Sensitizing effects of BiVO₄ and visible light induced production of highly

reductive electrons in the TiO₂/BiVO₄ heterojunction

Annalisa Polo, Ivan Grigioni, Maria Vittoria Dozzi, Elena Selli*

Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy

ABSTRACT

BiVO₄ is an efficient and stable visible active photoanode material. However, due to its

unfavorable conduction band position which falls below the H₂ reduction potential, it fails

to carry out the complete water splitting reaction. On the other hand, larger band gap TiO₂

is able to photocatalytically split water, thanks to its negative conduction band energy.

Aiming at verifying the possibility of sensitizing TiO₂ with BiVO₄ and employing the so

obtained composite material in photocatalytic water splitting under visible light, we

prepared and photoelectrochemically characterized TiO₂/BiVO₄ heterojunction electrodes.

The photocatalytic reduction of methyl viologen, an electron acceptor probe with a

reduction potential close to that of protons, was used to evaluate the reducing ability of the

photoactive materials under visible light. An apparently counterintuitive electron transfer

from photoexcited BiVO₄ to the TiO₂ conduction band occurs in the TiO₂/BiVO₄

heterojunction, resulting in TiO₂ sensitization and production of highly reductive electrons,

which appears to be favored by the band alignment occurring at the heterojunction.

Keywords: TiO₂, BiVO₄, heterojunction, visible light sensitization, methyl viologen

reduction, photo(electro)catalysis

* Corresponding author at: Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133

Milano, Italy. Tel.: +39 02 503 14237; fax: +39 02 503 14300.

E-mail address: elena.selli@unimi.it

_

1. Introduction

Collecting and storing solar energy into chemical bonds, mimicking nature in photosynthesis, is a highly desirable approach to face the global energy challenge [1–4]. In particular, overall water splitting under sunlight to produce clean hydrogen from a renewable source has attracted increasing attention in the last decades. Since the discovery of Fujishima and Honda in the early 1970s [5], photocatalytic and photoelectrochemical (PEC) water splitting on semiconducting materials has emerged as a promising strategy to produce solar hydrogen [6,7]. Solar fuels generated by the light-to-chemical energy conversion in PEC cells may play an important role towards a sustainable energy society, since they are storable, easily transportable to the point of use and converted into electricity wherever necessary [4,8,9]. However, in order to be economically competitive with the use of fossil fuels, low cost, stable and highly efficient semiconducting materials are required [10,11].

Among the many n-type semiconductors which have been extensively employed in the water oxidation half reaction, BiVO₄ is to date one of the best-performing metal oxide photoanode materials [10,12,13]. Thanks to its narrow band gap of ca. 2.4 eV in its monoclinic scheelite phase, it can absorb 9% of the solar spectrum, i.e. a larger fraction compared to the widely employed UV-absorber TiO₂ [9]. Furthermore, it is inexpensive and has a valence band (VB) which is far more positive than the water oxidation potential, providing sufficient overpotential for holes to oxidize water [12]. Despite these attractive features, BiVO₄ suffers from exceptionally small majority carrier mobility, insufficient charge slow separation and relatively injection of holes the across

semiconductor/electrolyte interface [12,14]. Moreover, since its conduction band (CB) edge located at 0.02 V vs. NHE [15] falls below the H⁺ reduction potential, BiVO₄ is not able to produce H₂ from H₂O without an applied potential [16].

On the other hand, TiO₂, the most largely employed, stable and cost-effective photocatalyst, possesses a CB potential of -0.16 V vs. NHE (in the more photoactive anatase phase) [17], which is enough negative to reduce water. However, its relatively high energy band gap of 3.2 eV (anatase phase) makes it active only under UV light, which is only 3% of the solar spectrum incoming on the earth [18]. In this context, many strategies have been employed to make TiO₂ visible light-active [19–21], in particular through the insertion of dopant species [17,22,23], which may extend light absorption through the introduction of defective sites, and dye sensitization [24]. However, an excess of dopant impurities, acting as charge recombination centres, can have detrimental effects on TiO₂ photoefficiency [22], while organic dye sensitizers are known to undergo photodegradation over time [21].

Hence, the use of visible light responsive transition metal oxide semiconductors, which are stable under oxidative conditions, together with coupling different semiconductor materials in heterojunction systems [25,26], is an attractive strategy to extend the sensitivity of photocatalytic materials and improve their functionality. In fact, in these composite systems a more effective electron-hole separation may be achieved, which guarantees longer lifetime of the photogenerated charges and a generally enhanced photocatalytic performance with respect to the individual components [26,27].

For instance, coupling TiO₂ with WO₃ was demonstrated to limit the undesired recombination of photogenerated charge carriers, with the photoexcited electrons being

efficiently transferred from the TiO₂ to the WO₃ CB. However, this also results in an undesired decrease of their reducing power [28,29]. Moreover, Fe₂O₃ [30] and chalcogenide semiconductors, such as CdSe [31], characterized by smaller band gaps compared to TiO₂, were employed as sensitizers of transparent oxides to extend their photoactivity in the visible region. However, similarly to WO₃, Fe₂O₃ is not a good candidate to preserve the potential of TiO₂ for overall water splitting due to its too low CB edge energy [32], while chalcogenide materials, though having an ideal CB position for H₂ generation [10], are unsuitable because of their instability in water oxidation conditions.

In this frame BiVO₄, with its narrower band gap and good stability, emerges as a promising candidate to broaden the photoactivity of TiO₂ possibly without significant loss of reducing ability [14], since the BiVO₄ CB edge is located only ca. 0.2 eV below that of TiO₂ [15]. By coupling titanium dioxide with bismuth vanadate in the TiO₂/BiVO₄ heterojunction visible light sensitized TiO2 can be obtained, which, thanks to its high reduction potential, can be employed for up-hill processes, such as water splitting into H₂ and O₂, under visible light irradiation [33]. In such a system, the excellent visible light harvesting properties of BiVO₄ may be combined with the TiO₂ CB potential suitable for proton reduction. However, on the basis of the relative band edge positions of pure TiO₂ and BiVO₄, a Type I band scheme [25] should be predicted for this heterojunction system which, under visible light irradiation, would result in the accumulation of photogenerated electrons and holes on the BiVO₄ side. Even though electron injection from the low-lying CB of BiVO₄ to the more negative CB of TiO₂ is in principle thermodynamically unfavoured, evidence that this may occur has been recently reported [34-44] and ascribed either to the presence of a Type II instead of the predicted Type I band alignment [35,36,38,40,42–44], or to an unidentified defect-mediated charge transport pathway [34]. Moreover, evidence was provided for transfer into TiO₂ of high-energy electrons visible light excited in BiVO₄, with an unexpected activity in PEC water oxidation and photocatalytic production of H₂ [37].

Inspired by this intriguing phenomenon, in this work we investigated the TiO₂/BiVO₄ heterojunction trying to shed light on the mechanism through which high-energy electrons photoexcited in BiVO₄ under visible irradiation transfer into more reductive TiO₂. Optically transparent films of the composite system and of the pure components, for comparison, were prepared by spin coating deposition of precursor solutions through a low-cost and time saving process. Optically transparent photoelectrodes can be exploited in dual absorber tandem cells, in which two or more absorbing materials are sequentially stacked to maximize light absorption in the overall device [9]. The combination of PEC characterization and methyl viologen photocatalytic reduction tests provides evidence that highly reducing electrons, photopromoted in BiVO₄ under visible light irradiation, may transfer to TiO₂. The so realized heterojunction might in principle act as a stand-alone composite photoanode able to carry out complete solar water splitting.

2. Experimental

2.1. Chemicals and materials

The following chemicals, purchased from Sigma Aldrich, were employed as supplied: titanium diisopropoxide bis(acetylacetonate) (TIPA), 75 wt% in isopropanol, ammonium metavanadate, bismuth(III) nitrate pentahydrate (98%), poly(vinyl alcohol) >99%, citric acid (99%), glacial acetic acid, sodium sulfate, methyl viologen (MV²⁺), nitric acid 23.3%,

isopropanol and ethanol (99%). Anhydrous sodium sulfite was purchased from Alfa Aesar; fluorine-doped tin oxide (FTO) glass, 2 mm thick, was purchased from Pilkington Glass (TEC-7).

2.2. Photoelectrode preparation

Titanium dioxide films were prepared under nitrogen atmosphere inside a glove box, starting with 1:3 dilution of TIPA with isopropanol, followed by spin coating the so obtained solution onto FTO at 2000 rpm for 30 s. Prior to deposition, the FTO glass was cleaned by 30 min-long sonication in a soap solution, then washed carefully, sonicated in ethanol for 30 min and dried in air. After coating, the film was dried for 1 h at 70 °C and then annealed for 1 h at 500 °C.

Bismuth vanadate films were prepared as reported elsewhere [15]. In a typical synthesis, 0.002 mol of Bi(NO₃)₃ and NH₄VO₃ were dissolved into 6 mL of 23.3% HNO₃ containing 0.004 mol of citric acid acting as a stabilizer. After complete dissolution of the precursors, 0.04 g of poly(vinyl alcohol) and 0.25 mL of acetic acid were added to 1.0 mL of the above solution to obtain a denser paste. A BiVO₄ layer was obtained by spin coating the paste at 4000 rpm for 30 s onto clean FTO, previously treated with acetone. The so obtained films were then annealed in air for 1 h at 70 °C and calcined in air for 1 h at 500 °C.

The TiO₂/BiVO₄ films were obtained by coating a TiO₂ electrode prepared as described above with the BiVO₄ dense paste. Then the composite film underwent the same thermal treatment used for single BiVO₄ films. An inverse BiVO₄/TiO₂ heterojunction photoanode was also prepared by covering a FTO/BiVO₄ electrode with a TiO₂ film, followed by thermal treatment.

The FTO/WO $_3$ /BiVO $_4$ and CdS electrodes employed in MV $^{2+}$ photocatalytic reduction tests were prepared through spin coating and chemical bath deposition [45,46], respectively.

2.3. Optical, structural and photoelectrochemical tests

UV-visible absorption spectra were recorded using a Jasco V-670 spectrophotometer. The crystalline phase of the materials was determined through X-ray powder diffraction (XRPD) analysis using a Philips PW1820 with Cu Kα radiation at 40 mA and 40 kV. Images showing the morphology and the cross section of the electrodes were obtained using a scanning electron microscope (SEM, model LEO 1430, Zeiss) operating at a 10 kV accelerating voltage, at a 8 mm working distance.

PEC measurements were carried out using a three electrode cell with an Ag/AgCl (3.0 M NaCl) reference electrode, a platinum gauze as a counter electrode and a Princeton Applied Research 2263 (PARstat) potentiostat. The photoanodes were tested under back side illumination (*i.e.*, through the FTO/TiO₂, FTO/BiVO₄ or FTO/TiO₂/BiVO₄ interface), in contact with a 0.5 M Na₂SO₃ aqueous solution buffered at pH 7 with a 0.5 M potassium phosphate buffer (KPi), acting as hole scavenger. The light source was an Oriel solar simulator (Model 81172) providing AM 1.5 G simulated solar illumination with 100 mW cm⁻² intensity (1 sun). All semiconductor oxides are stable at neutral pH and no noticeable degradation was observed under irradiation. The potential vs. Ag/AgCl was converted into the RHE scale using the following equation: $E_{RHE} = E_{AgCl} + 0.059 \text{ pH} + E^{\circ}_{AgCl}$, with E°_{AgCl} (3.0 M NaCl) = 0.210 V at 25 °C. All RHE values refer to pH = 0, *i.e.* they coincide with SHE values [47]. The linear sweep voltammetry (LSV) scan of each material was recorded

at 10 mV s⁻¹ starting from the open circuit potential after 5 min irradiation, up to 0.7 V vs. Ag/AgCl, in order to avoid the electrochemical oxidation of sulfite.

The incident photon to current efficiency (IPCE) was measured both in 0.5 M aqueous Na₂SO₃ buffered at pH 7 with 0.5 M KPi and in 0.5 M aqueous Na₂SO₄, using the same single-compartment three-electrode cell. The IPCE was calculated using the following equation:

$$IPCE = \frac{[1240 \times J]}{P_{\lambda} \times \lambda} \times 100$$

where J is the photocurrent density (mA cm⁻²) and P_{λ} (mW cm⁻²) is the power of the monochromatic light at wavelength λ (nm).

2.4. Methyl viologen photocatalytic reduction tests

A 25×8 mm² film was placed in a 100 mm thick vacuum cuvette containing 3 mL of 1.0 mM MV²⁺ solution in ethanol. The light source was a 200 W Xe lamp equipped with a water filter (Lot Oriel) and a 420 nm cutoff filter (Thorlabs), in order to cut the IR and the UV portion of the emission spectrum and obtain visible irradiation with 30 mW cm⁻² power intensity. By this way MV^{2+} self-reduction, occurring under irradiation with wavelength up to 390 nm, and the direct excitation of TiO_2 were both excluded. The light power intensity was checked using a Thorlabs PM200 power meter equipped with a S130VC power head with a Si detector. Before each experiment, the vacuum cuvette was filled with the MV^{2+} ethanol solution in a N_2 purged glove box, in order to remove any trace of O_2 , possibly acting as undesired electron acceptor during the photoreduction experiment. The same film area was irradiated in all experiments, by selecting it through a mask. The increase in concentration of the reduced methyl viologen (MV^{+} ·) species was monitored during the

experiment by recording, at selected time intervals, the absorption spectrum of the solution, which assumes an increasing blue color under irradiation.

3. Results and discussion

3.1. Photoelectrodes characterization

The X-ray powder diffraction patterns of the TiO_2 , $BiVO_4$ and $BiVO_4/TiO_2$ electrodes are reported in Fig. 1a. The pattern observed for $BiVO_4$ fits well with that relative to the monoclinic structure, while the characteristic (101) reflection of TiO_2 anatase at $2\theta = 25.5^{\circ}$ is evident in both the individual TiO_2 film and the composite material, as shown in the inset of Fig. 1a. Other reflections typical of anatase cannot be appreciated due to their lower intensity and to the overlap of some of them with more intense signals originated from FTO. The XRPD spectrum obtained with the combined $BiVO_4/TiO_2$ material, i.e. with TiO_2 as top layer, exhibits the reflection patterns of both components, indicating that no other phase was formed upon coupling the two oxides.

The absorption spectra of pure TiO₂ and BiVO₄ films and of both TiO₂/BiVO₄ and BiVO₄/TiO₂ heterojunctions are reported in Fig. 1b. The TiO₂ thin film is transparent in the visible range; its absorption onset, at *ca.* 400 nm as expected from the 3.2 eV band gap of TiO₂ anatase, overlaps with interference fringes. The BiVO₄ photoanode (band gap of 2.4 eV) absorbs in the visible range up to *ca.* 500 nm. Lower absorption is obtained in this region when BiVO₄ is coupled with TiO₂ in both TiO₂/BiVO₄ and BiVO₄/TiO₂ heterojunctions, as shown in Fig. 1b. This unexpected phenomenon, in which a colored film loses absorption when covered with a transparent layer, may find an explanation in electronic structure effects consequent with the equilibration of the Fermi levels of the two

oxides. Furthermore, the absorption onset of both coupled systems is seemingly shifted to higher energy values with respect to that of individual BiVO₄, which might also be related to Fermi levels equilibration effects at the heterojunction.

The top view SEM images of the BiVO₄ and TiO₂/BiVO₄ heterojunction films are reported in Fig. 2. They show an aggregated network of particles, with the BiVO₄ film (Fig. 2a) characterized by a worm-like shape morphology similar to that obtained in previous studies [15,45], and by a discontinuous coating of the FTO underlayer. Differently, in the TiO₂/BiVO₄ heterojunction film (Fig. 2b) the FTO asperities are completely covered by the TiO₂ and BiVO₄ layers. Moreover, the BiVO₄ top layer in the composite system appears as a compact film, which completely covers the TiO₂ layer due to the different affinity of BiVO₄ for TiO₂ rather than for FTO.

From the cross section SEM images shown in Fig. 3 a thickness of *ca.* 55, 60 and 100 nm was calculated for the BiVO₄, TiO₂, and overall TiO₂/BiVO₄ layers, respectively, by subtracting the average thickness of FTO (546 nm, obtained from Fig. 3a) from the average thickness of the FTO/BiVO₄, FTO/TiO₂ and FTO/TiO₂/BiVO₄ systems (Fig. 3b, c and d, respectively). The so calculated thickness of the bare BiVO₄ film is in accordance with that obtained for BiVO₄ films prepared by the same procedure [15]. Furthermore, the thickness of the TiO₂/BiVO₄ heterojunction system is in line with the thickness of the single component layers.

3.2. Photoelectrochemical performance of the electrodes

The PEC performance of the investigated TiO₂/BiVO₄ heterojunction as photoanode material was compared with that of single TiO₂ in contact with a Na₂SO₃ solution at pH 7

(0.5 M KPi). In the presence of this hole scavenger the performance of the heterojunction electrode is not affected by the typically slow water oxidation kinetics at the BiVO₄ surface [35]. As PEC experiments were performed by irradiating the photoanodes through the FTO/oxide film interface, in the composite material visible light first passed through the TiO₂ film and promoted electrons in BiVO₄, close to the interface between the two semiconductors. Thus the mobility of the electrons photopromoted in the CB of BiVO₄ was not affected by its poor electron transport properties [48,49].

The LSV plots recorded with the TiO_2 and the $TiO_2/BiVO_4$ photoanodes, under both full lamp solar simulated irradiation and visible light irradiation at $\lambda > 420$ nm, are shown in Fig. 4a. Under full lamp irradiation the TiO_2 photoanode produced a relatively small photocurrent, as expected from its limited ability to absorb solar radiation (see Fig. 1b), and no appreciable photocurrent was produced under visible light irradiation, as expected. Under full lamp irradiation, *i.e.* under conditions of simultaneous excitation of both semiconductor oxides, the photocurrent produced at 1.0 V vs. RHE by the $TiO_2/BiVO_4$ heterojunction photoanode was 10-fold higher than that produced by the TiO_2 photoanode, thanks to the ability of $BiVO_4$ in absorbing a larger part of the solar spectrum. The combined photoanode thus exhibits considerable photoactivity even under visible light excitation ($\lambda > 420$ nm), which can be absorbed by $BiVO_4$ only.

Since the procedure here adopted for the preparation of TiO_2 films even in the composite system ensures the formation of compact and pin hole-free TiO_2 layers [50], electrons visible light excited in $BiVO_4$ can flow to the FTO glass only through the TiO_2 film. Therefore, due to the ca. 0.2 eV energy mismatch between the CB of TiO_2 and

BiVO₄, only the electrons with an energy excess with respect to the CB edge of BiVO₄ (0.02 V vs. RHE at pH 0 [15]) are able to transfer to the more negative CB of anatase TiO₂ (–0.16 V vs. RHE at pH 0 [17]). For this reason a relatively lower photocurrent density value is expected with the TiO₂/BiVO₄ heterojunction compared to pure BiVO₄ photoanodes [40].

The LSV analyses reported in Fig. 4a also show that the TiO₂ photoanode exhibits a much more negative photocurrent onset with respect to that found for the TiO₂/BiVO₄ heterojunction. The photocurrent onsets measured by this way provide a good indication of the flat band potential (V_{FB}) of the material [15,51]. In order to ascertain the V_{FB} position of the investigated heterojunction with respect to those of the two individual components, we recorded their open circuit potentials (OCP) under 5 min long solar simulated irradiation (1 sun) [52], in contact with the Na₂SO₃ electrolyte solution. We obtained OCP values of 0.003 V, 0.203 V and 0.253 V vs. RHE (pH 0) for the TiO₂, TiO₂/BiVO₄ heterojunction and BiVO₄ electrode, respectively, with the heterojunction OCP value in line with the CB edge alignment which follows the equilibration of the Fermi levels of the two oxides in the heterojunction.

The IPCE plots reported in Fig. 4b evidence that TiO₂ is active only up to 410 nm, consistently with its 3.2 eV band gap, while it becomes photoactive under visible light irradiation when coupled with BiVO₄, acting as visible light sensitizer up to 490 nm. Since BiVO₄ alone is photoactive up to 520 nm [15], the energy difference between the photocurrent onsets of pure BiVO₄ and of the TiO₂/BiVO₄ heterojunction composite system should correspond to the extra energy required for visible light excited electrons in BiVO₄ to be injected into the TiO₂ CB.

The IPCE in water splitting measured at 1.23 V vs. RHE with the electrodes in contact with a Na₂SO₄ aqueous solution are shown in Fig. 5. The null conversion efficiency of TiO₂ in the visible region is confirmed. The lower photoactivity of the two BiVO₄-containing colored materials compared to those obtained in contact with the Na₂SO₃ solution should be ascribed to the slow water oxidation kinetics typical of BiVO₄, in the absence of any hole scavenger or co-catalyst for oxygen evolution [53,54]. The visible light sensitizer role of BiVO₄ in the composite system is evident also in this case. Furthermore, under such unfavorable oxidation kinetics conditions, the IPCE values obtained with the TiO₂/BiVO₄ heterojunction up to ca. 480 nm are higher not only than those obtained with TiO₂, but also compared to those obtained with single BiVO₄, suggesting that partial charge separation occurs in the composite system.

3.3. Photocatalytic methyl viologen reduction tests

Photocatalytic methyl viologen reduction tests were performed to investigate the photocatalytic reduction ability of the $TiO_2/BiVO_4$ heterojunction in comparison with those of other commonly employed semiconductors [55–58]. The mono-electron reduction of the almost colorless MV^{2+} to the blue MV^{+} reduced form (Fig. 6), occurring at -0.03~V~vs. NHE [59,60], was monitored by measuring the absorption of a 1.0 mM solution of MV^{2+} in ethanol under visible light irradiation ($\lambda > 420~nm$). Such irradiation conditions prevent MV^{2+} self-reduction, occurring under UV irradiation and, in the case of the $TiO_2/BiVO_4$ electrode, exclude the direct excitation of TiO_2 which, due to its negative CB potential, would very efficiently induce MV^{2+} reduction.

The experiment was carried out with the tested film initially in contact with the MV²⁺ solution under nitrogen atmosphere, in order to avoid the reversible oxidation of the MV⁺· species in the presence of oxygen [55]. In addition to the investigated TiO₂/BiVO₄ heterojunction, other common semiconductors with known CB potential location were tested for comparison, *i.e.* the pure TiO₂ and BiVO₄ components having a CB potential edge at *ca.* –0.16 V (in the anatase phase) [17] and 0.02 V [15] *vs.* NHE, respectively, the WO₃/BiVO₄ heterojunction, known for its excellent charge separation properties [61], with a CB edge at *ca.* 0.19 V *vs.* NHE [15], and CdS, characterized by extended absorption in the visible up to *ca.* 550 nm [62] and by a highly negative CB potential of *ca.* –0.4 V *vs.* NHE [63], *i.e.* significantly more negative than the reduction potential of the MV²⁺/MV⁺· couple. The photocatalytic reduction efficiency of all investigated materials was tested under 2-h long irradiation, up to the attainment of a plateau.

The absorption spectra of the probe solution recorded at different time during the photoreduction experiment in the presence of the TiO₂/BiVO₄ heterojunction and of the pure BiVO₄ are shown in Fig. 7a and 7b, respectively. The formation of the blue reduced MV⁺· species was testified by the absorbance increase over time, which clearly occurred at a higher rate when the experiment was carried out with the TiO₂/BiVO₄ coupled system. Thus, the composite material is clearly more efficient than pure BiVO₄ in MV²⁺ reduction.

Fig. 7c reports the MV⁺· maximum absorbance at 606 nm *vs*. the irradiation time plots for all tested semiconductor materials, providing information on their relative photocatalytic reduction efficiency under visible light irradiation. As expected, TiO₂ shows negligible photoactivity. Indeed, despite its highly negative CB potential, its poor visible light absorption ability limits its activity under the here employed irradiation conditions, in

line with the IPCE results shown in Fig. 4b and 5. Also the WO₃/BiVO₄ heterojunction shows little photoactivity despite it absorbs light up to ca. 500 nm and possesses excellent charge separation properties [15,45]. The limiting factor should thus be identified in this case with the much more positive CB edge position (0.19 V vs. NHE) of the WO₃/BiVO₄ heterojunction with respect to the reduction potential of MV²⁺. Furthermore, the WO₃/BiVO₄ heterojunction shows lower ability in MV²⁺ reduction than individual BiVO₄ (Fig. 7c), supporting a downward BiVO₄ flat band equilibration when the WO₃/BiVO₄ heterojunction is formed [15]. This rules out the hypothesis that the improved charge separation typical of heterojunction systems is sufficient to explain the higher photocatalytic activity in MV²⁺ reduction obtained with the TiO₂/BiVO₄ heterojunction compared to the single components. Indeed, Fig. 7c shows that after 1 h-long visible light irradiation, the MV⁺ concentration attained in contact with the TiO₂/BiVO₄ heterojunction is 10- and 3-fold higher than in contact with the TiO2 and BiVO4 films, respectively. The TiO₂/BiVO₄ heterojunction exhibits high MV²⁺ reduction ability, which is lower only to that of CdS, having a CB potential significantly more negative than the reduction potential of the MV²⁺/MV⁺ couple. This demonstrates that under visible light irradiation highly reducing electrons are produced in the TiO₂/BiVO₄ heterojunction, at a more negative potential than those visible light promoted in single BiVO₄.

As expected, the highest photoreduction efficiency was attained with the semiconductor systems having the most negative CB edge value. Therefore, by comparing the photocatalytic tests results with the CB edge position values reported in the literature, the apparent relative scale shown in Fig. 7d can be drawn for the CB edge energy of the tested materials, with respect to the reduction potential of the MV²⁺/MV⁺ couple. Thus, only CdS

and TiO_2 have a CB edge potential negative enough to efficiently photoreduce MV^{2+} . $BiVO_4$, although having a slightly more positive CB potential, is still able to photoreduce MV^{2+} , thanks to electrons photoexcited above the CB edge having higher energy compared to the MV^{2+}/MV^{+} couple reduction potential. On the other hand, the CB potential of the $WO_3/BiVO_4$ heterojunction is more positive than that of $BiVO_4$ and this results in a low MV^{2+} reduction efficiency.

3.4. Proposed mechanism

High-energy electron injection, active under visible light excitation, from the CB of BiVO₄ to the more negative CB of TiO₂ is required to explain the unexpected PEC performance as well as the visible light photocatalytic activity in MV²⁺ reduction of the TiO₂/BiVO₄ heterojunction. A schematic representation, based on the band edge positions of the two isolated semiconductors [15,17] and their band gap values, is shown in Fig. 8. PEC analysis of the $TiO_2/BiVO_4$ heterojunction under visible light irradiation ($\lambda > 420$ nm) demonstrates that photopromoted electrons resulting from the selective excitation of the BiVO₄ layer and having enough energy above the BiVO₄ CB bottom to reach the same energy level as the TiO₂ CB bottom, can effectively transfer to TiO₂. The required energy excess can be quantified on the basis of the results of the IPCE analyses shown in Figs. 4b and 5, and it should be around 0.2 eV, i.e. the energy difference associated with the photocurrent onset of the TiO₂/BiVO₄ and BiVO₄ electrodes (490 and 520 nm, respectively). Therefore, if the transfer of these electrons from BiVO₄ to TiO₂ occurs efficiently, and an intimate contact between the two semiconductors is crucial to this aim, the charge couples photogenerated in BiVO₄ under visible light irradiation can be

efficiently separated at the opposite sides of the heterojunction, with beneficial effects on photoactivity.

On the other hand, methyl viologen photocatalytic reduction tests in the absence of any external bias imply that the electron transfer towards the probe solution is mainly driven by the energy difference between the CB edge position of each photocatalyst system and the reduction potential of MV²⁺. Therefore, the higher efficiency of the TiO₂/BiVO₄ heterojunction with respect to pure BiVO₄ may only be ascribed to the actual involvement of visible light photopromoted, highly reducing electrons. On the basis of the Fermi level equilibration between the TiO₂ and BiVO₄ components, the consequent shift towards a more negative value of the flat band potential at the heterojunction with respect to pure BiVO₄ (as confirmed by OCP values, see Section 3.2.) contributes in increasing the reductive power of photopromoted electrons in the TiO₂/BiVO₄ coupled system. In fact, the highly reducing electrons lying in the so obtained TiO₂/BiVO₄ CB should be more prone than those in BiVO₄ CB to reduce MV²⁺, with a consequent beneficial effect on the overall efficiency of the investigated process.

4. Conclusions

The TiO₂/BiVO₄ heterojunction is a fascinating material which allows to exploit the excellent absorption properties of BiVO₄ to produce highly reductive electrons through TiO₂ sensitization under visible light. A counterintuitive electron transfer mechanism is active in this system, which significantly deviates from predictions based on the CB edges of the two isolate semiconductors. Methyl viologen reduction tests demonstrate the higher photocatalytic activity under visible light of the TiO₂/BiVO₄ heterojunction with respect to

either individual components and also compared to the WO₃/BiVO₄ heterojunction, which is characterized by excellent charge separation but is affected by a lower reducing ability than individual BiVO₄. The TiO₂/BiVO₄ heterojunction system allows TiO₂ sensitization for solar energy storage applications and has the potential to carry out overall water splitting under visible light, even without the application of an external bias.

Acknowledgments

The present work received support from the Cariplo Foundation project entitled *Novel Photocatalytic Materials Based on Heterojunctions for Solar Energy Conversion* (Fondazione Cariplo grant 2013-0615) and from the MIUR PRIN 2015K7FZLH project. The use of instrumentation purchased through the Regione Lombardia-Fondazione Cariplo joint *SmartMatLab* project (Fondazione Cariplo grant 2013-1766) is also acknowledged.

References

- [1] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110 (2010) 6446–6473.
- [2] Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6 (2012) 511–518.
- [3] N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. 103 (2006) 15729–15735.
- [4] T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520–7535.
- [5] a Fujishima, K. Honda, Nature 238 (1972) 37–38.
- [6] J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Nat. Photonics 6 (2012) 824–828.
- [7] H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo, Appl. Catal. B Environ. 239 (2018) 408–424.
- [8] K. Sivula, J. Phys. Chem. Lett. 4 (2013) 1624–1633.
- [9] M.S. Prévot, K. Sivula, J. Phys. Chem. C 117 (2013) 17879–17893.
- [10] K. Sivula, R. van de Krol, Nat. Rev. Mater. 1 (2016) 15010.
- [11] Y. Yang, C. Zhang, C. Lai, G. Zeng, D. Huang, M. Cheng, J. Wang, F. Chen, C. Zhou, W. Xiong, Adv. Colloid Interface Sci. 254 (2018) 76–93.
- [12] Y. Park, K.J. McDonald, K.-S. Choi, Chem. Soc. Rev. 42 (2013) 2321–2337.
- [13] A. Kudo, K. Ueda, H. Kato, I. Mikami, Catal. Letters 53 (1998) 229–230.
- [14] F.F. Abdi, R. van de Krol, J. Phys. Chem. C 116 (2012) 9398–9404.

- [15] I. Grigioni, K.G. Stamplecoskie, E. Selli, P. V. Kamat, J. Phys. Chem. C 119 (2015) 20792–20800.
- [16] S.P. Berglund, D.W. Flaherty, N.T. Hahn, A.J. Bard, C.B. Mullins, J. Phys. Chem. C 115 (2011) 3794–3802.
- [17] M.V. Dozzi, B. Ohtani, E. Selli, Phys. Chem. Chem. Phys. 13 (2011) 18217.
- [18] S.T. Kochuveedu, D.-P. Kim, D.H. Kim, J. Phys. Chem. C 116 (2012) 2500–2506.
- [19] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919–9986.
- [20] H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C Photochem. Rev. 15 (2013) 1–20.
- [21] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125 (2012) 331–349.
- [22] M.V. Dozzi, E. Selli, J. Photochem. Photobiol. C Photochem. Rev. 14 (2013) 13–28.
- [23] M.V. Dozzi, A. Candeo, G. Marra, C. D'Andrea, G. Valentini, E. Selli, J. Phys. Chem. C 122 (2018) 14326–14335.
- [24] S. Zheng, Z. Wei, K. Yoshiiri, M. Braumüller, B. Ohtani, S. Rau, E. Kowalska, Photochem. Photobiol. Sci. 15 (2016) 69–79.
- [25] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 8 (2015) 731–759.

- [26] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43 (2014) 5234.
- [27] I. Grigioni, K.G. Stamplecoskie, D.H. Jara, M.V. Dozzi, A. Oriana, G. Cerullo, P. V. Kamat, E. Selli, ACS Energy Lett. 2 (2017) 1362–1367.
- [28] M.V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Appl. Catal. B Environ. 186 (2016) 157–165.
- [29] F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli, Catal. Today 287 (2017) 176–181.
- [30] P. Luan, M. Xie, D. Liu, X. Fu, L. Jing, Sci. Rep. 4 (2014) 4–10.
- [31] J.H. Bang, P. V. Kamat, Adv. Funct. Mater. 20 (2010) 1970–1976.
- [32] K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem 4 (2011) 432–449.
- [33] A. Kudo, Catal. Surv. from Asia 7 (2003) 31–38.
- [34] X. An, T. Li, B. Wen, J. Tang, Z. Hu, L.-M. Liu, J. Qu, C.P. Huang, H. Liu, Adv. Energy Mater. 6 (2016) 1502268.
- [35] L.H. Hess, J.K. Cooper, A. Loiudice, C.-M. Jiang, R. Buonsanti, I.D. Sharp, Nano Energy 34 (2017) 375–384.
- [36] H. Li, H. Yu, X. Quan, S. Chen, H. Zhao, Adv. Funct. Mater. 25 (2015) 3074–3080.
- [37] M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Adv. Energy Mater. 4 (2014) 1300995.
- [38] H. Zhang, C. Cheng, ACS Energy Lett. 2 (2017) 813–821.

- [39] A.P. Singh, N. Kodan, B.R. Mehta, A. Held, L. Mayrhofer, M. Moseler, ACS Catal. 6 (2016) 5311–5318.
- [40] B.-Y. Cheng, J.-S. Yang, H.-W. Cho, J.-J. Wu, ACS Appl. Mater. Interfaces 8 (2016) 20032–20039.
- [41] L. Zhang, G. Tan, S. Wei, H. Ren, A. Xia, Y. Luo, Ceram. Int. 39 (2013) 8597– 8604.
- [42] Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, Appl. Catal. B Environ. 104 (2011) 30–36.
- [43] J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, ACS Cent. Sci. 2 (2016) 80–88.
- [44] S. Ho-Kimura, S.J.A. Moniz, A.D. Handoko, J. Tang, J. Mater. Chem. A 2 (2014) 3948.
- [45] I. Grigioni, A. Corti, M.V. Dozzi, E. Selli, J. Phys. Chem. C 122 (2018) 13969– 13978.
- [46] C. Lu, L. Zhang, Y. Zhang, S. Liu, G. Liu, Appl. Surf. Sci. 319 (2014) 278–284.
- [47] R.W. Ramette, J. Chem. Educ. 64 (1987) 885.
- [48] Y. Liang, T. Tsubota, L.P.A. Mooij, R. van de Krol, J. Phys. Chem. C 115 (2011) 17594–17598.
- [49] F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, J. Phys. Chem. Lett. 4 (2013) 2752–2757.

- [50] N. Chandrasekharan, P. V. Kamat, J. Phys. Chem. B 104 (2000) 10851–10857.
- [51] J.A. Turner, J. Chem. Educ. 60 (1983) 327.
- [52] Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, H.N. Dinh, J. Mater. Res. 25 (2010) 3–16.
- [53] L. Cai, J. Zhao, H. Li, J. Park, I.S. Cho, H.S. Han, X. Zheng, ACS Energy Lett. 1 (2016) 624–632.
- [54] T.W. Kim, K.-S. Choi, Science (80-.). 343 (2014) 990–994.
- [55] S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto, B. Ohtani, Phys. Chem. Chem. Phys. 5 (2003) 778–783.
- [56] S. Krishnamurthy, I. V. Lightcap, P. V. Kamat, J. Photochem. Photobiol. A Chem. 221 (2011) 214–219.
- [57] P.E. De Jongh, D. Vanmaekelbergh, J.J. Kelly, (1999) 1069–1070.
- [58] K.G. Stamplecoskie, Y.-S. Chen, P. V. Kamat, J. Phys. Chem. C 118 (2014) 1370– 1376.
- [59] C.L. Bird, A.T. Kuhn, Chem. Soc. Rev. 10 (1981) 49.
- [60] M.F. Finlayson, B.L. Wheeler, N. Kakuta, K.H. Park, A.J. Bard, A. Campion, M.A. Fox, S.E. Webber, J.M. White, J. Phys. Chem. 89 (1985) 5676–5681.
- [61] I. Grigioni, M. Abdellah, A. Corti, M.V. Dozzi, L. Hammarström, E. Selli, J. Am. Chem. Soc. 140 (2018) 14042–14045.

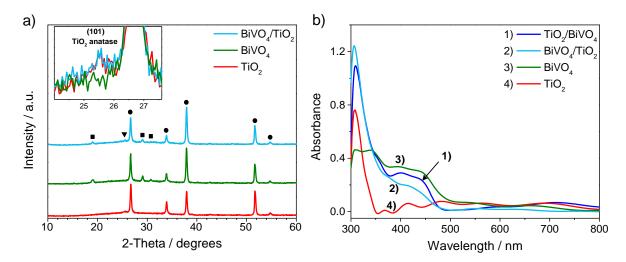
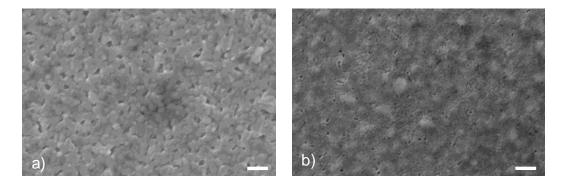
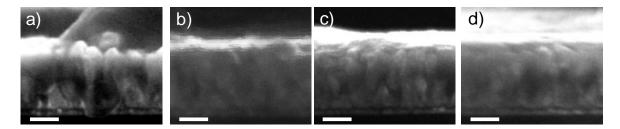
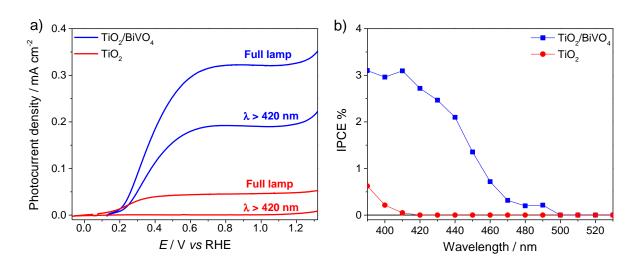

- [62] F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, Appl. Catal. B Environ. 201 (2017) 77–83.
- [63] D. Robert, Catal. Today 122 (2007) 20–26.

Figure captions


- **Fig. 1.** (a) X-ray powder diffraction patterns of the TiO₂, BiVO₄ and BiVO₄/TiO₂ heterojunction films, where refer to FTO, to BiVO₄ and ▼ to anatase TiO₂ reflections. Inset: enlargement of the 24.0 27.5° 2θ range, with the characteristic (101) reflection of anatase TiO₂. (b) Absorption spectra of 1) TiO₂/BiVO₄ and 2) BiVO₄/TiO₂ heterojunctions, 3) BiVO₄ and 4) TiO₂.
- **Fig. 2.** Top view SEM images of (a) BiVO₄ and (b) TiO₂/BiVO₄ heterojunction photoanodes. The scale bar is 500 nm.
- **Fig. 3.** Cross section SEM images of (a) clean FTO, (b) BiVO₄, (c) TiO₂ and (d) TiO₂/BiVO₄ heterojunction photoanodes. The scale bar is 250 nm.
- **Fig. 4.** (a) Linear sweep voltammetry (LSV) and (b) incident photon to current efficiency (IPCE) analyses at 1.0 V vs. RHE of TiO₂ and of the TiO₂/BiVO₄ heterojunction, in 0.5 M Na₂SO₃ buffered at pH = 7 with 0.5 M potassium phosphate.
- **Fig. 5.** Incident photon to current efficiency (IPCE) analysis of TiO₂, BiVO₄ and of the TiO₂/BiVO₄ heterojunction at 1.23 V vs. RHE, in 0.5 M Na₂SO₄.
- **Fig. 6.** Reduction reaction of methyl viologen (MV^{2+}) to its mono-electron reduced MV^{+} form.
- **Fig. 7.** Absorption spectra recorded during methyl viologen (MV^{2+}) photoreduction experiments in the presence of (a) the $TiO_2/BiVO_4$ heterojunction and (b) pure $BiVO_4$. (c) Kinetic profiles (maximum MV^{+} absorbance at 606 nm vs. time plots) obtained with

different semiconductor systems in photocatalytic MV^{2+} reduction tests. (d) CB energy scale of the tested semiconductor systems compared to the MV^{2+}/MV^{+} reduction potential. All potential values are taken from the literature: see refs. [63] for CdS, [17] for TiO₂, [59,60] for MV^{2+}/MV^{+} , [15] for BiVO₄ and the WO₃/ BiVO₄ heterojunction.


Fig. 8. Proposed electron injection mechanism for the TiO₂/BiVO₄ heterojunction under visible light irradiation.


Fig. 1. (a) X-ray powder diffraction patterns of the TiO_2 , $BiVO_4$ and $BiVO_4/TiO_2$ heterojunction films, where • refer to FTO, ■ to $BiVO_4$ and ▼ to anatase TiO_2 reflections. Inset: enlargement of the $24.0 - 27.5^{\circ}$ 2θ range, with the characteristic (101) reflection of anatase TiO_2 . (b) Absorption spectra of 1) $TiO_2/BiVO_4$ and 2) $BiVO_4/TiO_2$ heterojunctions, 3) $BiVO_4$ and 4) TiO_2 .

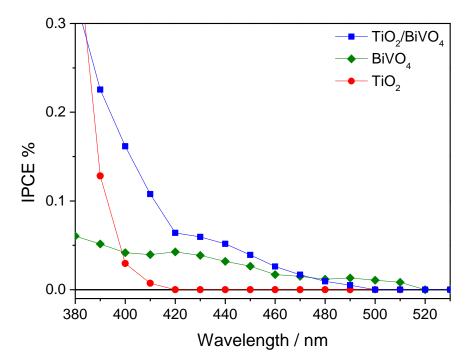
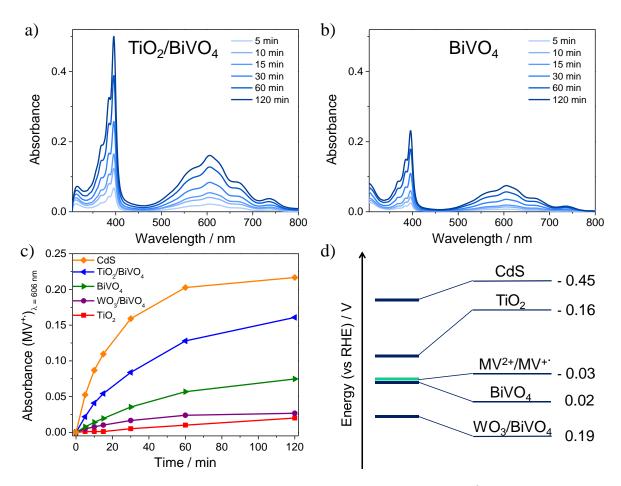
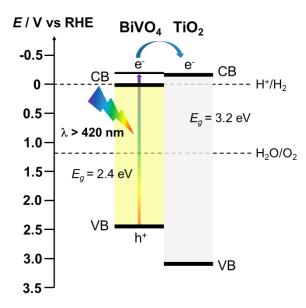

Fig. 2. Top view SEM images of (a) BiVO₄ and (b) TiO₂/BiVO₄ heterojunction photoanodes. The scale bar is 500 nm.

Fig. 3. Cross section SEM images of (a) clean FTO, (b) $BiVO_4$, (c) TiO_2 and (d) $TiO_2/BiVO_4$ heterojunction photoanodes. The scale bar is 250 nm.


Fig. 4. (a) Linear sweep voltammetry (LSV) and (b) incident photon to current efficiency (IPCE) analyses at 1.0 V vs. RHE of TiO_2 and of the $TiO_2/BiVO_4$ heterojunction, in 0.5 M Na_2SO_3 buffered at pH = 7 with 0.5 M potassium phosphate.


Fig. 5. Incident photon to current efficiency (IPCE) analysis of TiO₂, BiVO₄ and of the TiO₂/BiVO₄ heterojunction at 1.23 V vs. RHE, in 0.5 M Na₂SO₄.

$$MV^{2+}$$
 MV^{+-}
 H_3C-N^{+-}
 CH_3
 H_3C-N^{+-}

Fig. 6. Reduction reaction of methyl viologen (MV^{2+}) to its mono-electron reduced MV^{+} form.

Fig. 7. Absorption spectra recorded during methyl viologen (MV^{2+}) photoreduction experiments in the presence of (a) the $TiO_2/BiVO_4$ heterojunction and (b) pure $BiVO_4$. (c) Kinetic profiles (maximum MV^{+} absorbance at 606 nm vs. time plots) obtained with different semiconductor systems in photocatalytic MV^{2+} reduction tests. (d) CB energy scale of the tested semiconductor systems compared to the MV^{2+}/MV^{+} reduction potential. All potential values are taken from the literature: see refs. [63] for CdS, [17] for TiO_2 , [59,60] for MV^{2+}/MV^{+} , [15] for $BiVO_4$ and the $WO_3/BiVO_4$ heterojunction.

 $\label{eq:Fig. 8.} \textbf{Proposed electron injection mechanism for the $TiO_2/BiVO_4$ heterojunction under visible light irradiation.}$