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Hepatocellular carcinoma (HCC) is a frequent neoplasia and a leading cause of inflammation-related cancer mortality.

Despite that most HCCs arise from persistent inflammatory conditions, pathways linking chronic inflammation to cancer

development are still incompletely elucidated. We dissected the role of adaptive immunity in the Mdr2 knockout (Mdr2–/–)

mouse, a model of inflammation-associated cancer, in which ablation of adaptive immunity has been induced genetically

(Rag2–/–Mdr2–/– and lMt-Mdr2–/– mice) or with in vivo treatments using lymphocyte-specific depleting antibodies (anti-

CD20 or anti-CD4/CD8). We found that activated B and T lymphocytes, secreting fibrogenic tumor necrosis factor alpha

(TNFa) and other proinflammatory cytokines, infiltrated liver of the Mdr2–/– mice during chronic fibrosing cholangitis.

Lymphocyte ablation, in the Rag2–/–Mdr2–/– and lMt-Mdr2–/– mice, strongly suppressed hepatic stellate cell (HSC) activa-

tion and extracellular matrix deposition, enhancing HSC transition to cellular senescence. Moreover, lack of lymphocytes

changed the intrahepatic metabolic/oxidative state, resulting in skewed macrophage polarization toward an anti-inflammatory

M2 phenotype. Remarkably, hepatocarcinogenesis was significantly suppressed in the Rag2–/–Mdr2–/– mice, correlating with

reduced TNFa/NF-jB (nuclear factor kappa B) pathway activation. Ablation of CD201 B cells, but not of CD41/CD81 T

cells, in Mdr2–/– mice, promoted senescence-mediated fibrosis resolution and inhibited the protumorigenic TNFa/NF-jB

pathway. Interestingly, presence of infiltrating B cells correlated with increased tumor aggressiveness and reduced disease-free

survival in human HCC. Conclusion: Adaptive immunity sustains liver fibrosis (LF) and favors HCC growth in chronic

injury, by modulating innate components of inflammation and limiting the extent of HSC senescence. Therapies designed

for B-cell targeting may be an effective strategy in LF. (HEPATOLOGY 2018;67:1970-1985).

H
epatocellular carcinoma (HCC) is a fre-
quent neoplasia and a leading cause of
cancer-related death worldwide.(1) It com-

monly develops in patients with chronic liver dis-
eases, which may result from viral hepatitis or
exposure to metabolic toxins.(1) Chronic hepatic
inflammation is a major risk factor for liver tumor

development, given that more than 90% of HCCs
are inflammation driven,(2) thus providing a ratio-
nale for the continued development of an immune-
based approach to anticancer therapy.(3) Nonethe-
less, the identification of the cellular actors causing
transition from liver cirrhosis to dysplasia and HCC
is constantly evolving.
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Innate immune cells indisputably play a key role in
fibrosis initiation and progression, and the occurrence
of tumor-associated macrophages has been linked to
immune suppression, angiogenesis, and tumor pro-
gression.(4) However, adaptive immunity also has a
fundamental impact on the development and progres-
sion of HCC, eliciting both antitumor and protumor
effects.(5-8) In addition, the regulation of cellular senes-
cence, a process that opposes tumor initiation and pro-
gression, is also influenced by T-cell function. In fact,
CD41 T lymphocytes can either induce growth arrest
and senescence in cancer cells by secreting proinflam-
matory cytokines or trigger the clearance of senescent
premalignant hepatocytes.(9-11)

Interestingly, a role for B cells in the pathogenesis of
liver fibrosis (LF) has been also hypothesized.(12) To
unravel the role of adaptive immune responses in the
pathogenesis of HCC, we utilized the Mdr2 knockout
mice (Mdr2–/–) mouse model lacking the liver-specific
P-glycoprotein, responsible for phosphatidylcholine
transport across the canalicular membrane.(13) The
absence of phospholipids from bile leads to bile regurgi-
tation into the portal tracts, causing important portal
inflammation followed by slowly developing HCC,
which closely mimics the human disease.(14) Thus, this
model is very suitable for investigating the role of adap-
tive immunity in chronic inflammation during prema-
lignancy, senescence immune surveillance, and cancer.

Materials and Methods

MICE AND TREATMENTS

C57BL6/J-Abcb4tm1Bor (Mdr2–/–), B6.129S2-
Ighmtm1Cgn/J and C57BL6/J wild-type (wt) mice were
from The Jackson Laboratory (USA). B6.129S6-
Rag2tm1FWA N12 mice were purchased from Taconic
(USA). Mice were bred and housed under specific
pathogen-free conditions at the Animal Facility of
the Humanitas Clinical and Research Center in com-
pliance with national and international law and poli-
cies. Food and water were provided ad libitum. To
deplete CD201 B lymphocytes, 5-month-old male
mice were treated once every 2 weeks with intrave-
nous injections of anti-mouse CD20 monoclonal
antibody (mAb; clone 18B12, 7.5 lg/g of body weight;
Biogen) for 8 weeks. To deplete CD41 T and CD81 T
cells, mice were subjected to intravenous injections of
Rat anti-mouse CD4 and anti-mouse CD8a mAbs
(clones GK1.5 and 53-6.7; BioXcell, West Lebanon,
USA). CD4- and CD8-depleting antibodies were
administered every 7 days at doses of 7.5 lg/g of body
weight, for 8 weeks. Control groups received the corre-
sponding isotype controls (immunoglobulin G [IgG] 1,
IgG2a, and IgG2b; BioXcell). Animals were sacrificed
for analysis 1 week after the last injection. Experiments
were performed according to protocols approved by the
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Istituto Clinico Humanitas and the Italian Institutional
Animal Care and Use Committee.

LIVER LYMPHOCYTE ISOLATION

Mice were euthanized by CO2 inhalation. The
hepatic portal vein was cannulated and perfused with 10
mL of ice-cold phosphate-buffered saline (PBS). After
the removal of the gall bladder, the liver was rinsed with
ice-cold PBS, chopped on ice into small �1-mm3

pieces, and then enzymatically digested in Iscove’s mod-
ified Dulbecco’s medium medium supplemented with
0.2 mg/mL of Liberase TL (Sigma-Aldrich, NJ, USA)
and 0.01 mg/mL of DNase I (Sigma-Aldrich) for 30
minutes at 378C. The enzymatic reaction was stopped
using ethylenediaminetetraacetic acid (5 mM), and the
liver suspension was meshed through a 70-lm cell
strainer (Falcon, Tewksbury MA, USA). After centrifu-
gation, the cell pellet was resuspended in 40% Percoll
solution (92% Percoll, 7% PBS 103, and 1% NaHCO3

7.2%; pH 7.2) in Hank’s balanced salt solution supple-
mented with 100 UI/mL of heparin. After a centrifuga-
tion (1,800 rpm, 20 minutes, 48C), the pellet was
harvested and resuspended in RPMI 1640 medium
with 5% fetal bovine serum (FBS).

IN VITRO CULTURE

Sorted liver CD191 B2201 B and CD31NK1.1_ T
cells were resuspended at 2 3 105 cells/lL in RPMI
1640, 10% FBS, and 2 mM of L-glutamine and trans-
ferred into a flat-bottomed 96-well plate in 100 lL/
well. Another 100 lL of RPMI was added that con-
tained or not stimulating reagents at 23 final concen-
tration. In case of in vitro liver T-cell stimulation,
plates were previously coated with anti-mouse CD3
antibody (2 lg/mL, clone 145-2C11; eBioscience,
MA, USA) for 3 hours at 378C. Liver B cells were
stimulated with lipopolysaccharide (LPS; 10 lg/mL;
Sigma-Aldrich). Cocultures between liver B cells and
splenic wt T cells were performed in the presence of
soluble anti-mouse CD3 antibody (2 lg/mL; eBio-
science). Supernatants were collected after 3 (T cells)
or 5 days (B cells) of culture for cytokine secretion
determination, and then cell proliferation was evalu-
ated by 3H-thymidine incorporation. In vitro cocul-
tures with hepatic stellate cells (HSCs) were
established in normal or 5-lM pore-size Transwell
inserts (Costar Corporation, Corning, NY, USA) 24-
well plates, at a ratio 1:10 (HSC:T/B cells).

Supernatants and HSCs for gene expression analysis
were harvested after 5 days of culture.

HUMAN SAMPLES

A tissue microarray composed of 116 samples of
HCC was obtained from the Department of Hepato-
biliary and General Surgery of Humanitas Clinical and
Research Center with the approval of the institutional
review board (Prot. No. CE Humanitas ex D.M. 8/2/
2013-248/14) and after the patient’s informed consent.
All patients had hepatitis C virus (HCV)-related cirrho-
sis. The series under examination is enriched by com-
plete clinical, pathological, and phenotypical data.(15)

Each case was represented by six tumoral spots, three
taken from inner and three from outer HCC areas, and
three extratumoral spots. CD20 expression was semi-
quantitatively evaluated in each spot and expressed as
the mean percentage of immunoreactive cells in the tis-
sue for each case. The histological tumor grading was
evaluated in accord with Broder’s classification.

IMMUNOHISTOCHEMISTRY

Livers were systematically set up following the prac-
tice guideline suggested by Fickert et al.(16) Paraffin-
embedded tissue sections were stained for terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL; Calbiochem) and with the following anti-
bodies: ki67 (clone D3B5, 1:400; Cell Signaling Tech-
nology); a-smooth muscle actin (aSMA; RB 9010-P1,
1:100; Thermo Fisher Scientific); cH2A.X (clone 9718,
1:100; Cell Signaling Technology, MA, USA); CD3
(MCA1477, 1:1,000: Bio-Rad Laboratories); Ym1
(1:400, no. 01404; Stem Cell Technologies, Vancouver,
Canada); major histocompatibility complex class II
(MHCII; 1:150, ab25333; Abcam, Cambridge, UK);
heme oxygenase 1 (HO-1; 4915-1050, 1:400; Bio-Rad
Laboratories); CD45R (BMS14-0452-82, 1:400; eBio-
science); and anti-CD20 L26 (760-2531, Ventana, AZ,
USA). One whole section from each animal (at least
eight for each group) was scanned with vs-120dot-slide.
The images were quantified using Image Pro-premier
software (http://rsb.info.nih.gov/ij/). The immune-
reactive area was calculated relative to the total liver sec-
tion area. Detection of b-galactosidase (b-gal) activity
was performed with the Senescence Detection kit (Bio-
Vision, CA, USA) on snap-frozen livers, following the
manufacturing instruction. Microscopic analysis was
performed using an Olympus BX51 (Olympus Corpo-
ration). Five high-power fields were counted on two
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liver sections from each mouse (203 or 403, >150
counted cells per field).

STATISTICAL ANALYSIS

All statistical analyses were performed using the
Mann-Whitney U or Student t test. For histopathol-
ogy, data extrapolated using Image Pro-premier soft-
ware were analyzed with GraphPad Prism (version 7.0;
GraphPad Software Inc., San Diego, CA). Statistical
analyses of the results were performed using the
Kruskal-Wallis test, followed by Dunn’s test. P values
<0.05 were considered statistically significant.
For human studies, data are expressed as means 6

SD. Variables were compared using the chi-square test
(or Fisher’s exact test) for categorical data and Student
t test (or the Mann-Whitney U test) for continuous
variables. Kaplan-Meier curves were used to analyze
differences of overall and disease-free survivals that
were compared using the log-rank test. Proportional
hazard/Cox regression analysis was used to identify
independent prognostic factors. Hazard ratio (HR)
with confidence interval (CI) was used as effect size. A
P value <0.05 was considered significant. All tests
were two-sided. All analyses were performed with the
software Stata 13 (StataCorp LP).

Results

INTRAPORTAL ACCUMULATION
OF LYMPHOCYTES IN INJURED
LIVER OF Mdr2–/– MICE

To investigate the contribution of the adaptive
immune cells in the inflammatory responses linked to
HCC development, we evaluated the hepatic immune
microenvironment of Mdr2–/– mice at the stage of
chronic hepatitis. At the age of 7 months, mutant livers
showed a prominent periportal ductular proliferation
accompanied by leukocyte infiltration (Fig. 1A). Flow
cytometry analysis on liver single-cell suspensions
revealed markedly increased frequencies of CD31 T cells
and B2201 CD191 B cells in the CD451 fraction of
mutant liver cells with respect to controls (Fig. 1B). No
significant alterations were detected for natural killer T
(NKT; CD31 NK1.11) and natural killer (NK; CD3–

NK1.11) subsets (Supporting Fig. S1A). Importantly, B-
and T-cell infiltrates were localized predominantly at the
periportal areas, where tissue injury arose (Fig. 1A), sug-
gesting a primary involvement in the liver disease. To
elaborate the role of lymphocytes in our model, we

isolated, by fluorescence-activated cell sorting (FACS),
intrahepatic CD191 B- and CD31 T-cell populations
from perfused livers of Mdr2–/– and wt mice. Liver
mutant B cells were in an increased activation state, char-
acterized by enhanced expression of activation and costi-
mulatory markers, such as MHCII, CD86, and CD40
(Fig. 1C and Supporting Fig. S1B). Consistent with
their phenotype,Mdr2–/– B cells exhibited higher ability
to prime and activate wt T cells in vitro (Supporting Fig.
S1C,D). Likewise, T lymphocytes from mutants dis-
played greater levels of CD44, CD25, and CD69
markers compared to their normal counterpart (Fig. 1C
and Supporting Fig. S1B). Next, we analyzed liver B-
and T-cell functions following ex vivo stimulation with
LPS and anti-CD3 mAb, respectively. Liver lympho-
cytes from Mdr2–/– mice displayed increased prolifera-
tive ability and produced greater amounts of the tumor
necrosis factor alpha (TNFa) cytokine compared to con-
trols (Fig. 1D,E). Thus, immune activity of B and T
cells is enhanced during the pretumoral stage.

ABSENCE OF ADAPTIVE
IMMUNITY REDUCES COLLAGEN
DEPOSITION AND HSC
ACTIVATION

The functional role of adaptive immunity in HCC
pathogenesis was investigated utilizing Rag2–/–Mdr2–/–

mice, which lack mature T and B cells.(17) Liver histologi-
cal examination confirmed that 7-month-old Mdr2–/–

mice were affected by overt hepatic fibrosis (HF), charac-
terized by marked portal to bridging oval cell/biliary
hyperplasia, extracellular collagen deposition, and inflam-
matory reactions (Fig. 2A). As quantified by laser scan-
ning, we found a rate of 2.6 6 1.4% of Picrosirius red–
positive collagen fibers in Mdr2–/– mice, representing a
12-fold increase over controls (0.2 6 0.19%). Further-
more, a dramatic expansion of activated HSCs, positive
for the marker, aSMA, was also observed in the mutant
compared to WT mice (6 6 2.2% vs. 0.8 6 0.5%; Fig.
2B). Remarkably, collagen deposition, oval cell/biliary
hyperplasia, and inflammatory cell infiltration were visibly
reduced in liver of age-matched Rag2–/–Mdr2–/– mice
(now referred as Dko), as demonstrated by the lower rela-
tive organ weight and histological score (Fig. 2C,D).
Smaller aSMA1 areas and fewer collagen fibrils reflected
a 50% reduction in HSC activation and collagen deposi-
tion in Dko mice (3 6 1.2%; Fig. 2A,B). Consistently,
liver mRNA expression of fibrogenic markers, including
Col1a1, collagen, type I, alpha 1 (Col1a)1, Col1a2, and
transforming growth factor beta 1 (Tgfb1), were
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FIG. 1. Intraportal accumulation of lymphocytes in injured liver of Mdr2–/– mice. (A) Representative images from H&E, CD3, and
B220 staining on liver sections of wt and Mdr2–/– mice. Scale bar 5 250 lm. (B) Representative dot plots depicting expression of
B220 and CD3 markers on gated CD451 liver cells from wt and Mdr2–/– mice. Numbers in quadrants indicate percentage of cells in
each. Graphs show cumulative frequencies from two representative experiments of five independent with n 5 6-8 mice/group. (C)
Representative FACS plots showing expression of activation markers, on gated CD191 B cells and CD31 T cells from liver of wt
and Mdr2–/– mice. (D) Liver CD191 B cells and CD31 T cells were sorted from wt and Mdr2–/– mice and stimulated ex vivo with
LPS and anti-CD3 mAb, respectively. Lymphocyte proliferation was evaluated after 96 hours of culture by 3H-thymidine incorpora-
tion. (E) Cytokine secretion in culture supernatants was evaluated by ELISA. Values are mean 6 SEM. *P < 0.05. Abbreviations:
cpm, counts per minute; CV, central vein; ELISA, enzyme-linked immunosorbent assay; H&E, hematoxylin and eosin; Max, maxi-
mum; P, portal tract.
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significantly reduced (Fig. 2F). Decreased hepatic inflam-
mation in Dko was also confirmed by reduced serum lev-
els of serum amyloid A (SAA) protein (Fig. 2E). Toll-
like receptor 4 (TLR4) is required for hepatic fibrogene-
sis, driving HSC activation and enhancing their sensitiza-
tion to TGFb signaling.(18) In line with the down-
regulation ofTgfb1 expression, liverTlr4mRNAwas sig-
nificantly reduced in Dko, compared to Mdr2–/–, mice
(Fig. 2F). Additionally, expression of C-C motif chemo-
kine ligand 2 (Ccl2), a potent mediator of macrophage
recruitment and linked to TLR4 activation,(18) was also
decreased (Fig. 2F). To corroborate the role of lympho-
cytes in HSC activation and fibrosis, we performed cocul-
tures of ex vivo purified Mdr2–/– B and T cells with wt
HSCs. We confirmed thatMdr2–/– lymphocytes produce
a high amount of Tnfa as well as of interleukin (IL)6 and
IL1b (Supporting Fig. S2A). Furthermore, we found

that B cells isolated from Mdr2–/– mice are more potent
stimulators of HSC activation, measured by IL1a, Ccl2,
Lox, and Col1a2 mRNA levels, when they are in direct
cell-to-cell contact rather than separated in transwell cul-
tures (Supporting Fig. S2B).
Overall, these data suggest that lymphocytes regulate

the pathways sustaining HF following chronic liver injury.

ADAPTIVE IMMUNITY PROMOTES
THE INFLAMMATORY
PROTUMORIGENIC
MICROENVIRONMENT OF
FIBROTIC Mdr2–/– LIVERS

TNFa/NF-jB signaling promotes disease progres-
sion and HCC development in Mdr2–/– mice.(6)
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FIG. 2. Reduced collagen deposition and HSC activation in the absence of adaptive immunity. (A) Representative images from
H&E, Sirius Red, and aSMA stainings on liver sections of wt, Mdr2–/–, and Dko mice. Scale bar 5 250 lm. (B) Quantification of
Sirius Red and aSMA-positive areas in livers of mutants and age-matched control mice. (C) Relative liver weight is shown. (D) His-
tological score was evaluated considering inflammatory infiltrates, fibrosis, biliary, and oval cell hyperplasia. Experimental data are
cumulative results from independent experiments with at least 7 mice/group. Values are median 6 range. (E) Serum SAA levels were
measured at the preneoplastic stage (7 months). (F) Quantitative analysis of profibrogenic factors Col1a1, Col1a2, Tgfb, Tlr4, and
Ccl2 was performed by qRT-PCR on whole-liver tissue. Data are representative results of two independent experiments with at least
6 mice/group. Values are mean 6 SEM. *P < 0.05; **P < 0.01; ***P < 0.001. Abbreviation: H&E, hematoxylin and eosin.
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Accordingly, cholangiohepatitis in 7-month-old
Mdr2–/– mice was characterized by markedly increased
liver mRNA and serum concentration of Tnfa (Fig.
3B), correlating with augmented hepatic activation of
the NF-jB pathway, as demonstrated by the higher
p65 phosphorylation in western blotting analysis (Fig.
3C). In contrast, the TNFa/NF-jB axis was sup-
pressed in age-matched Dko mice (Fig. 3A-C), con-
firming that adaptive immune responses significantly
contributed to the activation of this inflammatory sig-
naling pathway.
During the inflammatory phase of chronic wounds,

TNFa, in combination with other factors, induces the
synthesis of nitric oxide (NO), which contributes to
liver fibrogenesis.(19) In agreement, a marked increase
in the inducible NO synthase (iNOS) Nos2 transcript
level was detected in hepatic tissue of Mdr2–/– mice
(Fig. 3D). In Dko mice, inos expression was signifi-
cantly inhibited, resulting in higher Arginase I activity
(Fig. 3D). Increased Arginase I in Dko mice likely
reflected reduced liver damage, compared to Mdr2–/–

mice. It was also noteworthy that blunted TNFa-
induced up-regulation of inos in Dko mice correlated
with significantly increased antioxidant HO-1 immu-
noreactivity (Fig. 3E,F, upper panel).
Arginine metabolism by NO synthase (NOS) or

Arginase has profound consequences on macrophage
polarization.(20) We examined the macrophage pheno-
type in Mdr2–/– and Dko mice. Inflammatory M1-
type macrophages are abundantly present in liver of
Mdr2–/–, compared to wt mice, as demonstrated with
MHCII immunostaining (Fig. 3E,F, middle panel).
In contrast, M1 macrophage polarization was signifi-
cantly suppressed in Dko mice in favor of a skewing
toward anti-inflammatory M2-differentiated macro-
phages, as confirmed by the higher liver immunoreac-
tivity for the Ym1 marker (Fig. 3E,F, bottom panel).
Thus, adaptive immunity is critical to maintain the
inflamed hepatic environment and to dictate macro-
phage polarization driving fibrosis progression.

CYSTEINE-RICH ANGIOGENIC
INDUCER 61–DRIVEN
SENESCENCE PROGRAM IS
ENHANCED IN Rag–/–Mdr2–/– MICE

Cellular senescence plays a key role in restoring tis-
sue homeostasis after liver injury, by limiting the pro-
liferation of activated HSCs and hence the extent of
extracellular matrix (ECM).(21)

Therefore we asked whether dampen of fibrosis in
the Dko mice could be ascribed to cellular senescence
activation. To identify senescent cells in situ, we
stained liver sections for senescence-associated
markers, Ki-67 and SA-b-gal. Immunohistochemistry
for Ki-67 revealed that Mdr2–/– livers contained nearly
2-fold more proliferating cells compared with control
and Dko mice (Fig. 4A,B). In addition, senescence-
associated b-galactosidase (SA-b-gal)-positive cells
accumulated at a relatively low frequency in fibrotic
Mdr2–/– livers, almost comparable to that of wt con-
trols (Fig. 4A,B). On the contrary, a marked accumu-
lation of SA-b-gal1 cells was observed in the portal
and periportal areas of Dko liver (Fig. 4A). The
reduced expression of platelet-derived growth factor
receptor-b (Pdgfrb), a feature of myofibroblast activa-
tion, in livers of Dko mice (Fig. 4C) would suggest
that SA-b-gal1 senescent cells are most likely derived
from activated HSCs, which reverted or stalled to a
less-reactive phenotype. Accordingly, in serial sections
of Dko livers, most of the b-gal-positive cells also
express aSMA marker (Fig. 4D). To further confirm
this finding, HSCs were isolated from livers and cul-
tured for 6 days. Purity of HSC cultures was assessed
by endogenous retinoid fluorescence and oil red stain-
ing, marking cytoplasmic lipid droplets typically of
HSCs (Supporting Fig. S3A,B). Accordingly, SA-b-
gal1 senescent Dko HSCs secreted large amounts of
inflammatory senescence-associated secretory pheno-
type (SASP) factors, including IL6, Ccl2, IL1a, and
granulocyte macrophage/colony-stimulating factor
(Supporting Fig. S3E). Interestingly, no production of
TNFa was detected (data not shown).
In liver injury, the hepatocyte-derived matricellular

protein, CCN1, is critical for induction of HSC senes-
cence, through a RAC/NADPH oxidase 1–dependent
pathway.(22) A significant increase in Ccn1 tissue
expression was observed in Dko, compared to
Mdr2–/–,mice (Fig. 4E). Importantly, enhanced Ccn1
expression correlated with increased Rac1 transcript
level in purified HSCs from Dko, with respect to
Mdr2–/–, mice (Supporting Fig. S3C). Up-regulation
of Ccn1 has been linked to apoptosis.(23) However, the
presence of fewer scattered apoptotic hepatic cells,
identified by TUNEL staining in Dko mice with
respect to Mdr2–/–, confirmed that cellular senescence
is the principal mechanism of restrained LF (Fig. 4F).
Finally, we examined livers for markers of extracellu-

lar proteolysis, related to wound resolution. Expression
of collagenase 3 (matrix metalloproteinase-13; Mmp-
13) diminished in Dko livers compared to the Mdr2–/–
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mouse (Fig. 4E), indicative of an overall protective
effect against fibrosis.(24) Furthermore, mRNA levels
of tissue inhibitor of metalloproteinases-3 (Timp3)
profibrotic gene, encoding for metalloproteinases

inhibitor, were also down-regulated in the Dko mouse
(Fig. 4E). These results suggest a major role for adap-
tive immunity in the perpetuation, rather than resolu-
tion, of cholangiohepatitis.
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FIG. 3. Reduced hepatic TNFa inflammation and switched macrophage polarization in the absence of lymphocytes. (A-D) mRNA
and (C) proteins from total liver tissue were isolated from wt, Mdr2–/–, and Dko mice at 7 months. (A,D) Quantitative analysis of
Tnfa, Nos2, and Arginase 1 was performed by qRT-PCR. Data shown are cumulative results from two independent experiments with
at least 7 mice/group. (B) TNFa serum levels are shown. (C) Representative immunoblotting showing expression of phospho-NF-jB/
p65 in livers of mutants and wt mice. Quantification of phospho-NF-jB/p65 relative to Hsp-60 protein level. Samples: 1 5 wild
type; 2 5 Mdr2–/–; 3 5 Dko. (E) Representative images and (F) quantification of immunoreactivity for HO-1, MHCII, and Ym1
on liver sections. Scale bar 5 200 lm; scale bar inset 5 67 lm. Data are represented as a mean 6 SEM. *P < 0.05; **P < 0.01.
Abbreviation: Hsp-60, heat shock protein 60.
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B LYMPHOCYTES ARE
SUFFICIENT FOR THE
ESTABLISHMENT OF HF

To dissect the relative contribution of B and T
cells in hepatitis, we treated Mdr2–/– mice with
lineage-specific depleting antibodies (anti-CD20 or
anti-CD4/CD8, now referred to as B-Mdr2–/– and
T-Mdr2–/–) intravenously for 2 months, starting
from 5 months of age. Administration of anti-
CD20 mAb efficiently produced B-cell depletion in
peripheral blood and liver of mutant mice (Support-
ing Fig. S4A,B). Similarly to Dko mice, collagen

deposition was markedly decreased in B-Mdr2–/–

livers, as shown by reduced Sirius Red1 fibrills and
mRNA expression of fibrogenic genes (Col1a1,
Col1a2; Fig. 5A,B). In agreement, aSMA immune-
reactivity and liver Pdgfrb mRNA expression were
reduced (Fig. 5C). This also correlated with a sig-
nificant decrease of relative liver mass in B-Mdr2–/–

mice (Fig. 5D).
Transcript levels of liver Tgfb, Tlr4, and Ccl2, medi-

ators of hepatic fibrogenesis, were also markedly
decreased in B-Mdr2–/– mice compared to controls
(Fig. 5E). Furthermore, we observed that in B-
Mdr2–/– mice, the TNFa/NF-jB axis was significantly
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FIG. 4. Enhanced senescence of HSC in Rag2–/–Mdr2–/– mice. (A) Liver tissues were stained for Ki-67 antibody (top) and processed
for b-gal staining (bottom). Scale bar 5 250 lm (top panel) and 200 lm (bottom panel). (B) Quantification of Ki-67- and b-gal-
positive areas in mutants and control livers. (C, E) RNA from total liver was isolated from wt, Mdr2–/–, and Dko mice at 7 months to
perform qRT-PCR for Pdgfr-b, Ccn1, Mmp3, and Timp3. (D) Senescent cells, identified by SA-b-gal, stained positive for HSC
marker aSMA on serial sections of Dko liver. Scale bar 5 100 lm. (E) qRT-PCR analysis of wound-healing resolution markers Ccn1,
Mmp3, and Timp3, in livers of wt, Mdr2–/–, and Dko mice. (F) TUNEL staining on liver sections were taken and quantified. Scale
bar 5 100 lm. Data are represented as mean 6 SEM. *P < 0.05; **P < 0.01. Abbreviation: DAPI, 40,6-diamidino-2-phenylindole.
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attenuated (Fig. 5E,F), demonstrating the mechanistic
contributions of B cells in the inflammation of
Mdr2–/– mice. Consistent with their decreased activa-
tion, the secretory phenotype of HSCs isolated from
B-Mdr2–/– mice was similar to that observed for senes-
cent Dko cell cultures, with high production of IL1a,
Ccl2, and IL6 cytokines (Supporting Fig. S3D,E). To
confirm the role of B cells in LF, we crossed the B-
cell-deficient lMT mouse with the Mdr2–/– mouse
and analyzed the progenies. Their analysis at 7 months

of age revealed significant amelioration of LF and
inflammation (Supporting Fig. S5), further suggesting
that B cells play a critical role in amplification of the
fibrotic process of Mdr2–/– mice, which also involved
activation/regulation of the senescent program.
Interestingly, as reported for experimental models of

LF induced in T-cell-deficient mice,(12) LF was not
significantly affected by the CD4/CD8 T-cell deple-
tion (Supporting Fig. S6A,B). Similar to Mdr2–/–

immune-competent mice, T-Mdr2–/– mice showed
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FIG. 5. B-lymphocyte depletion reduced HF in Mdr2–/– mice. (A) Representative images from Sirius Red and aSMA stainings on
liver sections. (B) Quantification of Sirius Red–positive areas by laser scanning on liver sections and qRT-PCR analysis on expression
of Col1a1 and Col1a2. (C) Quantification of activated HSCs (aSMA) and relative expression level for Pdgfr-b by qRT-PCR. (D)
Relative liver weight is shown. (E) Quantitative analysis of fibrogenic markers: Tgfb1, Tlr4, Ccl2, and Tnfa was performed by qRT-
PCR on total liver tissue. (F) Representative immunoblotting for phospho-NF-jB/p65 and Hsp60. Immunoblotting samples: 1 5
aCD20-wt; 2 5 wt; 3 5 aCD20 Mdr2–/–; 4 5 Mdr2–/–. Data are represented as a mean 6 SEM. *P < 0.05; **P < 0.01.
Abbreviation: Hsp-60, heat shock protein 60.
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nearly intact collagen deposition, unaltered aSMA-
expressing HSCs, and an up-regulated proinflamma-
tory/fibrogenic tissue phenotype (Supporting Fig.
S6C-G).

TUMOR DEVELOPMENT IS
MARKEDLY REDUCED IN
Rag2–/–Mdr2–/– MICE

Both accumulation of senescent cells and sustained
inflammation could contribute to malignant transfor-
mation.(6,8,10,11) Therefore, we analyzed tumorigenesis
in Dko mice, in which inflammation-driven fibrosis is
restrained by cellular senescence but senescence-

surveillance is partially impaired. At 16 months of age,
80% of Mdr2–/– mice developed visible nodules classi-
fied as HCC, whereas no age-matched wt mice pre-
sented with HCC (Fig. 6A,B). This finding in the
Mdr2–/– mice coincided with strongly increased rela-
tive liver weight attributed to tumor burden (mean
0.09 6 0.01 SD in Mdr2–/– mice vs. 0.07 6 0.01 in
Dko mice vs. 0.05 6 0.01 in wt; Fig. 6C). Of note,
HCC development was considerably attenuated in
Dko mice, with a 2-fold reduction in overall tumor fre-
quency and a reduced number of macroscopically
detected tumors for the single mouse (Fig. 6A-D). In
addition, tumor-bearing Dko mice displayed a lower
number of total proliferative lesions, including pretu-
moral foci of cellular alteration and tumors (Fig. 6D).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

FIG. 6. Reduced tumor development in the absence of lymphocytes. (A) Representative images showing H&E staining of liver sec-
tions from tumor-bearing Mdr2–/– mice and age-matched Dko, lMT-Mdr2–/–, and wt mice. Scale bar 5 2.5 mm. Magnification
scale bar 5 250 lm. Star 5 foci of cellular alteration; A 5 hepatocellular adenoma; C 5 HCC (H&E staining). Quantification of
tumor incidence (B), relative liver weight (C), relative tumor incidence for mouse, and total proliferative lesions (D) are shown. (E)
Analysis of serum ALT in 16-month-old mice. *P < 0.05; **P < 0.01. Abbreviation: H&E, hematoxylin and eosin.
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Furthermore, Dko animals displayed a significantly
reduced serum aminotransferase (alanine aminotrans-
ferase; ALT) level, indicative of milder liver damage
(Fig. 6E).Importantly, analogous results were obtained
for lMT-Mdr2–/– mice at a similar age (Fig. 6 A-E).
Next, we evaluated whether cellular senescence

could be a potential contributor to HCC arrest in Dko
mice. At 16 months, SA-b-gal1 cells persisted in liver
of Dko mice, whereas Mdr2–/– hepatic tissues were
almost negative (Fig. 7A). Hepatocyte proliferation
with damaged DNA is a key factor in the formation of
HCC.(25) As expected, hepatocyte proliferation was
evident in Mdr2–/– livers and associated with increased
DNA double-strand breaks, as assessed by Ki-67 (1.14
6 0.4% inMdr2–/– mice vs. 0.4 6 0.3% in wt controls)
and cH2A.X staining (51 6 36 positive cells in
Mdr2–/– mice vs. 10 6 7 in wt controls), respectively
(Fig. 7A,B). On the contrary, in Dko mice, we
observed reduced hepatocyte proliferation (0.5 6

0.2%) and protection from DNA damage (8.6 6 6.2
positive cells; Fig. 7A,B). In the Mdr2–/– mouse, p21

promotes both liver regeneration and hepatocarcino-
genesis (HCG).(26) In agreement, higher p21 mRNA
was detected in Mdr2–/– hepatocytes compared to con-
trols, whereas its expression was down-regulated in
Dko hepatocytes (Fig. 7C), confirming lymphocytes as
a critical component linking inflammation and HCG,
by sustaining DNA damage, cell proliferation, and
neoplastic transformation.

B CELLS ACCUMULATE IN
POORLY DIFFERENTIATED
HUMAN HCC

Next, we sought to investigate whether the presence
of B lymphocytes mirrors, in human HCC, the protu-
morigenic role shown in our mouse models. Thus, we
analyzed a monoinstitutional cohort of 116 surgically
resected HCC patients with HCV etiology. The
amount of B lymphocytes was analyzed in tumoral and
extratumoral tissues. B cells were classified as absent,
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FIG. 7. Mechanisms of suppressed HCG in immunodeficient Mdr2–/– mice. (A) Liver sections from 16-month-old mice were proc-
essed for detection of b-gal activity (top) and stained for Ki-67 (middle) and for cH2A.X (bottom) markers. Scale bar 5 200 lm;
magnification scale bar 5 67 lm. (B) Quantification of proliferating cells and foci of DNA damage in mutants and control livers are
shown. (C) p21 expression was assessed by qRT-PCR in isolated hepatocytes from mutants and wt mice. Data are represented as a
mean 6 SEM. *P < 0.05; **P < 0.01.
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1%-10% or �11% in, respectively, 21%, 86%, and 3%
of HCC samples and in 2%, 86%, and 12% of extrale-
sional liver parenchyma. Next, we explored a possible
correlation between tumoral/extratumoral B-cell infil-
trate and clinical (overall and disease-free survival),
pathological (histotype, grade, stage, and microscopic
or macroscopic angioinvasion), and phenotypical fea-
tures (p53, B-catenin, stem cell markers, and Ki-67
expression) of the series. Interestingly, a higher amount
of B lymphocytes within HCC showed a significant
correlation with poor differentiation (G1-G2 vs. G3-
G4: 2.3 6 2.0 vs. 4.1 6 4.0; P 5 0.004) and with
lower disease-free survival (HR 5 1.07; 95% CI 5

1.00-1.14; P 5 0.05; Fig. 8). By contrast, at this late
HCC stage, the presence of B lymphocytes in extratu-
moral tissue did not show any statistical correlation.

Discussion
In this study, we addressed the impact of the adap-

tive immune system on the fibrogenic response that
accompanies the development of HCC in Mdr2–/–

mice. We show that activated liver lymphocytes
amplify the fibrogenic response by secreting proinflam-
matory cytokines, including TNFa. Ablation of adap-
tive immunity strongly suppressed HSC activation,
promoting their transition to cellular senescence.
Additionally, absence of liver lymphocytes led to a

switch in the liver metabolic/oxidative state, resulting
in skewed macrophage polarization toward an anti-
inflammatory restorative M2 phenotype. Notably, lack
of lymphocytes markedly halted HCG, hindering
TNFa/NF-jB pathway activation. Mechanistically,
we found that TNFa-producing CD201 B cells, but
not T cells, limit senescence-mediated LF resolution,
favoring HCC progression. These results indicate that
B lymphocytes have a decisive role in cancer develop-
ment following chronic liver injury.
Elements of both innate and adaptive immunity are

pivotal in regulating inflammation-driven LF.(2) How-
ever, their role in its evolution to cancer is still to be
unraveled. Mdr22/2 mice recapitulate key features of
human liver tumorigenesis, including inflammatory
environment, genomic instability, and fibrosis.(6,27,28)

It might therefore allow elucidating pathogenic com-
ponents linking inflammation and HCG. In Mdr2–/–

mice, chronic hepatitis preceding the neoplastic stage
was accompanied by a substantial periportal B- and T-
lymphocytic infiltration. Similarly, in chronic inflam-
matory human liver diseases,(29,30) tertiary lymphoid
follicles of T and B cells have a recognized implication
for the disease pathogenesis.(31) In line with this, LF
and signs of liver injury were markedly reduced in the
immunocompromised Rag2–/–Mdr2–/– mice.
The distinctive role of B and T cells in hepatic fibro-

genesis has been dissected by administering lineage-
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FIG. 8. Increased B infiltrates is a feature of poor differentiation in HCC patients. The upper part of the picture illustrates 3 cases of
well-differentiated HCC showing a different amount of tumoral CD201 B lymphocytes: They are absent in A1, ranging between 1%
and 10% in A2 and �11% in A3. The lower part of the picture illustrates a similar distribution of B-cell lymphocytes in a series of
poorly differentiated HCC. Scale bar 5 250 lm.
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specific depleting antibodies to Mdr2–/– mice, at the
preneoplastic stage. Unlike T-Mdr2–/– mice, B-
Mdr2–/– mice showed inhibition of fibrosis and accu-
mulation of inactivated senescent HSCs similar to
Dko animals, suggestive of a B-cell autonomous func-
tion. Anti-CD20 mAb treatment might halt several
pathways through which B lymphocytes sustain HSC
activation and ECM deposition. Our data indicate
that hepatic B cells from fibrotic mice stimulate colla-
gen production by direct secretion of profibrotic cyto-
kines, such as TNFa and IL6. Moreover, B cells act to
amplify proinflammatory circuits in effector immune
cells, especially T cells. Additionally, B cells might
influence macrophage polarization through an Fcc
receptor-dependent signaling,(32) directly stimulate
fibroblasts, or inhibit metalloproteinase activity by
antibody secretion.(33) Overall, B-cell depletion pri-
marily affects fibrosis by causing activated HSCs to
convert into a senescent state.
Suppression of the immune system is commonly

regarded as a risk factor for the development of de novo
malignancies in patients, likely related to reduced
immune surveillance and increased susceptibility to
infections.(34,35) Remarkably, tumor development was
profoundly suppressed in Dko mice. Although the role
of TNFa in HCG remains controversial,(36) in
Mdr2–/– mice, activation of the TNFa/NF-jB path-
way is responsible for tumor development, whereas
neutralizing TNFa antibody inhibits NF-jB activation
and HCC development.(6) Thus, the observed inhibi-
tion of the TNFa/NF-jB axis is most likely responsi-
ble for the reduced carcinogenesis in the absence of B
cells. Interestingly, serum ALT levels were signifi-
cantly reduced in immunodeficient mice, emphasizing
the link between liver inflammation and HCG. Like-
wise, in patients with hepatitis-associated cirrhosis, a
direct correlation has been described between serum
ALT, HCC recurrence rate, and kinetics.(37)

One limitation of our study is that we have only uti-
lized one liver cancer mouse model. In this regard, it is
noteworthy that a potential role for B cells in fibrosis
has been previously proposed in mice treated with
CCl4.

(12) However, although it would be interesting to
recapitulate our findings in other inflammation-driven
models of HCC,(7,38) different etiological settings might
determine different immune responses, influencing the
progression to HCC in a disease-specific context.
Strikingly, in Dko mice, HCC development was

considerably attenuated, despite the important accu-
mulation of senescent cells. The senescence response is
widely recognized as a potent tumor-suppressive

mechanism, but also a promoter of cancer initiation, by
virtue of SASP-derived factors, a source of growth fac-
tors for tumor cells.(39) In accord, clearance of senes-
cent cells is an important mechanism of tumor
surveillance in the liver cancer model and adaptive
immune cells are involved in this process.(10,40) Based
on our results, it can be speculated that the senescence-
driven inflammation have per se a dispensable role in
neoplastic transformation, whereas HSC inactivation
significantly limits the evolution of fibrosis. Moreover,
lymphocyte-mediated inflammation is required for
accumulation of DNA double-strand breaks in preneo-
plastic hepatocytes of Mdr2–/– mice, suggesting that B
cells act by orchestrating the inflammatory and meta-
bolic/oxidative environment that is a prerequisite for
cancer development. Increasing evidence supports the
role of B lymphocytes in tumor progression.(41-43) Our
data in human HCC highlight infiltrating B cells as a
prognostic tool to classify distinct clinical behaviors,
identifying also B-cell responses as a possible target of
immunotherapeutic strategies. In this regard, induc-
tion of senescence in tumor cells by chemotherapy or
radiation is now becoming an emergent antitumoral
approach.(44) In our system, cellular senescence accu-
mulates in the preneoplastic stage of Dko mice, limit-
ing LF without promoting neoplastic transformation
at later stage. It is tempting to speculate that in chronic
disease, therapy-induced senescence (TIS) may be cru-
cial to dampen fibrosis, extending the latency of HCC.
This aspect is even more relevant for patients affected
by cirrhosis for which liver transplantation is the only
effective therapy.(45) To translate our findings in clini-
cal medicine, B-cell targeting may be an effective ther-
apeutic strategy of TIS.
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