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ABSTRACT 

1a,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is reported to mediate a variety of antitumor 

activities like controlling cellular differentiation, proliferation and angiogenesis. Moreover, it 

is well established that it plays an important role in immunomodulation. Most of its 

biological effects are exerted via its nuclear receptor which acts as a transcriptional regulator. 

Here, we carried out a genome-wide investigation of the primary transcriptional targets of 

1α,25(OH)2D3 in breast epithelial cells using RNA-Seq and ChIP-Seq. We identified targets 

involved in adhesion, growth regulation, angiogenesis, actin cytoskeleton regulation, hexose 

transport, inflammation and immunomodulation, apoptosis, endocytosis and signaling. 

Furthermore, we found several transcription factors to be regulated by 1α,25(OH)2D3 that 

subsequently amplify and diversify the transcriptional output driven by 1α,25(OH)2D3 

leading finally to a growth arrest of the cells.  

 

INTRODUCTION 

1α,25(OH)2D3 which is the most active product of vitamin D synthesis, is well known to be 

the main regulator of calcium homeostasis and is therefore critical in bone mineralization [1]. 

However, recent results revealed a broad spectrum of activities beyond vitamin D’s calcemic 

effects. Epidemiological studies indicate that vitamin D insufficiency could have an 

etiological role in various human cancers. Preclinical research indicates that 1α,25(OH)2D3, 

also known as calcitriol, or vitamin D analogues might have potential as anticancer agents 

because their administration has anti-proliferative effects, can activate apoptotic pathways 

and inhibit angiogenesis. Indeed, altered expression and function of proteins crucial in 

vitamin D synthesis and catabolism have been observed in many tumor types. Several 

epidemiological observations have shown an association between low serum 25(OH)D3 
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levels and increased risk for colorectal, breast and prostate cancers [2, 3]. In addition, the risk 

for breast cancer recurrence, and mortality in women with early-stage breast cancer was 

shown to be inversely correlated with low serum 25-hydroxyvitamin D levels [4]. However, 

clinical studies using vitamin D as chemopreventive agent are still controversial [5-7]. 

Further trials using an optimal dose range of vitamin D are needed to assess the preventive 

and therapeutic effect of vitamin D in breast cancer development.  

The majority of the biological effects of 1a,25-dihydroxyvitamin D3 are exerted through its 

cognate nuclear receptor, the vitamin D receptor (VDR). VDR is a member of the nuclear 

receptor superfamily which in most cases heterodimerises on its DNA response element with 

another nuclear receptor superfamily member, the retinoic X receptor (RXR). Upon ligand 

binding VDR is able to activate or repress the transcription of its target genes depending on 

the type of response element (RE) [8]. In addition to the classical genomic pathway involving 

intracellular receptors there are also evidences for rapid, nongenomic effects of 

1α,25(OH)2D3 via signaling cascades [9].  

Interestingly, recent results showed an intense interplay between VDR and the tumor 

suppressor protein p53. All p53 family members are able to upregulate the VDR expression 

whose level is crucial for a therapeutic response to 1α,25(OH)2D3. In contrast, mutant 

His175 p53 can modulate differentially subsets of VDR target genes, inhibiting thereby 

apoptosis and turning 1α,25(OH)2D3 into a cytoprotective agent [10].  

In order to determine the molecular genetic events underlying the broad physiological 

activities of 1α,25(OH)2D3 we performed differential expression profiling. In particular, we 

were interested to investigate the global transcriptional signature of 1a,25-dihydroxyvitamin 

D3 in breast cancer cells with a mutant p53 background. Therefore, we used SKBr3 breast 

epithelial cells that are inhibited in their growth after prolonged treatment with 

1α,25(OH)2D3 although they are harboring endogenously mutant p53R175H. We conducted 

Commentato [u1]: What kind of mutation is this one? Can it be 
representative of other mutations? In other words can we 
generalize the finding also to other p53 mutations? 
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RNA-Seq and ChIP-Seq experiments for trimethylated H3K4 (H3K4me3). Trimethylation in 

histone H3 lysine 4 is a mark of genes transcriptionally active, located in the promoter region.  

Thus, we studied genome-wide the early effects of 1a,25(OH)2D3 on transcription and 

H3K4me3 histone modification.  

 

RESULTS 

To discover genome-wide genes differentially regulated after 1a,25(OH)2D3 treatment, we 

performed RNA-Seq analysis. We conducted early time point studies to focus on the primary 

VDR targets. Therefore, we treated breast epithelial SKBr3 cells for 3h and 6h with 100nM 

1a,25-dihydroxyvitamin D3, respectively or with vehicle alone. We extracted total RNAs, 

and validated them with known target genes. After the generation of cDNA libraries we 

tested whether the libraries reflect the initial RNA (Figure 1) and subjected them 

subsequently to Illumina DNA sequencing. The RNA-Seq data included 28 million total 

reads for the vehicle treated cells (2.8Gb), 30 and 29 million reads for the 3 and 6hrs treated 

samples (3Gb and 2.9Gb, respectively). Of the total number of reads, 58-59% was 

successfully mapped to known mRNA genes, 3% to annotated ncRNAs. We detected 13898-

13971 transcripts out of 18748 genes annotated in RefSeq (13898 transcripts in vehicle 

treated, 13944 transcripts in cells treated for 3h with 1α,25(OH)2D3 , and 13971 transcripts 

in cells treated for 6h with 1α,25(OH)2D3 ).  

After 3hrs of 1a,25-dihydroxyvitamin D3 treatment we found 111 genes to be differentially 

regulated, 88 genes were significantly upregulated and 23 downregulated (Table 1) with 

respect to the control. After 6h the number of regulated genes increased to 318 (Table 2) with 

241 genes being upregulated and 77 genes downregulated. Therefore, the majority of the 

differentially regulated genes were upregulated in agreement with previous reports [17, 18]. 
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Furthermore, we investigated the genomic distribution of histone H3 trimethylated at lysine 

4, a mark for active promoters, before and after 1a,25-dihydroxyvitamin D3 treatment [19-

21]. We performed ChIP-Seq experiments after 2h of 1α,25(OH)2D3 treatment or vehicle as 

control to precede the subsequent accumulation of mRNA. Globally the profiles of 

trimethylated H3K4 are not changing between 1a,25(OH)2D3 treated or vehicle treated cells 

(Figure 2). Trimethylated H3K4 is enriched around the Transcriptional Start Sites (TSS) of 

genes, displaying a smaller pre-TSS and a larger post-TSS peak. A significant drop of 

trimethylated H3K4 near the TSS is typically for a nucleosome depletion of active 

transcribed genes [22, 23]. Instead, a subset of genes whose expression was upregulated after 

1α,25(OH)2D3 treatment, show already after 2h of treatment a significant increase in 

trimethylated H3K4 at their transcriptional start site (Figure 3). CYP24A1, a well-known 

direct VDR target gene that is responsible for the metabolization of 1α,25(OH)2D3 into a less 

active form, is after 3h already 581-fold upregulated which augments after 6h to 2221-fold. 

84 of the upregulated genes after 3hrs were also found to be upregulated after 6h (Figure 4). 

Interestingly, Pscan, a software tool that determines if in a subset of co-regulated genes 

transcription factor binding sites are over-represented [14] shows the RXRA::VDR motif 

only in the upregulated gene fraction to be significantly over-represented (Figure 5A). In the 

genes upregulated after 3h of 1α,25(OH)2D3 treatment we found an enrichment of genes 

involved in the insulin signaling pathway such as FOS, SLC2A4 and INSR. After 6h we 

identified also the ETS pathway (FOS, ETS2, NCOR2, CSF1R), the CD40 (DUSP1, IKBKG, 

NFKBIA) and the TNFR2 pathway (DUSP1, IKBKG, NFKBIA) to be significantly 

overrepresented (Figure 6). Looking at the KEGG pathways we found the ErbB signaling 

pathway to be enriched in the genes upregulated after 3hrs of 1α,25(OH)2D3 treatment 

(CDKN1A, HBEGF, AREG) (Figure 7). p21 (CDKN1A) is a well-known direct VDR target 

that is upregulated in SKBr3 cells and might be one of the factors mediating the cell cycle 

arrest occurring in SKBr3 cells after vitamin D treatment [24-26]. Amphiregulin (AREG) 
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displays another gene previously identified as a 1α,25(OH)2D3 target upregulated in HNSCC 

cells [27, 28]. As mentioned before 1a,25-dihydroxyvitamin D3 is thought to play an 

important role in breast cancer onset and prevention and it was shown to have an 

antiproliferative effect in SKBr3 cells [24]. In accordance with this we identified the KEGG 

pathway “Pathways in cancer” to be enriched after 6h of vitamin D exposure. 15 genes fall 

into this category, 4 of these are already differentially regulated after 3h of treatment (Figure 

8). The majority of these genes is upregulated like FOS, CDKN1A, RASSF5, CASP3, 

PPARD, IKBKG, NFKBIA, CSF3R, EGLN2, TRAF4, CSF1R, while only 4 are 

downregulated (ITGA6, KITLG, CDK6, DAPK1). FOS, CDKN1A, PPARD and TRAF4 

were already after 3h significantly upregulated. Another interesting functional group enriched 

by vitamin D was “cell adhesion molecules (CAM)”, which is composed of genes that were 

found to be differentially regulated after 6h, therefore representing the early but not 

immediate early group of responding genes. Among those were integrins like ITGAL, CDH5 

and ITGA6 and syndecans like SDC1 and SDC3. Also genes involved in actin cytoskeleton 

regulation like VAV3, ARHGEF6, IQGAP2, PDGFC, BDKRB1, BDKRB2, SLC9A1, and 

phospholipase C epsilon (PLCE) are regulated by 1α,25(OH)2D3. Gene ontology analysis 

using the biological function modus reveals the differential expression of several genes 

involved in metabolic processes like phosphate metabolic process, steroid metabolic process, 

nucleic acid metabolic, and hexose transport, process like SLC2A10, SLC2A4, EDN1, 

STXBP4 and PPARD that are involved in the glucose metabolism (Figure 9). Another 

functional category enriched after 1α,25(OH)2D3 treatment included genes associated with 

regulation of apoptosis and proliferation such as the pro-apoptotic CASP3 and anti-apoptotic 

SERPINB9 which were both upregulated. SERPINB9 was also shown to be upregulated in 

normal mammary associated fibroblasts after 1α,25(OH)2D3 treatment [29]. Cyclin 

dependent kinase 6 (CDK6), cyclin G2 (CCNG2) and growth factors like KITLG and 

PDGFC were downregulated by 1α,25(OH)2D3. On the other hand we found also growth 
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factors like HBEGF, EPGN and AREG to be upregulated. We also observed modulation of 

several genes associated with the immune system like cytokines (CLCF1, IL12A) or cytokine 

binding proteins (IL1RL1, PRLR, IL4R, CX3CR1, CSF3R, and CSF1R), all being 

upregulated after vitamin D exposure. The list of regulated genes contains a number of 

previously identified primary VDR targets like the insulin-like growth factor-binding protein 

3 IGFBP3 [30], the intestinal calcium ion channel gene TRPV6 [31], semaphorin 3B 

(SEMA3B) [32], the inhibitor of NF-κB signaling NFKBIA [29, 33-35], SLC4A7, the dual 

specificity protein phosphatase 1 DUSP1 [29], and B-cell lymphoma 6 protein BCL6 [28]. 

Gene ontology analysis revealed furthermore a role of vitamin D in the regulation of 

signaling cascades. Several genes involved in small GTPase mediated signaling transduction 

were upregulated (RAB43, RAB37, ARFRP1, RAB4B, RIN2, IQGAP2, RHOC, RAB20, 

RASD2) or vice versa downregulated (ARHGEF3, PLCE1, VAV3, RGL3, ABCA1, 

RAB27B). Another functional category and pathway identified to be enriched after 

1α,25(OH)2D3 treatment was endocytosis. Most genes participating in this function were 

upregulated (ADRB2, NPC1, MYO7A, STXBP1, RIN2, MERTK, BIN1, RIN3, VLDLR), 

while DLG4 and ABCA1were downregulated.  

Among the primary vitamin D targets are also various proteins known to regulate 

transcription. They are of particular interest because they will subsequently initiate a whole 

cascade of transcriptional changes leading to a broad change in transcription contributing as 

secondary effectors to the anti-proliferative action of 1α,25(OH)2D3. Krueppel like factor 

KLF4, a repressing transcription factor, is already after 3h of vitamin D treatment 

downregulated. The special AT-rich sequence-binding protein-1 SATB1 makes part of the 

early but not immediate early responding genes, being downregulated after 6h. Instead, 

Homeobox protein TGIF1 and T-cell leukemia homeobox 1 (TLX1) are upregulated after 3h 

and 6h of 1α,25(OH)2D3 treatment, respectively. B-cell lymphoma 6 protein BCL6 is already 
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after 3h 2-fold upregulated, while ID4 is only after 6h of 1α,25(OH)2D3 treatment 

significantly downregulated. Interstingly, analyzing the differentially regulated transcripts 

with Pscan reveals a strong over-representation of the Klf4 motif in the genes upregulated by 

vitamin D (Figure 5B).  

 

DISCUSSION 

1a,25-dihydroxyvitamin D3 exerts several anti-carcinogenic effects on breast cancer cells 

including: induction of growth arrest, apoptosis and inhibition of angiogenesis. Most of its 

actions are mediated via its receptor, the vitamin D receptor, and the genomic pathway. To 

identify the primary targets of 1α,25(OH)2D3 in breast cancer cells we performed differential 

expression analysis treating breast epithelial cancer cells SKBr3 for short periods, 3h and 6h, 

which is a time frame well suited for the detection of primary targets [36]. The RNA-Seq 

technology used herein permitted us to detect all possible transcripts in an unbiased manner. 

Furthermore we conducted ChIP-Seq experiments for trimethylated lysine 4 of histone H3. 

Trimethylated H3K4 is a mark for active transcription. . Most of the 88 genes being 

upregulated after 3h of 1α,25(OH)2D3 treatment 23 showed after 2h an increase in H3K4me3 

occupancy.  VDR was shown to bind to a subset of genes also in the absence of ligand, 

recruiting co-repressors and chromatin modifying enzymes such as histone deacetylases 

(HDACs). Upon binding of 1α,25(OH)2D3, the conformation of the receptor changes and 

favors the binding of co-activators that have histone acetylase activity or are complexed with 

proteins harboring such activity [37, 38]. Here we show that 1α,25(OH)2D3 leads to an 

increase of trimethylated H3K4 in a subset of promotors of early upregulated genes. VDR 

was shown to interact with Menin which co-activates VDR in the presence of the ligand 

1α,25(OH)2D3. Menin is part of complexes (MLL1 and MLL2) that possesses histone 
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methyltransferase activity directed at lysine 4 of histone H3, especially trimethylation [39, 

40]. Therefore, activated VDR might recruit histone methyltransferases to the promoters of 

its target genes leading to an increase of trimethylated H3K4.  

After 3h of 1α,25(OH)2D3 treatment we detected a strong upregulation of the catabolic 

enzyme 24-hydroxylase (CYP24A1) which is responsible for the hydroxylation of 

1α,25(OH)2D3 to 1,24,25-trihydroxyvitamin D3 and therefore the inactivation of calcitriol. It 

is often overexpressed in malignant cells [41] and its expression is independently prognostic 

of poor survival [42, 43]. Likewise, in breast cancer it is often upregulated [44]. The strong 

upregulation that we detected is therefore a typical feature of cancer cells, limiting to a 

certain extent the antiproliferative action of 1α,25(OH)2D3. The software tool Pscan, that 

scans a set of sequences (e.g. promoters) from co-regulated genes searching for transcription 

factor binding motifs significantly over- or under-represented [14] revealed the VDRE motif 

in the upregulated but not in the downregulated set of genes to be significantly enriched. So 

far, there are only a few genes characterized that are directly repressed by the ligand bound 

vitamin D receptor. The PTH and the CYP27B1 genes are reported to contain an E-box like 

motif distinct from the classical DR3 type response element. In the absence of 1α,25(OH)2D3 

it is bound by the VDR-interacting repressor (VDIR) and co-activators. Upon ligand binding 

VDR interacts with VDIR, releases the coactivators and recruits corepressors to the target 

genes. In line with this, we did not find an over-representation of the VDR motif in the 

downregulated genes. The enrichment of the VDR motif in the upregulated genes is rather 

modest probably due to the fact that many VDREs are very distant from the promoter and 

Pscan considers only the nearby promoter regions -950 until +50bp [17, 45]. A number of 

genes that were regulated by vitamin D in SKBr3 cells participate in the category of immune 

response like cytokines and cytokine receptors. The interaction of vitamin D with the immune 

system has been recognized since many years. It is involved in the immune responses to 
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infection and aberrant inflammatory responses associated with autoimmune disease [46, 47]. 

Recent data shows that inflammation is a critical part of carcinogenesis in the colon, liver, 

and stomach [48] and it has been proposed to be a part of the etiology of prostate cancer [49]. 

In this light, the immune system becomes an important cell target for limiting cancer. One of 

the cytokines upregulated by 1α,25(OH)2D3 was IL12A. Il12A is one of the two subunits of 

interleukin 12 which is described to possess antitumor activity and to be currently used in 

several clinical trials [50, 51]. The IL1RL1 or T1/ST2 receptor that was upregulated in our 

cell system but also in squamous carcinoma cells after vitamin D treatment, is linked to 

apoptosis and suppression of anchorage-independent growth and malignancy [52-54].  

Treatment of SKBr3 cells with 1a,25-dihydroxyvitamin D3 leads to a cell cycle arrest [24]. 

The downregulation of several growth factors and the upregulation of the IGF binding protein 

3 (IGFBP3) could be one of the mechanisms of vitamin D action to limit the cell growth. 

IGFBP3, which is released into the medium, binds to IGF1 and 2 that in turn are not able to 

bind to their corresponding receptors and stimulate proliferation [55]. SATB1, a genome 

organizer protein, is downregulated in SKBr3 cells after 1α,25(OH)2D3 treatment. In 

previous studies it was shown to be a transcription factor that regulates more than 1000 genes 

related to cellular growth and metastasis and its overexpression in SKBr3 cells leads to a 

more aggressive phenotype promoting growth and metastasis. Furthermore, its expression in 

breast cancer is inversely correlated with prognosis [56]. Instead, bradykinin receptor B1 

(BDKRB1) was upregulated by 1α,25(OH)2D3 and was previously shown to correlate with 

good prognosis in woman with estrogen receptor (ER)-negative breast tumors [57]. Among 

the differentially regulated genes after 1α,25(OH)2D3 treatment were several that are 

involved in endocytosis. Defective endocytosis is one of the hallmarks of cancer, leading to 

an aberrant disassembly of signaling and adhesion complexes [58]. Stambolsky et al. 

discovered recently that mutant p53 protein physically interacts and cooperates with the 



 

10 
 

vitamin D receptor. It increases its nuclear localization and modulates the transcriptional 

response of ligand bound VDR [10]. Furthermore, this interaction is transforming vitamin D 

into an antiapoptotic agent. Nevertheless, SKBr3 cells, that harbor mutant p53, stop growing 

after prolonged treatment with 1a,25-dihydroxyvitamin D3. Therefore, it is able to bypass the 

gain of function mutant p53 activity. The expression of ID4 is positively controlled by mutant 

p53R175H which in turn stabilizes pro-angiogenic factors IL-8 and GRO-α increasing hereby 

the angiogenic potential of cancer cells [59]. Incubation with 1a,25-dihydroxyvitamin D3 

instead leads to a significant downregulation of ID4 after 6h. Kruppel-like factor 4 (KLF4) is 

a key transcriptional regulator of cell differentiation and proliferation and an altered 

expression of KLF4 has been reported in a number of human malignancies. In breast tumor it 

was found to be frequently upregulated and a prognostic factor and marker of a more 

aggressive phenotype [60, 61]. Recent studies showed that KLF4 is one of the factors that 

reprogram differentiated cells to iPS and that its expression is upregulated by mutant gain of 

function p53 [62, 63]. Therefore, vitamin D is able to counteract two important mediators of 

the gain of function p53 protein, ID4 and Klf4. In our study we identified several VDR target 

genes that might confer the antiproliferative capacity of 1a,25-dihydroxyvitamin D3. Among 

those the transcriptional regulators SATB1 and Klf4 are of special interest because they could 

initiate a whole cascade of transcriptional events leading finally to the activation of a growth 

inhibitory program. Pscan revealed o strong over-representation of the Klf4 binding motiv in 

the upregulated genes in line with the downregulation of this transcriptional repressor. 

Further analysis will elucidate their crucial role in mediating the antitumor capacity of 1a,25-

dihydroxyvitamin D3 and their involvement in the evasion of the gain of function mutant p53 

activity.  
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MATERIALS AND METHODS 

Cell culture. SKBr3 breast cancer cells were cultured in DMEM supplemented with 10% 

heat-inactivated FBS, 2mM L-glutamine and Pen/Strep. The cells were treated for 3 or 6hrs 

for the RNA-Seq, and 2h for the ChIP-Seq with 100nM 1a,25-dihydroxyvitamin D3 or 

vehicle as control.  

Quantitative PCR. Quantitative PCR was carried out with SYBR green PCR Master Mix, 

gene specific primers and the StepOne Real Time (Applied Biosystems). Oligonucleotides 

employed in this study were: CYP24A1-F GAAAGAATTGTATGCTGCTGTCACA, 

CYP24R GGGATTACGGGATAAATTGTAGAGAA, CDKN1A-F 

CTGGAGACTCTCAGGGTCGAA, CDKN1A-R GCGGATTAGGGCTTCCTCTT and 

RPL19-F CGGAAGGGCAGGCACAT, RPL19-R GGCGCAAAATCCTCATTCTC for 

normalization.  

RNA-Seq. Total RNA from exponentially growing SKBr3 cells was isolated using 

miRNeasy (Qiagen, Valencia, CA, USA). Induction of canonical VDR target gene expression 

was confirmed by qPCR, and RNA quality was verified using an Agilent Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA; RNA 6000 Nano kit). All RNAs used for 

subsequent library preparation had an RNA integrity number greater than 9.0. RNA libraries 

for sequencing were generated according to the standard Illumina TruSeq RNA sample 

preparation protocol using 2µg total RNA as starting material. The resulting library was 

controlled qualitatively with the High Sensitivity DNA Kit (Agilent Technologies, Santa 

Clara, CA, USA) and quantitatively with real-time analysis employing a SYBR Green 

quantitative PCR (qPCR) protocol with specific primers complementary to adapter 

sequences. Therefore, only the adapter-ligated fragments that are appropriate for sequencing 

will be quantified. Based on the qPCR quantification, libraries were normalized to 1 nM and 

denatured by using 0.1 N NaOH. Cluster amplification of denatured templates was carried 
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out according to manufacturer protocol (Illumina, Inc., San Diego, CA, USA). Sequencing 

was performed on a Genome Analyzer IIx (Illumina) in paired-end mode, sequencing from 

each side 51 bp.  

ChIP-Seq. Chromatin immunoprecipitation was performed as described earlier [11] with 

minor changes. Cells were cross-linked for 10 min with 1% formaldehyde. The fixation was 

stopped by adding 0.125M glycine for 5 min to the cells. Nuclei were prepared by incubation 

with 5 mM Pipes (pH 8.0), 85 mM KCl, 0.5% NP40 plus protease inhibitors. Subsequently, 

the nuclei are resupended and lysed in 1% SDS, 10 mM EDTA, 50 mMTris-HCl (pH 8.0). 

The resulting chromatin was fragmented to a size range of 100-350bp by sonication. The 

chromatin was diluted 1:10 with 0.01% SDS, 1.2 mM EDTA, 16.7 mM Tris, 1.1% Triton X-

100 and 167 mM NaCl. Protein G Dynabeads (Invitrogen, Carlsbad, CA) were washed with 

PBS/BSA [5mg/ml] and incubated over night at 4°C with the following antibodies: 5 µg 

histone H3 tri methyl K4 (Abcam, ab1012) or no antibody as negative control. The following 

day the beads were washed, resuspended in 100µl PBS/BSA[5mg/ml] and incubated with the 

chromatin over night at 4°C. After several washing steps with buffer A [0.1% SDS, 2 mM 

EDTA pH 8, 20 mM Tris-HCl pH 8, 1% Triton X-100 and 150 mM NaCl], buffer B [0.1% 

SDS, 2 mM EDTA pH 8, 20 mM Tris-HCl pH 8, 1% Triton X-100 and 500 mM NaCl] and 

TE, the immune-bound chromatin was eluted by 100 mM NaHCO3 and 1% SDS. Cross-

linking was reversed by addition of NaCl to a final concentration 200 mM, RNA was 

removed by 10 µg of RNase A and subsequent incubation at 65°C overnight. Proteins were 

digested by adding EDTA pH 8 and Tris-HCl pH 6.5 to a final concentration of 10 mM and 

40 mM, respectively and 20 µg proteinase K. The samples were incubated at 42°C for 2h. 

The DNA is recovered by phenol/chloroform purification using Phase Lock Gel (Eppendorf) 

and ethanol precipitation. The quantity of the immunoprecipitated material was determined 

by PicoGreen (Invitrogen, Carlsbad, CA).  
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10ng of the immunoprecipitated chromatin was used to prepare the libraries for sequencing 

following the manufacturer’s instructions including DNA end repairing, adaptor ligation, and 

amplification. Fragments of about 100-180 bp (without linkers) were isolated from agarose 

gel and used for sequencing using the Illumina GA IIx. (36bp, 21-26 Mio quality-filtered and 

uniquely aligned reads per sample).  

Data analysis.  

For each sample generated by the Illumina platform, a preprocess step for quality control has 

been performed to assess sequence data quality and to discard low quality reads. The 

reference genome used for both analyses is the human genome assembly hg18. All gene and 

transcript annotation data, such as transcription start site positions, came from UCSC 

database (http://genome.ucsc.edu).  

ChIP-Seq. ChIP-Seq fastq filtered files were mapped to the reference genome using Bowtie 

[12], using default parameters and allowing up to 2 mismatches. Only uniquely mapped reads 

were kept. The peaks were identified using MACS version 1.4 [13]. The setting for peak 

calling was tsize=36, bw=150, mfold=32, p-value at least e-5. In order to identify statistically 

significant enrichment regions for H3K4me3, non-treated DNA input control libraries served 

as negative control. Significant peaks are called using a fold discovery rate (FDR) less than 

1%. A TSS plot was generated using the HTSeq package (http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html). To reveal the modulation of 

trimethylated H3K4 after 1a,25(OH)2D3 treatment the qualified peaks are compared between 

treated and non-treated control samples. Fold-enrichment was calculated for peaks that have 

overlapping genome positions and that are located within 5,000bp of the Transcriptional Start 

Site (TSS). The analysis of transcription factor binding motifs overrepresented in promoters 

identified to be regulated by calcitriol was performed with Pscan using the Jaspar database 

and the regions spanning -950bp until +50bp of the transcriptional start sites [14].  

http://genome.ucsc.edu/
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
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RNA-Seq. RNA-Seq short-reads were processed first with the NEUMA tool [15], which 

makes use again of Bowtie for mapping. This step determined raw counts and FVKM 

(fragments per virtual kb per million) values for profiling on gene expression. The differential 

expression was determined with the DEGseq R package [16]. Statistics are obtained with a 

MA-plot-based method (random sampling model) (Supplementary Figure 1). All genes listed 

are filtered with p-value < 0.001. Genes having at least 0.58 fold-change for the log2-

transformed expression values between 1a,25(OH)2D3-induced and non-induced control 

samples were defined to be differentially expressed. Gene ontology analysis, KEGG pathway 

analysis and pathway analysis using the BIOCARTA database have been carried out with 

DAVID (http://david.abcc.ncifcrf.gov/).  
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FIGURE LEGENDS 

Figure 1 Quality control of the RNA-Seq library.  

A Quantitative RT-PCR (qRT-PCR) analysis of CYP24A1 and CDKN1A mRNA expression 

in SKBr3 cells treated with 1a,25-dihydroxyvitamin D3 (1α,25(OH)2D3, vitD) or vehicle for 

the indicated time points. B qRT-PCR of CYP24A1 and CDKN1A mRNA expression after 

the RNA-Seq library preparation. mRNA levels were normalized to the amount of RPL19 

transcript. Values obtained in the absence of 1a,25-dihydroxyvitamin D3 were set arbitrarily 

as one and the fold activation obtained after 1α,25(OH)2D3 treatment is indicated. The error 

bars indicate the deviation of the mean.  

Figure 2 Global H3K4me3 occupancy around the Transcriptional Start Site (TSS).  

Distance distribution of H3K4 trimethylation around the TSS before (Ctrl) and after 

1α,25(OH)2D3 treatment (vitD). The input is shown for comparison.  

Figure 3 Occupancy of trimethylated H3K4 at 1α,25(OH)2D3 induced gene promoters.  

Raw ChIP-Seq data from five representative genomic regions showing the occupancy of 

histones modified at H3K4me3 (active epigenetic mark) before (Ctrl) and after 2h of 

1α,25(OH)2D3 treatment (vitD). The 1α,25(OH)2D3 inducible peaks are highlighted in grey.  

Figure 4 Venn diagram showing the number of genes up- (A) or downregulated (B) after 3h 

and 6h of 1α,25(OH)2D3 treatment, respectively. Using RNA-Seq analysis we determined 

the genes differentially regulated after 100nM 1α,25(OH)2D3 treatment vs control.  

Figure 5 VDR and Klf4 motifs are over-represented after 1α,25(OH)2D3 treatment.  
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Pscan output file using the -950bp until +50bp promoter regions and the Jaspar database. The 

over-representation of VDR (A) and Klf4 binding sites (B) in the up- and downregulated 

genes after 100nM 1α,25(OH)2D3 treatment.  

Figure 6 BIOCARTA pathways significantly enriched after (A) 3h or (B) 6h of 100nM 

1α,25(OH)2D3 treatment in SKBr3 cells.  

Figure 7 KEGG pathways significantly enriched for all upregulated genes after 3h of 100nM 

1α,25(OH)2D3 treatment in SKBr3 cells.  

Figure 8 KEGG pathways significantly enriched for all genes differentially regulated after 6h 

of 100nM 1α,25(OH)2D3 treatment in SKBr3 cells.  

Figure 9 Gene ontology terms significantly enriched in all genes differentially regulated after 

3h and 6h of 100nM 1α,25(OH)2D3 treatment in SKBr3 cells.  

Table 1 List of genes differentially regulated after 3h of 100nM 1α,25(OH)2D3 treatment.  

Table 2 List of genes differentially regulated after 6h of 100nM 1α,25(OH)2D3 treatment.  

Table 3 List of genes upregulated after 3h of 100nM 1α,25(OH)2D3 treatment and their 

corresponding enrichment in H3K4me3 modification within 5,000bp flanking the TSS.  

Supplementary Figure 1 Summary report graphs generated by DEGseq. 

The statistical analysis for differential gene expression profiles after (A) 3h or (B) 6h of 

1α,25(OH)2D3 treatment was performed with the DEGseq package. Five plots have been 

generated by DEGseq with the MARS method (MA-plot-based method with Random 

Sampling model). From left to right, from top to bottom, the graphs generated by this method 

are histograms of the (log2) number of reads per gene for the samples treated with vehicle 

alone (minus) or treated with 1α,25(OH)2D3 respectively, boxplots of the (log2) number of 
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reads per gene, scatterplots comparing the (log2) number of reads per gene for the treated and 

not treated samples, and the MA-plot of the number of reads per gene comparing again 

treated and not treated samples. Each point in the graph represents an individual gene. The 

red points in the last graph (MA-plot) are the genes identified as differentially expressed. 

 


