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The incidence of cancer and Alzheimer’s disease (AD) increases exponentially with 
age. A growing body of epidemiological evidence and molecular investigations inspired 
the hypothesis of an inverse relationship between these two pathologies. It has been 
proposed that the two diseases might utilize the same proteins and pathways that are, 
however, modulated differently and sometimes in opposite directions. Investigation of the 
common processes underlying these diseases may enhance the understanding of their 
pathogenesis and may also guide novel therapeutic strategies. Starting from a text-mining 
approach, our in silico study integrated the dispersed biological evidence by combining 
data mining, gene set enrichment, and protein-protein interaction (PPI) analyses while 
searching for common biological hallmarks linked to AD and cancer. We retrieved 138 
genes (ALZCAN gene set), computed a significant number of enriched gene ontology 
clusters, and identified four PPI modules. The investigation confirmed the relevance of 
autophagy, ubiquitin proteasome system, and cell death as common biological hallmarks 
shared by cancer and AD. Then, from a closer investigation of the PPI modules and of the 
miRNAs enrichment data, several genes (SQSTM1, UCHL1, STUB1, BECN1, CDKN2A, 
TP53, EGFR, GSK3B, and HSPA9) and miRNAs (miR-146a-5p, MiR-34a-5p, miR-
21-5p, miR-9-5p, and miR-16-5p) emerged as promising candidates. The integrative 
approach uncovered novel miRNA-gene networks (e.g., miR-146 and miR-34 regulating 
p62 and Beclin1 in autophagy) that might give new insights into the complex regulatory 
mechanisms of gene expression in AD and cancer.
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INTRODUCTION

Cancer and dementia are complex pathologies that rise 
exponentially with age and dramatically affect quality of life 
and survival. Cancer and dementia are also described as the 
divergent manifestations of aging, the rival demons (Campisi, 
2013), emerging from the opposite ends of a biological spectrum: 
uncontrolled cell proliferation characterizes carcinogenesis, 
whereas a progressive neuronal death marks neurodegeneration 
(López-Otín et al., 2013). Consistent epidemiological evidence 
suggests an intriguing inverse relationship between cancer and 
Alzheimer’s disease (AD) (Driver et al., 2012; Musicco et al., 
2013; Romero et al., 2014; Freedman et al., 2016; Frain et al., 
2017; Hanson et al., 2017). Four meta-analyses also support 
evidence on this hypothesis (Ma et al., 2014; Shi et al., 2015; 
Zhang et al., 2015; Catalá-López et al., 2017). Several theories and 
hypotheses have been proposed to address possible biological 
mechanisms underpinning this inverse association. For instance, 
in aging, cells undergo a metabolic reprogramming that leads to 
a divergent regulatory mechanism of metabolic pathways toward 
and away from respiration in mitochondria (Harris et al., 2014). 
In cancers, an elevation of aerobic glycolysis plays an important 
role in the biosynthesis of macromolecules and in promoting 
cell proliferation. In contrast, in senile neurodegeneration, in 
response to age-dependent diminished energy production, 
the decreased aerobic glycolysis is compensated by an increase 
in mitochondrial oxidative phosphorylation. The metabolic 
dysregulation along with the selective pressure to meet the cellular 
metabolic needs might be a common mechanism linking the two 
diseases and has suggested the attractive idea of repositioning of 
cancer drugs for AD treatment (Monacelli et al., 2016; Vargas 
et al., 2018). Among others, the theory of antagonistic pleiotropy 
(Campisi, 2013) offers a plausible interpretation of the two 
divergent manifestations of aging. This theory states that genes 
control more than one phenotype during the life span, and the 
same genes while promoting early-life benefits may exert negative 
actions in later life (Chinta et al., 2015). In the case of cancer and 
dementia, this biological trade-off implies that the processes that, 
in younger ages, stimulate cellular repair may boost neoplastic 
growth or limit cell regeneration if dysregulated in older ages. 
Similarly, the same processes leading to an increased rate of cell 
death may drive senile neurodegeneration while protecting from 
abnormal cellular reproduction.

A number of studies explored genes potentially involved in 
cancer and AD. Recently, three systematic reviews (Li et al., 
2014; Shafi, 2016; Snyder et al., 2017) proposed sets of genes, 
pathways, and mechanistic and genetic links as possible actors 
in this complex biological context. Moreover, the molecular 
scenarios linking the two diseases were investigated in a few gene 
expression studies (Ibáñez et al., 2014; Klus et al., 2015; Sánchez-
Valle et al., 2017). These studies indicated that a metabolic 
dysregulation of processes, such as mitochondrial metabolism 
and protein degradation, might play a dual role favoring the 
onset of cancer or AD. Noteworthy, the age is a relevant factor 
influencing all of the metabolic processes occurring in diseases, 
such as cancer and AD (Harris et al., 2014). Intriguingly, well-
known genes associated with both diseases (e.g., TP53, APOE) 

have been recently associated with longevity traits (Tacutu et al., 
2018). Apart from the age factor, the type of cell or tissue and 
other fine regulators, such as noncoding RNAs, impact biological 
processes underlying complex diseases, such as cancer and 
AD. Indeed, the role of miRNAs in complex diseases is now 
widely recognized (Hébert and De Strooper, 2009; Peng and 
Croce, 2016; Quinlan et al., 2017; Chen et al., 2018). MiRNAs 
exert pleiotropic effects because each miRNA can potentially 
target several mRNAs simultaneously, thereby influencing the 
expression of several genes and affecting a multitude of cellular 
pathways. As a consequence, miRNAs can have both beneficial 
and deleterious functions (antagonistic pleiotropy as, e.g., 
miRNA-34) (Liu et al., 2012). Because genes associated with 
antagonistic pleiotropy are likely to be evolutionarily retained 
due to their earlier beneficial functions, miRNA pathways could 
provide mechanisms to suppress their potentially deleterious 
age-related activities (Ahmad, 2017) but can also trigger the 
neurodegenerative process if they become dysregulated during 
aging (Godlewski et al., 2019). Hence, miRNAs together with 
their target genes might play a key role in the inverse association 
between cancer and AD.

The path of understanding the inverse relationship involves 
the exploration of the research from the field of –omics,  the 
survey of the vast amount of cancer and AD literature, 
the investigation of the disease-specific databases, and the 
integration of cross-domain knowledge. The complexity of 
the cross-domain research might explain the fact that despite 
available knowledge on cancer and AD biology, only a few 
genes have been experimentally investigated with respect to 
the inverse relationship (Lee Houck et al., 2018). Recently, 
computational approaches have been developed to facilitate 
the exploitation of the huge amount of diverse biological data 
aiming at the prioritization of genes in human diseases (Moreau 
and Tranchevent, 2012). Text-mining approaches are effective in 
extracting biological information hidden in a massive amount 
of published biomedical articles and thus gaining insights on 
potential molecular biomarkers for complex diseases (Doncheva 
et al., 2012). Indeed, by means of literature mining and network 
analysis approaches, Bhasuran et al. (2018) have identified 
the functional association of genes in high-altitude diseases. 
Moreover, an integrative strategy that combined genomics 
data from various sources was instrumental to understand 
the molecular pathways involved in coronary artery diseases 
(Zhao et al., 2016). PubMed provides knowledge (information 
accompanied with evidence) that is generated and published 
across distributed sources, a massive amount of data that can be 
used to derive gene-disease associations. Thus, text-mining tools 
(e.g., Beegle; ElShal et al., 2016) have been proposed to simplify 
the process of extracting from PubMed and other sources (e.g., 
Online Mendelian Inheritance in Man: OMIM) the most relevant 
gene sets known to be linked to a given disease. The usage of 
computational methods empowered also functional analysis by 
integrating different databases (e.g., Gene Ontology, KEGG), 
which might help the process of discovery of new biological 
hypothesis. Interestingly, the availability of comprehensive 
atlas of the human tissue transcriptome enables the integration 
of data mining results with additional information about the 
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expression levels of protein-coding genes across many tissues 
(Genotype-Tissue Expression, GTEx project) (Lonsdale et al., 
2013). However, despite the effort of bioinformatics tools to 
integrate genomics data, the annotation of human genes or 
miRNAs for a specific purpose might be incomplete. To cope 
with this limitation, a manual annotation of candidate genes and 
miRNAs by cross-checking them in curated databases for both 
AD and cancer might be used. For AD, to our knowledge, two 
main databases are available: the Integrative Database for Gene 
Dysregulation in Alzheimer’s Disease (AlzBase) (Bai et al., 2016) 
and the catalogue of 430 genes reported to be associated with 
AD from 823 publications (Alzgset) (Hu et al., 2017). Focusing 
on cancer, two cancer databases can be used: the Cancer Gene 
Census (CGC) database (Forbes et al., 2010) and the Pathology 
Atlas included in the Human Protein Atlas (HPA) project (Uhlen 
et al., 2015). The Transcriptome Wide Association Study (TWAS) 
has been recently proposed to integrate gene expression 
measurements with genome-wide association studies (GWAS) 
to identify genes associated with complex traits, including AD 
and cancer (Gusev et al., 2016). Likewise, the LongevityMap 
database, based on GWAS, is available to pick genes associated 
with longevity trait in human populations (Tacutu et al., 2018).

The research strategy conducted in this study aimed at identifying 
candidate genes, miRNAs, and biological hallmarks shared by 
cancer and AD. To maximize the benefits of multiple studies 
and –omics approaches, which on their own provided dispersed 
pieces of knowledge on cancer and AD, we adopted a multistep 
methodological approach by combining automatic exploration 
of biomedical literature, annotation by means of evidence-based 
databases and gene set functional enrichment analysis.

METHODS

A concise scheme of the computational strategy is depicted in 
Figure 1. The computational strategy included three main steps: 
a) identification of a gene set by the text-mining tool Beegle and 
gene annotation by referring to specific databases and genomic 
resources; b) gene set functional enrichment analysis, followed by 
network analysis and protein-protein interaction (PPI) module 
reconstruction by means of Metascape; c) identification of gene-
miRNA interactions specific for AD and cancer, particularly 
focusing on the analysis of PPI modules.

Identification of Genes by Text-Mining and 
Annotation by Curated Databases
By means of a text-mining tool, Beegle, using the combined 
keywords “cancer OR cancers AND Alzheimer OR Alzheimer’s 
disease,” we retrieved a list of genes (namely, ALZCAN gene set) 
associated to cancer and AD. To complete the description of 
ALZCAN gene set, we cross-checked it with gene sets currently 
present in the AD and cancer-specific databases. For this aim, 
we queried two AD-specific databases, namely, AlzBase, referred 
to as a meta-analysis database, including gene expression studies 
comparing AD versus healthy subjects in different brain areas 
(http://alz.big.ac.cn/alzBase/) (Bai et al., 2016), and Alzgset, a 
catalogue of 430 genes reported to be associated with AD from 

823 publications (Hu et al., 2017). To have a comprehensive 
annotation of gene expression levels, we referred to the GTEx 
database (GTEx v.6) (https://www.gtexportal.org/home/
datasets), which provides the expression level for 53 human 
tissues, including 12 different brain areas. Gene expression data 
as Reads Per Kilobase per Million mapped reads (RPKM) were 
downloaded from the UCSC Table Browser interface (https://
genome.ucsc.edu/). By using Matlab R2018b “clustergram and 
heatmap” function (Matlab software, MathWorks©), the log10 
transformed values (138 genes × 53 tissues) were visualized by 
a heat map applying an agglomerative hierarchical clustering 
method. For cancer information, we intersected the ALZCAN 
gene set with the CGC database (Forbes et al., 2010) (https://
cancer.sanger.ac.uk/census). We then downloaded the mRNA and 
protein expression data for both normal tissues and cancer types 
from HPA project v.18.1 (https://www.proteinatlas.org/). Cancer 
data, available in the Pathology Atlas, included a prognostic 
classification of human genes based on the correlation analyses 
of the mRNA expression levels and the clinical outcome of more 
than 17 different forms of human cancer. A gene was classified 
“prognostic” on the basis of the Kaplan-Meier survival analysis  
(p < 0.001). To assess the presence of associations between 
complex genetic traits (e.g., AD) and biological models (e.g., 
cancer types) for the genes being studied, TWAS resource (http://
twas-hub.org/) was queried. We retained as statistically significant 
only the associations with Chi2 values ≤-3 or ≥3. To flag if the 
ALZCAN gene was associated to longevity, the LongevityMap 
database (build 3) (http://genomics.senescence.info/) was 
queried, limiting the selection to Caucasian populations.

Functional Enrichment Analysis, Network, 
and PPI Module Reconstruction
To perform the pathway enrichment analysis and the gene 
network reconstruction, we used the Metascape tool (http://
metascape.org) (Tripathi et al., 2015) with the default parameters 
set. Imputing the gene set obtained from step a, pathway and 
enrichment analyses were carried out selecting the genomics 
sources: KEGG Pathway, GO Biological Processes, Reactome 
Gene Sets, Canonical Pathways, and CORUM (Giurgiu et al., 
2019). All genes in the genome were used as the enrichment 
background. Terms with p < 0.01, minimum count 3, and 
enrichment factor >1.5 (the enrichment factor being the ratio 
between observed count and the count expected by chance) were 
collected and grouped into clusters based on their membership 
similarities. More specifically, p values were calculated based 
on accumulative hypergeometric distribution, q values were 
calculated using the Benjamini-Hochberg procedure to account 
for multiple testing. Kappa scores were used as the similarity 
metric when performing hierarchical clustering on the enriched 
terms, and then sub-trees with similarity >0.3 were considered 
a cluster. The most statistically significant term within a cluster 
was chosen as the one representing the cluster. To further 
capture the relationship among terms, a subset of enriched terms 
was selected and rendered as a network plot, where terms with 
similarity >0.3 are connected by edges. The terms with the best 
p values from each of the 20 clusters were selected, with the 
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constraint that there were no more than 15 terms per cluster and 
no more than 250 terms in total. Subsequently, using Metascape 
default parameters, based on PPI enrichment analysis, we run a 
module network reconstruction based on the selected genomics 
databases. The resulting network was constructed containing the 
subset of proteins that form physical interactions with at least 
one other list member. Subsequently, by means of Molecular 
Complex Detection (MCODE) algorithm, we first identified 
connected network components, then a pathway and process 
enrichment analysis was applied to each MCODE component 
independently and the three best-scoring (by p value) terms were 
retained as the functional description of the resulting modules. 
The overall Metascape analysis allowed the identification of 
a list of significant overrepresented GO and KEGG categories, 
network plot, and PPI MCODE components (modules) linked 
to AD and cancer.

Identification of Gene-miRNA Interactions 
Specific for AD and Cancer
To identify miRNAs that target the genes belonging to the 
ALZCAN gene set, first, we carried out a miRNA enrichment 
analysis by ToppGene (Chen et al., 2009) using default 
parameters. Then, from ToppGene results, we considered only 
the data related to the experimentally validated miRNA gene 
targets referred to the miRTarBase database (http://mirtarbase.
mbc.nctu.edu.tw/) (Chou et al., 2018). A q value threshold of 
0.05 after Bonferroni correction was applied for a given miRNA 

to be included in the enriched data set. Last, to further explore 
the involvement of a given miRNA in the pathogenesis of AD and 
cancer, we manually consulted the Human microRNA Disease 
Database version 3.0 (HMDD v3.0) (http://www.cuilab.cn/
hmdd) (Li et al., 2014), which is a curated database that takes into 
account experiment-supported evidence for human microRNA 
and disease associations. By querying the database, we retrieved 
miRNAs associated with either cancer (any type of cancer) or 
AD, and we flagged them for belonging to both diseases. Then, 
by combining the results from steps a and b (Figure 1), we 
formulated novel gene-miRNA interactions.

RESULTS

Description of ALZCAN Gene Set Linked 
to Both Cancer and AD
As a first step (Figure 1), by means of Beegle, we retrieved a total 
of 138 genes (ALZCAN gene set) that were further annotated 
by intersecting them with the AD databases (AlzBase and 
Alzgset) as well as cancer databases (CGC and HPA) (Figure 2, 
Supplementary Table S1). Only 4 out of 138 genes were not 
present in any of the selected databases. After querying of 
AlzBase, 123 out of 138 genes were computed as differentially 
expressed genes (DEG) with up and/or downmodulation 
(Supplementary Table S1). In particular, we found that 
the modulation of gene expression levels of PIN1, UCHL1, 
PRKACA, CTNNB1, HSP90AA1, EGFR, NOTCH1, SQSTM1, 

FIGURE 1 | Flowchart of the bioinformatics strategy.
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and KRAS was significantly altered in AD (Supplementary 
Table S1). Moreover, 46 out of 138 genes were also indicated by 
GWAS studies as associated with AD (Alzgset database). A total 
of 14 genes were included neither in AlzBase nor in Alzgset 
(Figure 2). By means of GTEx database, we retrieved the 
expression of the ALZCAN gene set across 53 human tissues 
(Supplementary Table S2). Referring to the 12 human brain 
tissues, on average, we found that out of 138, 39 genes displayed 
gene expression levels below 10 RPKM whereas 21 had gene 
expression levels over 50 RPKM (Supplementary Table S2). 
The clustering analysis by genes and tissues showed that the 12 
human brain tissues clustered together (Figure S1). In the heat 
map, we recognized a few genes displaying an opposite tuning 
of expression in the cluster of brain tissues compared to others. 
For example, we observed high brain tissue expression levels for 
FEZ1 and UCHL1 genes compared to other tissues or, vice versa, 
very low brain expression levels for both S100A9 and S100A8 
genes. We flagged 16 genes as Cancer Gene Census (Figure 2). 
By referring to the HPA data (Supplementary Table S3), 72 
among out of 138 genes were classified as disease-related genes. 
According to the Pathology Atlas, 115 genes were detected at 
protein level in normal or cancer tissues and 87 out of 138 genes 

were associated with either favorable or unfavorable prognostic 
scores depending on cancer type (Supplementary Table S3). 
By means of TWAS, we recovered seven genes (APOC1, APOE, 
BIN1, HMGB1, PRKAA1, SQSTM1, and UCP2) significantly 
associated to AD traits and some cancer models (Figure  2, 
Supplementary Table S1). Notably, we found two genes 
displaying a negative association between Alzheimer’s Disease 
(including proxy) trait and Lung Squamous Cell Carcinoma 
model with Chi2 value of -18.3 (APOE) and -22.7 (APOC1) (see 
TWAS Trait association table at twas-hub.org/genes/APOE/and 
twas-hub.org/genes/APOC1/). Considering the LongevityMap 
database, we found 27 genes associated to longevity loci 
(Supplementary Table S1).

Functional Enrichment Analysis Identified 
the Most Relevant Genes and Gene-Gene 
Modules
As a second step (Figure 1), by means of Metascape, we found 
many overrepresented GO-BP terms (Figure 3A, Supplementary 
Table S4) and 124 out of 138 genes were included in a biological 
network (Figure 3B). Among the retrieved GO-BP terms, those 

FIGURE 2 | Four-set Venn diagram of the overlap between the ALCAN gene set with four databases. A total of 134 out of 138 were found to have an intersection 
with AlzBase (http://alz.big.ac.cn/alzBase/), Alzgset (Hu et al., 2017), prognostic genes on the basis of HPA (https://www.proteinatlas.org/), and CGC (https://
cancer.sanger.ac.uk/census). Four genes (AKAP2, CAPN9, TKTL1, and WNT1) were not found overlapping in any of the selected databases. (*)TWAS (http://twas-
hub.org/) significantly trait-model associated genes. See Supplementary Table S1 and S3 for more details.
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related to response to oxidative stress (54 genes), cellular response 
to nitrogen compound (50 genes), aging (30 genes), positive 
regulation of cell death (45 genes) were the most significant. 
Within the enriched KEGG pathways, we found that the 
Alzheimer’s pathway (hsa05010) associated with 18 ALZCAN 
genes.

The MCODE enrichment analysis based on PPI enrichment 
analysis resulted in a network (Figure 4A) characterized by 
the presence of four PPI modules, including 37 genes from 
which four genes, EGFR, APP, WNT1, CCR5, were defined as 
seed genes (Figure 4B, Supplementary Table S5). Among the 
top list of enriched terms of Module 1 (22 genes), we found 

three major GO-BP clusters, positive regulation of programmed 
cell death, cellular response to oxidative stress, autophagy, and 
two KEGG pathways, glioma and longevity regulating pathway 
(Table 1). The top list of enriched categories for Module 2 (8 
genes) included regulation of Wnt signaling pathway (APP, 
ESR1, GSK3B, NOTCH1, PRKN, PIN1, and PSEN1) and 
regulation of growth (APP, GSK3B, NOTCH1, PRKN, and 
PIN1). Module 3 (4 genes) included regulation of cellular 
response to stress (BRCA1, CTNNB1, HSP90AA1, and WNT1) 
and breast cancer (BRCA1, CTNNB1, and WNT1). Module 
4 (3 genes) was associated with G alpha (i) signaling events 
(ADRA2B, CASR, and CCR5).

FIGURE 3 | Functional enrichment analysis by Metascape. (A) Bar chart of clustered enrichment ontology categories (GO and KEGG terms); (B) enrichment 
ontology clusters including 124 genes. Each term is represented by a circle node, where its size is proportional to the number of input genes falling into that term, 
and its color represents its cluster identity (i.e., nodes of the same color belong to the same cluster). Terms with a similarity score >0.3 are linked by an edge (the 
thickness of the edge represents the similarity score). The network is visualized with Cytoscape (v3.1.2) with “force-directed” layout and with edge bundled for 
clarity. See Supplementary Table S4 for more details.

FIGURE 4 | MCODE enrichment analysis by Metascape. (A) PPI interaction network. MCODE algorithm was applied to clustered enrichment ontology terms to 
identify neighborhoods where proteins are densely connected. Each MCODE network is assigned a unique color. (B) PPI MCODE component. GO enrichment 
analysis was applied to each MCODE network to assign “meanings” to the network component. See Supplementary Table S5 for more details. Red, blue, green, 
and violet colors indicate modules 1, 2, 3, and 4, respectively.
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Identification of Gene-MiRNA Interactions 
Linked to Both AD and Cancer
In the third step (Figure 1), the ALZCAN gene set was enriched 
with the information on specific miRNA targets. By means 
of ToppGene, we performed an enrichment analysis of the 
ALZCAN gene set for experimentally validated miRNA target 
sites included in the miRTarBase database. The analysis resulted 

in 90 significantly enriched miRNAs having functional miRNA-
target interactions (MTIs) with the genes belonging to the gene 
set (Supplementary Table S6). For 61 of them, we found that 
strong experimental evidence (reporter assays, Western blot 
experiments, and qPCR assays) supported the MTIs. Moreover, 
according to the HMDD database, we found evidence referring to 
the involvement of 21 miRNAs to both AD and cancer (Table 2). 
Interestingly, among the most significantly enriched miRNAs, 
we retrieved those miRNAs or members of miRNA families that 
are most widely recognized as involved in AD pathogenesis, 
including miR-16-5p, miR-15a-5p, miR-15b-5p, miR-195-5p 
(all members belonging to the miR-15/107 family), miR-34a-5p, 
miR-181a-5p, miR-155-5p, miR-125b-5p, miR-9-5p, and miR-
146a-5p (Femminella et al., 2015; Miya Shaik et al., 2018).

Limiting the enrichment analysis to the 37 genes belonging 
to the four modules, we highlighted subsets of 13, 9, and 10 
significantly enriched miRNAs with functional MTIs for modules 
1, 2, and 3, respectively (Table 3). No significant miRNAs were 
found for genes within Module 4. Notably, all miRNAs but 
miR-34a-5p, which has target genes in both modules 1 and 3, 
were module-specific. According to HMDD v3.0, among the 
13 enriched miRNAs targeting genes belonging to Module 1, 
eight miRNAs (namely, miR-16-5p, miR-27a-3p, miR-206, miR-
125b-5p, miR-7-5p, miR-146a-5p, miR-21-5p, and miR-34a-5p) 
have been associated to both AD and cancer. In addition, 

TABLE 1 | Top ranked clusters of enrichment terms of Module 1.

GO Biological Processes 
and KEGG terms*

Genes

GO:0043068-positive 
regulation of programmed 
cell death 

CDKN2A, ATF2, GSK3A, MAPT, PPARG, 
SNCA, SOD1, SOS1, TP53, SQSTM1, 
HDAC6, PPARGC1A

GO:0034599-cellular 
response to oxidative stress 

EGFR, MAPT, PRKAA1, SNCA, SOD1, TP53, 
BECN1, HDAC6, PPARGC1A

GO:0061919-process utilizing 
autophagic mechanism

GSK3A, MAPT, PRKAA1, SNCA, TP53, 
UCHL1, BECN1, SQSTM1, HDAC6, 
PPARGC1A

hsa05214: Glioma CDKN2A, EGF, EGFR, IGF1R, KRAS, SOS1, 
TP53

hsa04211: Longevity 
regulating pathway

ATF2, IGF1R, KRAS, PPARG, PRKAA1, TP53, 
PPARGC1A

*Selected enrichment categories of Module 1. For more details, see Supplementary 
Table S4.

TABLE 2 | List of 21 miRNAs linked to both AD and cancer according to HMDDa.

miRNA ALZCAN (Gen)b miRNA Targets

hsa-miR-16-5p 29 (1,557) KRAS, CDKN2A, ABCC4, HTRA1, CIB1, ASCC1, WT1, RPSA, TKTL1, APP, PTGS2, GSK3B, HIGD1A, ADRA2B, 
IGF1R, BRCA1, EGFR, BSG, MTOR, SQSTM1, AGER, PRKAA1, ALDH2, SNCG, TARBP2, HSPA9, PRNP, TP53, 
HSP90AA1

hsa-miR-34a-5p 20 (735) CDKN2A, RCAN1, WNT1, CAPN1, BAG3, HMGB1, PPARA, XRCC1, DLL1, SIRT1, AKR7A2, IGF1R, PPP3R1, 
BRCA1, PIK3CG, TNF, CTNNB1, BECN1, NOTCH1, TP53

hsa-miR-26b-5p 25 (1,874) CAPN9, TSPAN12, HTRA1, CIB1, STUB1, NRDC, FOLH1, PARK7, BAG3, INSR, HMGB1, LRP1B, PTGS2, GSK3B, 
IGF1R, PPP3R1, BRCA1, PIK3CG, PRKAA1, TLR4, PRKN, ADAM17, ABCG2, ATP2A2, TARBP2

hsa-miR-15a-5p 16 (717) CDKN2B, ASCC1,WT1, TKTL1, APP, ATF2, GSK3B, HIGD1A, ADRA2B, BRCA1, BSG, UCP2, PRKAA1, SNCG, 
TARBP2, TP53

hsa-miR-181a-5p 14 (553) KRAS, HDAC6, GSKIP, PTGS2, SIRT1, BRCA1, PEBP1, UCHL1, PRKN, ADAM17, ABCG2, CTNNB1, IL1A, NOTCH1
hsa-miR-155-5p 16 (904) KRAS, CDKN2A, ABCC4, HTRA1, PSEN1, ADAM10, SIRT1, GSK3B, AKR7A2, EGFR, SH3PXD2A, PEBP1, DHCR24, 

AKAP10, CTNNB1, IL6
hsa-miR-125b-5p 12 (431) CDKN2A, ABCC4, NRDC, S100A8, IGF1R, EGFR, AKAP2, TNF, MMP2, NME2, BACE2, TP53
hsa-miR-9-5p 11 (350) ESR1, PPARA, SIRT1, GSK3B, LMNA, PRKAA1, LRP1, MMP2, BECN1, IL6, NOTCH1
hsa-miR-195-5p 12 (639) INSR, ASCC1, TKTL1, APP, GSK3B, HIGD1A, ADRA2B, BSG, AGER, PRKAA1, SNCG, TARBP2
hsa-miR-146a-5p 8 (102) PTGS2, BRCA1, EGFR, SQSTM1, TLR4, IL6, NOTCH1, SOS1
hsa-miR-17-5p 15 (1,181) ESR2, APEX1, HMGB1, RPSA,APP, AKR7A2, PPP3R1, SQSTM1, TNF, MMP2, NBR1, HSPB2, PRNP, TP53, 

HSP90AA1
hsa-miR-27a-3p 10 (429) KRAS, APEX1, PPARG, GSK3B, EGFR, PIK3CG, SNCG, NME2, TP53, SOS1
hsa-miR-15b-5p 12 (760) INSR, ASCC1, TKTL1, APP, GSK3B, HIGD1A, ADRA2B, BSG, PRKAA1, SNCG, ATP2A2, TARBP2
hsa-miR-21-5p 11 (611) STUB1, HMGB1, PPARA, ATF2, ABCB1, IGF1R, BRCA1, EGFR, TLR4, MMP2, IL1B
hsa-miR-142-3p 9 (389) ESR1, HMGB1, XRCC1, PIK3CG, ABCG2, CTNNB1, IL1A, ATP2A2, IL6
hsa-miR-26a-5p 9 (457) ESR1, PTGS2, GSK3B, BRCA1, PIK3CG, PRKAA1, ADAM17, IL6, DNMT3B
hsa-miR-100-5p 7 (251) ESR1, APEX1, HMGB1, IGF1R, MTOR, BECN1, ATP2A2
hsa-let-7b-5p 13 (1,215) NRDC, RCAN1, SIGMAR1, HMGB1, RPSA, PTGS2, GSK3A, PPARGC1A, IGF1R, SH3PXD2A, TLR4, ATP2A2, 

HSP90AA1
hsa-miR-7-5p 9 (578) SIGMAR1, IDE, AKR7A2, IGF1R, EGFR, SQSTM1, PIK3CG, TLR4, SNCA
hsa-miR-375 8 (477) CDKN2B, IGF1R, PEBP1, CTNNB1, IFI6, TP53, HSP90AA1, DNMT3B
hsa-miR-181c-5p 6 (291) KRAS, GSKIP, SIRT1, PEBP1, ADAM17, IL1A

aHMDD, Human MicroRNA Disease Database (HMDD v3.0); bnumber of genes of ALZCAN gene set (total number of genes in the genome according to ToppGene). For more details, 
see Supplementary Table S6.
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miR-9-5p and miR-296-5p in Module 2, as well as miR-139-5p 
and miR-375 in Module 3, have been linked to AD and cancer 
(Table 3). It is worth noting that all of the eight miRNAs in 
Module 1 that are involved in both AD and cancer, apart from 
miR-34a-5p, share EGFR as a validated target gene; IGF1R is 
targeted by six miRNAs, and TP53 is targeted by four miRNAs. 
Last, a third receptor gene, NOTCH1, is the target of miR-9-5p 
and miR-296-5p, the two enriched miRNAs in Module 2 with 
involvement in AD and cancer.

DISCUSSION

The biological understanding of the inverse occurrence between 
the two diseases, widely supported by epidemiological studies, is 
still an open question. In recent years, a significant progress has 
been made in exploring the molecular mechanisms of both AD and 
cancers. Nowadays, by means of the advancements in integrative 
bioinformatics, we can exploit the massive amount of -omics data 
and biological information to tackle the complex nature of both these 
age-related diseases on much larger scales. In this study, by mining 

of biomedical literature and by delineating the interconnection of 
genes by means of pathway-based and network-based analyses, 
we retrieved a pool of 138 genes (ALZCAN gene set) and their 
interactions, thus obtaining valuable data for further analysis on 
their relationship with both cancer and AD. Moreover, by retrieving 
miRNAs targeting the ALZCAN gene set, we postulated some 
promising miRNA-gene interrelationships evidencing the complex 
gene expression regulation that might be shared between the two 
diseases. This integrated bioinformatics approach, by focusing on 
the biological function of genes, pathways, and network analysis, 
was not only instrumental in yielding a more comprehensive 
view of biological processes but also more robust in terms of the 
influence of false-positive genes that might be retrieved by means 
of basic automatic text-mining procedures.

As revealed by functional enrichment analysis, we observed 
that 124 out of 138 ALZCAN genes are densely interconnected 
in many metabolic pathways and cellular processes (Figure 3B). 
Terms such as response to oxidative stress, cellular response to 
nitrogen compound, aging, and positive regulation of cell death 
were overrepresented in the ALZCAN gene set. Interestingly, 
many of these processes have been recently enlisted by Lee Houck 
et al. (2018) that reviewed the biological and genetic overlap 
between cancer and neurodegeneration. As expected, because 
of the presence of an emerging body of scientific literature, we 
found that TP53, PIN1, and APP genes were top-ranked by text-
mining via Beegle (Supplementary Table S1), confirming them 
as important players in the inverse association between cancer 
and AD (Shafi, 2016; Feng et al., 2017; Galvão et al., 2019). The 
scenarios underlying the onset of both AD and cancer are however 
pretty complicated, and many factors (e.g., aging, oxidative stress, 
inflammation) are affecting the cell performance in specific 
tissues. Of note, amid the biological processes highlighted by our 
study, we found processes implicated in the cellular homeostasis 
and adaptation to stress. The human tissues combat age-related 
diseases, such as cancer and neurodegeneration by enhancing 
intracellular processes linked to the protein turnover pathways 
(e.g., proteolysis and autophagy) by which cellular components 
are degraded and recycled (Barbosa et al., 2018). The protein 
degradation process, responsible for the correct protein clearance, 
is a cooperating system between the ubiquitin-proteasome system 
(UPS) and autophagy for maintaining protein homeostasis, 
particularly within postmitotic cells (nervous system cells) (Vilchez 
et al., 2014; Leidal et al., 2018). It is important to highlight that 
aging is a manifestation of the accumulation of cellular damage 
over time that is, in turn, depending on nine hallmarks, including 
loss of proteostasis, reactive oxygen species, genome instability 
(López-Otín et al., 2013). Hallmarks of aging are significant with 
respect to both cancer and AD. In the brain, impaired neuronal 
autophagy promotes the accumulation of toxic protein aggregates 
and damaged organelles linked to dementia. Intriguingly, 
autophagy has been shown to be important for multiple aspects 
of cancer biology, including cell metabolism, protein and 
organelle turnover, and cell survival (Santana-Codina et al., 2017). 
Both the enhancement and inhibition of autophagy have been 
suggested as therapeutic strategies in cancer. Noteworthy, a recent 
transcriptomics meta-analysis conducted comparing AD and 
three cancer types indicated protein degradation as a candidate 

TABLE 3 | List of miRNAs and their target genes belonging to PPI modules.

PPI module miRNA ID Target genes (miRTarBase)

Module 1 hsa-miR-16-5p EGFR, CDKN2A, KRAS, SQSTM1, 
HSPA9, TP53, IGF1R, ALDH2, 
PRKAA1

hsa-miR-30a-5p STUB1, EGFR, BECN1, TP53, 
IGF1R, PRKAA1

hsa-miR-27a-3p EGFR, KRAS, TP53, PPARG, SOS1
hsa-miR-206 KRAS, SOD1, IGF1R
hsa-miR-125b-5p EGFR, CDKN2A, TP53, IGF1R
hsa-miR-125b-1-3p TP53, IGF1R
hsa-miR-7-5p EGFR, SQSTM1, IGF1R, SNCA
hsa-miR-146a-5p EGFR, SQSTM1, SOS1
hsa-miR-21-5p STUB1, EGFR, ATF2, IGF1R
hsa-miR-548e-5p BECN1, SQSTM1, PRKAA1
hsa-miR-877-5p KRAS, SQSTM1, UCHL1
hsa-miR-34a-5p CDKN2A, BECN1, TP53, IGF1R
hsa-miR-150-3p TP53, IGF1R

Module 2 hsa-miR-9-5p NOTCH1, ESR1, GSK3B
hsa-miR-744-5p PIN1, GSK3B, PRKACA
hsa-miR-1910-5p ESR1, GSK3B
hsa-miR-296-5p NOTCH1, PIN1
hsa-miR-874-3p ESR1, PIN1
hsa-miR-6073 ESR1, APP
hsa-miR-935 NOTCH1, PSEN1
hsa-miR-4709-3p ESR1, APP
hsa-miR-22-3p ESR1, PRKACA

Module 3 hsa-miR-34a-5p BRCA1, CTNNB1, WNT1
hsa-miR-139-5p HSP90AA1, WNT1
hsa-miR-152-3p HSP90AA1, WNT1
hsa-miR-548l HSP90AA1, CTNNB1
hsa-miR-148a-3p HSP90AA1, WNT1
hsa-miR-1226-3p HSP90AA1, CTNNB1
hsa-miR-1826 CTNNB1
hsa-miR-101-3p HSP90AA1, CTNNB1
hsa-miR-148b-3p HSP90AA1, WNT1
hsa-miR-375 HSP90AA1, CTNNB1

Bold, miRNA associated with both Alzheimer’s disease and cancer based on the 
Human microRNA Disease Database (HMDD v3.0).
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biological process orchestrating the comorbidity between AD 
and cancer (Ibáñez et  al., 2014). In addition, a meta-analysis 
conducted by taking into account the physicochemical properties 
of gene products involved in cancer and senile dementias strongly 
supported the role of protein unfolding as trade-off factors 
triggering pathological conditions (Klus et al., 2015).

By means of gene-gene network reconstruction analysis, we 
found four functional modules that rely on the crosstalk between 
several biological processes and pathways (Figure 4B). In Module 
1, we found 10 genes that play a role in protein turnover system that 
includes autophagy and UPS (Table 1, Supplementary Table S5). 
Here, we focused the discussion on five genes: SQSTM1, UCHL1, 
STUB1, BECN1, and HSPA9. SQSTM1/p62 (sequestosome 1) is 
an autophagy receptor required for selective macroautophagy 
and functions as a bridge between polyubiquitinated cargo and 
autophagosomes. SQSTM1/p62 also serves as a signaling hub for 
multiple pathways associated with neurodegeneration, providing a 
potential therapeutic target in the treatment of neurodegenerative 
diseases (Ma et al., 2019). By database cross-checking, we found that 
SQSTM1/p62 is classified as a disease-related gene and is upregulated 
in AD (according to AlzBase). Intriguingly, the upregulation and/or 
inefficient degradation of p62 has been linked with tumorigenesis 
(Zhang et al., 2019). By means of TWAS, we retrieved significant data 
on expression quantitative trait locus (eQTL) for SQSTM1, finding 
negative associations (Chi2 value equal to -3) between AD trait and 
two tissue models, Brain Prefrontal Cortex and Thyroid Carcinoma, 
thus suggesting a link between the gene expression variation and 
the genotypes, deserving further investigation with respect to 
the inverse relationship between cancer and AD. SQSTM1/p62 is 
gaining attention because it is involved in dementia and cancers 
(Bitto et al., 2014; Taniguchi et al., 2016). UCHL1 is an ubiquitin-
protein hydrolase involved in the processing of both ubiquitin 
precursors and ubiquitinated proteins. Although it is highly 
expressed in human brain tissues (GTEx database, Figure  S1), 
UCHL1 is implicated in neurodegenerative diseases (Bishop 
et  al., 2016). This gene is also found consistently downregulated 
in AD (AlzBase data) but, conversely, upregulated in cancers with 
a prognostic score (Supplementary Table S3). Recently, more 
attention has been paid to the relationship between malignancies 
and the UCH family, which plays different roles in the progression of 
several tumors (Fang and Shen, 2017). STUB1(CHIP) gene encodes 
for an E3 ubiquitin-protein ligase, ubiquitously expressed in human 
tissues, targets misfolded chaperone substrates toward proteasomal 
degradation and modulates the activity of several chaperone 
complexes, including Hsp70, Hsc70, and Hsp90. STUB1 has also 
emerged as a hub gene in the regulation of biosynthetic processes 
in the brain of the accelerated senescence mice (SAMP8) used as 
a robust model of AD (Cheng et al., 2013). The role of STUB1 in 
human malignant disorders has been reviewed by Cao et al. (2016). 
Although the modulation of STUB1 expression in AD and cancers 
is controversial, it might be an interesting gene deserving to be 
further investigated. Concerning the molecular processes involved 
in controlling protein folding, we also found BECN1 (Beclin 1), a 
protein involved in the regulation of autophagy, which has been 
found reduced in patients with AD (Jaeger et al., 2010). Notably, 
the gene expression level of BECN1 is found significantly altered 
in cancer and AD but in opposite manner (Ibáñez et al., 2014). 

Beclin1 might act as a protein platform interlinking autophagy 
and apoptosis (Kang et al., 2011) and, in turn, might be linked to 
inflammation (Salminen et al., 2013). The relevance of Beclin1, as 
well as autophagy, is a matter of ongoing debate in cancer therapy 
(Toton et al., 2014; Galluzzi et al., 2015). Together with STUB1 
and UCHL1, our analysis highlighted a member of the heat 
shock protein family, HSPA9 (Mortalin), which plays a key role in 
preventing protein misfolding and aggregation. Its gene expression 
is oppositely regulated in AD and cancer. Lately, Mortalin has 
been suggested as a potential therapeutic target for AD (Ou et al., 
2014). In the cancer field, findings support its role in the induction 
of epithelial-mesenchymal transition (EMT), prompting further 
investigation of its therapeutic value for contrasting metastasis 
(Na et al., 2016). Altogether, this supporting evidence suggests 
that protein clearance system in age-associated diseases might be 
attractive multifaceted molecular machinery, with therapeutic 
potential for both cancer and AD.

Among the enriched biological processes of Module 1, we also 
obtained the terms aging and positive regulation of cell death, including 
CDKN2A, TP53, EGFR genes that play a pivotal biological role. 
These genes are well-known molecular players in cell proliferation, 
survival, adhesion, and apoptosis (LaPak and Burd, 2014). By 
manual annotation, we found that CDKN2A and TP53 were present 
in all databases (AlzBase, Alzgset, CGC, and HPA) (Figure 2). An 
increased level of CDKN2A (cyclin-dependent kinase inhibitor 2A) 
resulted in both brain and blood cells from APP/PS1 mice (Esteras 
et al., 2012). Interestingly, linkage and association studies linked the 
CDKN2A locus (9p21.3) to late-onset AD (LOAD study) families 
(Züchner et al., 2008). The gene is upregulated in AD (AlzBase) as 
well as in cancer. The tumor protein p53 (TP53) is one of the best-
known hallmarks of cancer and has been linked to the longevity trait 
in the human population as well as to AD (Lanni et al., 2012). TP53 
network has been suggested as a candidate signaling cascade linked 
to the inverse relationship between cancer and AD. EGFR (epidermal 
growth factor receptor) is widely recognized for its importance in 
cancer and has been catalogued as an oncogene. Recently, a pivotal 
role of EGFR in AD has been proposed (Shafi, 2016). The finding of 
the overexpression of EGFR in AD (AlzBase) is however in contrast 
with its absence in the central core of AD neuritic plaques (Birecree 
et al., 1991). A polymorphism of this gene has been associated with 
glioma (Sanson et al., 2011). Whether this gene polymorphism could 
influence its transcriptional activity in the etiology of AD deserves 
further investigation.

Besides the multiple factors implicated in AD and cancer, 
increasing evidence points toward a role of Wnt signaling in the 
etiology of both diseases. Notably, Module 2 was enriched in the 
Wnt signaling pathway, where nine genes were interconnected 
(Figure 4B). Among them, we found PIN1 that, not surprisingly, 
was ranked by Beegle in the top position together with TP53 
(Supplementary Table S1). Recent studies have underlined 
the pivotal role of PIN1 (peptidylprolyl cis/trans isomerase, 
NIMA-interacting 1) in the inverse association between cancer 
and AD (Lee et al., 2011; Driver et al., 2012; Harris et al., 2014; 
Driver et al., 2015). In Module 2, PIN1 connected to GSK3β and 
CTNNB1 genes (Figure 4B). GSK3β (glycogen synthase kinase 
3 beta), a constitutively active protein kinase, acts as a negative 
regulator in the hormonal control of glucose homeostasis, Wnt 
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signaling, and regulation of transcription factors and microtubules 
by phosphorylating and inactivating glycogen synthase. In Wnt 
signaling, GSK3β forms a multimeric complex with APC, AXIN1, 
and CTNNB1/beta-catenin and phosphorylates the N-terminus 
of CTNNB1, leading to its degradation mediated by ubiquitin/
proteasomes. Neurons derived from iPSCs of sporadic AD reveal 
elevated Tau hyperphosphorylation, increased amyloid levels, 
and GSK3β activation (Ochalek et al., 2017). The gene is mostly 
upregulated in AD studies (Alzbase) and has been associated with 
AD in GWAS studies (Alzgset). Aberrant nuclear GSK3β may 
represent a potential target for the clinical treatment of human 
breast and squamous cell carcinoma (Ugolkov et al., 2018). 
Altogether, our analysis highlighted autophagy, UPS, and Wnt 
signaling as molecular mechanisms that could exert an opposite 
function according to the gene-environment conditions of the 
specific human tissues.

As a third step of our investigation (Figure 1), we considered the 
key role of miRNAs in the complex regulation of gene expression 
and their potential pleiotropic action. Focusing on the 37 genes 
belonging to PPI modules, we identified 12 miRNAs that turned 
out to be associated with both AD and cancer (Table 3). Among 
these 12 miRNAs, we found several targeting genes involved in 
autophagy and UPS, including miR-146a-5p (targets SQSTM1/
p62), miR-34a-5p (targets BECN1), and miR-21-5p (targets STUB1/
CHIP). MiR-146a-5p is upregulated in AD brain and in human 
neural cells following a number of different stimuli and stresses, 
including cytokines, β-amyloid, and oxidative stress (Lukiw et al., 
2008; Li et al., 2011). In cancer, miR-146a-5p was found acting 
as both oncogene and oncosuppressor (Li et al., 2010; Pacifico et 
al., 2010; Hou et  al., 2012). Upregulation of miR-146a-5p leads to 
inflammatory response in AD but has an anti-inflammatory effect 
in cancer (Lukiw et al., 2008; Cui et al., 2010; Rusca and Monticelli, 
2011; Khorrami et al., 2017). Moreover, polymorphisms in the 
miR-146a gene have been involved in the genetic susceptibility to 
both AD and cancer (Cui et al., 2014; Xie et al., 2014). MiR-146a-5p 
targets SQSTM1/p62 (Module 1). Of note, p62 can inhibit neuronal 
death induced by β-amyloid (Geetha et al., 2012) and its inactivation 
in mice leads to an age-dependent constitutive activation of GSK3β, 
resulting in hyperphosphorylated tau, neurofibrillary tangles, and 
neurodegeneration (Ramesh Babu et al., 2008). Taken together, 
these data suggest that miR-146a-5p upregulation might promote 
neurodegeneration in AD through inhibition of p62 activity. On 
the contrary, loss of miR-146a and overexpression of p62 promote 
cell survival and proliferation in cancer (Fang et al., 2014).

MiR-34a-5p has been widely recognized as a key player in 
tumor suppression, and its expression is silenced in several 
cancers (Farooqi et al., 2017; Slabáková et al., 2017). Conversely, 
miR-34a-5p is overexpressed in AD patients and mouse models; 
increased miR-34a-5p levels repress genes involved in synaptic 
plasticity and energy metabolism (Sarkar et al., 2016). MiR-34a 
knockout also promotes cognitive function in APP/PS1 mice by 
both inhibiting the amyloidogenic process and increasing synaptic 
plasticity (Jian et al., 2017; Xu et al., 2018). MiR-34a-5p targets in 
Module 1 include BECN1. The elevated miR-34a-5p levels marking 
AD condition are expected to reduce the cellular amount of Beclin1 
and hence to affect the efficiency of the autophagy machinery in 
clearing protein aggregates, providing a link between miR-34a 

dysregulation and β-amyloid pathology in AD. In tumors, the 
picture is more complicated because autophagy, in general, and 
Beclin1, in particular, might exert a dual role (White, 2012; Gong 
et al., 2013). MiR-34a-5p downregulation observed in many tumors 
would positively affect BECN1 expression, leading to enhanced 
autophagy, but the effect of this improved autophagic flux is likely 
to be dependent on cancer type, cancer stage, and cell type.

MiR-21-5p is frequently overexpressed in various human 
tumors and cancer stem cells and seems to play an important 
role in the oncogenic process because it has been associated with 
high proliferation, invasion, and metastatic potential, as well as 
with low apoptosis (Pfeffer et al., 2015). Oppositely, miR-21-5p 
upregulation inhibits cell apoptosis induced by β-amyloid in a 
GSK3β-dependent way, suggesting a protective role in AD (Feng 
et al., 2018). Moreover, Tau can enhance miR-21-5p activity 
(Chauderlier et al., 2018). Because STUB1 is a miR-21-5p 
target, it can be speculated that in AD, augmented miR-21-5p 
levels can exacerbate the neurodegenerative process by reducing 
STUB1/CHIP activity, leading to less efficient Tau and β-amyloid 
clearance (Lee et al., 2018). In cancer, miR-21-5p upregulation 
and consequent STUB1 downmodulation might have opposite 
effects, according to the oncogenic or tumor-suppressive effect of 
STUB1 (Cao et al., 2016).

Another interesting miRNA, miR-9-5p, is known as one of the 
most highly expressed miRNAs in the vertebrate brain and plays a 
pivotal role in its development (Coolen et al., 2013; Radhakrishnan 
and Alwin Prem Anand, 2016). MiR-9-5p levels are mostly 
downregulated in AD (Miya Shaik et al., 2018), whereas both 
miR-9-5p upregulation and downregulation have been reported 
in human cancers, where it can either support or suppress tumor 
development (Nowek et al., 2018). MiR-9-5p targets three genes 
belonging to Module 2, namely, NOTCH1, GSK3β, and ESR1. 
Interestingly, upregulation of miR-9-5p and consequent inhibition 
of the Notch signaling pathway were shown to stimulate neuron 
differentiation in an APP-overexpressing AD cell model (Li et al., 
2017). Here, we propose a complex interplay between miR-9-5p 
and NOTCH1, GSK3β, and ESR1 target genes, also involving genes 
of Modules 1 and 3 and their miRNAs (Figure 5): NOTCH1 is 
targeted and negatively regulated by miR-9-5p, but its expression, 

FIGURE 5 | Model of multiple miRNA-gene interactions. The interplay among 
miR-9-5p, miR-146a-5p, and miR-16-5p and NOTCH1, β-catenin (CTNN1), 
SQSTM1, ESR1, and GSK3β proteins originates a complex network. P 
indicates the phosphorylated form of the protein. Red, blue, and green colors 
indicate modules 1, 2, and 3, respectively.
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in turn, depends on active Notch signaling (Roese-Koerner et al., 
2017). In addition, the GSK3β kinase is able to phosphorylate both 
NOTCH1 and ER-alpha (encoded by ESR1). Phosphorylation 
by GSK3β can lead to both upregulation and downregulation of 
NOTCH1 activity (McCubrey et al., 2014), whereas ER-alpha 
activity is positively regulated by GSK3β (Grisouard and Mayer, 
2009). GSK3β also phosphorylates β-catenin, a miR-34a-5p target 
in Module 3, causing its degradation and leading to suppression 
of cell proliferation (Mancinelli et al., 2017). On the other hand, 
GSK3β activity is inhibited by SQSTM1/p62 (Ramesh Babu et al., 
2008), a miR-146a-5p and miR-16-5p target belonging to Module 
1. Therefore, our analyses highlight the existence of an intricate and 
highly complex regulatory network between enriched miRNAs and 
their ALZCAN target genes that may guide future experimental 
analysis to evaluate their potential role in the inverse occurrence 
of AD and cancer. Intriguingly, unfolded protein response and 
metabolism have gained attention as major biological targets for 
both cancer and AD, thus suggesting the exploitation of cancer 
drugs repositioning in AD (Monacelli et al., 2016).

Our study has some limitations. The analyses relied on 
genes spotted by a computer-based approach that considers the 
scientific literature based on the MEDLINE abstracts and OMIM 
database, although these databases are highly curated, the list 
of candidate genes might be incomplete. Second, according 
to the quality process implemented by Beegle for discovering 
disease-gene relationship, we assumed all of the 138 genes as 
true positives, but we cannot exclude the presence of spurious 
data. Nonetheless, a high percentage of ALZCAN genes (124 out 
of 138 genes) have been functionally clustered on the basis of 
significantly enriched GO-biological processes and KEGG terms, 
thus supporting the text mining analysis in terms of meaningful 
biological relevance. At the same time, despite various genomics 
databases included in Metascape, the bioinformatics analysis 
might be incomplete and other functional PPI modules could be 
computed. Overall, we are confident that the ALZCAN gene set 
and the selected miRNAs might be a useful resource for deeper 
investigation of biological processes underlying the inverse 
relationship of occurrence between cancer and AD.

CONCLUSIONS

Here, the text-mining tool Beegle was instrumental in 
extracting a list of 138 candidate genes hidden in the huge 
amount of biomedical literature. By using the Metascape tool, 
we obtained significant clusters of molecular and biological 
processes that might help in the understanding of the intricate 
set of biological crosstalks between cancer and AD. Through 
the analysis at the miRNA level, we hypothesized interesting 
miRNA-gene interrelationships deserving further investigation. 
By deep investigation of our results, we highlighted three major 
biological mechanisms: autophagy, UPS, and cell death that 
might be included in the scenario of the dysregulated processes 
shared by cancer and AD. Among the ALZCAN gene set and 
miRNAs, we proposed nine genes (SQSTM1, UCHL1, STUB1, 
BECN1, CDKN2A, TP53, EGFR, GSK3Β, and HSPA9) and five 
miRNAs (miR-146a-5p, MiR-34a-5p, miR-21-5p, miR-9-5p, and 

miR-16-5p) as best candidates that warrant further investigation. 
Recently, the new avenue of drug repositioning has been 
proposed for the treatment, so far poorly effective, of AD. In this 
light, we believe that the comprehensive exploitation of the data 
here presented might provide potential insights for identifying 
innovative therapeutic approaches for AD.
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