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Abstract

Star and planet formation are the complex outcomes of gravitational

collapse and angular momentum transport mediated by protostellar

and protoplanetary disks. In this review we focus on the role of grav-

itational instability in this process. We begin with a brief overview of

the observational evidence for massive disks that might be subject to

gravitational instability, and then highlight the diverse ways in which

the instability manifests itself in protostellar and protoplanetary disks:

the generation of spiral arms, small scale turbulence-like density fluc-

tuations, and fragmentation of the disk itself. We present the analytic

theory that describes the linear growth phase of the instability, supple-

mented with a survey of numerical simulations that aim to capture the

non-linear evolution. We emphasize the role of thermodynamics and

large scale infall in controlling the outcome of the instability. Despite

apparent controversies in the literature, we show a remarkable level of

agreement between analytic predictions and numerical results. In the

next part of our review, we focus on the astrophysical consequences of

the instability. We show that the disks most likely to be gravitationally

unstable are young and relatively massive compared to their host star,

Md/M∗ ≥ 0.1. They will develop quasi-stable spiral arms that pro-

cess infall from the background cloud. While instability is less likely

at later times, once infall becomes less important, the manifestations

of the instability are more varied. In this regime, the disk thermody-

namics, often regulated by stellar irradiation, dictates the development

and evolution of the instability. In some cases the instability may lead

to fragmentation into bound companions. These companions are more

likely to be brown dwarfs or stars than planetary mass objects. Finally,

we highlight open questions related to (1) the development of a turbu-

lent cascade in thin disks, and (2) the role of mode-mode coupling in

setting the maximum angular momentum transport rate in thick disks.
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We dedicate this article to the memory of Francesco Palla, who has been a source of inspiration

for star formation and disk studies throughout the years. Through his support and encouragement

of young scientists, his contributions live on.



1. INTRODUCTION

Protostellar and protoplanetary disks stand at the center of our study of origins. They regulate

the formation of stars and the planetary systems that they host. Over the last three decades,

the observational study of protostellar disks has evolved from quantifying hints of infrared excess

(Kenyon & Hartmann 1987) to resolving ring-like structures at 1AU scales (ALMA Partnership

et al. 2015). Long wavelength studies with facilities such as the SMA, Plateau de Bure, CARMA,

and now ALMA, combined with sensitive infrared measurements from IRAS and Spitzer enable

detailed studies of the sizes, temperatures, and masses of a variety of disks in young clusters. While

many uncertainties remain in translating high resolution interferometric measurements into reliable

disk properties, we can begin to see the various stages of star and planet formation occurring in

these disks.

Theoretical studies have made similar progress, from simple, 1-D diffusive models to three-

dimensional (magneto)hydrodynamics simulations that incorporate radiative transfer. These ad-

vances have been enabled by the burgeoning computational resources at our disposal. While the

most complex of these models provide many insights, which we review in detail, simple models

prove valuable to this day.

In this review we discuss the role that self-gravity plays in regulating the growth and evolution

of protostellar and protoplanetary disks. Self-gravity in general refers to the mutual gravitational

influence of relatively diffuse gas on itself, in contrast to the gravity exerted on the gas by an

external body. In this context, self-gravity refers to the effect of the gravitational field of the

disk itself, rather than the protostar, on the evolution of the system. Although the dividing line

between protostellar and protoplanetary disks is fuzzy, we use the former to refer to younger disks

surrounding protostars that are not yet near their final mass, while the latter refers to the remnant

disk in which the planet formation process completes (of course it may begin much earlier). The

physics we discuss is relevant for all stellar masses, but much of our scalings are for sun like stars.

We focus our attention on hydrodynamics, and thus we do not discuss the important role that

magnetic fields and MHD effects have on the evolution of protostellar disks. It is well known that the

hotter parts of protostellar disks are subject to the magneto-rotational instability (Balbus & Hawley

1998), that can provide the bulk of angular momentum transport. On the other hand, the colder,

outer disks, which are the regions most likely to become gravitationally unstable, are probably less

affected by MHD turbulence, given their low ionization state. Very few numerical studies have

considered the combined effects of MHD and gravitational instabilities in disks (Fromang et al.

2004a,b), whose interplay might be important in protostellar disk evolution.

In Section 2 we begin with a brief observational overview with an eye towards the applicability

of the physics of self-gravitating fluids to observed systems. In Section 3 we provide an in-depth

review of the nature of self-gravity and gravitational instabilities, including the non-linear outcome

of the instability: fragmentation of a disk. The physics discussed here is applicable to accretion

disks in many different astrophysical contexts. In Section 4 we hone in on disks around young stars,

and consider how they fit into the various regimes outlined in Section 3. In Section 5 we discuss

the relevance of gravitational instabilities to the formation of planets both directly (gas-collapse)

and indirectly (concentration of dust particles). We conclude with a brief summary and prospects

for future.

2. Observational Evidence for Self-Gravitating Disks

Before reviewing the theoretical underpinnings of the role of self-gravity in protostellar and proto-

planetary disk evolution, we address the observational evidence that this physics is relevant. As we

detail in later sections, understanding the behavior of self-gravitating disks is complex and depends
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on a range of disk properties including size, surface density, temperature, and thermal physics. The

standard reference for quantifying the degree to which a disk is self-gravitating is the parameter Q,

defined as (Toomre 1964):

Q =
csκ

πGΣ
(1)

where cs is the sounds speed, κ is the epicyclic frequency (which is equal to Ω in a Keplerian disk),

and Σ is the disk surface density. As Q → 1 self-gravity becomes increasingly important. We

discuss the origin of Q in more detail in section 3. To translate this constraint into one motivated

by observations, we note that Q can be written as:

Q =
csΩ

πGΣ
= f

M∗
Md

H

r
(2)

where M∗ is the stellar mass, Md is the disk mass, H is the disk scaleheight, and r the radius.

We subsume numerical factors of order unity, which depend on the surface density profile, into a

pre-factor f . While we cannot escape the dependence on the disk aspect ratio, H/r, which depends

on the temperature, we can use this relation to obtain an order of magnitude estimate for the

minimum mass required for a disk to be self-gravitating. Colder, thinner disks are more prone

to self gravity. Star forming regions typically do not have temperatures below 10K, so we take

that as a lower limit. What about disk radii? Many lines of argument, from measures of cloud

angular momentum (Goodman et al. 1993), to stellar interactions (Adams et al. 2006), to direct

observations in both absorption (Eisner et al. 2008) and millimeter wavelengths (Andrews et al.

2011) suggest that 102 − 103AU are reasonable limits for disk radii. At constant temperature, the

aspect ratio increases with disk radius as r1/2, so we use 100AU to set H for our scaling. The

requirement that Q < 1 (implying gravitational instability, see below) then implies:

Md

M∗
> 0.06

(
f

1

)(
T

10K

)1/2 ( r

100AU

)1/2(M�
M∗

)1/2

(3)

Thus for self-gravity to be important, i.e. for Q to be near unity given optimistic constraints on

temperature, we expect disk-star mass ratios greater than ≈ 10−2.

With this benchmark in mind, we now consider the evidence for disks with mass ratios in this

regime or higher.

2.1. The Phases of Disks

Early studies of protostellar disks in the infrared engendered a classification system based on the

slopes of disk+star spectral energy distributions (SEDs). Three classes, 0, I, and II, correspond to

positive, flat, and negative power law indices longward of 2 microns. In addition there is a final

phase, Class III, wherein the SED is dominated by the stellar photosphere, but weak Infrared excess

indicates remaining disk material. There is some evidence that this sequence corresponds with

evolutionary states. Class 0 protostellar sources correspond to young, deeply embedded objects,

whose disk-like component is hard to measure. Class I sources are thought to have similar mass in

the envelope and disk, and Class II sources have mostly finished accreting from their natal envelope,

revealing just the protoplanetary disk, as most of the stellar accretion has been completed. Class

III disks are not thought to be self-gravitating.

2.2. Measuring Disk Masses

Measuring disk masses at any evolutionary state remains extremely challenging. Even as observa-

tories like ALMA grow ever more sensitive, several issues limit precise mass measurements. Many
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limitations are related to the fact that most disk masses are measured by proxy through detection

of millimeter wavelength fluxes associated with dust grains of up to a millimeter in size. Based on

studies of the ISM, the ratio of gas to dust is thought to be of order 102, but this is not well confirmed

in disks. Secondly, because larger grains and rocks do not emit at millimeter wavelengths, these

data do not reveal the potentially sizeable fraction of dust which has already grown, something for

which there is already strong evidence (e.g., Pérez et al. 2012). Moreover, the conversion of a flux

to a <mm-size dust mass requires adopting an opacity, which is itself dependent on unknowns like

the grain-size distribution, and grain properties such as chemical composition and porosity (see, e.

g. Natta et al. 2004; Ricci et al. 2010). Finally, mass measurements from dust are only possible

if the dust is optically thin. If the dust is optically thick, which is possible in the inner regions of

disks (soon to be resolved by ALMA) only a lower limit on the mass is possible.

In addition to the uncertainties generated by the dust properties, Dunham et al. (2014) have

highlighted the estimation errors introduced by contamination of disk flux measurements due to

the presence of a core at early phases, leading to overestimated masses at early times. Similarly,

as disks grow to larger radii, high resolution interferometric studies can also resolve out large scale

structures where much of the mass resides. This error leads to a more severe underestimate of disk

masses.

With these caveats in mind, we review the best estimates of disk masses.

2.2.1. Observational Results. The most comprehensive survey for disk masses at this time is that

of Andrews et al. (2013), who survey all known members of the nearby star forming region Taurus.

These disks are mostly Class II sources, however some class I sources are included.

Andrews et al. (2013) compiles photometry at 1.3mm using the SMA to derive both disk masses,

and disk-star-mass ratios. The stellar masses are estimated using the isochrones from D’Antona &

Mazzitelli (1997); Baraffe et al. (2002) and Siess et al. (2000). Disk masses are estimated from the

submillimeter flux assuming a constant distance of 140pc, dust-gas ratio ζ = 0.01, dust opacity:

κν = 2.3cm2/g and a disk temperature constant with radius, which scales with stellar luminosity

as 〈Td〉 = 25(L∗/L�)1/4K. The masses are derived from the following equation for optically thin,

isothermal dust:

logMd = logFν + 2 log d− log(ζ · κν)− logBν(〈Td〉), (4)

where Fν is the observed flux, Bν is the Planck function and d is the distance to the source.

It is apparent from Andrews et al. (2013) figure 11 that most disk masses are far too low in mass

by 2-3 Myr (predominantly class II stage) for GI to be relevant. Note additionally that the assumed

outer disk temperatures for this sample are higher than our optimistic (for triggering GI) estimate

of 10K. Depending on order unity factors, at most 20%, and probably more like 10% of Class II

disks are plausibly massive enough for self-gravity to be important. A self-consistent treatment of

the disk temperatures in our instability threshold (Equation (3)) and mass estimates would yield

critical mass ratios closer to 0.1, higher than nearly every disk in the sample.

As this sample is dominated by Class II disks, we may conclude that both angular momentum

transport and planet formation reliant on strong self-gravity are rare at best for systems which have

evolved to the Class II stage.

What about evidence for younger, massive Class I and Class 0 disks? Unfortunately at the

time of this writing the evidence remains sparse. Class 0 and I sources are deeply embedded and

thus intrinsically harder to both identify and measure. Eisner (2012) and Sheehan & Eisner (2014)

have isolated and modelled in detail the Class I sources in Taurus. They find that the masses are

typically higher than in the Class II phase by a factor of two: the median mass of Class I disks is

0.008M� compared to 0.005M� for older sources. Among Class I sources, roughly 10% have masses

higher than 0.01M� (Eisner 2012), at the margins of susceptibility to strong self-gravitating effects.
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Some individual sources have been measured to have relatively massive and compact disks in the

Class 0/I phase, for example IRAS 16293-2422B (Rodŕıguez et al. 2005), or WL12 (Miotello et al.

2014).

A recent survey by Mann et al. (2015) also hints that younger sources may indeed have more

massive disks. These authors find that in NGC2024 (thought to be < 1Myr old as compared to

2-3 Myr for Taurus) as many as 10% of disks have masses greater than 0.1M�, with 20% above

0.01M�. Despite the 2σ significance of higher mass measurements, selection biases alone (related

to stellar mass and multiplicity) could account for the increase if the cluster properties of Taurus

and NGC2024 are similar.

Finally, we turn to observations of disks in the Class 0 stage. The most conclusive evidence

for a relatively massive disk comes from Tobin et al. (2013). Using the SMA and CARMA, they

detect an edge on ≈ 150 − 200AU disk surrounding the Class 0 protostar L1527. Using a similar

optically thin dust model they derive a mass comparable to Class I sources of 0.075M�, however

the protostellar mass is thought to be < 0.5M�, and thus the disk-star mass ratio is easily high

enough for self-gravity to be important. There are several other tentative detections of Class 0

disks (see e.g. Looney et al. 2000; Enoch et al. 2009). A larger survey in Perseus by Tobin et al.

(2015) resolved several more likely candidates and found that more than 50% of 9 sources were

more consistent with envelope + disk models rather than pure envelope models. Additionally

several sources show evidence for rotation (though not necessarily Keplerian motion). The masses

measured in this survey cannot reliably separate out all envelope contamination, thus the increase

in masses (up to 0.1M�) is not necessarily indicative of strong self-gravity. Nevertheless it is quite

plausible that disk masses are higher in the Class 0 phase.

Maury et al. (2010) have made strong claims against the presence of disks in the Class 0 phase,

but the well-resolved L1527 was included in their sample, suggesting that perhaps the data was

insufficient to rule out some extended disks. Tobin et al. (2013) had slightly better resolution, and

also a different beam alignment relative to the disk direction, which might explain the Maury et al.

(2010) non-detection.

While dust mass measurements are most common, recent efforts have been made to directly

detect molecular gas tracers to constrain the total mass and dust-to-gas ratio. Bergin et al. (2013)

use Herschel data to detect HD in TW Hya, finding a relatively large disk mass for a nominally 10

Myr system. Williams & Best (2014) used optically thick and thin CO isotopologues and conclude

that most Class II disks have dust-to-gas ratios up to a factor of 10 below ISM values, implying

that either planet formation is well underway, or total disk masses are even smaller.

The above discussion focused on solar type and Herbig AeBe stars, for which there is more

data, but there is some evidence that high mass stars host massive, self-gravitating disks (Cesaroni

et al. 2007 and references therein). Precise measurements remain elusive because high mass stars

are typically further away, and thus harder to resolve. Additionally, the only evidence for disks

coincides with the equivalent of the Class 0-I phases, when the stars are deeply embedded in a gas

envelope. For example, rotationally supported disks are difficult to distinguish from rotationally

flattened envelopes (Johnston et al. 2011). One of the more convincing examples (Shepherd et al.

2001, 2004) reveals a rotating massive disk around a B-star that is likely gravitationally unstable

based on the estimated parameters. Krumholz et al. (2007) has shown that a fully functional ALMA

may be able to validate these observations using molecular lines.

2.3. Direct Evidence for Disk Self-Gravity

While the population at large may not show strong evidence for disk self-gravity, a handful of

individual sources do show indications of the spiral arm structure typically associated with spiral
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density waves. These wave may be triggered either by a young planet, or by disk self-gravity. Muto

et al. (2012) and Wagner et al. (2015) find evidence for spiral structure in scattered light images of

transition disks. Self-gravity might be at play, but the low sub-mm masses make this questionable.

Benisty et al. (2015) also find evidence for spiral structures in scattered light images, but claim a

planetary origin. ALMA data might settle these two theories by providing disk mass constraints,

but at present neither theory can be ruled out (Dong et al. 2015).

2.4. Indirect Evidence for Disk Self-Gravity

While observational examples of disks with strong self-gravity remain scarce, there are other in-

direct sources of evidence from comprehensive studies of star formation. There are a variety of

reasons to expect that disks may be more massive at earlier evolutionary states. First, since the

discovery of the first statistically significant sample of protostars, observers and theorists alike have

pointed out the “luminosity problem” (Hartmann & Kenyon 1996). This problem arose due to the

mismatch between the observed protostellar luminosities, of the order of a few L�, and the expected

luminosities derived from basic energetic arguments that predict that the accretion luminosity:

Lacc ≈
GM∗Ṁ

Rin
≈ 100L�

M

M�

Ṁ

10−6M�/yr

Rin

4R�
(5)

where Rin is the inner disk radius and Ṁ is the infall rate, estimated based on a star formation

timescale of roughly 1Myr. This over prediction of the typical luminosity has been used as evidence

for large, short-lived accretion events, either bursts, or more continuous but rapid events early in a

protostars history. A variety of theories have been proposed for producing these bursts.

Before considering specific theories, we note the following simple scaling argument. Consider a

star forming core or turbulent filament. Observational evidence suggest that these bodies eventually

undergo a modified form of free fall collapse when self-gravity overcomes magnetic or turbulent

pressures. Thus the rate at which material will fall onto any disk like structure formed in the

collapse is dictated by free fall collapse. The oversimplified isothermal inside out collapse mode of

Shu (1977) provides an order of magnitude estimate for this infall rate:

Ṁin ≈
c3s
G
≈ 1.6× 10−6

(
T

10K

)3/2

M�/yr. (6)

Somewhat more realistic Bonnor Ebert sphere infall rates are the same order of magnitude, and are

consistent with the timescale on which star formation occurs. In contrast, the observed accretion

rates from disks on to stars in the Class I - Class II phase range from 10−9− 10−7M�/yr, with the

majority of measurements at the lower end (Gullbring et al. 1998). There are two possible means

to resolve the mismatch between infall and stellar accretion rates. Either disks at earlier times

are more massive, and thus can process more material at higher rate. This option is somewhat

suggestive of self-gravitational effects, but not required. Alternatively if initially disk-star accretion

rates are not higher, the mass of the disk will rise, bringing it ever closer to the regime where

self-gravity is important. It seems unlikely that the infall and disk-star accretion rates, which rely

on entirely different physics (free fall and cloud turbulence vs either self-gravity or magnetic fields),

could conspire to match up at all times in order to maintain a constant, tiny fraction of the total

mass in the disk. Most of the stellar mass is thought to pass through the disk at some point, making

such a balance improbable.

Armitage et al. (2001) first suggested that stellar accretion and FU Orionis type outbursting

systems might be generated by an interplay between gravitational instability driven accretion and

magnetically dominated accretion driven by MRI turbulence. Vorobyov & Basu (2006) suggest that
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these same outbursts could be triggered by clumps formed due to gravitational instability in the

outer disk that are tidally disrupted as they migrate inwards, and subsequently accrete onto the

star. See the chapter by Hartmann in this Annual Reviews (and recently, the Protostars and Planet

VI chapter, Audard et al. 2014) for more details on variable accretion onto pre-main-sequence stars.

One final piece of evidence for higher disk masses relies on observations of exoplanets. Najita

& Kenyon (2014) have shown that typical protoplanetary disks do not have enough observed dust

mass to account for the mass of planets implied by occurence rates derived from Kepler. They

infer that planet formation, and thus grain growth likely commenced at even earlier times. This

implies that the observed dust masses are missing a substantial amount of solids. Accounting for

this missing mass might well push a larger fraction of disks into the self-gravitating range.

In conclusion we see that while inferred disk masses are often lower than the nominal requirement

for strong self-gravity, it is by no means ruled out. Given the many ways to underestimate disk

masses, the observational evidence demands the study of disk self-gravity .

3. Physics of self-gravity and gravitational instability

GI: Gravitational

Instability

MRI:
Magneto-Rotational

Instability

SPH: Smoothed

Particle

Hydrodynamics

In the previous section we have shown that disks may be subject to the effects of self-gravity

when the ratio Md/M∗ > 10−2. We first address how self-gravity affects the basic hydrostatic

structure of the disk, and subsequently explore how gravitational instability, hereafter GI, may

affect disk structure and evolution. In this section we focus on the physical nature of self-gravity

and GI, which applies to disks in a wide range of astrophysical contexts. We begin by discussing

isolated disks with a fixed surface density profile for simplicity, and subsequently consider the

changes that arise in the presence of infall and external heating. In Section 4, we discuss the extent

to which such physical processes apply to actual protostellar disks.

3.1. Effects of self-gravity on the structure of accretion disks

Consider a thin axisymmetric disk surrounding a protostar of mass M?. Let ρ(r, z), Σ(r) and cs(r)

be the volume density, the surface density and sound speed of the gas as a function of cylindrical

radius r, and height above the disk midplane z, respectively. Standard, non self-gravitating disk

models are based on the assumptions of centrifugal balance in the radial direction and hydrostatic

balance in the vertical direction. Both equations must be modified to account for self-gravity.

A standard non self-gravitating disk in hydrostatic balance is characterised by a Gaussian profile

for ρ, where the disk scale height is given by

Hnsg =
cs
Ωk

, (7)

where Ωk =
√
GM∗/r3 is the Keplerian angular velocity and we have assumed the disk to be

vertically isothermal. Self-gravity modifies vertical hydrostatic balance. In the limit where self-

gravity dominates, the vertical density profile is given by (Spitzer 1942)

ρ(z) =
ρ0

cosh2(z/Hsg)
, (8)

where

Hsg =
c2s
πGΣ

. (9)

In order to neglect self-gravity in the vertical direction, we require that Hnsg/Hsg � 1. This

immediately translates into the condition

csΩk

πGΣ
� 1. (10)
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From this requirement alone we thus recover the usual stability parameter for GI (Toomre 1964).

This means that whenever self-gravity is important in the vertical direction, the disk is near the

instability threshold for GI. This constraint is also equivalent to the constraint on disk mass pre-

sented in Equation (2) in Section 2. In the general case where both contributions (of the central star

and of the disk) are important, there is no analytical solution to the hydrostatic balance equation,

but a simple and accurate interpolation formula between the two results above has been found by

Bertin & Lodato (1999) (see also Lodato 2007; Muñoz et al. 2015):

H =
c2s
πGΣ

(
π

4Q2

)[√
1 +

8Q2

π
− 1

]
=

c2s
πGΣ

f(Q). (11)

We now consider centrifugal balance. To lowest order, centrifugal balance prescribes the angular

velocity of the disk Ω to be Keplerian, Ω(r) =
√
GM?/r3. Even in the absence of self-gravity, a

small correction is required to account for pressure gradients, which cause the gas to orbit at a

slightly sub-Keplerian speed. This sub-Keplerian motion has a dramatic effect on the dynamics of

small solids in the disk, whose orbits are Keplerian due to the absence of pressure forces. Taking

these corrections into account, we have

Ω(r) = Ωk(r)

√
1 +

(
H

r

)2
d lnP

d ln r
, (12)

which gives sub-Keplerian rotation because in general P is a decreasing function of radius. Devi-

ations from Keplerian motion due to the pressure gradient are of order (H/r)2. Self-gravity also

modifies centrifugal balance by a force term which is of the order of GMdisk/r
2 (a more detailed cal-

culation, obtained by solving Poisson’s equation, can be found in Bertin & Lodato 1999). Clearly,

in order to dominate the rotation curve, the disk mass needs to be implausibly large for protostellar

disks. However, it is worth noting that when the disk is marginally gravitationally stable (Q ≈ 1),

the disk mass is of the order of (H/r)M? (Equation (2)) and thus the deviation from Keplerian

motion due to self-gravity is of the order of H/r, stronger than the effect of pressure gradients,

though both solids and gas feel the change in Ω(r) due to disk self-gravity.

3.2. Dispersion relations

The most important effect of disk self-gravity on the dynamics of protostellar disks is connected

with the development of GI. The linear stability of self-gravitating disks has been investigated

for decades in the context of galactic dynamics. In the tightly wound approximation, the WKB

dispersion relation for an infinitesimally thin disk is the famous Lin & Shu (1964) relation:

(ω −mΩ(r))2 = c2sk
2 − 2πGΣ|k|+ κ2, (13)

where ω is the wave frequency, k is the radial wavenumber, m is the azimuthal wavenumber (that

is, the number of spiral arms produced by the instability), and κ is the epicyclic frequency, which,

for a Keplerian disk is simply Ω. We now see that the aforementioned Q from Equation (1) arises

as the threshold for exponential growth of axisymmetric modes, where stability requires

Q =
csκ

πGΣ
> 1. (14)

The above dispersion relation and stability criterion have been derived under several important

limiting approximations. The first is that the equilibrium structure of the disk is axisymmetric, the

second (and most important) is that the disk is infinitesimally thin. It can be shown that finite disk
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thickness (Vandervoort 1970; Bertin 2000; Binney & Tremaine 1987) has the effect of stabilizing

the disk by diluting the self-gravity term in Eq. (13). A simple way to account for this effect is to

modifiy eq. (13) as follows:

(ω −mΩ(r))2 = c2sk
2 − 2πGΣ|k|e−|kH| + κ2, (15)

that can be expanded to first order to give

(ω −mΩ(r))2 = (c2s + 2πGΣH)k2 − 2πGΣ|k|+ κ2, (16)

where now the stabilizing effect of disc thickness becomes apparent, as an additional ‘pressure-like’

term in the dispersion relation. By inserting Eq. (11) in Eq. (16) we finally get

(ω −mΩ(r))2 = (1 + 2f(Q))c2sk
2 − 2πGΣ|k|+ κ2. (17)

From Equation (17) we see that the stability of the disk depends only on the single parameter Q,

and one can show that the marginal stability value decreases to Q ≈ 0.6, for a Keplerian disk.

In the context of galactic dynamics, it was recognized many years ago (Ostriker & Peebles

1973; Hohl 1971, 1973) that disks that are locally stable according to the Q criterion, might still

generate large scale, spiral waves. This is due to the fact that such global modes are not captured

by the WKB tightly wound approximation. However, a WKB description of such modes can still

be obtained under less restrictive conditions than the tightly wound approximation (Lau & Bertin

1978). The resulting dispersion relation is more complicated (it is a cubic rather than quadratic

expression in k) and depends on a new dimensionless parameter J :

J = m
πGΣ

rκ2

4Ω

κ

∣∣∣∣d ln Ω

d ln r

∣∣∣∣1/2 ≈ √6m
Md

M?
, (18)

where the last approximation holds for a Keplerian disk. While the Q parameter balances shear,

thermal pressure and disk mass, J is a measure of the disk-star mass ratio. The cubic dispersion

relation reduces to the standard Lin and Shu expression for the case of light disks (J or Md/M?

much smaller than unity), while for massive disks, where J ≈ 1, or Md/M? ≈ 1/m) lower m, less

tightly wound, spiral arms arise. In both regimes, the most unstable mode scales with H. When H

is small, the behavior is well captured by a local, even 2D analysis. Otherwise, any manifestation

of the instability arises over a significant fraction of the radial extent of the disk.

3.3. The onset of linear instability

When the disk becomes linearly unstable, the onset of GI is similar in both regimes of J . A

spectral analysis of GI in numerical simulations confirms that the dominant modes excited have a

wavenumber k ≈ 1/H, as predicted from the Lin & Shu dispersion relation in Equation (13) (Boley

et al. 2007; Cossins et al. 2009; Michael et al. 2012). Similarly, the azimuthal wavenumber m scales

inversely with H so that thick / massive disks are characterized by fewer spiral arms and by a more

open spiral structure. We provide a more detailed description of the onset of linear instability in

each regime below. Figure 1 illustrates the morphological differences between the instability with

small and large H/r.

Tightly Wound, small H/r. The development of small scale instabilities can be captured by

both local shearing box / shearing sheet simulations and by thin disk global simulations. This

regime is commonly referred to as gravito-turbulence, although some caution should be used when

talking about ‘turbulence’ in this context. Gammie (2001) used a Fourier analysis of GI in the
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Figure 1

At left we show a three-dimensional isothermal simulation from the parameter studies of Kratter et al.

(2010a), where Md/M∗ ≈ 0.5. The strong left-right asymmetry is evidence of a dominant m = 1 mode. At
right we show a three-dimensional simulation from Cossins et al. (2009) with slow cooling, where

Md/M∗ ≈ 0.1. Note the dominance of high m spiral structure.

shearing sheet approximation to show that the power spectrum of perturbations generated by the

instability is contained in modes with wavelengths of a few H. Gammie (2001) finds essentially no

power at scales much smaller than H, which are resolved in the calculations. A similar result has

recently been obtained by Shi & Chiang (2014) using three dimensional shearing box simulations.

Young & Clarke (2015) also show – in the context of fragmentation (see below) – that collapse

of unstable modes is never initiated on scales � H. These results imply that ‘gravito-turbulence’

extends over a very small range of lengthscales. Additionally, there is no obvious indication of

an energy cascade with dissipation occurring on the smallest scales. On the contrary, in global,

thin disk simulations, Cossins et al. (2009) find that mode dissipation occurs through large scale,

almost sonic shocks. In this respect, the dynamics introduced by local GI is not akin to what one

usually calls turbulence. Morphologically, structures in shearing box simulations look more like

turbulence than the high m, tightly wound spirals seen in global simulations. This might be an

artifact of the shearing sheet/box approximation, but merits further investigation. Whether gravito-

turbulence shares properties with isotropic, isothermal turbulence has important implications for

fragmentation, as we discuss in Section 3.8.

Large H/r. As the mass of the disk is increased, the disk becomes unstable at larger values of

H/r and higher values of Q, as predicted from the Lau & Bertin (1978) dispersion relation. Once

the disk-star mass ratio increases above ≈ 0.1, the evolution of the instability changes character

somewhat, transitioning from quasi-stationary spiral structures, to recurrent strong episodes of

spiral activity, followed by brief quiescent phases. This behavior has been observed in a range of

simulations including isolated disks with adiabatic equations of state with and without optically

thin cooling (Lodato & Rice 2005; Mejia et al. 2005; Laughlin et al. 1997), isothermal and irradiated

embedded disks (Krumholz et al. 2007; Kratter et al. 2010a), and even two-dimensional, embedded

disks with radiative heating and cooling (Zhu et al. 2012). A similar, recurrent behaviour has also

been identified in N -body galaxy simulations, where dynamical cooling occurs via the injection of

low-velocity dispersion, or ‘cold’ particles (Sellwood & Carlberg 1984).
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The episodic behavior observed in global simulations is likely due to one of two phenomena.

The first is the growth of the m = 1 mode, as the disk mass becomes comparable to the stellar mass

(Md ≥ 0.3M∗, in analytic estimates Adams et al. (1989)). Non-axisymmetric perturbations grow

due to interaction with the“indirect potential” (Adams et al. 1989). The indirect potential, caused

by the displacement of the central body from the system center of mass, manifests as an extra

term in the gravitational potential when working in a reference frame centered on the central mass.

These modes arise at higher values of Q than the axisymmetric modes. Simulations of massive disks

that neglect this term may underestimate the growth of instabilities. Under some circumstances,

SLING amplification may occur (Shu et al. 1990), where the m = 1 mode can amplify by interacting

with the disk edge and the outer and inner Lindblad resonances. Because the m = 1 mode leads

to very large mass transport rates, the disk mass drains on such short timescales so that it can (at

least temporarily) become stable and quiescent. The second source of the quasi-periodic behavior

is likely mode coupling, which we discuss in Section 3.5.3.

3.4. Accretion and transport

We now turn to the most important consequence of GI in disks: its ability to drive angular mo-

mentum transport, and therefore accretion of matter onto the central object. The fact that a spiral

structure in the disk can transport angular momentum was recognized initially by Lynden-Bell &

Kalnajs (1972) in the context of galactic dynamics. The Rφ component of the associated stress is

given by

T grav
rφ =

∫ 〈grgφ
4πG

〉
dz, (19)

where gr and gφ are the radial and azimuthal component of the perturbed self-gravity field and

the brackets indicate azimuthal averaging. To this stress one should also add the induced Reynolds

stress:

TReyn
rφ = Σ〈δvrδvφ〉, (20)

where δvr and δvφ are the perturbed fluid velocities (see e.g. Balbus & Papaloizou 1999). For a

magnetized disk (not considered here), one should also add the relevant Maxwell stress to the two

terms described above. The Shakura & Sunyaev (1973) α prescription relates the stress Trφ to the

local disk pressure by

Trφ = αΣc2s

∣∣∣∣d ln Ω

d lnR

∣∣∣∣ . (21)

The dimensionless coefficient, α, often called the anomalous viscosity parameter, is expected to be

less than unity, To facilitate comparison with an eddy viscosity, this is often expressed as

ν = αcsH, (22)

implying that sub-sonic eddies on scales smaller than H facilitate angular momentum exchange.

The introduction of this parameterization is especially useful for broad parameter studies in a range

disks at moderate computational cost by solving a 1D diffusion equation, often coupled with an

energy equation, as we discuss in Section 3.7. One can also compute numerically the stress induced

by GI (or another process like the MRI) by running a (magneto-)hydrodynamical simulation of an

unstable disk, and compare the resulting total stress to Equation (21) to obtain an effective α.

Let us now consider the torque and power associated with a spiral wave induced by GI. Standard

wave mechanics (Toomre 1969; Shu 1970; Fan & Lou 1999) link the energy and angular momentum

of a wave, Ew and Lw respectively, to the wave action A:

Ew = ωA = mΩpA, (23)
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Lw = mA, (24)

where Ωp = ω/m is the pattern speed of the perturbation. Thus the ratio of energy and angular

momentum (and the ratio of power and torque exerted on a disk when launching the wave) is the

pattern speed Ωp, rather than the local Ω as for a viscous stress. More explicitly, the wave energy

is given by

Ew =
Σ

2

m2

k2
Ωp(Ωp − Ω)

(
δΣ

Σ

)2

, (25)

where δΣ/Σ is the fractional amplitude of the perturbation. Equation (25) can be rewritten as the

sum of two components:

Ew =
Σ

2

m2

k2
(Ωp − Ω)2

(
δΣ

Σ

)2

+
Σ

2

m2

k2
Ω(Ωp − Ω)

(
δΣ

Σ

)2

.
(26)

The second term in the above expression is equal to the wave angular momentum times the local

angular velocity and thus represents a local, viscous-like term. The first term is an ‘anomalous’

energy transport term, which is inherently non-local (Balbus & Papaloizou 1999). The ratio of

these two terms, |Ωp − Ω|/Ω, is therefore a dimensionless parameter that measures the degree of

non-locality of the disturbance. In practice, the transport induced by spiral waves will be global

in character if the waves are able to travel within the disk significantly away from their corotation

radius.

We have seen already that the local dispersion relation involving the parameter J (see Equa-

tion (18) above) predicts that the transition between local and global behavior is related to the mass

ratio Md/M?. Is the mass ratio condition equivalent to a division of regimes based on the distance

that waves propagate before dissipating? Clearly, to answer this question we have to look at the

spectrum of modes excited by the instability. Using a spectral analysis of the dominant modes

excited by GI, one finds a clear correspondence between morphology and the dominant mode of

angular momentum transport. Cossins et al. (2009) computed the pattern speed of the dominant

modes, finding that independent of the disk-star mass ratio, the Doppler shifted Mach number M
of the dominant perturbation is remarkably close to unity:

M =
|Ωp − Ω|r

cs
≈ 1. (27)

This implies that the shocks that develop as soon as the waves travel far enough from corotation

to become sonic quickly dissipate the waves. Based on this sonic condition it is now possible to

translate the ‘locality’ parameter defined after Equation (26), into the disk-star mass ratio:

|Ωp − Ω|
Ω

≈ cs
RΩ

=
H

r
. (28)

For a Q ≈ 1 disk, H/r ≈ Md/M?, thus the ‘corotation condition’ and the ‘disk mass’ condition

are equivalent, so long as waves dissipate once they become sonic. We immediately see that the

fraction of transport induced by non-local processes is proportional to the mass ratio.

3.5. Saturation of the Instability vs Non-linear growth

Thus far we have only discussed the linear growth of GI. However, to properly assess the outcome

of the instability we need to consider how it evolves in the non-linear regime. We have introduced

two dimensionless parameters, Q and Md/M∗ that capture the linear phase. In order to understand

the non-linear evolution, we require a third, independent dimensionless parameter, which captures

the radiative timescale of the disk.

www.annualreviews.org • GI DISKS 13



3.5.1. Thermal Saturation. The non-linear evolution of the instability and its saturation is best

understood using numerical hydrodynamical simulations of self-gravitating disks, which have been

the focus of most of the attention in this field over the last twenty years. It is still useful to begin

with a few simple analytic arguments.

Consider first an isolated disk with an initial surface density and temperature profile such that

Q ∼ 1 over a range of radii. In this scenario, Q will evolve either due to mass redistribution or

heating and cooling. We begin by examining changes in temperature rather than surface density

because the viscous timescale is often slow compared to the thermal timescale. Since the excita-

tion of waves will inevitably lead to shocks, it is natural to imagine a self-regulation mechanism

(originally proposed by Paczyński 1978) whereby the parameter Q plays the role of an effective

’thermostat’ for the disk temperature. In the absence of other significant heating terms, the disk

cools down until it reaches marginal stability. At this point, GI sets in, causing shocks that heat

the disk. If sufficient heat is retained, the disk will heat back up, quenching the instability, which

in turn decreases the heating rate, allowing the disk to cool back towards instability. Thus in this

self-regulated state, the disk should remain marginally unstable, with Q close to unity. In such

a state the disk permits growing modes, but the spiral perturbations do not grow exponentially,

instead saturating at some finite value (see Equation (31) below).

One can estimate analytically the conditions under which the disk should self-regulate. Since

the instability provides heat on a timescale that is of order the dynamical timescale in the disk,

tdyn = Ω−1, the ‘thermostat’ can only work if cooling is slower than this timescale, that is if

β = Ωtcool � 1, where tcool is the cooling timescale1. Thus we see that β is a third, independent

dimensionless number that controls not the onset of the instability like Q, or its morphology, like

Md/M∗, but its evolution and saturation.

The importance of the parameter β, and the relation to self-regulation, was first illustrated

numerically in a paper by Gammie (2001). This work introduced an explicit cooling term in a

self-gravitating shearing sheet calculation

du

dt

∣∣∣∣
cool

= − u

tcool
, (29)

where u is the internal energy of the fluid and tcool is the cooling timescale, which is set as a

free parameter in the simulations to be some constant times the dynamical timescale Ω−1. It is

important to stress that the above description is not meant to reproduce any specific cooling law,

but is a toy model for exploring the role of the cooling timescale in the outcome of GI. Different

investigators use different prescriptions for the specific form of the cooling time, which in some cases

is taken to be a constant (Mejia et al. 2005) while in other cases is taken to be proportional to the

dynamical timescale as a function of radius, so that β = Ωtcool is kept constant (e.g., Gammie 2001;

Lodato & Rice 2004; Lodato & Rice 2005). In particular, the so-called β-cooling prescription is

now commonplace when simulating self-gravitating disks in a simplified manner. One noteworthy

limitation of this model is it can only capture the behavior of optically thin gas in numerical

simulations, because it does not account for optical depth effects, which can be important. If

one aims to capture more realistic thermal physics, radiative transfer must be properly accounted

for (Boley et al. 2006; Stamatellos & Whitworth 2009b; Krumholz et al. 2009). Nevertheless, the

evolution produced by simplified cooling models is remarkably similar to that in more complex

simulations.

1Note that the requirement that the cooling timescale be shorter than the dynamical timescale in order
to result in fragmentation has been discovered in a variety of contexts even outside the context of disk
instability Rees (1976); Silk (1977); Thompson & Stevenson (1988)
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In general, there is now a coherent picture emerging from all such simulations of isolated, non-

irradiated discs, despite the large variety of hydrodynamic techniques (SPH or grid based codes,

in 2D or in 3D) and cooling prescriptions employed. If cooling is relatively inefficient, so that

the cooling timescale is long (β & 10 − 20, though see Section 3.8), the disk settles into a self-

regulated state, where the spiral structure steadily transports angular momentum providing the

heating required to balance cooling and keep the disk in thermal equilibrium. We call this thermal

saturation of GI. We discuss in Section 3.8 uncertainties in the critical value of β and 2D versus

3D effects.

As discussed above, if the disk is low mass (with H/R ∼Mdisk/M . 0.1), the transport induced

by GI is local, and analogous to a viscosity. If dissipation is the only heating source, then a disk

undergoing GI in thermal equilibrium (Pringle 1981; Gammie 2001), will have the following relation

between α and the cooling rate:

α =

∣∣∣∣d ln Ω

d lnR

∣∣∣∣−2
1

γ(γ − 1)Ωtcool
. (30)

Since the energy density and the angular momentum density associated with density waves scales

with the square of the perturbed gas density (e.g. Eq. 25), the condition for thermal regulation

(Eq. 30) requires that the instability saturates at an amplitude that scales with the square root of

the cooling time:
δΣ

Σ
∝ 1√

β
, (31)

a behavior confirmed by the numerical simulations of Cossins et al. (2009). This relation is consistent

with the critical β being of order a few, since it is the point at which density perturbations have non-

linear amplitude. In practice, energy dissipation occurs through the development of roughly sonic

shocks. This simple relationship suggests that the strength of the instability, and its efficiency as

an angular momentum transport process, are correlated with the thermodynamics in steady state.

We review GI models that use α as a proxy for transport in Section 3.7.

3.5.2. Thermal saturation in irradiated disks. The discussion and the simulations described above

assume that the only source of heating in the disk is that provided by the instability itself as it

dissipates energy through shocks. However, protostellar disks are generally expected to be irra-

diated by either the central protostar, their natal envelope, or nearby stars. In the presence of

irradiation, clearly the thermal saturation described above must change, since the disk alone is not

responsible for setting the equilibrium temperature. The thermostat cannot function according to

Equation (30).

When comparing GI in irradiated versus self-heated disks, one must consider the behavior at

fixed Q, so that the disk has the same propensity to the instability. Even at fixed Q, the impact

of irradiation is not intuitive. On one hand, in the presence of external heating a much lower level

of dissipation due to the instability is required to prevent runaway growth, which would imply a

stabilization of the disk. On the other hand, a very strongly irradiated disk will behave more like

an isothermal disk, where the dissipation of energy due to even a large perturbation has little effect

on thermal balance (Kratter & Murray-Clay 2011). In this case it is hard to envision a mechanism

that would stop an unstable perturbation from growing non-linearly, leading to fragmentation.

Indeed irradiated disk simulations have more similarities to isothermal simulations than barotropic

or cooling simulations (Krumholz et al. 2009; Offner et al. 2009). For disks in the moderately

irradiated regime, both arguments apply. Rice et al. (2011) conducted local 2D simulations of

disks including a ‘standard’ β-cooling term and a constant heating term, representing the effects of

irradiation. On the basis of cooling times, irradiation stabilizes the disk in that a marginally faster
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cooling time is required for fragmentation in the irradiated case as compared to the non-irradiated

case. However, Eq. 31 does not hold anymore, and for a given value of β the average perturbation

amplitude is much smaller. Thus, in the irradiated case, even perturbations with a very small

average amplitude result in a runaway collapse into fragmentation. In this sense, irradiation has

the effect of destabilizing the disk, because smaller amplitude perturbations can collapse. It is

unclear whether the use of 2D simulations in this study might affect the measured critical β (Young

& Clarke 2015).

In irradiated disks, there is another route to saturation that does not relate to thermal balance,

but rather is dynamical, in the form of non-linear coupling between modes.

3.5.3. Mode-mode coupling. The numerical investigation of self-gravitating disks began well before

sophisticated radiative transfer cooling algorithms were computationally feasible. Early numerical

simulations found that both isothermal (Laughlin & Bodenheimer 1994), and barotropic (Laughlin

& Ròżyczka 1996; Laughlin et al. 1998) disks could develop strong gravitational instabilities that

lead to fast redistribution of angular momentum within the disk. In these regimes, GI cannot

self-regulate in the manner describe above as they represent β → 0 and β → ∞ respectively.

Instead, non-linear mode coupling appears responsible for saturating the amplitude of GI-induced

perturbations. Laughlin et al. (1997) demonstrate that coupling between m = 0 and m = 2

modes prevents runaway growth and thus fragmentation, while allowing rapid angular momentum

transport. This same behavior is evident in the isothermal simulations of Kratter et al. (2010a),

and is also likely responsible for the transient spiral patterns seen in the massive disk simulations

of Lodato & Rice (2005).

The exact conditions under which mode-mode coupling dominates remain unclear, as little

detailed work has been done since Laughlin et al. (1997). Based on the simulations in which a

similar effect has been observed, we expect this saturation mechanism to dominate in massive

disks, as well as disks that are irradiation dominated. These two cases represent (1) the regime

in which local dissipation breaks down and (2) the regime in which the energy balance due to GI

induced heating and radiative cooling breaks down. Ironically, this saturation mode may be the

dominant mechanism preventing fragmentation in protostellar disks, despite the dearth of attention

in the literature.

3.6. When saturation fails: Fragmentation

If the saturation mechanisms listed above fail to prevent runaway growth of perturbations, the

unstable region of the disk will break up into bound objects, or fragments. As the perturbations

grow to non-linear amplitudes, their own self-gravity causes them to collapse and separate from

the background disk. Fragmentation is in some ways an alternative means for shutting off the

instability: the separation of large amplitude perturbations form the disk means a reduction in

local surface density, and thus an increase in Q. In the context of protostellar disks this is of great

importance, as fragmentation can in principle lead to the formation of either stellar, brown dwarf,

of perhaps planetary mass companions. We provide a brief overview of the two common pathways

to fragmentation, deferring a discussion of the astrophysical implication to Sections 4 and 5

Fragmentation driven by cooling. A great majority of disk simulations have considered disk

fragmentation as consequence of rapid cooling in isolated disks. In this case, Q decreases due to

a progressive drop in temperature, until GI sets in. If the cooling is rapid, GI cannot provide

sufficient heating to counteract cooling, and the disk will fragment. Exactly how fast the disk must

cool (the so-called critical value of β) has been the subject of many investigations. Studies have
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examined the role of the temperature dependence of cooling (Johnson & Gammie 2003; Cossins

et al. 2010a), the role of the evolution of β in time at fixed radius (Clarke et al. 2007), and the

role of irradiation (Boley et al. 2007; Stamatellos & Whitworth 2008; Rice et al. 2011). The critical

value is a function of the equation of state, and is of order β = 10 − 20. The deviations from the

critical value of β due to more complex physical effects are of order a factor of two. We review the

numerical complications of measuring this value in Section 3.8.

Cooling as a path to fragmentation is most likely relevant for disks that are thermally self-

regulated because, as discussed above, irradiation and global transport can hamper the operation

of the disk thermostat. AGN disks, or protostellar / protoplanetary disk which are shadowed by

inner disk wall or warps may be the best candidates for this type of fragmentation. Alternatively

disks which undergo rapid changes in accretion rate, which in turn can effect the stellar luminosity

and thus the irradiated disk temperature, might also be subject to fragmentation driven by cooling

(Kratter & Murray-Clay 2011).

Fragmentation driven by accretion. The second path to fragmentation is due to evolution of

the disk surface density either due to infall from the external environment, or due to changes in

the accretion rate within the disk that lead to mass pile-ups. For disks undergoing infall at some

rate Ṁin, there exists a regulation mechanism akin to thermal saturation. Consider a disk with

Q > 1 that accretes material such that Q declines towards unity. As the disk approaches Q ≈ 1,

the linear instability transports angular momentum. If the accretion induced by GI gives Ṁ < Ṁin,

the disk will become more massive, and thus susceptible to a wider variety of modes, enabling more

transport. If Ṁin ≤ Ṁmax,GI, the maximum possible rate that GI can provide (as yet unspecified,

see below), the disk will transport material at the rate it is being fed, with the disk mass acting

as the regulator of transport (Kratter et al. 2010a; Zhu et al. 2012). If Ṁin > Ṁmax,GI the disk

will ultimately fragment (Kratter et al. 2008). The ability of the disk to regulate transport up to

a critical rate is likely related to the spiral-mode coupling described above.

What sets the maximum transport rate induced by GI, and how does one know when disks will

fragment versus increase in mass? Kratter et al. (2010a) argued that two dimensionless parameters,

benchmarked to the infall rate, are strong predictors of fragmentation driven by accretion. These

two are

ξ = Ṁin/(c
3
s/G) (32)

Γ = Ṁin/(M∗dΩ), (33)

where M∗d, the total system mass. The first parameter, ξ references the infall to the isothermal

sphere collapse rate, c3s/G (Shu 1977) but uses the disk, not core temperature. For a disk in steady

state, ξ and α are interchangeable, using the steady-state accretion relation Ṁ = 3αc3s/(GQ)

(Frank et al. 2002). However in many cases, the disk accretion rate does not come into equilibrium

with the infall rate. The second parameter, Γ is the ratio of the orbital timescale to the disk

mass doubling timescale. When infall is significant, Ω is controlled by the circularization radius of

accreting material (not viscous spreading) and is thus a proxy for disk angular momentum.

Using a suite of 3D numerical simulations of isothermal disks undergoing self-similar accretion,

Kratter et al. (2010a) find that disks undergoing infall with Γ < ξ2.5/850 are unstable to fragmen-

tation. Subsequent work by Offner et al. (2010) and Zhu et al. (2012) confirm these relations hold

when more complicated thermal physics and more realistic, turbulent infall conditions are included.

Such a parameterization is applicable to AGN disks as well, where it might be relevant for seed

black hole growth at high redshift (Lodato & Natarajan 2006).

The ξ, Γ parameterization predicts that the maximum transport rate is a function of mass

ratio (in steady state with Q ∼ 1, we have that H/R ≈ Md/M∗ ≈ (Γ/ξ)1/3). For low mass disks,

www.annualreviews.org • GI DISKS 17



where GI-induced transport is local, Rice et al. (2005) have shown that the existence of a critical

cooling rate for fragmentation translates, through Equation (30), into a more general upper limit

of α ≈ 0.1. The boundary for fragmentation in ξ − Γ space is consistent with this value of α

for equivalently low mass disks, despite the absence of thermal regulation. If the disk mass grows

above 0.1−0.2M∗, however, transport becomes inherently global, and thus an increase in mass ratio

corresponds to an increase in the maximum rate of transport. This is consistent with the Lau &

Bertin (1978) dispersion relation. According to the ξ − Γ boundary derived above, a more massive

disk corresponds to a larger value of Γ for fixed ξ, which will thus be stable at the same infall rate.

These simulations suggest that global modes can provide close to α ≈ 1 when Md →M∗.

Other fragmentation triggers. Nelson (2000); Mayer et al. (2005); Boss (2006) and Lodato et al.

(2007) have studied the influence of a massive companion on disk fragmentation, reaching apparently

contradictory conclusions. While Boss (2006) argues that the presence of a companion increases

the tendency for fragmentation, all of the other studies obtain the opposite result. They find that

the tidal heating due to the companion has the effect of inhibiting fragmentation in a marginally

stable disk.

3.7. Capturing GI with α models

As mentioned in the previous sections, it is often convenient to parametrize angular momen-

tum transport measured in numerical simulations in terms of the Shakura & Sunyaev (1973)

α-parameter. We have relied on this parameterization heavily in discussing thermal saturation

(see Equation (30)). Despite the inherent assumption of local transport in the α-model (Balbus &

Papaloizou 1999), the approximation is also often used for global transport, where it approximates

the accretion rates measured remarkably well. Kratter et al. (2008) compiled transport measure-

ments from numerous simulations, and found that a two component α model – one to account for

local transport, one for global, could accommodate a wide range of disks in terms of both mass and

thermal physics. As noted above, the biggest advantage of invoking an effective α to capture GI is

that one can conduct parameter studies over a wide swath of physical variables using semi-analytic

or 1D models. We provide a brief overview of the most common models used.

The first proposed αsg models of Lin & Pringle (1987, 1990) posit that since Q controls the

onset of instability, the strength of transport should scale inversely with Q. They propose:

αsg =


ζ

(
Q̄2

Q2
− 1

)
Q < Q̄

0 Q > Q̄

(34)

where ζ is an additional parameter measuring the strength of the gravitationally induced torque, and

Q̄ is the maximum value (≈ 2) at which GI sets in. This prescription, at face value, is orthogonal to

αmodels based on Equation (30). Although the dependencies appear distinct between Equation (30)

and Equation (34), they can be tuned to capture similar behavior, but are better suited to different

regimes. Equation (30) is appropriate for disks that are in steady-state and thermally self-regulated.

It cannot be used to capture the behavior of a disk with Q much different from unity, or one that

is out of equilibrium because the relation is predicated on energy balance. On the other hand,

Equation (34) can capture GI in a disk that is non-self regulated and may be evolving (either in

surface density or temperature) in time. Because Equation (34) has a free normalization parameter,

it can also describe a disk in steady-state that is marginally unstable by tuning ζ so that the

transport rate matches up with the R.H.S. of Equation (30).
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These α models have proved indispensable for studying multiple transport processes simulta-

neously. Armitage et al. (2001) explored 1D viscous models including both MRI and GI-induced

transport, showing time variable accretion capable of reproducing FU-Ori like episodic accretion.

Bertin & Lodato (2001) discuss how GI would make the outer disk in FU Ori objects hotter com-

pared to non self-gravitating disks and hence produce a flatter SED (see also Adams et al. 1989).

Martin & Lubow (2011) similarly identify regions of disk parameter space lacking steady-state so-

lutions as responsible for outbursting behavior, in a fashion akin to the limit-cycle instability for

dwarf novae. Matzner & Levin (2005) first identified, through simple α models, the existence of

a critical radius at ≈ 50 − 100 AU beyond which the disk is expected to fragment. Clarke (2009)

use an α model for GI to estimate the relevant cooling time as a function of radius, and show that

fragmentation occurs beyond ∼ 70 AU, while self-regulation is expected between ∼ 20 − 70 AU.

Crucially, Clarke (2009) neglected the effect of irradiation from the central star, that in general

makes the inner disk gravitationally stable rather than self-regulated.

Recently, Rafikov (2015), following Rafikov (2009), developed a more comprehensive viscous α

prescription, which encompasses a wider range of disk states, although the caveats about locality of

energy deposition remain. Rafikov (2015) finds that the predicted disk properties are quite similar

to those derived under α(Q) models (e.g. Kratter et al. (2008); Zhu et al. (2010)). The important

feature of these viscous models is the smooth growth of transport rates as Q declines, with a cutoff

at some maximum α for a minimum Q.

3.8. Convergence of numerical results

In our analysis of the saturation of GI, we have relied heavily on numerical simulations. The two

values often pulled from these simulations are the critical value of β, or the maximum transport rate

α, at which saturation fails, leading to fragmentation. These two quantities (directly correlated in

some regimes) are only measurable in simulations. Frustratingly, these quantities can be difficult

to disentangle from numerical artifacts. No astrophysical simulations operate at realistic Reynolds

numbers, and all suffer from numerical errors that manifest as an effective viscosity. In the case of

SPH simulations, an artificial viscosity must be included explicitly. For grid codes, Krumholz et al.

(2007) for example, has measured the effective α from diffusion as a function of resolution, showing

that it can be competitive with physical mechanisms at moderate resolution.

At the time of this writing, the convergence problem in self-gravitating disks simulations is

an open issue. We review them below for completeness, but emphasize that for application to

protostellar and protoplanetary disks, uncertainty in the critical value of β has little impact on disk

evolution. Indeed, in the region where protostellar disks are gravitationally unstable, the cooling

time is a steep function of disk radius, so that changes in the critical value of β only lead to minor

changes to the radius at which fragmentation occurs (Clarke 2009; Clarke & Lodato 2009).

Until recently, most investigations of resolution focused on resolving fragmentation. Early

studies found that the Jeans length (Bate & Burkert 1997; Truelove et al. 1997) must be resolved

by ≈ 10 grid cells to accurately capture fragmentation. More recent work has argued that the

Jeans length must be resolved by as many as 64 grid cells to achieve convergence (Turk et al. 2012).

Since in SPH the resolution is set by the smoothing length h, and the Jeans length is of the order

of the disk thickness H, the Truelove and Bate & Burkert criteria imply that h/H . 1 to resolve

fragmentation. This condition is amply satisfied by most recent simulations. Nelson (2006) lists

three different conditions: one is a variant of the Jeans length criterion, the second is that h/H . 1,

and the third is that adaptive smoothing lengths be used in SPH (which is done in all modern SPH

calculations). That convergence remains a challenge even when the above resolution criteria are

met is not so surprising, since none explicitly capture one of the most important aspects of the
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physics: dissipation.

Meru & Bate (2011a,b) found that in simulations with several million SPH particles (factors of

several above most previous work) the fragmentation criteria as measured by a critical β did not

appear to converge. The disk fragmented at larger β with higher resolution. Similar results have

come from grid-based simulations. Paardekooper et al. (2011) found that fragmentation could be

artificially triggered at sharp boundaries between the stable and unstable portions of the disk, while

Paardekooper (2012) claimed, based on 2D simulations, that fragmentation might be a stochastic

process, and therefore allowed (rarely) at values of β associated with much smaller amplitude

perturbations. This interpretation would be consistent with gravito-turbulence fully sampling a

turbulent power spectrum of density perturbations (Hopkins & Christiansen 2013). These results

cast doubt on the numerical value of the fragmentation boundary obtained in previous investigations

(that pointed to a critical value βcrit ≈ 10).

Lodato & Clarke (2011) address the importance of the magnitude of the artificial viscosity as a

function of resolution, which inherently alters the disk thermostat. In SPH codes, artificial viscosity

provides an equivalent αart ∝ h/H. Lodato & Clarke (2011) find that in order for artificial viscosity

to be negligible as a source of heating, one requires

h

H
� 40

β
. (35)

Note that as β is increased (as one does when probing the fragmentation boundary), the resolution

requirement becomes progressively harder to satisfy, because a smaller amount of numerical dissi-

pation represents a larger fractional contribution to heating. Such a trend of increasing resolution

requirements with increasing β is indeed consistent with the Meru & Bate (2011a,b) results, but

do not fully explain them, as it turns out that, based on these simple arguments, fragmentation

would be artificially quenched by numerical viscosity when the latter produces only 5% of the heat

required by thermal equilibrium. Meru & Bate (2012), on the other hand, point out that most SPH

simulations for self-gravitating disks have employed an artificial viscosity formulation that strongly

reduces viscosity for high Mach number shocks. Paradoxically, this reduction of the viscosity coeffi-

cient has the counter-intuitive effect of increasing artificial dissipation, since it generates artificially

large velocity gradients (Lodato & Price 2010).

Even more extreme challenges to the fragmentation boundary have come from Paardekooper

(2012) and Hopkins & Christiansen (2013) who suggest that fragmentation may be inherently

stochastic, and thus allowed at much longer cooling times. This relies on GI producing a wide

power spectrum of turbulent fluctuations Investigations by Young & Clarke (2015) question this for

two reasons. First, they show that independent of numerical method, there are inherent limitations

in the treatment of the small scale gravitational field in 2D. As a result, measurement of the

fragmentation boundary (or stochastic fragmentation) in a 2D simulation is questionable, and

better left to 3D simulations. They further argue that because of the quasi-regular nature of self-

gravitating structures, stochastic fragmentation should be inhibited at very large β, because the

growth and development of spiral structure occurs over a modest number of orbital periods, and

thus may not be akin to a true turbulent cascade (see also Shi & Chiang (2014)).

Despite the lingering questions about resolution and critical cooling times, we emphasize that

the critical β for fragmentation has very little impact on whether disk fragmentation, and especially

planet formation via GI, is viable because most disks that have Q ∼ 1 also attain relatively small

values of β for realistic protostellar disk conditions.
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4. Application to Protostellar Disks

In Section 3 we have given an overview of the basic physics that governs the behavior of disks when

self-gravity becomes important. These principles apply to disks in any astrophysical context. Here

we narrow our focus to the case of protostellar and protoplanetary disks in order to understand which

of the regimes and corresponding behaviors are most relevant. The details of how star formation

proceeds inevitably effects the characteristics of protostellar disks, and thus the importance of

self-gravity and GI. It is beyond the scope of this review to describe how different modes of star

formation might produce different disk properties; instead we endevaor to provide a broad overview

of all plausible disk states.

Narrowing the Parameter Space. We have shown that GI can be described by three independent

dimensionless numbers that describe the state of the disk, Q, Md/M∗ and β. However, a protostellar

or protoplanetary disk does not attain arbitrary combinations of these three quantities because the

disk’s internal energy and cooling rate are both temperature dependent. Consider β in terms of

these physical variables:

tcool = βΩ−1 =
4

9γ(γ − 1)

Σc2s
σT 4

τ (36)

where τ = κΣ/2, and κ is the opacity. The cooling time, and thus β, depend on the disk surface

density, temperature, and dust opacity. Once one selects a disk model with a given Q profile and

mass ratio, the profile β(r) is also determined (albeit with uncertainty due to dust opacity models).

We present typical disk scalings for temperature, mass, size, and accretion rate in order to survey

GI in protostellar and protoplanetary disks, highlighting three case studies.

4.1. Setting the Thermal Physics

We begin with a simple model for the temperature profile of the disk. Ideally disk temperatures

should be found from accurate radiative transfer calculations, which account for wavelength de-

pendent opacities and heating sources. Nevertheless, the agreement between the simple analytic

formulae below and radiative transfer calculations is quite good, making these useful for estimation

purposes (Zhu et al. 2012; Boley et al. 2010).

Disks are heated primarily by three sources: accretion energy, host star irradiation, and external

radiation. The disk midplane temperature can be found via the following relation by balancing

heating and cooling terms:

σT 4 =
3

8
f(τ)Facc + F∗ + Fext (37)

where F∗ and Fext are the energy fluxes associated with stellar irradiation and external heating

respectively, while Facc is the energy flux associated with accretion and

f(τ) = τ +
1

τ
(38)

(Rafikov 2005). Here, τ is the Rosseland mean opacity, and f(τ) reasonably captures how the

accretion energy diffuses outward from the midplane in both the optically thick and thin regimes.

We now examine each term in detail.

The first term on the R.H.S, Facc, describes the release of gravitational energy as material moves

through the disk, falling deeper into the potential well. This is commonly referred to as viscous

dissipation. Independent of whether the disk is truly viscous, the potential energy of accreted

material must be released, some portion of which will go into the thermal energy of the disk. The

flux (far from the stellar surface) associated with this term if all of the accretion energy goes into
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heating is:

Facc =
3

8π
ṀΩ2 (39)

Because the heat must propogate from the midplane to the surface, this term is modified by the

optical depth. As discussed in Section 2, disk opacities are uncertain, and likely evolve in time due

to grain growth and changes in the dust-to-gas ratio. At very early times, when grains are ISM-like

(µm− 10µm), the opacity is temperature dependent, typically κR ≈ κ2T
2 (where T is in Kelvin),

(Bell & Lin 1994), in the cold, icy limit T < 155K relevant for GI. Semenov et al. (2003) find that

the Rosseland mean opacity for small grains is well fit by κ2 ≈ 5× 10−4cm2/g. Once grain growth

commences, grains quickly become large compared to the blackbody wavelengths of the disk. In

this regime, the opacity is both lower and temperature independent. Based on Pollack et al. (1985)

we use a temperature independent κ0 = 0.24cm2/g. We benchmark our results to this large grain

case for several reasons. First, after no more than 105yrs, there is good evidence that grain growth

has commenced. Although GI may be present earlier, at this epoch the disk is optically thick for

either opacity law. Secondly, lower opacities associated with grain growth produce a wider range

of disks susceptible to GI; since our intent is to review all the possible phase space we consider this

choice “conservative.”

The second term on the R.H.S. of Equation (37) captures irradiation from the host star. The

stellar luminosity comprises two components: accretion luminosity and the intrinsic stellar luminos-

ity that comes either from gravitational radiation or nuclear burning depending on age and mass.

For low mass stars the accretion luminosity typically dominates. High mass stars, which reach the

ZAMS while accreting, are dominating by H-burning (Tout et al. 1996). Unlike the dissipation of

accretion energy, the impact of stellar irradiation on disk temperatures is highly dependent on the

envelope and disk structure, because the absorption of radiation depends on both the intervening

material reprocessing the radiation and on the flaring angle of the disk absorbing radiation. We

consider two models for stellar irradiation. The first, from ray tracing calculations of Matzner &

Levin (2005), finds that for deeply embedded disks, the heating term is well described by:

F∗,emb = σT 4
∗,emb = f

L∗
4πr2

(40)

with f ≈ 0.1 derived from ray tracing calculations where much of the stellar flux impacts the

infalling envelope (ala Terebey et al. (1984)) and is reprocessed back down onto the disk. Note that

L∗ can include both internal luminosity and stellar accretion luminosity. The second model refers

to the case of a non-embedded disk, for which the analytic model of Chiang & Goldreich (1997)

accounts self-consistently for the flaring due to incident irradiation, and heating of dust grains in

the outer disk layers. They find:

F∗,iso = σT 4
∗,iso =

(αF
4

)(R∗
r

)2

σT 4
∗ (41)

where αF measures the grazing angle at which starlight hits the disk; this in turn is a function

of the height of the disk photosphere, which depends on grain properties. When disks reach the

threshold for instability, they are typically optically thick, making the use of this approximation

reasonable. We can rewrite this explicitly as a function of stellar luminosity and disk radius as:

T∗,iso =

[
1

(7πσ)2
kb
µ

1

GM∗

]1/7
L2/7
∗ r−3/7 (42)

We note that when using this relation for temperature due to stellar irradiation in conjunction with

other heating terms, there is a small inconsistency in that the actual disk scale height will differ

slightly from that solved for in the irradiation model.
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Including both heating terms, we see that an individual disk may span both the self-luminous

and irradiated regime at different radii. It is instructive to examine the radial scaling of the first

and second terms in Equation (37):

Facc ∝ Ṁ(r)r−3 (43)

F∗,emb ∝ L∗r−2 (44)

F∗,iso ∝ L8/7
∗ r−12/7 (45)

where the last two lines cover the embedded and isolated cases. In either case, the viscous term will

fall off more steeply with radius than either irradiation term. Thus the inner disk is more likely to

be self-luminous, while outer disk may be dominated by irradiation from either the central star or

even the external environment.

Finally, external radiation from other stars can contribute to the disk temperature (see Thomp-

son 2013 for an extreme example). We consider the interstellar radiation field to create a tempera-

ture bath of Text (such that Fext = σT 4
ext), which sets a lower threshold for the disk temperature as

described above. In more active, higher mass star forming regions this can be up to Text = 20−30K

(Caselli & Myers 1995). For deeply embedded cores, the envelope may insulate the disk from ex-

ternal sources, providing a somewhat lower temperature thermal bath. Neither irradiation term is

accompanied by an optical depth because they set the temperature at the surface, which controls

the cooling (L.H.S. of Equation (37)).

4.2. Disk Masses and Radii

In Section 2 we showed evidence for disks ranging from Md/M∗ ≈ 0.001 − 0.1, but argued that

in many cases these may be lower limits based on uncertain grain growth, dust-gas conversions,

and biases against observing the youngest, most massive disks. Here we consider disks with 0.05 <

Md/M∗ < 0.5 to encompass both the least massive disks where self-gravity can be relevant, and

a generous upper limit on those observed. Recalling Equation (2), one can immediately see that

a Q = 1 disk at the upper boundary has an aspect ratio so large as to call into question the disk

geometry.

Direct observations show that disks extend out to 50 − 500au, based on submm and optical

absorption of proplyds (Andrews et al. 2009; Eisner et al. 2008). Disk radii at early times (Class 0,

I phases) are controlled by the infalling angular momentum from the envelope or feeding filament

(Terebey et al. 1984). Most of the disk mass will be contained within the circularization radius:

rd = Rc =
〈j〉2√
GM

(46)

where 〈j〉 is the average specific angular momentum of accreting material, which can be obtained

from considering

J̇(t) = Ṁ(t)j(t). (47)

In a simple core-collapse model one can specify j(t), however it is more realistic to consider the

impact of accretion from turbulent filamentary structures that characterize star forming regions

(Offner et al. 2010). Turbulence in the interstellar medium follows a line-width size relation, such

that increasingly larger scales will typically carry more angular momentum (Larson 1981). Kratter

& Matzner (2006) used this to generate models for disk radii as a function of time. It is not

guaranteed, however, that the direction of the angular momentum vector will remain constant

throughout infall, and thus disks may not grow monotonically in time. Recent simulations by Bate

et al. (2010) and Fielding et al. (2015) show that there can be enough change in the infalling angular
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momentum vector to tilt the disk with respect to the spin-axis of the star, especially if variable

accretion causes substantial oscillations in the disk mass, and if stellar interactions truncate the

disk.

When disks transition from the protostellar to protoplanetary phases, infall of mass and angular

momentum becomes less important. In this case one expects the disk to evolve towards the self-

similar viscous spreading solution of Lynden-Bell & Pringle (1974). While this will lead to larger

outer disk radii than that given by the circularization radius, the outer regions typically hold very

little mass and thus do not have a significant impact on disk self-gravity.

In order to determine Σ(r), we require a model for the radial profile. Here again we rely on

observations, which suggest a power law, or a power law plus exponential tail (Andrews et al.

2009; Pérez et al. 2012). Since the exponential part contains an irrelevant amount of the mass, we

consider only the power law component. For our calculations, we choose Σ ∝ r−1, which puts more

mass at large radii where instabilities might arise, lest we underestimate the role of self-gravity.

Note that this surface density profile, coupled with an irradiation dominated temperature profile

is consistent with steady-state disk models with Ṁ(r) =const. To give a quantitative idea of the

scaling for our parameter ranges:

Σ(r) = Σ0

(
r

Rout

)−1


Σ0 = 28g/cm−2 , Md

M∗
= 0.05, Rout = 50au

Σ0 = 2.8g/cm−2 , Md
M∗

= 0.5, Rout = 500au

(48)

4.3. Accretion Rates

The only remaining parameter to specify is the accretion rate through the disk, which has two effects.

First, as discussed in Section 3.6, infall of material on to the disk impacts the disk mass, angular

momentum transport rate, and susceptibility to fragmentation. Secondly, the disk temperature is

a function of the accretion rate. We consider disks with steady-state accretion at rates ranging

from Ṁ = 10−8 − 10−3M�yr
−1, where the lower end is consistent with accretion rates observed

on actively accreting T Tauri stars towards the end of their lives, and the highest rates represent

a generous upper limit set by infall from a supersonic core for more massive stars (McKee & Tan

2003; Klaassen et al. 2011) .

In reality, a disk with a given surface density and temperature profile cannot support an ar-

bitrary accretion rate in steady state. A physical mechanism for providing angular momentum

transport is required. Indeed there is no guarantee that a disk will typically be in steady-state with

Ṁ(r) = const (Armitage et al. 2001; Martin & Lubow 2011).

As discussed in Section 3, saturated GIs provide transport at rates such that 10−2 < α < 1

depending on the disk parameters. Obviously magnetic effects, both small scale turbulence from

the MRI (Balbus & Hawley 1994; Simon et al. 2013), or large scale magnetic winds (Bai 2015) may

also be important for various disk properties at different times.

4.4. The instantaneous disk state

We demonstrate how GI manifests in protostellar and protoplanetary disks with three case studies

shown in Figure 2 that cover a range of parameters. Note we have not yet specified how disks might

evolve into and out of these parameters, and some areas of the parameters space are unrealistic.

For each case study we provide two contour plots of fundamental disk parameters as a function of

disk radius and accretion rate. We fix the disk mass, outermost radius and host star properties,

and then calculate the implied properties of the disk at all locations for a range of accretion rates.

The left hand panels show contours of the disk temperature with all three heating terms from
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Equation (37). For comparison we also show in white contours the temperatures that would be

derived neglecting stellar irradiation, as this has been omitted in many numerical simulations. The

accretion rate not only contributes to the viscous heating term, but also the stellar heating term,

where for low mass stars we use the models of Baraffe et al. (2015) to estimate the stellar radius

at 1Myr. The right hand panels show contours of Q and β (calculated from Equation (36)). When

relevant, we demarcate the boundary where the accretion rate assumed would require α > 1. This

region is inconsistent with GI as a transport mechanism.2 We describe each of the three cases in

detail below:

2Note that the slope of the constant α contours, indicated by the boundary of α > 1 shaded region, are
close to parallel with lines of constant Ṁ . This suggests that the chosen temperature and density profiles
are reasonably consistent with steady-state, constant α disks.
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Figure 2

Three case studies for protostellar disk properties as functions of accretion rate and disk radius. The left
panels show the disk temperature including (black) and excluding (white) stellar irradiaiton. The right

panels show the value of Q (background color and black contours) and β (white contours). The stellar

masses and disk masses used are shown in the upper left corner of the lefthand panels. For Disk 1, note
that the shaded gray contours indicate solutions which require α > 1 and thus are not physical.

Disk 1. : In Figure 2a we show results for Md/M∗ = 0.05, Rout = 100au, around a solar mass star.

This disk is most consistent with observations of Class II protoplanetary disks. It is immediately

clear that these disks will not be subject to GI at any radius. Q is lowest at the outer edge, where

cooling times are also very rapid, and the temperature is controlled by stellar irradation. In order

to make the outer regions of this disk unstable to GI, the disk mass must be increased by roughly a

factor of 4. In this case the cooling time remains short, suggesting that such disks would fragment,

but never enter the self-regulated regime, as first recognized by Rafikov (2005); Matzner & Levin

(2005).

Disk 2:. Figure 2b shows a disk modelled after observations of IRAS 16293-2422b (Rodŕıguez

et al. 2005). This disk is most likely associated with an isolated Class 0 source. The disk appears

to be massive and compact, consistent with a very young age, with Md/M∗ = 0.35, Rout = 30au

around a 0.8M� protostar. The Rodŕıguez et al. (2005) model suggests an accretion rate of order

10−6M�/yr, but we show the full range as for the other examples. Because the disk has low Q and

is slowly cooling, we expect one of two outcomes depending on the rate at which mass is accreted

onto the disk. Up to some critical rate, the disk can process the material via GI-induced transport

and remain quasi-stable. This would require a combination of thermal regulation and mode-mode

coupling. At larger infall rates, the disk will begin to grow in mass, and either revert to the first

state of self-regulation, or increase in mass until it fragments.

Disk 3. Figure 2c shows a disk model appropriate for a massive star, such as that identified by

Shepherd et al. (2001), consistent with theoretical models of high mass star formation (Kratter

& Matzner 2006; Krumholz et al. 2007). Here Md/M∗ = 0.75, Rout = 150au and M∗ = 8M�.

Unlike the low mass stars in the previous two examples, high mass stars are expected and observed
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(Klaassen et al. 2011) to have higher infall rates. Therefore the upper half of the plot is more

representative of likely parameters. Here we see that the entire outer logarithmic decade in radius

will have Q ∼ 1. While at distances of the order of tens of au the cooling time is relatively long

and the disk might survive in a self-regulated state, beyond ∼ 50au the cooling time becomes short

enough to induce fragmentation. The disk temperatures are higher in part because massive stars

arrive on the ZAMS and start fusion while still accreting, but they still have low Q values. The

high mass ratio represented in this example may be typical because the high infall rates tend to

drive up disk masses. In this case, simulations suggest that disk undergo strong m = 1 dominated

transport, and in many cases fragmentation into stellar companions (Adams et al. 1989; Kratter

et al. 2010a). The susceptibility of these disks to fragmentation is consistent with the observation

that nearly all massive stars are found in binaries (Sana & Evans 2010; Sana et al. 2014).

4.5. Global Models for Disk Evolution

We have laid out the instantaneous properties of protostellar and protoplanetary disk in the previous

sections. However, protostellar disks do not exist in isolation, but are constantly fed material from

the background core or filament. We argued in Section 3 that infall can control the linear and

non-linear development of GI. There, we simply imagined that a given disk, and considered what

happened as we changed the infall rate. In order to understand what properties disks have during

their evolution, star formation models are required that dictate Ṁin and J̇in. The state of the disk

is controlled by competition between the infall rate and the disk-star accretion rate.

Several authors have considered this global evolution: Kratter et al. (2008), who used analytic

models tied to numerical benchmarks for non-linear transport terms, Vorobyov & Basu (2007, 2009),

who consider 2D models for the disk considering only transport driven by GI, Zhu et al. (2010,

2012), who consider long timescale semi-analytic models, and shorter timescale 2D simulations.

These calculations suggest that low mass stars, as demonstrated by disk case studies (1) and (2),

are susceptible to GI at early times, but stable against fragmentation. In order to push these disks

into the fragmenting regime, one must invoke highly variable accretion or lower stellar illumination.

Highly variable accretion can force disks like case study (2) up to the fragmentation threshold,

where binary formation is the most likely outcome. Reduced irradiation is more relevant for older

disks, where fragmentation into low mass objects is most likely as we discuss in the following

section. These studies also suggest that burst-like behavior is probable when GI is coupled with

other modes of angular momentum transport like the MRI. Finally, Kratter et al. (2008), who

explored the evolution of higher mass stars, found that more massive stars often evolve from the

self-luminous global mode regime at early times into the irradiated, massive, and fragmenting regime

at late times. The primary difference is that more massive stars are thought to experience higher

mass infall rates, which more easily exceed the maximum GI accretion rate discussed in Section

3.6.

To summarize, we have shown that protostellar and protoplanetary disks sample several of the

regimes discussed in the previous section. Compact, Class 0 disks (see, for example Rodŕıguez

et al. 2005), can be GI-unstable, self-luminous, and regulated via thermal saturation and mode-

mode coupling. For most other cases, a disk that reaches the threshold for gravitational instability

will have a temperature controlled primarily by stellar irradiation, with short cooling times. Under

these circumstances, the disk will either fragment, or the instability will saturate through mode-

mode coupling, depending on whether or not the infall rate exceeds that which can be processed by

strong global modes. As a result, it is imperative to consider the impact of both stellar irradiation

and infall in characterizing the behavior of these disks.
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5. GI and planet formation

The non-linear phase of GI can lead to fragmentation of the disk into bound objects in orbit

about the primary star. What are these objects? Beginning with Adams et al. (1989), there is

a growing consensus that GI-borne objects are most likely to evolve into either brown-dwarfs or

stellar binary companions around sufficiently massive stars (Kratter & Matzner 2006; Kratter et al.

2010b; Stamatellos & Whitworth 2009b; Zhu et al. 2012; Forgan & Rice 2013). In contrast, Boss

(1997) argued that the direct collapse of clumps from gravitational instabilities can create massive

gas giant planets (see also Durisen et al. 2007 and references therein). More recently, a series of

papers starting with Nayakshin (2010), have proposed that a combination of GI and tidal stripping

can even produce rocky planets. Considering which disks are susceptible to GI and fragmentation

reveals parameters unfavorable to the formation of planets, but favorable to the formation of more

massive wide-orbit companions. In Section 4 we have seen that unstable disks are massive, which

leads to large initial masses for fragments, often undergoing rapid infall, which can enhance the

subsequent growth rates, and experiencing rapid angular momentum transport, which can cause

rapid migration and destruction of marginally bound objects (which are the most likely to be low

in mass in the first place). All of these features favor the formation of objects above the deuterium

burning limit.

The disks best suited to forming lower mass objects are those that are unstable in the absence

of continuing infall. These disks tend be less massive, and are thus colder when Q = 1, which

translates to smaller initial masses, less continued growth, and the possibility of slower migration in

a more laminar disk. While these conditions are much more favorable for forming low mass objects,

the formation of close-in companions < 20au, with low mass < 1MJup, is the exception.

5.1. Initial clump conditions

The mass at which a GI perturbation becomes a bound fragment is the outcome of the non-linear

phase of the instability, and is thus challenging to predict from simple analytic models. Although

numerical simulations are now in principle well enough resolved to answer these questions, the

masses evolve from this initial state quickly, and simulations become poorly resolved on a similar

timescale. It is thus valuable to have analytic estimates with which to compare numerical models.

The simplest approximation is that:

Mf ≈
π

4
Σλ2 = 4MJup

Σ

50gcm−2

(
H/r

0.2

)2(
R

50AU

)−2

(49)

where

λ = 2πH (50)

is the most unstable wavelength for the axisymmetric instability when Q = 1. The factor of 4

comes from assuming that only 1/2 of the unstable wavelength generates the over density. As

noted by Kratter & Murray-Clay (2011), such a fragment would by definition be unbound at the

Σ associated with Q = 1, because the size implied by λ is larger than the Hill radius for the mass

Mf in Equation (49). This is consistent with the instability producing non-linear perturbations.

Many authors have argued for different, order unity factors in front of the dimensionally moti-

vated Σλ2 estimate (e.g. Boley et al. 2010; Forgan & Rice 2011). In Figure 5.1 we illustrate several

different fragment mass estimates, which span an order of magnitude in mass. To compare these

mass estimates we assume a temperature profile:

T = 30K
( r

70au

)−3/7

(51)
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What is a planet?

To determine whether gravitational instability makes planets, one requires a working definition of a planet.

At present, there is no consensus in the community. In this chapter, we use nuclear burning as the dividing

line, although fragmentation is ignorant of this boundary. We also suggest that system architecture be

considered in separating planetary systems from stellar multiples. While planets typical orbit a dominant

central mass (or occassionally a tight binary), higher order stellar systems typically have hierarchical orbits.

which is (conservatively) a ∼ 20% reduction from the fiducial irradiation model of Kratter et al.

(2010b). We set the disk surface density such that Q = 1 at every radius shown. We choose a

critical value of β = 13, (relevant only for the prediction from Forgan & Rice 2011). In addition

to the initial fragment mass estimates, we also show several limiting cases. We plot the canonical

gap opening mass (using α set by the cooling time) and the isolation mass (Lissauer 1987). These

scales are described in more detail in Section 5.1.3. Even the lowest mass estimate predicts initial

fragments above 1MJup for typical disk properties. The estimates of the mass at which fragments

might cease to grow are all well above the deuterium burning limit. Clearly fragments must be

prevented from growing if they are to become planets.

5.1.1. Clump Survival. Regardless of the mass at which clumps are born, they face a variety of

threats to long term survival. These can be categorized as:

1. Dispersal due to interaction with another over density (clump or spiral arm)

2. Tidal shredding due to slow cooling

3. Tidal shredding due to rapid migration

All three of these rely on the balance between contraction due to cooling, which allows the fragment’s

gravity to become ever more dominant, and disruption due to tidal forces from either the star or

another overdensity in the disk.

First consider the cooling rate of a newborn fragment. In Section 3 we discussed the critical

role of the cooling time in determining whether an unstable disk can thermally self-regulate before

the instability becomes non-linear. In modelling clump survival, we must consider the cooling

properties of the clump itself as it separates from the disk and increases in density. Although the

numerical values of the critical cooling time are not wildly different between disk and fragment,

they can in principle be different if there are sharp changes in the equation of state with density.

Moreover, the appropriate radiative cooling timescale for a clump is, in fact, different from that

which governs thermal self-regulation. The former is a comparison of the disk’s thermal energy to

the radiative cooling rate, assuming a vertically isothermal disk. The cooling timescale relevant for

clump survival describes the evolution of a midplane perturbation. The appendix of Kratter et al.

(2010b) works out this timescale as:

tcool =
3γΣc2sτ

32(γ − 1)σT 4
×


(1−B/4)−1, T >> T0

1, T h T0

(52)

where T0 is the temperature set by irradiation alone and κ ∝ TB is the dependence of the opacity

on temperature, typically 0 < B < 2. Comparison with Equation (36) shows that the perturbation

cooling timescale is only different by a factor of a few at most. The cooling rate sets the size of

www.annualreviews.org • GI DISKS 29



20 40 60 80 100 120 140 160
RaGius (au)

100

101

102

103

104

0
as

s 
(M

J
)

BROey 2010
)Rrgan 2011
Gap 2pening
IsROatiRn 0ass

Figure 3

Here we illustrate the range of initial fragment masses with lower and upper bounds set by Boley et al.
(2010) and Forgan & Rice (2011), respectively. We also show estimates for the masses at which accretion

onto the fragment from the background disk might cease: the gap opening mass and the isolation mass.
See text for details about the disk model used for this calculation.

a fragment as a function of time. For typical fragmenting disks, which have β . 10, cooling is

sufficiently fast that fragments initially contract on their free fall timescale (neglecting tidal forces).

The contracting fragment’s radius must be compared with the scale on which tidal forces can

shred it. Naively, one requires that:

rclump < RH =

(
Mclump

3M∗

)1/3

a (53)

where a is the current semi-major axis. Consider the origin of this limit: the Hill radius RH

determines where an object’s self-gravity will dominate over tidal gravity. In the case of a collapsing

fragment, pressure forces may not be negligible, weakening the inward pull of self-gravity. Kratter &

Murray-Clay (2011) find that tidal shredding can occur at radii of order RHill/3 if pressure support is

important. However, even if fragments suddenly slow their cooling, and undergo Kelvin-Helmholtz

contraction rather than free fall collapse, most will contract to < RHill/3 within a dynamical time,

almost guaranteeing survival at a fixed radius.
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Clump interaction. Fragments may also be disrupted due to tidal interaction with other nearby

fragments or spiral arms. Shlosman & Begelman (1989) define a critical cooling time for clumps

to collapse prior to interacting. This is relevant if the disk breaks up into multiple fragments with

separations of order their own size. Since the encounter velocity of two fragments is roughly the

Hill velocity vH =
√
GMclump/RH , fragments cross each others Hill radius in one dynamical time,

implying that fragments must collapse to well within the Hill radius on this very rapid timescale.

This stringent requirement of collapse in one orbital period is unlikely to be necessary in fragmenting

protostellar disks, which have H/r sufficiently large that fragments form relatively far apart (Boley

et al. 2010; Kratter et al. 2010a, though see Stamatellos & Whitworth 2009a).

In addition to interacting with other clumps, clumps may also interact with a passing spiral

wave, since we know these should be present when fragmentation begins. Young & Clarke (2016)

argued that the quasi-regular nature of the spiral patterns in self-gravitating discs (as first charac-

terized by Cossins et al. 2009) should encourage proto-fragment disruption via collisions with spiral

features over many orbital timescales. Their quantification of the intermittency of spiral features

in simulations suggested that ‘stochastic’ fragmentation should not be possible for β > a few ×10.

5.1.2. The physics of clump cooling. We have outlined above some disruption mechanisms and

the critical dimensionless cooling rates. But what determines the cooling rate physically? The

cooling physics is nearly identical to that at the onset of star formation (Larson 1969), though

self-gravitating clumps will generally be optically thick from the start (Rafikov 2005). At low

temperatures, as in the background disk, cooling rates are set primarily by dust opacity. If grain

growth has already commenced in such disks the opacity might be somewhat reduced compared

to the ISM case. As the clump contracts under its own self-gravity, compressional heating causes

the central temperatures and densities to rise. At temperatures above roughly 1200K (Bell & Lin

1994; Semenov et al. 2003), dust sublimation removes the dominant source of opacity, accelerating

cooling somewhat. Once temperatures rise all the way to 2000K, triggering molecular hydrogen

dissociation, rapid collapse ensues toward planetary sizes.

Galvagni et al. (2012) has carried out a careful study of the cooling timescale of clumps including

a complex equation of state. They extract a clump from Boley et al. (2010) (neglecting subsequent

growth, which can affect both the mass and cooling on similar timescales). They include radiative

cooling due to a mixture of atomic and molecular hydrogen, with an opacity appropriate for ISM

grains. They find that clumps that do not have their rotation artificially suppressed collapse to

roughly 40% of their initial radius within 10 dynamical times. The same clump with rotation

suppressed collapses even faster to roughly 15% of the initial radius over 10 dynamical times. This

suggests that the clumps described by these models would satisfy the constraints given above,

predicting survival at fixed radius.

5.1.3. Continued Growth. A detailed treatment of the evolution of clumps based on their initial

mass provides a useful benchmark, but omits the influence of continued accretion from the back-

ground disk. The absolute upper limit is set by the isolation mass, which is the mass that a

secondary potential embedded in the disk can attain by accreting disk material within its own Hill

sphere (Lissauer 1987). The importance of continued accretion following fragment formation is

likely a strong function of initial mass. If the initial mass is very large, it will clear a deep gap

in the surrounding disk, possibly reducing the accretion rate. In contrast, low mass fragments, or

massive fragments in rapidly accreting disks, would remain semi-embedded in the natal disk.

Gaps are opened in a disk when a relatively massive companion produces gravitational torques

which repel material faster than viscosity can replenish it. Using the standard gap opening require-
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ments of Lin & Papaloizou (1986) and Bryden et al. (1999), gaps are opened for mass ratios:

Mclump

M∗
>

(
H

r

)5/2
√

3πα

fg
≈ 4× 10−3

( α

0.1

)1/2( T

20K

)5/4 ( r

70AU

)5/4(M∗
M�

)−5/4

(54)

where fg = 0.23 is a geometric factor derived by Lin & Papaloizou (1993). By comparing Equa-

tion (54), the red line, with the initial mass estimates shown in Figure 5.1, we see that typical

fragments will be near, but below the gap opening mass, and likely able to grow at least this much.

We benchmark our gap-opening estimate with a relatively large value of α as this is typical for

strongly self-gravitating disks.

Gap-opening, which occurs at masses well below the isolation mass, may not entirely starve

growth. Numerous simulations of Type II planet migration and gap opening show that at least

some material does flow across the gap, and enter into circumplanetary disks. Indeed Duffell et al.

(2014) find that the standard Type II migration rates that assume no mass flow are incorrect for

the same reason. Lissauer et al. (2009) found in numerical simulations that gaps roughly 5RH in

width are capable of entirely shutting off accretion. Whether this limit, obtained in much lower

viscosity disks, applies, is uncertain.

5.1.4. Migration of clumps. Even if clumps survive at fixed radius, as discussed above, they are

subject to tidal torqueing by the parent disk. Fragments may initially be just below the gap

opening mass, suggesting that they begin migrating similarly to planets undergoing type I migration.

Baruteau et al. (2011) have confirmed in 2D simulations that the migration of such objects in

gravitationally unstable disks is quite rapid, and that the gap opening criteria is accurate even in

such disks. They find that despite the presence of stochastic outward forcing due to GI, the overall

migration direction is inwards. Similarly, Zhu et al. (2012) find that planets suffer divergent fates

depending on whether or not they open a gap; gap-opening fragments first move in, then stall their

migration, while smaller planets migrate inwards on < 10 dynamical times. This is consistent with

the work of Vorobyov (2013) in terms of migration timescale. The scenarios in which migration is

most likely to stall or even reverse direction are when fragments become massive compared to the

disk out of which they formed. While very interesting for understanding the distribution of brown

dwarf and stellar binary companions (Kratter et al. 2010a), these are not relevant to the question

of giant planet formation.

5.1.5. Long timescale disruption: Tidal downsizing. As noted at the start of this section, a second

GI planet formation paradigm has arisen in the last few years wherein an initially massive fragment

becomes enriched in solids and migrates inwards until its Hill Radius shrinks below the fragment

radius. The envelope of the fragment is completely or partially stripped, leaving behind a low

mass, rocky core with or without an atmosphere (Nayakshin 2010; Boley et al. 2011). Successive

refinements of this model include the effect of radiative feedback (Nayakshin & Cha 2013), heavy

element sedimentation (Nayakshin et al. 2014), and late stage metal enrichment (Nayakshin 2015)3.

One significant concern with these models is the attempt to disentangle the initial disk conditions

from the clump evolution. While very sensible from a modeling perspective, this can have an outsize

impact on the conclusions. For example Nayakshin & Cha (2013) use artificially inserted fragments

in a non-fragmenting disk as the initial conditions, which does not adequately capture the resultant

disk-fragment interactions. Similarly, Nayakshin et al. (2014) neglect accretion from the disk onto

3In Nayakshin (2015), the neglect of heating due to the addition of solids is likely responsible for their
counterintuitive finding that planetesimal accretion accelerates core collapse, which contradicts most previ-
ous work in the area (Pollack et al. 1996; Rafikov 2011)
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the fragment, which might fundamentally change the conclusions. These issues aside, we show in

the following section that populations synthesis models of this process produce objects which are

inconsistent with the rocky planet population known thus far.

5.2. Comparison with Observed Population

What, if any, insight can be gained from looking at the known population of planets and low

mass companions? The GI model makes some predictions for the populations. The two simplest

predictions come directly from the required initial conditions for clump formation: more massive

stars seem more prone to developing gravitational instabilities and when clumps survive, they are

prone to growing beyond the deuterium burning limit. Forgan & Rice (2013) have carried out

the most extensive population synthesis calculations to date, including a range of initial masses,

accretion of solids, migration, and tidal disruption. Notably, this work excludes any gas accretion

after the initial clump is formed, meaning that their final masses are a lower limit (and much of

the evolution might change if mass growth occurred early). They find that roughly half of the

initially formed clumps are totally destroyed, and 90% of the remaining objects are above the

Deuterium burning limit for a wide variety of initial models. A strong prediction of these models

is that GI mostly makes BDs or more massive objects when it occurs, and even if tidal truncation

/ downsizing can in principal produce some rocky cores, it is a finely tuned part of the parameter

space and unlikely to be responsible for the bulk of observed rocky planets.

In Figure 4, we illustrate the population of low mass companions as compiled by the exoplan-

ets.eu catalog. This catalog includes companions up to 30MJup. We show companions as a function

of mass ratio, rather than measured mass, as this has more relevance to the question of GI. Note

that most of the Kepler planets are excluded from this diagram as their masses are unknown. Based

on their periods and radii, they primarily occupy the region within 1AU of the host star and below

10−5 in mass ratio. GI is most likely to produce the objects at 10s of au above mass ratios of

10−2.5. In order for GI to account for more of the “normal” planet population this outer region

would likely be more populated than allowed for by current observational limits (Forgan & Rice

2013).

On the opposite end of the mass spectrum, is their observational evidence for GI as a mechanism

for BD and binary formation? Yes and no. On the one hand, the propensity of massive stars to

binary formation via disk fragmentation is generally consistent with the abundance of binaries

around more massive stars (Raghavan et al. 2010; Sana & Evans 2010). On the contrary, Kraus

et al. (2011) find that for young stars in Taurus, the lower mass objects M∗ < 0.7M� typically

have companions with smaller separations consistent with disk fragmentation (< 100AU ,) whereas

stars with 0.7M� < M∗ < 2.5M� have more companions at larger separations. Recent work on

Class 0 and I binaries now finds evidence for a bimodal distribution of separations, characteristic

of a disk and core mode of fragmentation (Tobin et al. 2016). Dupuy & Liu (2011) found that the

orbital distribution of BD binaries was inconsistent with ejection in pairs from fragmenting disks

as predicted by Stamatellos & Whitworth (2009a). As of this writing there is not a complete model

for binary formation from cores and disks. Bate (2012) provides the largest statistical sample of

simulated binary formation, which matches well with observations of the field. Unfortunately the

disk fragmentation process is not sufficiently well resolved in these calculations to attribute parts

of the binary distribution to one mechanism.

5.3. Role of GI in the core accretion model for planet formation

GI may have an entirely separate means of kickstarting the planet formation process: by concen-

trating grains in spiral arms. Protoplanetary disks can be well-modelled as two fluids: gas and
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The distribution of planetary and other low mass companions from Exoplanets.eu as a function of mass

ratio versus semi-major axis. All objects are shown in green, those above the deuterium burning limit are

demarcated by red dots, those with more massive primaries are shown in yellow, while those with M-star
hosts are green

solids. As noted in Section 3, while the gas feels pressure forces, which counteract gravity and

slow orbital velocities, solids act as a pressureless fluid. The relative velocities between the two

fluids generates drag, which is a function of particle size. This drag force results in slow radial drift

of particles towards pressure maxima (Whipple 1972; Adachi et al. 1976; Weidenschilling 1977).

We neglect in this review the separate physics of self-gravity of solid layer in protoplanetary disks

(Goldreich & Ward 1973; Weidenschilling 1980), or self-gravity of planetesimals concentrated by

the streaming instability (Youdin & Goodman 2005).

Spiral arms in a self-gravitating disk are an excellent candidate for producing pressure maxima

that can enhance particle growth, much like MRI turbulence for the Streaming Instability (Johansen

et al. 2009). Rice et al. (2004) using 3D, global SPH simulations of gas and dust coupled via drag

with a simple algorithm first demonstrated numerically that these traps work effectively in self-

gravitating disks. Later, Rice et al. (2006), including the dust self-gravity, showed that the dust

sub-structure induced by the traps can become self-gravitating itself, and lead to a rapid formation

of large mass rocky cores. The actual mass of these cores is related to the Jeans mass of the

dust substructure, which in turn depends on the velocity dispersion induced by the gas flow in the

particle distribution. Whether the velocity dispersion measured in such simulations (typically of
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the order of the sound speed) is physical or affected by numerics is still to be fully understood (see

Booth et al. 2015).

Clarke & Lodato (2009) have raised the concern that this effect might require the cooling

timescale in the disc to be relatively small based on the magnitude of the radial velocity induced by

an overdensity of a given size. This would confine the effect to the outer regions of the disk. However,

Gibbons et al. (2012), using 2D grid based simulations conclude that significant clumping occurs

even for tcool ≈ 40Ω−1, much above the fragmentation boundary. The particles with stopping times

τs of order unity will typically be 1-10cm in size for the densities associated with self-gravitating

disks at radii of 10-100AU. Gibbons et al. (2014) also consider the self-gravity of the particles and

their back reaction on the gas. Again, similar to the Streaming Instability (Youdin & Goodman

2005), they find that particle concentrations in spiral arms can become high enough to become

self-gravitating and collapse directly into large planetesimals.

A global view of particle clumping due to GI with an appropriate size distribution for the dust

would be required to fully characterize the effect that GI might have in the core accretion model.

This requires the use of an accurate and versatile algorithm for simulating the coupled dust and

gas dynamics (Laibe & Price 2012, 2014; Price & Laibe 2015).

Another issue to be fully understood is the fate of the rocky cores or planetesimals formed

in a self-gravitating disk as described above. Generally, the mass of the rocky objects formed by

particle concentrations within spiral arms is not expected to be high enough to directly trigger

core accretion and significant further growth is required. However, such growth is significantly

hampered during the self-gravitating disk phase, where the gas structure (even in the absence of

drag) induces gravitational potential fluctuations that pump the eccentricity of the planetesimal

swarm up to very high values, thus inhibiting significant growth (Britsch et al. 2008). Such an early

population of planetesimals can thus produce large rocky cores only if they are retained in the disk

long enough that the disk has become GI stable (Walmswell et al. 2013).

6. Conclusions and Outlook

In this review, we have provided a broad overview of the physical nature of GI, illustrating the

variety of ways in which the instability manifests itself. It is first and foremost an angular mo-

mentum transport mechanism, and under some circumstances it may cause disk fragmentation,

which can lead to the formation of secondary companions. We demonstrate that protostellar disks

around low mass stars may be prone to a self-regulated form of the instability at early times, if their

mass ratios are high. At later times and larger radii, disk are irradiation dominated and prone to

fragmentation if unstable. The resultant fragments are unlikely to be below the deuterium burning

limit. Protoplanetary disks are not expected to be unstable based on current observations. Disks

around more massive stars are more likely prone to both instability and fragmentation because

rapid infall drives the disks to higher masses.

There are a handful of theoretical issues that remain unresolved. The first set of open questions

relate to saturation via mode coupling. Can mode coupling operate in tandem with thermal reg-

ulation? Under what circumstance does mode-mode coupling dominate over thermal regulation?

Is there a critical disk-star mass ratio at which a transition occurs? How is the maximum mode

amplitude set? Does mode coupling change under rapid infall? Since this form of saturation may

dominate in protostellar disks, a detailed understanding of the mechanism is warranted. The second

set of open questions relates to the critical cooling time, the nature of so-called gravito-turbulence,

and stochastic fragmentation. Does GI produce a turbulent energy cascade and power spectrum

akin to isotropic turbulence in the ISM? Or is gravito-turbulence observed in simulations the high

resolution manifestation of small-m spiral mode growth? If GI does lead to turbulence, then the
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stochastic fragmentation at a range of cooling times is viable. If, on the other hand, the instability

does not produce rare, high amplitude density perturbations, there should be a concrete value of

the cooling time at which self-regulated disks transition to fragmentation

On the observational front, much progress has been made in recent years, and ALMA is poised

to make significant breakthroughs as all dishes come online. Protostellar disks are now being imaged

with high enough resolution to reveal their internal structure and morphology with unprecedented

details. As mentioned above, in several cases a prominent spiral structure can be observed (for

example, in the NIR scattered light images of MWC 758, Benisty et al. 2015). Several papers have

anticipated the exceptional ability of ALMA to detect spiral structures induced by GI both through

molecular line emission (Krumholz et al. 2007) and through dust emission (Cossins et al. 2010b;

Dipierro et al. 2014). It will be possible to distinguish the large scale, open spirals expected in

massive disks (Krumholz et al. 2007) from the more tightly wound spirals expected in the low mass

case (Dipierro et al. 2014). ALMA might even be able to detect the spatial changes in opacity due

to dust trapping in spiral arms (Dipierro et al. 2015).

SUMMARY POINTS

1. Gravitational Instability provides efficient angular momentum transport in relatively mas-

sive protostellar disks. Evidence of this phase observationally remains sparse, but is likely

to improve in the coming years with more ALMA data.

2. Based on the models presented in this review, we find that protostellar disks which achieve

Q ∼ 1 often have large disk-star mass ratios and temperatures controlled by stellar irradi-

ation. In this regime, Q evolves due to changes in Σ rather than T , and therefore infall is

the dominant driver of instability.

3. When fragmentation does occur, BD or stellar companion formation is more likely than

planet formation. Evidence that the instability ever forms planets is currently lacking. Un-

certainties in the fragmentation boundary observed in numerical simulations have minimal

impact on the likelihood of planet formation via this mechanism.

FUTURE ISSUES

1. Demonstration of the relevance of the instability to realistic disks requires high resolution,

high sensitivity observations with ALMA coupled with sophisticated molecular line and

radiative transfer models that can more reliably ascertain disk masses.

2. In protostellar disks, perhaps the main channel by which gravitational instability saturates

– mode-mode coupling – remains poorly understood and should be the subject of future

investigation.

3. Gravito-turbulence has not convincingly been shown to behave like turbulence with a multi-

scale power spectrum and energy cascade. The extent to which gravito-turbulence exhibits

these characteristics is intimately tied to the issue of a critical cooling time and stochastic

fragmentation. Stochastic fragmentation requires a very well sampled PDF, which may or

may not occur in realistic disks.
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