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Abstract. We investigate the Diósi-Penrose (DP) proposal for connecting the collapse of the

wave function to gravity. The DP model needs a free parameter, acting as a cut-off to regularize

the dynamics, and the predictions of the model highly depend on the value of this cut-off. The

Compton wavelength of a nucleon seems to be the most reasonable cut-off value since it justifies

the non-relativistic approach. However, with this value, the DP model predicts an unrealistic

high rate of energy increase. Thus, one either is forced to choose a much larger cut-off, which is

not physically justified and totally arbitrary, or one needs to include dissipative effects in order to

tame the energy increase. Taking the analogy with dissipative collisional decoherence seriously, we

develop a dissipative generalization of the DP model. We show that even with dissipative effects,

the DP model contradicts known physical facts, unless either the cut-off is kept artificially large,

or one limits the applicability of the model to massive systems. We also provide an estimation

for the mass range of this applicability.

1. Introduction

By accepting the universality of the quantum superposition principle, it should be

possible to observe classical macro objects in a superposition of two distinguishable

positions. However, so far no signature of superposition states has been observed at

the macro-scale. Macro objects behave classically, while tremendous manifestations

of superposition states have been observed at the micro-scale. This state of affairs

immediately raises the following questions [1–4]: does the superposition principle really

hold true at the macro-scale? Is there a division between the micro and the macro

world? If so, what is responsible for it?

Collapse models [5–17] provide a well-defined phenomenology to answer these

questions. Initiated by the seminal works of Ghirardi, Rimini, Weber, and Pearle,

collapse models assume a universal stochastic noise that couples non-linearly with

matter. This non-linear coupling induces a localization in space, which kills

superpositions with the correct quantum probabilities. The strength of the coupling

is fixed by phenomenological parameters defining the models. The collapse rate then

grows by increasing the size and complexity of the system such that the effect of the

collapse process is negligible at the micro-scale, and becomes dominant when moving
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toward the macro-scale. In this way, within a unique dynamical equation, both the

quantum and the classical world can be described consistently.

Collapse models are phenomenological models. Their justification from

fundamental physical principles is not yet known and it very much depends on one’s view

about the physical origin of the collapse field. A natural explanation can be provided

by gravity, because gravity is universal and its strength increases with the mass of the

system. In fact, these are two crucial properties of the collapse field.

The connection of the collapse field with gravity has been explored by many

authors [7, 8, 12, 16, 18–21], in particular by Károlyházy et. al [19], Diósi [7, 8, 16] and

Penrose [12], independently. Here, we will focus on the works of Diósi and Penrose,

which is usually called as DP model. Diósi proposed a stochastic nonlinear Schrödinger

equation as follows [8]:

d|ψt〉 =

[
− i
~
Ĥ dt+

∫
d3x

(
M̂(x)− 〈M̂(x)〉t

)
dWt(x) (1)

−1

2

∫∫
d3x d3y G(x− y)

(
M̂(x)− 〈M̂(x)〉t

)(
M̂(y)− 〈M̂(y)〉t

)
dt

]
|ψt〉,

where Ĥ is the standard quantum Hamiltonian, 〈M̂(x)〉t = 〈ψt|M̂(x)|ψt〉, M̂(x) is the

local mass density operator, which in the first-quantization formalism reads:

M̂(x) =
N∑
j=1

mj δ(x− r̂j), (2)

with r̂j the position operator of j-th particle; and Wt(x) is a real Wiener process

producing the white noise w(t,x) = dWt(x)/dt with the statistical properties:

E(w(t,x)) = 0, E(w(t1,x)w(t2,y)) = δ(t1 − t2)G(x− y) (3)

where E(· · · ) is the stochastic average, and G(x− y) the two-point correlation function

of the collapse field:

G(x) =
G

~
1

|x|
, (4)

where G is the gravitational constant. With Eq.(1) in hand, the statistical operator

evolves as

∂

∂t
ρ̂(t) = − i

~
[Ĥ, ρ̂(t)] + L[ρ̂(t)] (5)

with:

L[ρ̂(t)] =
G

~

∫∫
d3x d3y

|x− y|

(
M̂(x) ρ̂(t) M̂(y)− 1

2

{
M̂(x) M̂(y), ρ̂(t)

})
. (6)

However, there are divergent terms in above equation (see Eqs.(7,8)). To regularize

the dynamics, Diósi proposed to introduce a cut-off. Although the introduction of the

cut-off prevents the divergence in the evolution equation of the statistical operator, the
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energy of the system increases monotonically and goes to infinity. Even more, with

the originally proposed value of the cut-off, the rate of the energy increase is too high,

giving rise to the problem of overheating, as shown in [22]. As a consequence Ghirardi

et al. [22] proposed a much larger cut-off, which, however, is less justified on a physical

ground. We will come back on this issue in section 6. An immediate question would be

if there is any other resolution for the overheating and the energy divergence problems

in the DP model. Here we shall elaborate this question in detail.

First, we will show that the model is structurally equivalent to the the mass-

proportional Continuous Spontaneous Localization (CSL) model [11, 22]. We will then

discuss the connection of DP model with gravity. We will also discuss the analogy of

the DP equation to the typical master equations for collisional decoherence. Using this

analogy, we will elaborate on the problem of overheating and investigate the possible

resolutions. The overheating problem should be resolved by introducing dissipative

terms, while preserving the translation-covariance of the dynamics. However, we will

argue that this calls for either a change in the spatial cut-off proposed by Diósi or a

limitation in the applicability of the model.

2. Spatial cut-off in the DP model

To clarify the origin of the divergence in the DP dynamics, we first rewrite Eq.(6) in

the form of a diagonal Lindblad master equation [25, 26]. By introducing the inverse

Fourier transform of the term 1/|x− y|, one finds:

L[ρ̂(t)] =
G

2π2~2
N∑

j,l=1

mjml

∫
d3Q

Q2

(
e

i
~ Q · r̂j ρ̂(t) e−

i
~ Q · r̂l − 1

2

{
e

i
~ Q · r̂je−

i
~ Q · r̂l , ρ̂(t)

})

= − Λ ρ̂(t) +
G

2π2~2
N∑
j=1

m2
j

∫
d3Q

Q2
e

i
~ Q · r̂j ρ̂(t) e−

i
~ Q · r̂j (7)

+
G

2π2~2
N∑

j 6=l=1

mjml

∫
d3Q

Q2

(
e

i
~ Q · r̂j ρ̂(t) e−

i
~ Q · r̂l −

{
e

i
~ Q · r̂je−

i
~ Q · r̂l , ρ̂(t)

})
,

where

Λ =
G

2π2~2
N∑

j,l=1

mjml

∫
d3Q

Q2
=

2GM2

π~2

∫ ∞
0

dQ (8)

with M =
∑
mj the total mass. It is quite clear that Λ diverges. To solve this problem,

Diósi proposed to introduce a cut-off, in order to regularize the dynamics.

The cut-off can be introduced at the level of Eq.(6), by replacing the point-like

density operator with a coarse-grained mass density operator, with a spatial resolution

R0. Diósi originally introduced the coarse-grained mass density as follows:

M̂ ′(x) =
3

4πR3
0

∫
d3y θ(R0 − |x− y|) M̂(y), (9)
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where θ(x) is the Heaviside step function. Subsequently, Ghirardi et al. [22] introduced

the coarse-graining as follows:

M̂ ′(x) = (2πR2
0)
−3/2

∫
d3y exp

(
−|x− y|2

2R2
0

)
M̂(y). (10)

Note that M̂ ′(x) is meant to replace M̂(x) in Eq.(6). Accordingly, Eq.(7) becomes:

L[ρ̂(t)] =
G

2π2~2
N∑

j,l=1

mjml

∫
d3Q

Q2
f(Q) ×(

e
i
~ Q · r̂j ρ̂(t) e−

i
~ Q · r̂l − 1

2

{
e

i
~ Q · r̂je−

i
~ Q · r̂l , ρ̂(t)

})
, (11)

where f(Q) is a damping function of the momentum Q. For the coarse-graining in

Eq.(9) we have:

f(Q) =
9~6

R6
0Q

6

(
sin

(
QR0

~

)
− QR0

~
cos

(
QR0

~

))2

, (12)

while for the coarse-graining as in Eq.(10), we find:

f(Q) = exp

(
−Q

2R2
0

~2

)
, (13)

However, since e−x
2/2 ≈ 3(sinx− x cosx)/x3, the two different ways of introducing the

cut-off are practically equivalent, once R0 is fixed. For the sake of simplicity, we will

use the coarse-graining given in Eq.(10).

The cut-off can be also included at the level of Eq.(7) as follows:

L[ρ̂(t)] =
G

2π2~2
N∑

j,l=1

mjml

∫ Qmax

0

dQ

∫∫
d2ñ ×(

e
i
~ Qñ · r̂j ρ̂(t) e−

i
~ Qñ · r̂l − 1

2

{
e

i
~ Qñ · r̂je−

i
~ Qñ · r̂l , ρ̂(t)

})
, (14)

where Qmax = ~/R0. Here, ñ = Q/Q, and d2ñ = d cos θ dφ is the corresponding solid

angle differential ‡. At the level of Eq.(14), we can assign an interpretation to the cut-

off and even justify a specific value for it. In fact, Qmax can be read as an upper limit

for the modes of the collapse field that are the dominant modes contributing to the

collapse. These modes are also small enough to justify the non-relativistic approach.

This interpretation is very similar to Bethe’s non-relativistic computation of the Lamb

shift (e.g., see [24]). Thus, if we argue that Qmax is the bound justifying the non-

relativistic approach, then one can replace R0 by the Compton wavelength; that is to

say: R0 = 2π~
mc

, which is R0 ≈ 10−15 m for a nucleon. Accordingly, in this way, one can

provide a justification for the cut-off and its chosen value. This value corresponds to

the original choice made by Diósi [7]; which however is incompatible with experimental

data. We will discuss this issue in larger detail in section 6.

‡ It is quite clear that Eq.(14) is mathematically equivalent to Eq.(11) with f(Q) = θ(Q − Qmax),

which eventually can be approximated by a damping Gaussian function, f(Q) ≈ exp(−Q2/Q2
max), such

as Eq.(13).
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3. Physical Meaning and Solutions of the DP Master Equation

In this section, we will focus on the regularized one-particle DP model where the

dynamics reads:

L[ρ̂(t)] =

∫
d3Q ΓDP(Q)

(
e

i
~ Q · r̂ ρ̂(t) e−

i
~ Q · r̂ − ρ̂(t)

)
, (15)

with

ΓDP(Q) =
Gm2

2π2~2
1

Q2
exp

(
−Q

2R2
0

~2

)
. (16)

The master equation given in Eq.(15) is more convenient than the corresponding one

in Eq.(6) for several reasons. First, Eq.(15) directly shows that we have a completely

positive and translation-covariant semigroup dynamics [27]. In addition, it allows to

deduce a direct analogy with models for collisional decoherence. The Lindblad structure

in Eq. (15) is in fact the same as that which characterizes collisional decoherence of

a very massive particle interacting through collisions with a low density background

gas [28, 29]. Eq.(15) describes a pure decoherence dynamics with no dissipation [30]. In

particular, the total transition rate, i.e. the probability per unit time that the particle

undergoes a collision, is

ΛDP =

∫
d3Q ΓDP(Q) =

Gm2

√
π~R0

,with the dimension [ΛDP] = s−1. (17)

With Eq.(15) in hand, one can also easily find the solution of the DP master

equation, at least for a single free particle. Using the characteristic function [31, 32], the

state at time t in the position representation, 〈x|ρ̂(t)|x′〉 = ρ(x,x′, t), is found to be

ρ(x,x′, t) =

∫∫
d3y

d3p

(2π~)3
ρ0(x + y,x′ + y, t)×

exp

(
− i
~

y ·p− 1

~

∫ t

0

dτ
(
U
(
−p τ

m
+ x− x′

)
− U(0)

))
, (18)

where ρ0(x,x
′, t) is the solution of the free Schrödinger dynamics and

U(x) = −G
∫∫

d3r d3r′M ′(r)M ′(r′)

|x + r− r′|
= −Gm2 Erf(|x|/2R0)

|x|
, (19)

is the Newtonian self-interaction where Erf(x) is the error function. If one neglects the

pure Schrödinger contribution in Eq.(5), which is justified on the short time scale, then

Eq.(18) reduces to an exponential decay of the form:

ρ(x,x′, t) = exp

(
− t

τ(x,x′)

)
ρ(x,x′, 0), (20)

where the characteristic damping time τ is:

τ(x,x′) =
~

U (x− x′)− U(0)
. (21)
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For |x − x′| � R0, one finds that τ(x,x′) ≈ Λ−1DP, which is of the order τ ≈ 1015 s with

m = 1 amu and R0 = 10−15 m. As usual in collapse models [17], we will thus exploit

ΛDP to estimate the collapse rate of the model.

Equation (20) implies that spatial superpositions of positions x and x′ decays with

the rate τ(x,x′). This is precisely Penrose’s idea [17, 33, 38]. According to Penrose,

a spatial superposition of matter generates the superposition of two bumps in the

space-time. In this situation, the time-translation operator is ill-defined. This ill-

definedness leads to an uncertainty in the energy which is given, in the weak-field limit,

by the Newtonian gravitation self-energy of the corresponding mass distribution at two

positions, i.e. ∆E = U (x− x′)−U(0). Using the energy-time uncertainty relation, this

can imply that the superposition decays to one of the localized states with the lifetime

τ = ~/∆E, which is equivalent to Eq.(21). Therefore, Diósi’s dynamical equation

implements Penrose’s idea. This is why one speaks of Diósi-Penrose model.

However, it should be pointed out that the DP model is not a gravity-induced

collapse model, as was clear to the original proposers who always spoke in terms of

gravity-related models [44]. The DP dynamics in Eq.(1) is simply postulated and

there is no real physical justification for it besides the requirements of the state vector

normalization and no faster than light signaling §. In addition, gravity only appears

in the correlation function of the collapse field as a Newtonian potential; there is no

gravitational interaction between matter and gravity in the DP model. Therefore,

Penrose’s original idea still remains without a satisfactory explanation, not even at

the phenomenological level.

4. Comparison of the DP Model with the CSL Model

As pointed out in [22], the DP collapse model shares strong similarities with the mass-

proportional Continuous Spontaneous Localization (CSL) model [11, 22]. The CSL

model is originally formulated in terms of quantum field theory [10, 17]. However, if

we restrict to the N -particle sector of the Fock space, its defining stochastic differential

equation can be expressed through the local mass density operator M̂(x) as given in

Eq.(2). Explicitly, we have

∂

∂t
|ψt〉 =

[
− i
~
Ĥ +

√
γ

m0

∫
d3x

(
M̂(x)− 〈M̂(x)〉t

)
dWt(x) (22)

− γ

2m2
0

∫∫
d3x d3y G(x− y)

(
M̂(x)− 〈M̂(x)〉t

)(
M̂(y)− 〈M̂(y)〉t

)]
|ψt〉,

§ This is true for all collapse models. For the DP model, Diósi provided a partial justification for

the existence of a universal Newtonian noise. Following Bohr-Rosenfeld argument on uncertainties

of measurement of the electromagnetic fields, Diósi and Lukács introduced a universal bound for the

optimal measurement of the gravitational acceleration field (see [7] and references therein). Then, they

interpreted this bound as representation of a universal fluctuation in the gravitational field, which is

represented as a Newtonian noise. Nevertheless, the proposed form of the dynamic (Eq.(1)) and how

the noise couples with the quantum system is ultimately still postulated, not derived
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wherem0 = 1 amu is a reference mass, and γ = 10−36 m3 · s−1 is a new intrinsic parameter

of the model setting the collapse strength [6, 10, 11]; note that a much higher value,

γ = 10−28±2 m3 · s−1, was proposed more recently [13]. In addition, G(x) is a Gaussian

function:

G(x) =
1

(4πrc)3/2
exp

(
− x2

4r2c

)
, (23)

where rc = 10−7m is the second new intrinsic parameter of the model. The white-noise

field w(t,x) = dWt(x)/dt satisfies Eq. (3) and Eq.(23) replaces Eq.(4).

Manifestly, the structure of the CSL equation in Eq.(22) is the same as that of the

DP dynamics given in Eq.(1). The only difference is the spatial correlation function of

the noise: a Gaussian function in the CSL model and the Newtonian potential in the DP

model. The DP choice, which is meant to establish a connection with gravity, requires

the introduction of a spatial cut-off in order to avoid divergences, as we discussed before.

The CSL model on the other hand requires two new parameters γ and rc where rc defines

the correlation function of the noise, and γ sets the strength of the localization processes.

In the DP model the strength of the localization processes is set by the constant G, as a

phenomenological signature of the gravity. However, because of the divergence problem,

one needs to introduce a new free parameter R0, which plays a role analogous to rc. We

shall elaborate this issue by looking at the CSL and DP master equations.

For a one particle system the CSL master equation is equivalent to that of the

collapse model introduced by Ghirardi, Rimini and Weber (GRW model) [6] and it

reads
∂

∂t
ρ̂(t) = − i

~

[
Ĥ, ρ̂(t)

]
+

∫
d3Q ΓCSL(Q)

(
e

i
~ Q · r̂ ρ̂(t) e−

i
~ Q · r̂ − ρ̂(t)

)
, (24)

where

ΓCSL(Q) =
γ

(2π~)3
m2

m2
0

exp

(
−Q

2r2c
~2

)
; m0 = 1amu. (25)

The difference with the DP master equation given in Eq.(15) is entirely contained in the

rate term (compare with Eq.(16)). Apart from the different coefficients in front of the

Gaussian distribution, the main differences are the factor 1/Q2, which is present only

in the case of the DP model, and, crucially, the width of the Gaussian, which is set by

1/rc in the CSL model and by 1/R0 in the DP model. It means that the momentum

fluctuations are indeed much larger in the DP model, giving rise to an unacceptable

rate of the energy increase. We shall discuss this issue later.

The solution of the master equation associated with the CSL model has the same

form as in Eq.(18) where one has to replace U(x) by −~Φ(x) where:

Φ(x) =

∫
d3Q e

i
~Q ·x ΓCSL(Q) =

m2

m2
0

γ

(4πrc)3/2
exp

(
− x2

4r2c

)
. (26)

Accordingly, like Eq.(20), the CSL decoherence time becomes:

τCSL(x,x′) =
1

Φ(0)− Φ(x− x′)
. (27)
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Figure 1. Damping time τ(x,x′) as a function of the distance |x− x′| for the DP model (black

line) and for the CSL model (red, dashed line). The damping time is expressed in units of the

inverse of the rate Λ for the corresponding model: respectively, ΛDP ≈ 10−15 s, see Eq.(17), and

ΛCSL ≈ 2.2 × 10−17 s, see Eq.(28), where both numerical values refer to the case of a nucleon.

The distance is expressed in units of d, where, crucially, d = R0 for the DP model and d = rc for

the CSL model.

For |x− x′| � rc, one has τCSL(x,x′) ≈ Λ−1CSL, where the CSL collapse rate is given by

ΛCSL =

∫
d3Q ΓCSL(Q) =

m2

m2
0

γ

(4πr2c )
3/2
. (28)

We plot in Fig.1 the DP and CSL decoherence times as a function of the distance

|x − x′|. One can see how the damping time decays as a function of the distance in a

very similar fashion in the two cases. The crucial difference is that the decay length is

fixed by the localization width rc in the CSL model, while it is fixed by the cut-off R0 in

the DP model. As a consequence, the superposition between two states centered around

two different positions at a fixed distance |x − x′| is suppressed much more quickly in

the DP model.

5. Amplification Mechanism

A key feature of collapse models is amplification mechanism, ensuring the classicality

when moving toward the macro-scale. It implies that the collapse mechanism suppresses

the Schrödinger dynamics for the center-of-mass motion of a macro-system. It can be

formulated as follows. Assuming a rigid many-body system and tracing out the relative

coordinates, the dynamical equation for the center-of-mass takes the same form as in

Eq.(15):

L[ρ̂M(t)] =

∫
d3Q ΓM(Q)

(
e

i
~ Q · R̂ ρ̂M(t) e−

i
~ Q · R̂ − ρ̂M(t)

)
, (29)
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where ρ̂M(t) is the center-of-mass density matrix, R̂ is the position operator of the

center-of-mass and:

ΓM

DP(Q) =
G

2π2~2Q2
|%̃rel(Q)|2 exp

(
−Q

2R2
0

~2

)
(30)

with %̃rel(Q) =
∫

d3x eiQ ·x/~ %rel(x) where %rel(x) is the internal mass density. For

example, for a homogeneous rigid sphere of mass M and radius R, we get: %̃rel(Q) ≈
M exp(−Q2R2/2~2). Accordingly, we find:

ΓM

DP(Q) ≈ GM2

2π2~2
1

Q2
exp

(
−Q

2(R2 +R2
0)

~2

)
. (31)

Similar to Eq.(17), here the total collapse rate becomes:

ΛM

DP =

∫
d3Q ΓM(Q) ≈ GM2

~
√
π(R2 +R2

0)
. (32)

For example, ΛM
DP is of order 10−5 s−1 for a typical optomechanical nanosphere with

M ≈ 109 amu and R ≈ 50 nm [35]. Evidently, the collapse rate of a nanosphere is 10

orders of magnitude larger than of a nucleon, which is of order 10−15 s−1. This is a

manifestation of the amplification mechanism.

The center-of-mass master equation for the mass-proportional CSL model is the

same as Eq.(29), where:

ΓM

CSL(Q) ≈ γ

(2π~)3
M2

m2
0

exp

(
−Q

2(R2 + r2C)

~2

)
. (33)

Likewise, one finds:

ΛM

CSL =

∫
d3Q ΓM(Q) ≈ γ M2

8π3/2m2
0 (R2 + r2C)3/2

. (34)

For example, ΛM
CSL is of order 10 s−1 for a typical optomechanical nanosphere with

M ≈ 109 amu and R ≈ 50 nm [35].

Although the values of the DP and the CSL collapse rates are different, the collapse

rate has the same dependence on the mass in both models, and it is proportional to the

square of the total mass.

6. The Overheating Problem

The dynamical equation of the form given in Eq.(15) does not conserve the energy [34,

36]. The rate of energy increase can be easily calculated and turns out to be:

dEDP(t)

dt
=

2π

m

∫ ∞
0

dQ ΓDP(Q)Q4 =
mG ~

4
√
π R3

0

, (35)

with EDP(t) = tr[ρ̂(t)Ĥ] where ρ̂(t) satisfies the DP dynamics. From this relation, one

can easily evaluate the different implications of the cut-off proposed, respectively, by

Diósi [7] and Ghirardi et al. [22]. In the former case, R0 = 10−15m, one gets a rate for
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the energy increase of order 10−4 K/s for a proton, which means a thermal catastrophe!

The second choice, R0 = 10−7m, leads to a rate of order 10−28 K/s for a proton, which is

indeed a much more reasonable value. Although in this way the problem of overheating

has been partially resolved, it s clear that the introduction of a cut-off R0 = 10−7m is

much less justified than the original proposal by Diósi. One of the main motivations of

the DP model, i.e., to provide a phenomenological model without free parameters, is in

this way lost. A crucial question is thus whether it is possible to resolve the overheating

problem in a different way. In the next section, we shall investigate such a possibility.

7. Dissipative DP dynamics

If one takes the DP model—like all collapse models— seriously, then one is assuming the

existence of a classical random field, filling space, which couples non-linearly to quantum

matter causing the collapse (so far, in a non better specified way, other than postulating

ad hoc equations of motion). Seen from this perspective, there is no surprise as to why

the energy is not conserved: dissipative terms are neglected. To make a classical analogy,

it is like considering a particle in a gas, without taking dissipation into account. The gas

then acts like an infinite temperature gas, increasing the energy of the particle constantly

in time, till it eventually diverges. The natural resolution to the problem is to include

dissipation. The gas then acts like a real physical gas with a finite temperature T , and

the particle more or less quickly thermalizes to that temperature. Clearly, the resulting

equations of motion will be more complicated (uglier, if one wishes), but will describe a

more realistic situation. More complicated equations of motion are not a problem here,

as we are dealing with phenomenological models. Now, we will apply this idea to the

DP model.

Very similar to collisional decoherence, dissipation can be introduced by replacing

ΓDP in Eq.(15) with an operator-valued function of the system’s momentum operator

p̂. To preserve the translation-covariance of the Lindblad structure, one needs a master

equation in the form [27]:

L[ρ̂(t)] =

∫
d3Q

(
e

i
~ Q · r̂ L̂(Q, p̂)ρ̂(t)L̂†(Q, p̂) e−

i
~ Q · r̂ − 1

2

{
L̂†(Q, p̂)L̂(Q, p̂) , ρ̂(t)

})
.

(36)

In particular, we propose the following choice for L̂(Q, p̂):

L̂(Q, p̂) ≡ m
√
G

π
√

2 ~
1

Q
exp

[
− R

2
0

2~2

(
(1 + k)Q+ 2k

p̂ ·Q
Q

)2
]
, (37)

where k is a dimensionless parameter inversely proportional to the mass, given by:

k =
mr

m
, (38)

with mr a reference mass. By setting mr = 0 one recovers the DP master equation

without dissipation. With our specific choice of k in Eq.(38), which eventually appears
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in L̂(Q, p̂) too, we will be able to associate the collapse field with a temperature which

does not depend on the mass of the system (see Eq.(45)). This is a very desirable

requirement. Of course different choices for the operator L̂(Q, p̂) are possible. The

one given in Eq.(37) corresponds to the master equation which describes the dissipative

collisional decoherence in the weak coupling regime [30, 37]:

L̂DEC(Q, p̂) ∝ exp

[
− 1

16menkBT

(
(1 +

men

m
)Q+ 2

men

m

p̂ ·Q
Q

)2
]
, (39)

with men the mass of environment particles. Comparing Eq.(37) with Eq.(39), one can

in fact infer the following analogies:

mr ←→ men; R0 ←→
~√

8menkBT
, (40)

where ~/
√
menkBT is the thermal de Broglie wavelength of the environment.

8. The Overheating Problem in Dissipative Mode

With Eq.(36) in hand, we can show explicitly that the mean value of the energy is

finite also for large times, because of the dissipative effects. The general structure of the

master equation in Eq.(36) implies that the mean value of the kinetic energy Ĥ = p̂2/2m

satisfies the following equation:

d

dt
EDP(t) =

1

2m

∫
d3Q Tr

(
ρ̂(t) L̂†(Q, p̂)L̂(Q, p̂) (Q2 + 2 p̂ ·Q)

)
. (41)

With the operator L̂(Q, p̂) as given in Eq.(37), we find:

d

dt
EDP(t) = γDP − ξDPEDP(t), (42)

where

γDP =
mG ~

4
√
π(1 + k)3R3

0

; ξDP =
4m2Gk

3
√
π(1 + k)3 ~R0

. (43)

So the mean value of the energy evolves in time as follows:

EDP(t) = EDP(0) e−ξDPt +
γDP

ξDP

(
1− e−ξDPt

)
, (44)

which means that the energy relaxes exponentially to a finite value. By virtue of

dissipation, now the system can loose energy as a consequence of the action of the

collapse field and, even when the mean energy grows in time, there is an upper value

above which it cannot increase. Relying on the equipartition of energy, the finite

asymptotic value of the energy can be associated to the finite temperature of the collapse

field:

T =
2γDP

3kB ξDP

=
~2

8 kB

1

mr R2
0

. (45)
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Note that for mr = 0 one finds an infinite temperature, which corresponds to the original

DP model without dissipation.

It is worth noting how the temperature in Eq.(45) does not depend on the mass of

the system, which is a direct consequence of the coefficients in front of the parameter

k in Eq.(37). In addition, one can show how the master equation Eq.(36) with the

operators L̂(Q, p̂) as in Eq.(37) predicts a relaxation of the system’s statistical operator

to the stationary solution in the canonical form [30]

νeq(p̂) = (2πMkBT )−3/2 exp

(
− p̂2

2MkBT

)
, (46)

where T is the temperature given by Eq.(45). As already remarked, the choice of the

operators L̂(Q, p̂) in Eq.(37) is in principle not unique. Nevertheless, it directly follows

from the natural requirements that the dissipative DP model reduces to the original DP

model for k → 0, and that it predicts a relaxation to the canonical stationary solution,

with a temperature T which does not depend on the mass of the system. Still, there are

other possible choices which meet these criteria, such as that provided by the operators

ˆ̃L(Q, p̂) ≡ m
√
G

π
√

2 ~
1

Q
exp

[
− R

2
0

2~2
((1 + k) Q + 2k p̂ ·Q)2

]
. (47)

However, one can see how a dissipative model with such operators would lead to the

same temperature as that in Eq.(45), so that the conclusions of the present work would

not be modified.

9. Specification of Free Parameters in the Dissipative DP model

The DP model contains one free parameter, which is R0, the cut-off to regularize the

DP dynamical equation; on the contrary, the dissipative DP model contains two free

parameters: mr, which is related with the temperature of the collapse field, and R0.

Anyway, contrary to R0, the new parameter mr has a fully natural physical justification:

it controls the temperature of the collapse field. The possibility of controlling the energy

increase by controlling the temperature of the noise opens the possibility of removing

the arbitrary cut off R0 ∼ 10−7m, and replace it with the original cut off R0 ∼ 10−15m

originally proposed by Diósi, corresponding to the nucleon’s Compton wavelength and,

as previously shown, to the limit of validity of the non-relativistic approach. In this

section, we study to what extent this natural resolution of the overheating problem can

be applied, by investigating the possible choices of the parameters involved in the model.

For the value of temperature, one finds from Eq.(45):

T =
10−19

mr R2
0

, with the dimensions [T ] = Kelvin, [mr] = amu, and [R0] = m.(48)

If the collapse noise is real, then, whatever its nature, it must be a low-temperature

noise (like the cosmic microwave background), with a temperature of few Kelvins; any
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other choice would be difficult to justify. Accordingly, we have the following relation

between the parameters of the dissipative DP model:

T ∼ 1 K =⇒ mr R
2
0 ∼ 10−19, with [mr] = amu, and [R0] = m. (49)

By setting R0 = 10−15 m in Eq.(49), one finds: mr ∼ 1011. But then, for masses

m � mr, the dissipation parameter k is very large, meaning a dissipation mechanism

which is too strong, as it involves an unrealistic amount of exchanged energy between

the system and the noise. In fact, for k � 1 the action of the noise would likely

determine a sudden flip of the system’s momentum, as one can infer by looking at the

probability distribution of the exchanged momentum P (Q). This is obtained by the

operator L̂2(Q, p̂) and hence also depends on the momentum of the system. Explicitly,

for k � 1, we have that if the system has momentum p the probability distribution

associated with the exchanged momentum is well approximated by:

P (Q) =
C

Q2
exp

(
−k

2R2
0

~2
(Q+ 2p ·Q/Q)2

)
, (50)

where C is a normalization constant. Hence, the most probable event is a decrease of

momentum 2p along the direction fixed by p; moreover, the width of the probability

distribution is the narrower the higher the value of k. The momentum flip induced by

the universal noise field causing the collapse of the wavefunction would mean that the

latter can transfer an energy of the order of tens of MeV to a nucleon in a nucleus

(corresponding to the average kinetic energy of a nucleon in a Fermi-gas model [39]),

which would induce instantaneous matter dissociation. Accordingly, with R0 = 10−15 m,

the DP model is only an effective model for the mass ranges larger or comparable with

mr ∼ 1011 amu. In other words, the DP model should be applied only to mesoscopic

and macroscopic systems. A similar conclusion has been obtained by Diósi [23], from

a different perspective. It is worth mentioning that the value mr is also very different

from the Plank mass mP ∼ 1019 amu, which is sometimes considered as a borderline

between quantum and classical masses [40].

For Ghirardi’s cut-off value R0 = rc = 10−7 m, one finds: mr ∼ 10−5 amu. Relying

on the analogy with collisional decoherence, see Eq.(40), the dissipative effects are

now much weaker compared with the case of the original cut-off since the mass of

the environmental particles is much smaller.

We can conclude that, unless one admits a limited applicability of the DP model, the

introduction of a cut-off of the order of rc cannot be avoided, even with the introduction

of dissipation.

10. Conclusion

The goal of a gravity-induced collapse model is to explore the possibility —perhaps

only at the phenomenological level—that the collapse of the wave function is caused by

gravity. Apart from much talking, in the literature only two such models (defined in

terms of dynamical equations) have been proposed: the Schrödinger-Newton equation,
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and the Diósi-Penrose (DP) model. In [41] we have analysed the Schrödinger-Newton

equation, and we have shown that in its present form it is not able to explain the collapse

of the wave function in any satisfactory way.

In this paper, we have analysed the DP model. This model has the virtue of giving a

dynamical explanation for the collapse rate suggested by Penrose. However, it does not

succeed in a more ambitious goal: it does not explain why the collapse should be related

to gravity. In the DP model, the noise (whose origin is not explored) does not couple

to matter like a gravitational noise field is expected to do. This is in contrast with the

Schrödinger-Newton equation, where the Newtonian self-interaction of different parts of

the wave function is manifest. Contrary to the Schrödinger-Newton case, the DP model

is structurally equivalent to the CSL model, the only difference being a different choice

of the spatial correlation function of the noise. Therefore, from the conceptual point of

view the DP model is on the same level as the GRW and CSL models, and it is not

derived from more fundamental principles.

The original DP model was defined in terms of only the gravitational constant G,

and no other parameter. However, because of divergences, one still needs to introduce a

cut-off. A natural cut-off would correspond to the Compton wavelength of the nucleon,

that justifies the non-relativistic approach. However, the model remains unrealistic, as

it predicts a too high energy increase. A much higher—and less justified—cut-off is

needed, to restore compatibility with known experimental facts.

In this paper, we explored a very natural way of dealing with the energy increase:

we included dissipative terms in the dynamics, which already allowed us to solve the

problem of the energy divergence in both the GRW and the CSL model [42, 43]. The

motivation for such an approach is very simple: non-dissipative models (corresponding

to an infinite-temperature bath/noise) are only idealization of more realistic situations,

where the bath/noise has a finite temperature and the system interacting with it

eventually thermalizes to that temperature. However, even in this case, the DP model

remains unphysical, unless the cut-off is kept artificially large.

The conclusions seems to be that the DP model can be used to describe the collapse

of massive composite systems, while its application to smaller systems such as atoms

and nucleons is problematic.
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[16] L. Diósi, J. Phys. A: Math. Theor. 40, 2989 (2007);

[17] A. Bassi, K. Lochan, S. Satin, T.P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013).

[18] P. Pearle and E. Squires, Found. Phys. 26, 291-305 (1996);
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