained in [13] (see also [20, Theorem 3.4
and Corollary 3.5], and recall that definition of Cr and Dr from (2.9)):
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Given n ≥ 2, s, ` ∈ (0, 1/2), and β ∈ (0, 2s), there exist positive constants ε = ε(n, s, `, β)
and C∗ = C∗(n, s, `, β) with the following property: Let E be an open set with C2-boundary
such that for some L ≥ 0 it holds

‖HE
s ‖C0(∂E) ≤ L ,

|Br(y) ∩ E|
ωn rn

∈ (`, 1− `) , ∀ y ∈ ∂E , r < ` . (4.17)

If 0 ∈ ∂E and r < ` are such that

Br(0) ∩ ∂E ⊂
{
x ∈ Rn : |xn| ≤ εr

}
, L r ≤ ε , (4.18)

then there exists u ∈ C1,β(Dr/2) such that

Cr/2 ∩ ∂E = (Id× u)(Dr/2) ,

with

‖∇u‖C0(Dr/2) + rβ [∇u]C0,β(Dr/2) ≤ C∗
(‖u‖C0(Dr)

r
+ Lr

)
.

Step 1: uniform C2,γ bounds on ∂Ω. We show that the regularity criterion stated above applies
with E = Ω.

Since, by the definition of ρ(Ω), the radii 1− 2ρ(Ω) and 1 must be optimal for the inclusion
(1.7) to hold, we can find points p1 ∈ ∂Ω∩ ∂B1−2ρ(Ω)(0) and p2 ∈ Ω∩ ∂B1(0). Hence, it follows
by the inclusions (1.7) and (1.1) that

HΩ
s (p1) ≤ HB1−2ρ(Ω)

s , HΩ
s (p2) ≥ HB1

s ,

and because the Lipschitz constant of HΩ
s is bounded by δs(Ω) ≤ C ηs(Ω) and

|HB1−2ρ(Ω)
s −HB1

s | ≤ C ρ(Ω) ≤ C ηs(Ω)

(by (1.4)), we deduce that ∥∥HΩ
s −HB1

s

∥∥
L∞(∂Ω)

≤ C ηs(Ω). (4.19)

Notice now that the uniform Lipschitz estimate provided by Theorem 1.2 implies that the
density estimates in (4.17) hold. Thus, provided ηs(Ω) is small enough, (4.17) holds with L =
2HB1

s and for some ` = `(n) > 0. At the same time we can find r = r(n) > 0, depending on
∂B1(0) only, such that if x ∈ ∂B1(0) then

B2r(x) ∩ ∂B1(0) ⊂
{
y ∈ Rn :

∣∣∣(y − x) · x
|x|

∣∣∣ ≤ εr

2

}
, L r ≤ ε . (4.20)

Hence, assuming that ηs(Ω) is small enough in terms of r, by (1.4) and (1.7) we can ensure that

Br(z) ∩ ∂Ω ⊂
{
y ∈ Rn :

∣∣∣(y − z) · z|z| ∣∣∣ ≤ εr} ∀ z ∈ ∂Ω , (4.21)

and applying the regularity criterion stated before we obtain that, for any z ∈ ∂Ω, there exists
a uniform neighborhood such that, in a suitable system of coordinates, ∂Ω is given by the graph
of a function uz : Dr → R with

‖uz‖C1,β(Dr/2) ≤ C(n, s, β).

Now, choosing β arbitrarily close to 2s and exploiting the fact that HΩ
s ∈ C0,γ(∂Ω) for every

γ ∈ (0, 1) together with the higher regularity theory by [5, Section 3], we obtain that

‖uz‖C2,τ (Dr/4) ≤ C(n, s, τ)

for any τ < 2s.

Step 2: ∂Ω is C2-close to a sphere linearly in ηs(Ω). By the previous step we know that there
exists a map f : ∂B1(0)→ R of class C2,τ for any τ < 2s satisfying

‖f‖C2,τ (∂B1(0)) ≤ C(n, s, τ)
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and such that ∂Ω = {y + f(y) y : y ∈ ∂B1(0)
}

. Notice that, by (1.7),

‖f‖L∞(∂B1(0)) ≤ C(n) ηs(Ω) , (4.22)

so we deduce by interpolation that for any ζ < 2s there exists an exponent α(ζ) > 0 such that

‖f‖C2,ζ(∂B1(0)) ≤ C(n, s, ζ) ηs(Ω)α(ζ) . (4.23)

This implies in particular that ∂Ω is C2-close to a sphere, so Ω is convex for ηs(Ω) sufficiently
small. We now want to show that (4.23) is still valid if we replace α(ζ) with 1, which will prove
the theorem with F (y) = y + f(y) y.

For this, we write the nonlocal mean curvature in terms of f starting from (1.2): in this
way, since any point x ∈ ∂Ω can be written as y + f(y) y with y ∈ ∂B1(0), by the area formula
we get that, at the point p = q + f(q) q ∈ ∂Ω,

HΩ
s (p) =

1

s ωn−2

∫
∂B1(0)

y + f(y) y − q − f(q) q

|y + f(y) y − q − f(q) q|n+2s
·
(
y − ∇T f(y)

1 + f(y)

) (
1 + f(y)

)n−1
dHn−1

y .

To simplify the notation we define the vector-field vq(y) := y + f(y) y − q − f(q) q, so that the
above expression becomes

HΩ
s (p) =

1

s ωn−2

∫
∂B1(0)

vq(y)

|vq(y)|n+2s

·
(
y
(
1 + f(y)

)n−1 − 1

n− 1
∇T
[(

1 + f(y)
)n−1 −

(
1 + f(q)

)n−1
])
dHn−1

y .

Now, noticing that the normal to ∂B1(0) at y is equal to y itself, by the tangential divergence
theorem (see for instance [22, Theorem 11.8]) we get (notice that the classical mean curvature
of ∂B1(0) is n− 1)

HΩ
s (p) =

1

s (n− 1)ωn−2

∫
∂B1(0)

div T

(
vq(y)

|vq(y)|n+2s

)[(
1 + f(y)

)n−1 −
(
1 + f(q)

)n−1
]
dHn−1

y

+
1

s ωn−2

∫
∂B1(0)

vq(y) · y
|vq(y)|n+2s

(
1 + f(q)

)n−1
dHn−1

y .

Since div T (y) = n− 1 and ∇T f(y) · y = 0 we have

div T

(
vq(y)

|vq(y)|n+2s

)
=

(n− 1)
(
1 + f(y)

)
|vq(y)|n+2s

− (n+ 2s)
vq(y) · ∇T |vq(y)|
|vq(y)|n+2s+1

.

So, computing

∇T vq(y) =
(
1 + f(y)

)
∇T y +∇T f(y)⊗ y

and denoting by πy : Rn → Rn the orthogonal projection onto y⊥, we get

vq(y) · ∇T |vq(y)| = vq(y) · ∇T vq(y) · vq(y)

|vq(y)|

=

(
1 + f(y)

)
|πyvq(y)|2 −

(
1 + f(q)

) (
(q − y) · ∇T f(y)

) (
vq(y) · y

)
|vq(y)|

.

Thanks to the elementary identity

(y − q) · y = 1− q · y =
1

2
|y − q|2 (4.24)

we see that

|πyvq(y)|2 =
(
1 + f(q)

)2|πyq|2 =
(
1 + f(q)

)2(
1 + y · q

) |y − q|2
2

,
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and

vq(y) · y = f(y)− f(q) +
(
1 + f(q)

) |y − q|2
2

.

Hence, setting for simplicity

Γf (y, q) =
(
1 + f(y)

)n−1 −
(
1 + f(q)

)n−1
,

and combining all these formulas, we obtain

HΩ
s (p) =

1

s ωn−2

∫
∂B1(0)

1 + f(y)

|vq(y)|n+2s
Γf (y, q) dHn−1

y

− n+ 2s

2s (n− 1)ωn−2

∫
∂B1(0)

(
1 + f(y)

)
(1 + y · q)

(
1 + f(q)

)2 |y − q|2
|vq(y)|n+2s+2

Γf (y, q) dHn−1
y

+
n+ 2s

s (n− 1)ωn−2

∫
∂B1(0)

(
1 + f(q)

) (
(q − y) · ∇T f(y)

) (
f(y)− f(q)

)
|vq(y)|n+2s+2

Γf (y, q) dHn−1
y

+
n+ 2s

2s (n− 1)ωn−2

∫
∂B1(0)

(
1 + f(q)

)2 (
(q − y) · ∇T f(y)

)
|y − q|2

|vq(y)|n+2s+2
Γf (y, q) dHn−1

y

+
1

s ωn−2

(
1 + f(q)

)n−1
∫
∂B1(0)

f(y)− f(q)

|vq(y)|n+2s
dHn−1

y

+
1

2s ωn−2

(
1 + f(q)

)n ∫
∂B1(0)

|y − q|2

|vq(y)|n+2s
dHn−1

y .

Noticing that

1 + y · q = 2− 1

2
|y − q|2,

the above expression can be rewritten as

HΩ
s (p) =

1

s ωn−2

∫
∂B1(0)

1 + f(y)

|vq(y)|n+2s
Γf (y, q) dHn−1

y

− n+ 2s

s (n− 1)ωn−2

∫
∂B1(0)

(
1 + f(y)

) (
1 + f(q)

)2 |y − q|2
|vq(y)|n+2s+2

Γf (y, q) dHn−1
y

+
n+ 2s

s (n− 1)ωn−2

∫
∂B1(0)

(
1 + f(q)

) (
(q − y) · ∇T f(y)

) (
f(y)− f(q)

)
|vq(y)|n+2s+2

Γf (y, q) dHn−1
y

+
n+ 2s

2s (n− 1)ωn−2

∫
∂B1(0)

(
1 + f(q)

)2 (
(q − y) · ∇T f(y)

)
|y − q|2

|vq(y)|n+2s+2
Γf (y, q) dHn−1

y

+
1

s ωn−2

(
1 + f(q)

)n−1
∫
∂B1(0)

f(y)− f(q)

|vq(y)|n+2s
dHn−1

y

+
1

2s ωn−2

(
1 + f(q)

)n ∫
∂B1(0)

|y − q|2

|vq(y)|n+2s
dHn−1

y

+
1

4s ωn−2

∫
∂B1(0)

(
1 + f(y)

) (
1 + f(q)

)2 |y − q|4
|vq(y)|n+2s+2

Γf (y, q) dHn−1
y .

(4.25)

We now notice that, since

Γf (y, q) = (n− 1)[f(y)− f(q)]
(

1 + P
(
f(y), f(q)

))
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with P (t, s) a polynomial of degree n− 2 which vanishes at t = s = 0, the first five terms in the
right hand side above can be written as

−
∫
∂B1(0)

(
f(y)− f(q)

)
K(y, q) dHn−1

y

where the kernel K(y, q) behaves like a C1,τ perturbation of the 1+2s
2 -fractional Laplacian on

Rn−1: more precisely

K(y, q) =
2

ωn−2

1

|y − q|(n−1)+(1+2s)

(
1 +Gf (y, q)

)
, (4.26)

where Gf : ∂B1(0)× ∂B1(0)→ R is a C1,τ -function (depending on f) which satisfies

‖Gf‖C1,τ (∂B1(0)×∂B1(0)) ≤ C ‖f‖C2,τ (∂B1(0)) ∀ τ ∈ [0, 2s).

We now subtract the value of the above expression in the right hand side of (4.25) at f = 0
(which corresponds to the case of the unit sphere) to get

HΩ
s

(
F (q)

)
−HB1

s = −
∫
∂B1(0)

(
f(y)− f(q)

)
K(y, q) dHn−1

y + g(q) , (4.27)

where F (q) = q + f(q) q and

g(q) =
1

2s ωn−2

((
1 + f(q)

)n ∫
∂B1(0)

|y − q|2

|vq(y)|n+2s
dHn−1

y −
∫
∂B1(0)

1

|y − q|n+2s−2
dHn−1

y

)

+
1

4s ωn−2

∫
∂B1(0)

(
1 + f(y)

) (
1 + f(q)

)2 |y − q|4
|vq(y)|n+2s+2

Γf (y, q) dHn−1
y

is a C1 function satisfying

‖g‖L∞(∂B1(0)) ≤ C ‖f‖L∞(∂B1(0)), ‖g‖C1(∂B1(0)) ≤ C ‖f‖C1(∂B1(0)).

Since K is a C1 perturbation of the 1+2s
2 -fractional Laplacian, applying [10, Theorem 61] locally

in charts (using a cut-off function) we deduce that

‖f‖C1,τ (∂B1(0)) ≤ C(n, s, τ)
(
‖f‖L∞(∂B1(0))+‖g‖L∞(∂B1(0))+‖HΩ

s ◦F−HB1
s ‖L∞(∂B1(0))

)
∀ τ < 2s.

Also, differentiating (4.27) we can apply the same result to the first derivatives of f (see for
instance [5, Section 2.4] for more details on how this differentiation argument works) to get

‖f‖C2,τ (∂B1(0)) ≤ C(n, s, τ)
(
‖f‖C1(∂B1(0))+‖g‖C1(∂B1(0))+‖HΩ

s ◦F−HB1
s ‖C1(∂B1(0))

)
∀ τ < 2s.

Notice now that by (4.19), the definition of δs(Ω), and the fact that ‖F‖C1(∂B1(0)) ≤ C, we have

‖HΩ
s ◦ F −HB1

s ‖C1(∂B1(0)) ≤ C δs(Ω) .

Hence combining all these estimates and recalling (4.22), we conclude that

‖f‖C2,τ (∂B1(0)) ≤ C(n, s, τ)
(
δs(Ω) + ‖f‖C0(∂B1(0))

)
≤ C(n, s, τ) ηs(Ω) ∀ τ < 2s,

as desired. �
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