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HELMHOLTZ EQUATION IN UNBOUNDED DOMAINS:

SOME CONVERGENCE RESULTS FOR A CONSTRAINED

OPTIMIZATION PROBLEM

GIULIO CIRAOLO

Abstract. We consider a constrained optimization problem arising
from the study of the Helmholtz equation in unbounded domains. The
optimization problem provides an approximation of the solution in a
bounded computational domain. In this paper we prove some estimates
on the rate of convergence to the exact solution.

1. Introduction

In this paper, we consider a constrained optimization problem which arises
from the computational study of wave propagation in unbounded domains.
We are interested in a classical scattering problem, which can be stated as
follows. Let D ⊂ R

d, d ≥ 2, be a bounded domain and let u be the solution
of

(1.1)















∆u+ k2u = 0, in R
d \D,

u = f, on ∂D,

lim
r→+∞

r
d−1

2

(

∂u
∂r − iku

)

= 0.

It is well-known that the solution of problem (1.1) can be written explicitly
in terms of layer potentials (see [AK] for instance). A challenging problem in
real applications is how to approximate the solution of (1.1) in a bounded
computational domain Ω, with D ⊂ Ω. Usually, the goal is to prescribe
transparent boundary conditions on ∂Ω in such a way that the corresponding
solution approximates the exact solution on a good fashion.

Many methods have been studied and the research on this topic is still
very active (see for instance [Be, Ber, CGS, EM, Gi, GrK, Har, Har, KG,
MTH, SS] and references therein).

In a recent paper [CGS], the authors studied a new approach to the prob-
lem of transparent boundary conditions which is based on the minimization
of an integral functional arising from the radiation condition at infinity. The
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approach in [CGS] works under quite general assumptions on the index of
refraction. Indeed, it applies to the study of the Helmholtz equation

(1.2) ∆u+ k2n(x)2u = 0 in R
d \D,

where the index of refraction n may have some angular dependency at in-
finity, i.e. n(x) → n∞(x/|x|) as |x| → +∞, as well as some (unbounded)
perturbations. The novelty of the method is that it is not based on the
knowledge of the exact solution in some exterior domain, but it relies on a
different formulations of the radiation condition at infinity (see [PV]); in-
deed, under suitable assumptions on n, the uniqueness of the solution for
(1.2) is guaranteed by the radiation condition

(1.3)

∫

Rd\D

∣

∣

∣
∇u− iknu

x

|x|

∣

∣

∣

2 dx

1 + |x|
<∞.

When a computational domain Ω is considered, one can try to approximate
the solution of (1.2)-(1.3) by the minimizer uΩ of the following constrained
optimization problem

(1.4) min JΩ(v) =

∫

Ω\D

∣

∣

∣
∇v − iknv

x

|x|

∣

∣

∣

2 dx

1 + |x|
,

where ∆v + k2n(x)2v = 0 in Ω \D, v = f on ∂D.

In [CGS] it was proven that, if Ω = BR (a ball of radius R centered at
the origin and containing the scatterer), then the minimizer uBR

of (1.4)
converges in H1

loc norm to the solution of (1.2)-(1.3) as R→ +∞.
As already mentioned, this approach works under very general assump-

tions on n which are not covered by classical methods available in literature
(at list in a standard way). Other advantages of this method are: (i) it
works for very general choices of n and Ω [CGS]; (ii) it is of easy imple-
mentation since it consists in minimizing a quadratic functional subject to a
linear constrain; (iii) it is suitable to be generalized to more general settings,
such as the waveguide’s case by using the results in [Ci1]–[CM2],[MS].

If one considers the problem in its full generality, a rigorous study of the
rate of convergence properties of this problem appears to be difficult. In the
present paper, we shall study the rate of convergence of this approach in the
simplest case possible: n ≡ 1, d = 2, D = BR0

and Ω = BR, with R0 < R.
It results that the rate of the H1

loc norm convergence to the exact solution is
R−1 as R→ +∞. Compared to the existing methods in literature, for n ≡ 1
this approach gives a slower rate of convergence. However, we believe that
the understanding of this simple case gives a hint on the rate of convergence
for much more general indexes of refraction, for which the method is more
suitable (see also the numerical studies in [CGS2]).

The paper is organized as follows. In Section 2 we state the problem,
recall the main results in [CGS] and prove some preliminary results. In
Section 3, we find an explicit representation of the solution by means of
Fourier series. As a consequence, we obtain the convergence estimates.
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2. Preliminaries

In this section we introduce some notation and recall some results from
[CGS] which will be useful in the rest of the paper. Some preliminary results
will also be proven.

Let R0 > 0 be fixed and let ψ be the solution of

(2.1)















∆ψ + k2ψ = 0 in R
2 \ B̄R0

,

ψ = f on ∂BR0
,

lim
r→+∞

r
1

2

(

∂ψ

∂r
− ikψ

)

= 0,

where r := |x|, f ∈ L2(∂BR0
). We consider the polar coordinates x =

r(cosω, sinω), where r = |x| and ω ∈ [0, 2π), so that

∆u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂ω2
,

and

(2.2) ∇u =
∂u

∂r
er +

1

r

∂u

∂ω
eω,

where er = x/|x| and eω = (−x2, x1)/|x|.
By separating the variables, a solution u of ∆u+ k2u = 0 can be written

as

(2.3) u(r, ω) =
∑

z∈Z

[anJn(kr) + bnYn(kr)]e
inω;

here Jn(r) and Yn(r) are, respectively, the Bessel and Neumann functions
of order n and they satisfy (see [AS])

(2.4)
1

r

(

rφ′(r)
)′
+

(

1−
n2

r2

)

φ(r) = 0, r ∈ (0,+∞).

We also recall that the Hankel functions of order n and type 1 and 2 are
given by

(2.5) H(1)
n (r) = Jn(r) + iYn(r), H(2)

n (r) = Jn(r)− iYn(r).

By using these notations, the solution ψ to problem (2.1) is given by

(2.6) ψ(x) =
∑

n∈N

fn
H

(1)
n (k|x|)

H
(1)
n (kR0)

einω,

where

fn =
1

2π

∫ 2π

0
f(ω)e−inωdω.

Here, we used the fact that H
(1)
n satisfies

lim
r→∞

r
1

2 (H(1)
n

′(r)− iH(1)
n (r)) = 0,

which implies that the outgoing solution of (2.1) can be written in terms of

H
(1)
n , n ∈ N.
In [CGS] the authors proposed a method for approximating ψ on

(2.7) AR := BR \ B̄R0
,
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which is based on the following minimization problem:

(2.8) Minimize JR(u) :=

∫

AR

∣

∣

∣
∇u− iku

x

|x|

∣

∣

∣

2
dx,

where ∆u+ k2u = 0 in AR, u = f on ∂BR0
.

We will denote by uAR
the minimizer of (2.8) (see [CGS] for the existence

and uniqueness of the minimizer). As already mentioned in the introduction,
the problem considered in [CGS] is much more general than problem (2.1)
both for the choice of the domain and for the coefficient n, which here is
fixed to be n ≡ 1 while in [CGS] may have angular dependence as well as
perturbations.

The reader will notice that the functional in (2.8) differs from the one
mentioned in the Introduction in the absence of the weight (1 + |x|)−1.
However, the two integral formulations of the radiation condition are equiv-
alent when n ≡ 1, as follows from an asymptotic expansion at infinity of the
solution (see also Section 3 in [CGS]). The choice of the functional with-
out the weight is just to simplify the computations. In the present paper
we will deal only with a constant index of refraction, since in this case we
know the explicit solution and accurate convergence results can be obtained
analytically.

The main results in [CGS] were: (i) the existence and uniqueness of the
minimizer uAR

for (2.8); (ii) uAR
→ ψ in H1

loc norm as R → +∞. We
summarize these results in the following theorem (the results are stated for
the particular case studied in this paper).

Theorem 2.1. Let ψ be given by (2.6). We have the following results

(i) for any R > R0 there exists a unique minimizer uAR
of Problem

(2.8);
(ii) uAR

is a solution of

(2.9) ∆u+ k2u = 0 in AR, u = f on ∂BR0
;

(iii) the minimizer of (2.8) converges to ψ as R→ +∞ in the H1
loc norm,

that is: for any fixed ρ > R0, we have that

lim
R→+∞

‖uAR
− ψ‖H1(Aρ) = 0.

For any u, v ∈ H1(AR), it will be useful to define the following semidefinite
positive hermitian product:

(2.10) 〈u, v〉R = Re

∫

AR

∇u · ∇v̄dx,

and the associated seminorm

(2.11) [u]R = 〈u, v〉
1

2

R.

We have the following Lemma.

Lemma 2.2. Let u, v ∈ H1(AR) and let

u(r, ω) =
∑

n∈Z

un(r)e
inω, v(r, ω) =

∑

n∈Z

vn(r)e
inω.
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Then we have that

(2.12) 〈u, v〉R =
∑

n∈Z

∫ R

R0

[ρu′n(ρ)v̄
′
n(ρ) +

n2

ρ
un(ρ)v̄n(ρ)]dρ.

Proof. Let u, v ∈ C1(AR). From (2.2), we obtain that

∇u(r, ω) =
∑

n∈Z

[u′n(r)er + in
un(r)

r
eω]e

inω,

and an analogous formula holds for v. Fubini-Tonelli’s Theorem and Par-
seval’s identity yield (2.12). If u, v ∈ H1(AR), then the conclusion follows
from a standard approximation argument. �

3. Convergence estimates

In this section we prove our main result on the convergence of the ap-
proximating solution. Our strategy is to write a minimization problem for
solutions of the homogeneous Helmholtz equation which is equivalent to
Problem (2.8) and then we use Fourier representation to obtain an explicit
expression of the minimizer.

For any function u ∈ H1(AR), we define U ∈ H1(AR) as follows:

(3.1) U(x) = e−ik|x|u(x).

By using this notation, the functional JR in (2.8) can be written as

JR(u) = 〈U,U〉R = [U ]2R.

In the following lemma we write a minimization problem for solutions of the
homogeneous Helmholtz equation which is equivalent to Problem (2.8).

Lemma 3.1. For a fixed R > R0, let uAR
be the minimizer of Problem (2.8)

and set

(3.2) vAR
= uAR

− ψ,

with ψ given by (2.6). Then, vAR
is the unique minimizer of the following

problem

(3.3) Minimize IR(v) := 〈V + 2Ψ, V 〉R,

where v is a solution of

(3.4)

{

∆v + k2v = 0, in AR;

v = 0, on ∂BR0
;

here V and Ψ are the functions associated to v and ψ by (3.1), respectively.

Proof. For any u ∈ H1(AR), we define v ∈ H1(AR) by v = u − ψ. Hence
the functional JR in (2.8) is given by

JR(v + ψ) = 〈Ψ,Ψ〉R + 〈V + 2Ψ, V 〉R,

where v is a solution of (3.4). Since 〈Ψ,Ψ〉R is fixed, we conclude. �

Thanks to Lemma 3.1, we can find an explicit formula for vAR
. In par-

ticular, we have the following theorem.
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Theorem 3.2. Let vAR
be the minimizer of Problem (3.3). Then,

(3.5) vAR
(r, ω) =

∑

n∈N

vRn ηn(kr)e
inω,

where

(3.6) ηn(ρ) = Yn(kR0)Jn(ρ)− Jn(kR0)Yn(ρ), ρ > 0,

and

(3.7) vRn = −
fnγ

R
n

cRn
,

with

(3.8) cRn =

∫ R

R0

[

ρk2η′n(kρ)
2 +

(

ρk2 +
n2

ρ

)

ηn(kρ)
2
]

dρ,

and

(3.9) γRn =
2

π
ki(R −R0)+

+
1

H
(1)
n (kR0)

∫ R

R0

[k2ρH(1)
n

′(kρ)η′n(kρ) + (k2ρ+
n2

ρ
)H(1)

n (kρ)ηn(kρ)]dρ.

Proof. Since uAR
solves (2.9), then vAR

= uAR
− ψ solves (3.4). By separa-

tion of variables and from the homogeneous boundary condition on ∂BR0
,

we write a solution v of (3.4) as

v(r, ω) =
∑

n∈N

vnηn(kr)e
inω,

where ηn is given by (3.6). Since V (r, ω) = e−ikrv(r, ω), then

V (r, ω) =
∑

n∈N

vnη̃n(kr)e
inω,

where we set
η̃n(r) = e−ikrηn(kr).

By letting Ψ(r, ω) = e−ikrψ(r, ω), we have that

Ψ(r, ω) =
∑

n∈N

fnh̃n(kr)

H
(1)
n (kR0)

einω,

where

h̃n(r) = e−ikrH(1)
n (kr).

We notice that
η̃′n(ρ) = ke−ikρ(ηn(kρ)− iηn(kρ));

from Lemma 2.2 and since ηn is real-valued, we have that

(3.10) 〈V, V 〉R =
∑

n∈N

|vn|
2cRn ,

where cRn is given by (3.8). Analogously, from

〈Ψ, V 〉R = Re
∑

n∈N

fnv̄n

H
(1)
n (kR0)

v̄n

∫ R

R0

[ρh̃′n(ρ)η̃
′
n(ρ) +

n2

ρ
h̃n(ρ)η̃n(ρ)]dρ,
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we obtain that

(3.11) ρh̃′n(ρ)η̃
′
n(ρ) +

n2

ρ
h̃n(ρ)η̃n(ρ) =

= ρk2(H(1)
n

′(kρ)− iH(1)
n (kρ))(η′n(kρ) + ikηn(kρ)) +

n2

ρ
H(1)

n (kρ)ηn(kρ).

Some computations yield

H(1)
n

′(kρ)ηn(kρ)−H
(1)
n (kρ)η′n(kρ) = H(1)

n (kR0)[Jn(kρ)Y
′
n(kρ)−J

′
n(kρ)Yn(kρ)],

and, from

Jn(r)Y
′
n(r)− J ′

n(r)Yn(r) =
2

πr

(see formula 9.1.16 in [AS]), we obtain that

(3.12) H(1)
n

′(kρ)ηn(kρ)−H(1)
n (kρ)η′n(kρ) =

2

πkρ
H(1)

n (kR0).

From (3.11) and (3.12) we have that

〈Ψ, V 〉R = Re
∑

n∈N

fnγ
R
n v̄n,

with γRn given by (3.9) and hence

〈V + 2Ψ, V 〉R =
∑

n∈N

cRn |vn|
2 + 2Re fnγ

R
n v̄n.

By minimizing each term of the sum we obtain (3.7). �

In order to obtain estimates on the convergence, it will be useful to write
the coefficients cRn and γRn more explicitly. We will need the following lemma.

Lemma 3.3. Let Cn and Dn be two cylinder functions, with n ∈ N. Then

(3.13)

∫ r [

ρC′
n(ρ)D

′
n(ρ) +

(

ρ+
n2

ρ

)

Cn(ρ)Dn(ρ)
]

dρ =

r2
(

Cn(r)Dn(r) + C′
n(r)D

′
n(r)

)

+ rC′
n(r)Dn(r)− n2Cn(r)Dn(r) .

Proof. We multiply the Bessel equation

(

rC′
n(r)

)′
+
(

r −
n2

r

)

Cn(r) = 0,

times D(r) and integrate. After one integration by parts, we have that

rC′
n(r)Dn(r)−

∫ r

ρC′
n(ρ)D

′
n(ρ)dρ +

∫ r (

ρ−
n2

ρ

)

Cn(ρ)Dn(ρ)dρ = 0,

and hence
∫ r

ρC′
n(ρ)D

′
n(ρ)dρ+

∫ r (

ρ+
n2

ρ

)

Cn(ρ)Dn(ρ)dρ = rC′
n(r)Dn(r)+2

∫ r

ρCn(ρ)Dn(ρ)dρ.
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From formula 10.22.5 in [OLBC] we obtain

(3.14)

∫ r

ρC′
n(ρ)D

′
n(ρ)dρ+

∫ r (

ρ+
n2

ρ

)

Cn(ρ)Dn(ρ)dρ =

= rC′
n(r)Dn(r) +

r2

2

(

2Cn(r)Dn(r)− Cn−1(r)Dn+1(r)− Cn+1(r)Dn−1(r)
)

.

By using the recurrence relations 10.6.2 in [OLBC], we find that

Cn−1(r)Dn+1(r) + Cn+1(r)Dn−1(r) = 2C′
n(r)D

′
n(r) + 2

n2

r2
Cn(r)Dn(r),

and from (3.14) we conclude. �

Now we are ready to find estimates of the rate of convergence of the
solution of the approximating problem to the exact solution.

Theorem 3.4. Let N ∈ N and R∗ > R0 be fixed. Let ψ and uAR
be the

solutions of (2.1) and (2.8), respectively, and assume that

f(ω) =

N
∑

n=−N

fne
inω,

with ω ∈ [0, 2π]. Then

(3.15) ‖ψ − uAR
‖H1(AR∗

) = O(R−1),

and

(3.16) ‖ψ − uAR
‖H1(AR) = O(R−1/2),

as R→ +∞.

Proof. It will be enough to estimate the rate of convergence of the solution
of vAR

to zero, which clearly gives the desired H1 estimate of the difference
between the exact and the approximating solutions, as follows from (3.2).

Let n ∈ N be fixed and let cRn and γRn be given by (3.8) and (3.9). We use
Theorem 3.2, Lemma 3.3, and the asymptotic formulas in Section 10.17 in
[OLBC] and we find the following asymptotic expansions for R→ +∞:

cRn =
2kR

π

[

Jn(kR0)
2 + Yn(kR0)

2
]

+O(1),

and

π

2
γRn = −ikR0 − k2R2

0

H
(1)′
n (kR0)

H
(1)
n (kR0)

η′n(kR0)+

+
eiχn

H
(1)
n (kR0)

[

αnH
(2)
n (kR0)e

iχn + i
(

Yn(kR0) cosχn − Jn(kR0) sinχn

)]

+

+O(R−1),

where

αn =
(4n2 − 1)(n2 − 1)

2
,

and

χn = kR−
(

n+
1

2

)π

2
.
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In particular we have that

(3.17)
γRn
cRn

= O(R−1), as R→ +∞.

Since R∗ is fixed, then there exists a constant C, not depending on R such
that

‖ηn‖H1(AR∗
) ≤ C,

for every n, and hence it is clear that (3.17) implies (3.15). To prove (3.16)
we notice that formula 10.22.5 in [OLBC] implies that

∫ R

0
(ηn(r)

2 + η′n(r)
2)r dr = O(R), as R→ +∞,

and from (3.17) we conclude. �

Remark 3.5. In Theorem 3.4 we assumed that the source f can be expressed
in terms of a finite sum of Fourier coefficients, which is the most interesting
case for the numerical computations. For a general f ∈ L2 it is not clear
whether Theorem 3.4 holds. Indeed, the error bounds that we used for
the asymptotic expansions of cylindric functions may be not sufficient to
guarantee the convergence (see Section 10.17(iii) in [OLBC]) and a more
refined argument is probably needed to estimate the rate of convergence of
the approximating solution.
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