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Summary  22 
Background: Uncertainty about climate change impacts on forests can hinder mitigation and 23 
adaptation actions. Scientific enquiry typically involves assessments of uncertainties, yet different 24 
uncertainty components emerge in different studies. Consequently, inconsistent understanding of 25 
uncertainty among different climate impact studies (from the impact analysis to implementing 26 
solutions) can be an additional reason for delaying action. In this review we a) expanded existing 27 
uncertainty assessment frameworks into one harmonised framework for characterizing uncertainty, 28 
b) used this framework to identify and classify uncertainties in climate change impacts studies on 29 
forests, and c) summarised the uncertainty assessment methods applied in those studies.  30 

Methods: We systematically reviewed climate change impact studies published between 1994 and 31 
2016. We separated these studies into those generating information about climate change impacts 32 
on forests using models –“modelling studies”, and those that used this information to design 33 
management actions – “decision-making studies”. We classified uncertainty across three 34 
dimensions: nature, level, and location, which can be further categorised into specific uncertainty 35 
types.  36 

Results: We found that different uncertainties prevail in modelling versus decision-making studies. 37 
Epistemic uncertainty is the most common nature of uncertainty covered by both types of studies, 38 
whereas ambiguity plays a pronounced role only in decision-making studies. Modelling studies 39 
equally investigate all levels of uncertainty, whereas decision-making studies mainly address 40 
scenario uncertainty and recognised ignorance. Finally, the main location of uncertainty for both 41 
modelling and decision-making studies is within the driving forces – representing, e.g., 42 
socioeconomic or policy changes. The most frequently used methods to assess uncertainty are 43 
expert elicitation, sensitivity and scenario analysis, but a full suite of methods exists that seems 44 
currently underutilized.  45 

Discussion & Synthesis: The misalignment of uncertainty types addressed by modelling and 46 
decision-making studies may complicate adaptation actions early in the implementation pathway. 47 
Furthermore, these differences can be a potential barrier for communicating research findings to 48 
decision-makers. 49 

Keywords 50 
Uncertainty recognition, modelling, decision-making, uncertainty assessment methods, science 51 
communication 52 

  53 

Page 2 of 22AUTHOR SUBMITTED MANUSCRIPT - ERL-107025.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



3 
 

1 Background  54 
Despite overwhelming evidence about climate change impacts on natural and human systems 55 
(Cramer et al., 2014), uncertainty about impacts is often perceived as one of the main challenges for 56 
taking action on climate change (Hanger et al., 2013; Moser and Ekstrom, 2010; Yousefpour and 57 
Hanewinkel, 2016). In forest management, a key problem is that actions to maintain ecosystem 58 
functions under a changing climate need to be taken several decades earlier than their expected 59 
effect (Millar et al., 2007; Spittlehouse and Stewart, 2003). Yet, uncertainties related to future forest 60 
growth, the occurrence of disturbances, and mortality complicate taking decisions about the most 61 
suitable adaption and mitigation measures to implement (O’Hara and Ramage, 2013; Lindner et al., 62 
2014; Petr et al., 2016; Seidl et al., 2017), e.g. which tree species to plant. Furthermore, other 63 
drivers, such as future policies and societal demands for forest services, increase uncertainty about 64 
appropriate management options.  65 
Therefore, understanding and embracing uncertainty is an important factor for successful climate 66 
change adaptation and mitigation (Lindner et al., 2014) but a prevailing problem for many climate 67 
change-related studies is how to grasp and report uncertainty in their findings. Uncertainty is 68 
context and domain-dependent, which influences how different scientists recognise and deal with it 69 
(Bryant et al., 2018). Moreover, the conceptualisation of uncertainty might differ between studies, 70 
leading to different understandings of what is meant by uncertainty or what is included in its 71 
quantification – and hence reported in scientific papers. For example, climate impact modelling 72 
studies aim to, among others, represent processes and generate information using computer 73 
models. In terms of uncertainty, modelling studies routinely quantify uncertainties related to the 74 
imperfect knowledge of the system under investigation (Gray, 2017; Marchand et al., 2018; Uusitalo 75 
et al., 2015). On the other hand, studies exploring how users assess available information and use it 76 
to make long-term decisions (hereafter, “decision-making” studies) (Schmolke et al., 2010) more 77 
rarely quantify uncertainties. In particular, there is a lack of studies investigating uncertainty of 78 
stakeholder values or priorities about forest use. However, these can strongly influence how 79 
foresters design and apply adaptive management strategies (Lawrence and Marzano, 2014; 80 
McDaniels et al., 2012). Therefore, when quantifying individual components of the “cascade of 81 
uncertainty” prevalent in climate impact studies (Jones, 2000; Reyer, 2013), its perception in the 82 
decision-making processes is often ignored (Petr et al., 2014a; Radke et al., 2017). This may be due 83 
on one hand to the large number of external drivers containing unpredictable factors, such as future 84 
stakeholders’ needs and policy changes driven by stochastic human behaviour, that increase the 85 
complexity of decision-making studies. On the other hand, while many methods are available for 86 
estimating uncertainty in quantitative modelling, such as the “Model-Independent Parameter 87 
Estimation and Uncertainty Analysis (PEST)” which constitutes an uncertainty analysis method for 88 
environmental modelling (Doherty 2015, http://pesthomepage.org/), a smaller number of 89 
techniques have been suggested for more qualitative decision-making studies. Also, some widely 90 
used uncertainty frameworks have been designed for classifying uncertainties in modelling studies 91 
(Kwakkel et al., 2010; Refsgaard et al., 2007; Walker et al., 2003), but to our knowledge only a few 92 
studies have tested and developed frameworks for decision-making studies (Ascough et al., 2008; 93 
Petr et al., 2014a). This imbalance might lead to substantially different types of uncertainties being 94 
covered by the different types of research.  95 
In this review, we address the lack of knowledge about which aspects of uncertainties prevail or are 96 
missing in modelling and decision-making studies in forest science, and how they differ in their 97 
understanding of uncertainty. To answer these questions, we developed a new multi-dimensional 98 
uncertainty framework, which we used to systematically classify uncertainties in modelling and 99 
decision-making studies published in the scientific literature. Finally, we summarized uncertainty 100 
assessment methods applied by those studies, to provide an overview of the methods at hand. 101 
Classifying uncertainty will not only allow to better recognise, quantify and communicate it (Walker 102 
and Marchau, 2003; van der Bles et al., 2019, Nicol et al. 2019) but also, and more fundamentally, 103 
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help to understand where knowledge gaps are, or how much we know or do not know about a 104 
problem.  105 

2 Conceptual Framework 106 

2.1 Uncertainty definitions 107 

Uncertainty is a complex concept with multiple definitions (Ascough et al., 2008; Refsgaard et 108 
al., 2007; Walker et al., 2003). Consequently, the literature offers a broad range of meanings and 109 
interpretations of the term. Table 1 provides examples of existing definitions across different 110 
research fields, from general environmental science to forest ecology and management. These 111 
examples show an objective-subjective gradient from natural to decision-making research 112 
disciplines. Yet, in essence, uncertainty represents “any departure from the unachievable ideal of 113 
complete determinism“ (Walker et al., 2003), which is the broad definition we also adopt in this 114 
paper.  115 

Table 1 Examples of definitions and descriptions of uncertainty types. * denotes the main uncertainty definition 116 
used in this paper. 117 
Definition of uncertainty Research field Type of study References 
“any departure from the unachievable ideal 
of complete determinism”* 

na na (Walker et al., 
2003) 

“measure of unexplained variation” Environmental 
research 

Modelling (Lehmann and 
Rillig, 2014) 

“lack [of] confidence about knowledge relating 
to a specific question” 

Water 
management 

Decision-
making 

(Sigel et al., 
2010) 

“the situation in which there is not a unique 
and complete understanding of the system to 
be managed” 

Ecology  Decision-
making 

(Brugnach et al., 
2008) 

“large differences in the simplifying 
assumptions and parameter choices made in 
models” 

Forest ecology Modelling (Cheaib et al., 
2012) 

2.2 Dimensions and types of uncertainty 118 

Beyond this simple definition, uncertainty can be categorised according to its dimensions or sources 119 
(van Asselt and Rotmans, 2002; Walker et al., 2003). These dimensions refer to the different ways in 120 
which uncertainty can be understood, interpreted, and addressed. In their conceptual basis for 121 
uncertainty classification in model-based decision support systems, Walker et al. (2003) defined 122 
three dimensions of uncertainty: location, level and nature. The location describes where in a 123 
method/model the uncertainty occurs, e.g. in parameters or driving forces (cf. Table 2). The level 124 
describes the degree of knowledge available, ranging from the ideal state of complete knowledge 125 
(determinism) to the state of completely imperfect knowledge (total ignorance). Finally, the nature 126 
describes the reason for the lack of knowledge, either from imperfect information (epistemic) or 127 
from natural variability (stochastic). We expanded Walker et al. (2003)’s framework with additional 128 
uncertainty types, which relate more closely to decision-making processes. Specifically, we added 129 
the locations “model selection”, “model implementation”, “information selection/decision” and 130 
“type of information outputs” as well as the nature “ambiguity” (after Kwakkel et al., 2010). Table 2 131 
presents each of the uncertainty types, their definition and an example. To ensure the relevance of 132 
our framework, we included each uncertainty type in the framework only if we could provide an 133 
example from the climate-forest nexus.  134 
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Table 2 Descriptions and examples of uncertainty types classified across three uncertainty dimensions (location, 135 
level, and nature) (expanded version from Walker et al. 2003). New additional types proposed by this study are in italics. 136 
*both terms are being used interchangeably in the literature, we use stochastic throughout this manuscript. 137 
Uncertainty 
dimension 

Uncertainty 
type 

Description Examples from forest science 

Lo
ca

tio
n 

Context and 
framing 

Boundaries of the investigated system, 
i.e., processes and actors included  

Choice of study area and climate 
scenarios 

Driving 
forces 

Uncertainty about future drivers of 
change outside of the studied system  

Changes in forest policy objectives or 
timber prices 

System data Uncertainty about the physical 
description and inherent behaviour of the 
system itself  

Changes in future climate conditions 

Model 
structure 

Incomplete understanding or simplified 
description of modelled processes 

Imperfect knowledge on how trees 
respond to changes in extreme 
drought events 

Technical 
model 
uncertainty 

Arising from computer implementation of 
the model (software program) 

Bugs or rounding-offs hidden in the 
software or code 

Model 
selection 

Uncertainty about which model to use or 
further develop 

Selection of the most appropriate 
forest model for the studied forest, 
from a range of available models 

Model 
implementa
tion 

Uncertainty about how to apply models 
in new locations 

Unsure if model structure or results 
can be extrapolated to different 
regions 

Parameter 
uncertainty 

The a priori defined values or constants in 
the model 

Regression coefficients for a tree 
mortality algorithm 

Model 
output 
uncertainty 

Accumulated uncertainty from all 
individual modelling components 

A total variance in timber volume 
estimates 

Type of 
information 
outputs 

Uncertainty in how the scientific evidence 
is communicated 

Large range of classification bins in the 
legend of a forest biomass map 

Information 
selection/de
cision 

Multiple available sources of information 
among which to choose 

Multiple forest biomass maps 
responding to different climate 
scenarios 

Le
ve

l 

Statistical  Quantified using statistical metrics, such 
as a confidence interval or sampling error 

95% confidence interval for estimated 
timber prices 

Scenario  A plausible description of how the system 
with its driving forces can develop in the 
future 

A range of climate scenarios 
determining future tree growth rates 

Recognised 
ignorance 

Awareness of the lack of knowledge 
about functional relationships, which 
have not been quantified or incorporated 
into the model or decision tool 

Admitting complete ignorance about 
the timber price of a specific tree 
species in the 2080s 

N
at

ur
e 

Epistemic Imperfect knowledge about the system Tree height measured only for a small 
sample of trees - missing records from 
all trees in a forest 

Stochastic/A
leatory* 

Inherent chaotic behaviour of natural or 
anthropic system (Walker et al., 2003; 
Warmink et al., 2010)  

Chaotic nature of extreme weather 
events such as droughts; occurrence of 
fire ignitions 

Ambiguity Coexistence of different equally valid 
understandings of a system (Brugnach et 
al., 2008)  

Societal demand to a forest in the 
2050s (e.g., timber production or 
recreation). 
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Uncertainty assessment methods 139 
To understand how the different uncertainty dimensions and types can be assessed, we 140 
complemented our framework with existing methods for uncertainty assessment from Refsgaard et 141 
al. (2007). These contain widely used quantitative methods such as scenario analysis or Monte Carlo 142 
analysis, but also more qualitative methods such as stakeholder involvement, see Figure 1. All 15 143 
uncertainty assessment methods are defined in Table S1, with “other” methods added to the list. 144 
We note that the uncertainty assessment methods by Refsgaard et al. (2007), only consider 145 
“sensitivity analysis” in general terms. Yet, there are differences between global and local sensitivity 146 
analysis with global being much more useful in assessing model/parameter uncertainty due to the 147 
consideration of nonlinear effects and parameter (hierarchical) relationships/interdependecies 148 
(McKenzie et al., 2019). Recent uncertainty assessment tools include most of these quantitative 149 
methods (e.g. White et al. 2016, Hartig et al. 2019). 150 

2.3 Uncertainty assessment framework 151 
Based on previously published uncertainty assessment frameworks (Refsgaard et al., 2007; Walker et 152 
al., 2003; Warmink et al., 2010), we developed a novel framework to identify and classify 153 
uncertainties. Previous frameworks have provided a comprehensive overview of the multi-154 
dimensionality of uncertainty including methods and application examples. However, they have not 155 
integrated modelling and decision-making perspectives into one coherent framework together with 156 
applicable uncertainty assessment methods. To that end, we compiled uncertainty dimensions and 157 
types (described in Table 2) as well as existing methods for uncertainty assessment (Table S1) into 158 
one uncertainty assessment framework. This final uncertainty assessment framework consisted of 159 
three dimensions of uncertainty (level, nature, location) further characterised by 17 uncertainty 160 
types and 15 assessment methods (Figure 1).  161 
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 162 
Figure 1 Uncertainty assessment framework for identifying 17 uncertainty types across three dimensions (nature, 163 

level, and location) and 15 assessment methods (after Refsgaard et al., 2007). NUSAP = Numeral, Unit, Spread, 164 
Assessment and Pedigree 165 
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3 Methods 167 

3.1 Literature search and review 168 
We conducted a systematic review of uncertainty related to climate change impact research in 169 
forest science, with a focus on modelling and decision-making studies. We used the Scopus database 170 
to search for published, peer-reviewed scientific papers in English. We used the search string 171 
((climat* change) AND forest AND uncertain* AND model*) for modelling studies, and replacing 172 
“AND model*” by “AND management” AND “behavior* OR attitude* OR polic*” for decision-making 173 
studies. The search was carried out by researchers based in Edinburgh, UK. It yielded 1079 papers 174 
(78% modelling and 22% decision-making) published between 1994 and 2016. To minimise the bias 175 
towards modelling studies, we randomly selected 191 (i.e. 22%) modelling papers for further 176 
abstract scrutiny. After examining the abstracts of all papers, we ended up with 69 modelling and 31 177 
decision-making papers for further analysis.  178 
For each paper we recorded the following attributes: author(s), year of publication, type of paper 179 
(primary research, review, other), spatial coverage (local, regional, multi-country, continental, 180 
global), and study area (country). We classified each paper, into one of nine categories of research 181 
topics (carbon balance, conservation/restoration, fire/drought/pests, forest management planning, 182 
forest dynamics, forest policy, mortality, species distribution, and others). Only for decision-making 183 
papers, we recorded information about the management stage that was studied (operational & 184 
tactical, strategic & organisational, and/or policy-making) (Oesten and Roeder, 2012, Table S2). 185 
We thoroughly reviewed each paper using our uncertainty framework and captured all types of 186 
uncertainty (nature, level, location, and their unique combinations) identified therein, as well as the 187 
uncertainty assessment methods used for each entry. If the same combination of uncertainty types 188 
was addressed with the same method, we only recorded the first one reported. Hence, out of the 69 189 
modelling and 31 decision-making papers, we extracted 139 and 65 unique combinations of 190 
uncertainty types (Table S3). We only recorded uncertainties related to the actual research carried 191 
out within the papers. 192 
As the reviewing task was shared among co-authors, we tried to reduce subjectivity in classifying 193 
uncertainty types by having a cross-check of all entries by the main author.  194 

3.2 Analysis 195 
First, we derived summary statistics for the publication year, study area, spatial coverage, and 196 
research topic. Second, we counted the number of papers addressing each type of uncertainty, and 197 
tested whether the reporting frequency of uncertainty natures and levels differed between 198 
modelling and decision-making papers (Chi-square test). We did not compare locations, because 199 
these uncertainty types largely varied between studies. Next, we compared the frequency of unique 200 
combinations of nature x location and level x location between modelling and decision-making 201 
studies, as well as the frequency of uncertainty natures and levels across different stages of 202 
management (decision-making papers only). Finally, we identified the most frequently used 203 
uncertainty assessment methods for each nature and level of uncertainty. Our analyses were 204 
conducted using the R language and environment for statistical computing (R Core Team, 2018), 205 
especially the tidyverse package (Wickham, 2017).  206 
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4 Results 208 

4.1 Summary of reviewed papers 209 
Out of the 69 modelling and 31 decision-making papers, the majority were published after 2000 and 210 
2004 respectively. Only three papers addressed uncertainty from both the modelling and decision-211 
making perspectives. The studies covered all continents, with a prevalence of North American (41%) 212 
and European (27%) studies. A large proportion of studies focused on estimating carbon stocks and 213 
fluxes (25% of modelling and 1% of decision-making), followed by risks of fire, drought, and pests 214 
(10% and 7%), and forest management (4% and 11%). The latter two topics were the most frequent 215 
in decision-making studies. The dominant spatial scales were regional and local, representing 52% 216 
and 27% of all studies. However, modelling studies covered a wider range of spatial scales including 217 
global and continental-scale studies.  218 

4.2 Uncertainty nature and level  219 
When comparing unique combinations of uncertainty types addressed by modelling and decision-220 
making studies, we found significant differences (p < 0.05) across both nature and level (Figure 2). 221 
Epistemic uncertainty was the most frequent uncertainty nature covered in both groups of studies, 222 
representing 86% of modelling and 57% of decision-making entries. Ambiguity was relevant only for 223 
decision-making entries (32%). For the uncertainty level, the modelling entries were rather equally 224 
distributed with the highest proportion associated to scenario uncertainty (35%); in decision-making 225 
studies, the most represented uncertainty level was recognised ignorance (35%) followed by 226 
scenario uncertainty (26%).  227 
Considering a classification across both level and nature, we found a similar pattern for modelling 228 
and decision-making studies, except for ambiguity (Figure 2). Modelling studies addressed epistemic 229 
uncertainty equally across all three levels of uncertainty. Stochastic uncertainty was only treated in 230 
combination with statistical and scenario uncertainty, whereas ambiguity was equally associated to 231 
all three uncertainty levels. In decision-making studies, a large proportion of epistemic uncertainty 232 
could not be associated to any level (“not available” in Figure 2). Most entries dealing with ambiguity 233 
were combined with assessments of scenario uncertainty, while stochastic uncertainty combined 234 
equally with all uncertainty levels.  235 

  
Figure 2 Combinations of uncertainty types across the nature and level of uncertainty in the total number of unique 236 

uncertainty types in modelling (n = 139, left panel), and in decision-making studies (n = 65, right panel). Relative 237 
frequencies of nature and level both differed significantly (p <0.05) between modelling and decision-making studies 238 
(Chi-squared test). 239 

4.3 Uncertainty location 240 
The main locations addressed by modellers were “model parameters” (26%), “inputs – driving 241 
forces” (23%), and “model outputs” (18%). For these three locations, the most frequent nature of 242 
uncertainty was scenario (for inputs – driving forces) or statistical (for model parameters and 243 
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outputs) (Figure 3). Still, a non-negligible number of entries reported on “recognised ignorance” for 244 
locations such as model structure (67% of the respective entries), model parameters (39%) and 245 
inputs – system data (33%). Very rarely did modelling studies report uncertainty in “model 246 
implementation” (1%). For modelling studies, epistemic uncertainty was the preferred way to 247 
characterize all uncertainty locations. Ambiguity, on the contrary, appeared only at four locations.  248 
Decision-making papers mainly addressed “inputs – driving forces” (35% of entries) and “information 249 
selection or decision” (26%). Epistemic uncertainty was the preferred way to characterize all 250 
locations. Regarding combinations of location and level, “inputs” and “context and framing” were 251 
never associated to statistical uncertainty, which instead was sometimes used to characterize 252 
uncertainty in “model outputs” (13% of entries) and “information selection” (12%). Recognised 253 
ignorance was the most frequent uncertainty level for all uncertainty locations. 254 

 255 
Figure 3 Relative proportions of modelling and decision-making entries to the database addressing uncertainty 256 

types across nature, level, and location.  257 

4.4 Uncertainty types represented at different management stages 258 
The entries from the decision-making papers mainly represented the “Operational” management 259 
level (57%), followed by “strategic & organisational” (20%), and “policy-making” stages (19%). 260 
Operational, strategic and policy analyses were mostly linked to epistemic uncertainty (Figure 4). The 261 
entries dealing with operational and strategic management were rather evenly distributed amongst 262 
levels compared to statistical uncertainty, while policy-making studies were mostly associated to 263 
recognised ignorance. 264 
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 265 
Figure 4 Relative proportion of uncertainty types across nature, level, and management stage (only for decision-266 

making studies) 267 

4.5 Methods for uncertainty assessment 268 
Distinct uncertainty assessment methods were used in modelling and decision-making studies. In 269 
fact, only three methods were used in both groups of papers: expert elicitation, scenario analysis, 270 
and sensitivity analysis (Figure 5). Among these, only scenario analysis was used for assessing 271 
stochastic uncertainty, while all three were used in case of epistemic uncertainty and ambiguity. 272 
Overall, a large suite of uncertainty assessment methods (10) was used in modelling studies to 273 
analyse epistemic uncertainty, five for ambiguity, and four for stochastic uncertainty. In decision-274 
making studies, epistemic uncertainty was analysed using six methods in total, ambiguity using four, 275 
and stochastic uncertainty using three methods. All levels of uncertainty were analysed by an equal 276 
number of methods overall (nine). In modelling studies, the widest range of methods was used for 277 
statistical uncertainty, followed by recognised ignorance and scenario uncertainty. In decision-278 
making studies, scenario uncertainty was associated to twice the number of methods (six) as were 279 
statistical uncertainty and recognized ignorance (three each). Scenario analysis, Monte Carlo 280 
analysis, and multiple model simulations were the most versatile methods, being applied at least 281 
once for every uncertainty level and nature. Finally, five methods were applied to only one 282 
uncertainty type, e.g., exploratory modelling or error propagation equations.  283 
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 284 
Figure 5 Use of uncertainty assessment methods across uncertainty natures and levels. Blank cells indicate the 285 

absence of examples of a method being applied to assess the respective uncertainty type.  286 

  287 
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5 Discussion 288 
Our review of the scientific literature on climate change impact and adaptation in forests showed a 289 
multi-dimensional understanding of uncertainty, which was described by different natures, levels, 290 
and locations. Acknowledging this multi-dimensionality can be crucial for understanding knowledge 291 
gaps in modelling future climate impacts on forests, or analyzing the decision-making process of 292 
forest stakeholders under climate change. Moreover, understanding the different dimensions of 293 
uncertainty can help modellers and decision-making scientists to identify what types of uncertainty 294 
exist, how to communicate them, and what would be necessary to reduce them, if possible.  295 

We have used the example of climate impacts on forests but our framework is also useful for other 296 
areas of climate impact science. The types of models used to simulate climate impacts on forests and 297 
the types of methods to assess uncertainties as well as our conceptualisation of uncertainty are very 298 
similar to those used in hydrology (Kundzewicz et al., 2018), health (Wardekker et al., 2012), 299 
agricultural modelling (Asseng et al., 2013) or climate impact science in general (Falloon et al., 2014). 300 
Likewise are the management challenges inherently complex in these areas. However, forest 301 
management is also special because it deals with long planning horizons and as uncertainty increases 302 
over time (Augistynczik et al., 2017). Therefore, analysing uncertainty of forest management has the 303 
potential to be a very informative framework to be adopted and applied to other ecological systems.  304 

5.1 Modelling vs. decision-making studies 305 
We found significant differences in understanding uncertainty among modelling and decision-306 
making studies. These differences pinpoint towards a misalignment of how the different study types 307 
address uncertainty, and have the potential to misguide communication of uncertainty when those 308 
studies are used as evidence-base to support decisions.  309 
Modelling studies mostly focus on epistemic uncertainty, whereas addressing ambiguity and 310 
stochastic uncertainty was less common. This highlights that modellers strive to estimate how much 311 
uncertainty about the system they model can be reduced by using more accurate input information, 312 
improving model structure (e.g. Cheaib et al., 2012), or filling knowledge gaps about ecological 313 
processes (e.g Littell et al., 2011). Decision-making studies addressed uncertainty across a wider 314 
spectrum of natures than modelling studies. This reflects a broader view of the problems that these 315 
studies investigate, as opposed to the more targeted and narrower perspective typically adopted by 316 
modelling studies. The modelling studies seem to address more process-oriented uncertainties while 317 
the decision-making studies deal with more policy-oriented uncertainties. In fact, decision-making 318 
studies focused on forests as providers of services like timber and/or recreation, broadening the 319 
boundaries of their analysis to incorporate, for example, stakeholder goals and forest policies (e.g. 320 
Kemp et al., 2015; Lawrence and Marzano, 2014). On the contrary, modelling studies investigate 321 
individual components of forest structure or functioning, such as biomass (Verkerk et al., 2014), 322 
carbon sequestration (Petr et al., 2014b), and forest productivity (Reyer et al., 2014); or, more 323 
recently, assess multiple forest benefits and their interactions (e.g. Albrich et al., 2018; Cantarello et 324 
al., 2017; Mina et al., 2017; Ray et al., 2017) but weakly integrating human needs and views that go 325 
beyond forest management practices. Studies focusing on decision-making also recognized 326 
epistemic uncertainty, e.g., acknowledging the need to obtain better evidence of the most effective 327 
adaptive forest management strategy (e.g. Yousefpour et al., 2012). However, ambiguity was also 328 
well represented. Ambiguity has been identified as one of the key uncertainty dimensions in natural 329 
resource management (Brugnach et al., 2008). In forest management, ambiguity may emerge when 330 
managers are unsure which tree species to plant, even though they have evidence on how trees can 331 
grow in the future (e.g. Lawrence and Marzano, 2014). The wider acknowledgment of ambiguity in 332 
decision-making studies can arise from decision problems being inherently complex, especially when 333 
they involve human decisions.  334 
Decision-making studies addressed ambiguity mainly through consultation with stakeholders, which 335 
confirmed the broader system boundaries adopted under this perspective (Kemp et al., 2015). 336 
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Conversely, ambiguity was almost lacking in modelling studies, suggesting that modelling is less likely 337 
to incorporate multiple views and opinions. However, the recent development of agent-based 338 
modelling is trying to bridge this gap (Rammer and Seidl, 2015; Rounsevell et al., 2012) and 339 
modellers are also starting to tackle interdisciplinary questions and problems such as the selection of 340 
suitable tree species for maximizing both social and economic benefits. Hence we expect a rising 341 
recognition of ambiguity in the modelling world.  342 
Surprisingly, we found little evidence of stochastic uncertainty being covered by either modelling or 343 
decision-making studies, even though a number of forest questions related to random elements, 344 
such as the exact occurrence and timing of extreme weather events. Yet, probably this inherent 345 
stochasticity might be too complex to be dealt with and communicated in modelling and decision-346 
making studies alike, as opposed to epistemic uncertainties.  347 
A second difference is that decision-making studies address preferentially higher levels of 348 
uncertainty (i.e., recognised ignorance) if compared to modelling studies, which spread evenly 349 
across all three levels. This implies that decision-making studies, while confident about quantifiable 350 
(statistical) uncertainty, also acknowledge that a lot is still “known to be unknown”. Adaptation or 351 
mitigation studies are influenced by many aspects and acknowledging that something is unknown 352 
(recognised ignorance) should be common. The higher frequency of recognized ignorance in 353 
decision-making studies may suggest that scientists dealing with decision-making are aware of the 354 
existing evidence about the uncertainty surrounding the impact of climate change on forests, but 355 
might struggle to make sense of it (Lemos et al., 2012). 356 
In modelling studies, the uniform share of levels indicates that modellers are aware of the existence 357 
of multi-layered uncertainties. We found that statistical uncertainty was mostly located in model 358 
outputs and parameters, scenario uncertainty in the driving forces, and recognised ignorance within 359 
the model parameters (Figure 3). These differences indicate that, depending on the stage of the 360 
modelling process, diverse uncertainties emerge and dictate which part of the system needs more 361 
attention and the application of more complex calibration techniques (van Oijen, 2017). 362 
Finally, in decision-making studies we found clear differences in both the number and the type of 363 
addressed uncertainties going from the policy-making to more operational management stages 364 
(Figure 4). For example, policy-making studies at the national scale have mainly dealt with 365 
recognised ignorance (known unknowns), while operational studies at the local scale identified all 366 
three uncertainty levels. This suggests that at the national scale decisions are harder to make, as 367 
they operate based on known unknowns, while operational staff working at local scale, where 368 
mainly “statistical” uncertainty is addressed, can make more confident decisions.  369 

5.2 Methods for uncertainty assessment 370 
A range of methods are available for quantifying and communicating uncertainty in environmental 371 
management (Refsgaard et al., 2007). We find that modelling studies use more methods to assess 372 
uncertainties than decision-making studies, which highlights stronger traditions in quantifying 373 
uncertainty in the modelling community. Out of 15 main methods, we found that only three 374 
methods - namely sensitivity and scenario analysis, and expert elicitation are common to both 375 
modelling and decision-making studies. Yet, given their wide applicability, this is not surprising and 376 
indeed these are promising methods for easier and clearer communication of uncertainty related to 377 
climate change. Scenario analysis, in particular, has been used to quantify several types of 378 
uncertainty. This method is very common in forest-related climate impact studies (Petr et al., 2014b; 379 
Ray et al., 2015; Reyer et al., 2014) but also in a wide range of other climate impact studies (e.g. 380 
Frieler et al. 2017), likely due to the simplicity of scenario development, analysis, and 381 
communication. However, as our review shows, less frequently used methods offer opportunities for 382 
embracing a wider range of uncertainty types.  383 
Furthermore, the dominance of methods for capturing epistemic uncertainty highlights a lack of 384 
methods for assessing ambiguity and stochasticity, or more difficulties in applying them. Among 385 
available methods for assessing ambiguity, only expert elicitation (stakeholder involvement) seems 386 
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to be adequate for taking into consideration multiple views and frames about the problem at hand. 387 
With the expected increase of integrated models and interdisciplinary research involving multiple 388 
types of uncertainty, either new methods should be developed, or the current ones tested to 389 
capture and communicate ambiguity. Otherwise, the modelling community might struggle to find a 390 
common language with their model users, and model results will be less likely to be picked-up by 391 
users. Finally, we acknowledge that a similar analysis based on papers in a different field, e.g. 392 
hydrology, could have yielded a somewhat different set of methods to be used for uncertainty 393 
assessment reflecting disciplinary preferences for certain methods. 394 

5.3 Recommendations for modelling, policy and management 395 
Modelling and decision-making studies provide diverse but valid knowledge about a system under 396 
study (Brugnach et al., 2008). Building upon this review, we provide recommendations that might 397 
help future modelling and decision-making studies to increase clarity. This clarity will help to 398 
formulate key messages and better communicate uncertainty as required for thorough policy 399 
making under climate change (Meah 2019).  400 
Modelling studies should aim to increase the usability of model results, while acknowledging 401 
different uncertainty types, by: 402 

• Continuously improving model accuracy and reducing epistemic uncertainty by, e.g. 403 
additional field measurements, incorporation of big data from remote sensing, and novel 404 
calibration and data assimilation techniques  405 

• When possible, providing easily interpretable measures of confidence in statistical models 406 
(such as confidence or credible intervals) in combination with the effect size of the response 407 
variable 408 

• Being clear about which types of uncertainty they are addressing or not, and then 409 
communicating them properly 410 

• Being clear about which uncertainty types a model is trying to reduce, but also 411 
demonstrating when new uncertainties can possibly emerge (i.e., surprising, new 412 
relationship between variables)  413 

• Trying to model or incorporate broader uncertainty natures, especially ambiguity, which are 414 
important for decision-making and model users 415 
 416 

As current forest policies increasingly focus on making forests resilient to environmental change (EU, 417 
2013; Forestry Policy Team, 2013), they inevitably have to deal with a number of uncertainties 418 
associated with climate change impacts on forests. To translate these policies into practice and 419 
manage for resilient forests, it is important to identify the key uncertainties and reduce them, if 420 
possible (Allen et al., 2011). For practical forest management, to make future forests more resilient, 421 
management plans need to incorporate uncertainties on climate change impacts (Lindner et al., 422 
2014), e.g., about future extreme weather events, pest and diseases, which cause the most severe 423 
impacts and may  strongly affect model output’s accuracy (Littell et al., 2011). Management plans 424 
can include for example a scenario analysis, coming up with strategical and tactical management 425 
options for several alternative future climates. Another example would be using stakeholder 426 
involvement to collect opinions on the worst-case scenario, and plan accordingly, following an 427 
approach consistent with a precautionary principle. For decision-making studies, we therefore 428 
provide the following recommendations: 429 

• Using available frameworks and methods to capture all investigated uncertainties for easier 430 
communication with peers and model users 431 

• Questioning which types of uncertainties models and their outputs quantify 432 
• Being open about the range of uncertainties that the problem might involve – especially 433 

including ambiguity 434 
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• Being aware of the model boundaries and about what processes or components are “known 435 
unknowns”, because model outputs and their inherent uncertainties represent only a part of 436 
forest ecosystem dynamics 437 

• Acknowledging that recognised ignorance (as a specific nature of uncertainty) is a common 438 
driver in policy making 439 

• Acknowledging, assessing and communicating uncertainties (e.g., by scenario analysis) when 440 
developing policies for sustainable forest management and adaptation under climate change 441 
(advisors). Overall, uncertainties should not be perceived as a barrier for action, but be 442 
acknowledged and communicated with “simple but not simplistic messages” (Lindner et al., 443 
2014) 444 

5.4 Limitations of the review 445 
During this review, we made a number of assumptions which have to be borne in mind when 446 
interpreting the results. First, only a small proportion of the existing literature on climate change 447 
impacts on forests was captured by our search criteria. This means that standardized uncertainty 448 
reporting is not at all a common practice both in modelling and in decision-making studies. 449 
Ultimately, most scientific studies address uncertainty, because they bring a novel understanding of 450 
something that was previously unknown, but most fail to acknowledge uncertainty in a structured 451 
way. Second, for each paper we recorded only the first uncertainty assessment method applied to a 452 
unique combination of uncertainty location, level, and nature. As a consequence, we possibly 453 
omitted other methods that would have been used for the same unique combination. Still, due to 454 
our three-dimensional framework, we believe that we identified the majority of methods. Yet, given 455 
that our primary focus was mostly on the uncertainty types, future research on the exact use and 456 
applicability of uncertainty assessment methods could shed further light on how to address different 457 
uncertainty types. Third, our uncertainty framework, which we developed before the systematic 458 
review, is not comprehensive and might be amended by future users. For example, through the 459 
review, we came across new uncertainty types, which were missing from the proposed uncertainty 460 
framework and were classified as “not available”. These could be classified by introducing “deep 461 
uncertainty” as another uncertainty level, placed just above  “recognised ignorance” (Kwakkel et al., 462 
2010). Fourth, we could not completely avoid publication bias, as well as a subjectivity bias by the 463 
different co-authors classifying the papers (Haddaway and Macura, 2018). To reduce the latter, we 464 
followed a well-structured protocol for reviewing papers, which we discussed and shared during 465 
several meetings – a common method when conducting systematic reviews (Haddaway and Macura, 466 
2018). Finally, we used a set of uncertainty quantification methods that came from a modelling 467 
background and hence heavily focused on modelling studies (Refsgaard et al., 2007). Even though 468 
we argue that the Refsgaard et al. (2007) quantification methods are very comprehensive, they 469 
could be expanded to account for other uncertainty quantification methods suitable to the peculiar 470 
uncertainty dimensions that must be addressed by this type of research (Ascough et al., 2008).  471 

6 Conclusions 472 
This study presents a multi-dimensional recognition of uncertainty in climate change impacts and 473 
adaptation studies in forest science. The modelling and decision-making studies we reviewed both 474 
typically address a wide range of uncertainties, but not necessarily the same ones. This mismatch 475 
highlights the need for a more transparent and comprehensive treatment and communication of 476 
uncertainty in scientific papers given that modelling and decision-making studies together should 477 
contribute to provide the evidence basis for solving climate change adaptation problems. Yet, trade-478 
offs between which types of uncertainty to address and investigate will remain, because not all of 479 
them can be addressed in one study alone. Therefore, we call for strategies or frameworks that 480 
clearly and explicitly identify and communicate uncertainty dimensions. Disregarding the different 481 
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uncertainty dimensions will likely lead to an imperfect communication of uncertainty, and, after all, 482 
to a sub-optimal evidence basis for decision-making. 483 
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