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Patterns of synchronization in the hydrodynamic coupling of active colloids
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A system of active colloidal particles driven by harmonic potentials to oscillate about the vertices of a
regular polygon, with hydrodynamic coupling between all particles, is described by a piecewise linear model
which exhibits various patterns of synchronization. Analytical solutions are obtained for this class of dynamical
systems. Depending only on the number of particles, the synchronization occurs into states in which nearest
neighbors oscillate in in-phase, antiphase, or phase-locked (time-shifted) trajectories.
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I. INTRODUCTION

In passive colloidal particle systems, hydrodynamic in-
teractions determine the dissipative and dynamical behav-
ior, rather than the real-space conformation; as such they
influence the response properties rather than the equilibrium
behavior. However in actively driven systems that settle into
a steady state, it can be the hydrodynamic interactions that
determine the characteristics of the steady state. For example,
in biological flows actuated by cilia [1], the hydrodynamic
coupling is possibly the most important feature involved in the
synchronization of cilia beats [2].

In this paper we analyze theoretically a very simple dynam-
ical system which was recently proven to adequately describe
the motion of a system of colloidal spheres, maintained in
oscillations by optical traps [3,4]. Motion occurs at low
Reynolds numbers [5], and hydrodynamic forces between
particles depend on the relative velocity [6,7].

The remarkable feature of the model is that the hydrody-
namic interaction of the spheres leads to the synchronization of
their phases, for any number of beads, for all initial conditions
and for generic values of physical parameters (sphere size,
viscosity of the fluid, stiffness of the forces). The synchronized
state depends on the number of spheres and on whether
the optical traps provide attractive or repulsive forces. This
produces a rich pattern of synchronized configurations.

The system of equations of motion is piecewise linear. It has
periodic solutions, which are linear combinations of the normal
modes. Whilst we do not have a mathematical proof which
would explain why this dynamical system always converges
to a synchronized solution, we have performed a normal mode
analysis and we show that based on this it is possible to predict
which synchronized solution is dominant. This analytical
argument is in agreement with extensive numerical integration
of the deterministic (no thermal noise) system and with the
experiments and simulations reported in the companion paper
which include the effect of thermal noise [4].

Let us outline the physical system and its model, leading
to the dynamic deterministic system of equation of motion

*giovanni.cicuta@fis.unipr.it

which will be our main concern in the next section. We
refer the reader to the literature which details a series of
experiments and their analysis. By focused laser beams, it
was possible to confine effectively an array of micron-sized
beads, each one in a harmonic well. These colloidal particles
interact exclusively through the hydrodynamic coupling. The
collective fluctuation modes resulting from hydrodynamic
interactions have been studied in linear arrays [8] and ring
arrays [9,10]. The “geometric switch” active driving model
we study here was proposed in the context of cilia by the
authors of Ref. [1]; it was studied analytically for two beads
and for infinite linear chains by Cosentino Lagomarsino and
Bassetti in Ref. [11], where they showed that an infinite linear
chain of oscillators can sustain a traveling wave solution. This
model was then realized experimentally in Ref. [3] by using
optical tweezers to maintain a pair of colloidal spheres in
oscillation by switching the positions of optical traps when a
sphere reached its limit position. This rule leads to oscillations
that are bounded in amplitude but free in phase and period.
The interaction between the oscillators is only through the
hydrodynamic flow induced by their motion; the colloidal
particles in the experiment are subject to Brownian thermal
fluctuations as would also be found in a biological context. This
system of two spheres in harmonic traps leads to synchronized
motion in antiphase [3]. A companion paper to this one reports
experimental results and the effect of noise in a system of
actively moving traps for many particles [4]. Very recently,
Wollin and Stark [12] reconsidered this model for the case of a
chain of driven oscillators, performing numerical simulations
showing that for various potentials and forms of coupling the
dynamic system evolves to a synchronized state which may
be interpreted as a (discretized) wave propagating through the
chain. The form of the wave depends on the driving forces
and their being attractive or repulsive. This chain is closely
related to the array of driven oscillators studied in this paper
and experimentally observed [4]. The main differences are
the geometry (our oscillators are tangential to a ring) and the
symmetry (in our model, the driving force acts in the same
way in the two phases of each cycle, i.e., as each oscillator
moves forward or backward).

The periodic solutions analytically obtained in this paper
may be interpreted as a wave propagating along the border
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of the ring, clockwise or counterclockwise. Indeed if xj (t)
describes the motion of the j th oscillator, our periodic
solutions have the form xj+1(t + �) = xj (t), where � is a
fixed, positive or negative, time interval, independent of j . In
a recent paper [13] Uchida and Golestanian derived generic
conditions on the driven oscillators to synchronize due to the
hydrodynamic interactions. However, as it has already been
noted in Ref. [12], it is not clear if such conditions would
apply to the geometric switch model.

The paper is organized as follows. Section II outlines
the model and the associated dynamical system. Section III
shows the normal mode analysis that allows (in principle) a
completely analytical determination of the periodic solutions
of the system for any number of particles. Section IV describes
the periodic solutions, if the number of particles is 3, 4, or 5,
and the dominant solution for any number of particles. In
Sec. V we replace the attractive forces with repulsive ones
and obtain periodic solutions trivially related to the previous
ones.

FIG. 1. (Color online) (a) Diagram of the ring arrangement of
driven oscillators (here n = 5), illustrating the notation used in the
main text. Colloidal particles move tangential to the ring, with the
center of oscillations being the vertices of a regular n polygon.
The local tangential coordinate system is shown for one of the
top particles. The particle configuration (solid disks) corresponds
to an in-phase condition, when all n particles have just reached the
geometric switch boundary. The particles are driven by harmonic
traps toward the minimum of the potential, but they will reach first
the other geometric switch boundary, when at the position indicated
with open disks. This work also considers harmonic potentials with
negative stiffness (i.e., repulsive) in Sec. V. (b) Trajectory of a driven
oscillator with attractive driving force, uncoupled to other oscillators;
x(t) is measured along the tangential direction.

II. THE MODEL

Let us first describe the system in the absence of hydrody-
namic coupling between particles. Figure 1(a) shows a ring of
radius R, with n spheres depicted at the vertices of a regular
n polygon. Each vertex is the center of small oscillations
of a particle bound to the ring. The j th particle performs
oscillations about the position Rj = R θ

(0)
j = R 2π

n
(j − 1),

with j = 1,2, . . . ,n. On each side of this position, the
amplitude of the oscillation is λ/2 − ξ . This is assumed to be so
small that we may replace the path on the arc with a segment of
straight line, tangent to the ring, and then consider the motion
of the j th particle on the tangent with a variable xj : −(λ/2 −
ξ ) � xj (t) � λ/2 − ξ . The oscillations are driven by an
attractive harmonic potential (or repulsive harmonic potential,
as discussed later in Sec. V) with center at s = ±λ/2. In the
hydrodynamic regime where the Reynolds number is much
smaller than unity, the inertial term may be neglected.

An oscillation is set up that has a fixed amplitude, but free
phase and period. This is realized through a geometric switch
condition. First the trap is set at λ/2, and the particle moves
along the positive x axis according to the differential equation

γ0ẋ(t) + κ

(
x(t) − λ

2

)
− f (x) = 0,

where κ is the stiffness of the harmonic force, τ0 = γ0/κ is
the relaxation time, and f is a stochastic force due to thermal
agitation of the fluid, which is neglected in this work. γ0 =
6πηa is the drag on a particle of radius a in the liquid of
viscosity η. As the particle reaches the position λ

2 − ξ , the
attractive harmonic potential is moved at the position − λ

2 .
The particle inverts its overdamped motion until it reaches the
position − λ

2 + ξ . At this time, the potential jumps again. The
resulting oscillatory motion (this is either a single bead or a
bead in a system with no coupling), neglecting any stochastic
force, is depicted in Fig. 1(b). The period T0 of these uncoupled
oscillations is

T0

2τ0
= log

λ − ξ

ξ
.

In a system of n beads, at any given time, the set of
positions of the particles is an nth dimensional vector �x(t) =
{x1(t),x2(t), . . . ,xn(t)}. In the absence of the hydrodynamic
coupling, each particle would perform the same periodic mo-
tion described above, a set of periodic overdamped relaxations.
For any pair of particles, the “phase differences” xj (t) − xk(t)
would be set by the initial conditions (typically some random
values) and be constant in time.

Let us now include the hydrodynamic interaction. The
motion of the j th particle originates a force on the ith particle,
�f i,j
α = (H−1)α,β

i,j v
(j )
β , where H is the Oseen tensor which is

derived from a pairwise description and hence is adequate in
the far field [5]. In agreement with previous analysis [8–10]
we are led to the following system of equations:

�Fi −
n∑

j=1

H−1
i,j

d�rj (t)

dt
+ �fi(t) = 0, i = 1,2 . . . ,n,

�ri(t) · �t(�ri) = 0, �t(θ ) =
(− sin θ

cos θ

)
. (1)
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The deterministic force �Fi acting on the ith particle is a
harmonic force, tangent to the ring, with the geometric switch
rule,

�Fi = −κ

[
xi(t) ∓ λ

2

]
�t
(

2π (i − 1)

n

)
,

where ± λ
2 is the coordinate of the bottom of the harmonic

well.
The stochastic force fi(t) in Eq. (1) represents the thermal

noise on the ith particle, and it can be assumed that 〈fi(t)〉 = 0,
〈fi(t1)fj (t2)〉 = 2(β)−1 (H−1)ij δ(t1 − t2), and β−1 = kBT

[8]. �t(�ri) is a versor tangent to the ring, at the position �ri , with
counterclockwise direction. For small oscillations, the Oseen
tensor can be approximated by inserting the fixed distances
among centers of oscillations, then

γ0 H
αβ

ij = δij δαβ + (1 − δij )
3a

4rij

(
δαβ + rα

ij r
β

ij

r2
ij

)
,

where (
rjx

rjy

)
�

(
Rjx

Rjy

)
= R

(
cos(j − 1)2π/n

sin(j − 1)2π/n

)
,

with rα
ij � Rα

j − Rα
i = −rα

ji and α = 1 or 2.
We project the equations of the linearized Langevin-Oseen

system along the tangents, replace the global coordinates of
the j th particle �r (j ) with the local one-dimensional coordinate
x(j ), and neglect the stochastic force to obtain the deterministic
linear system which holds in the time interval where no particle
hits its left or right boundary ±( λ

2 − ξ ):(
I + 3a

8R
Cn

)
[�x(t) − �s ] + τ0

d

dt
�x(t) = 0, (2)

where �x(t) is the n-component vector of the (local) position
of the particles, �s is the n-component vector of the (local)
positions of the minima of potential proper for such a time
interval (i.e., �s depends on the �x(t) and on the previous history
of the system), and Cn is a real symmetric circulant matrix of
order n. The first row of Cn (which defines the entire matrix)
is

Cn =
(

0,
cos 2π/n + cos2 π/n

sin π/n
,
cos 4π/n + cos2 2π/n

sin 2π/n
,

. . . ,
cos 2(n − 1)π/n + cos2(n − 1)π/n

sin(n − 1)π/n

)
. (3)

III. THE DETERMINISTIC DYNAMICS

We now study the deterministic system described by
Eq. (2). The hydrodynamic coupling affects the overdamped
oscillations and determines the “phase differences” between
particles. Most remarkably, it leads to collective synchronized
motions, which as we will now show are best understood by
considering the eigenstates of the Oseen coupling matrix Cn.

Let us call λj , j = 1, . . . ,n, the eigenvalues of the matrix
Cn arranged in increasing values and �e (j ) the correspond-
ing normalized eigenvectors, Cn �e (j ) = λj �e (j ). Let us call
hj (t) = [�e (j ),�x(t)] the projection of the position vector on the
eigenvectors, that is, the normal modes of the linear system.

FIG. 2. (Color online) A solution of the dynamical system can
be obtained by iterating the linear evolution of the system, which
is simple in each of the eigenmodes, up to when any one of the
beads reaches a switch position. A periodic solution for a system of
n particles will return to the initial configuration (both particle and
trap positions) after 2n switches.

Projecting the system of Eq. (2) onto each of the eigenvectors
gives

�e (j ) ·
[(

I + 3a

8R
Cn

)
(�x(t) − �s) + τ0

d

dt
�x(t)

]
= 0, (4)

and one easily obtains the uncoupled equations of motion for
each normal mode:

hj (t) − (�e (j ) · �s) + τj

d

dt
hj (t) = 0, with τj = τ0

1 + 3a
8R

λj

.

(5)

One sees that each normal mode hj (t) is related to a
single exponential relaxation time τj , and its linear differential
equation is homogeneous, if and only if the term (�e (j ) · �s)
vanishes. In general, this is not the case.

A solution of the dynamical system can be obtained with
the following simple strategy (Fig. 2): Given initial positions
�x(t0) and initial configuration of potential �s(0), the evolution
is trivially evaluated up to the time t1 of the first hit. At this
time one entry of the vector �s changes sign, and the uncoupled
system of Eq. (5) is again evaluated with the new constant
vector �s (1) up to the hit at time t2. A basic role is then played
by the continuity of each mode at the time of the hits: the final
value before the hit becomes the new initial condition.

The rotational discrete symmetry of the problem allows a
detailed analytic study of the coupling matrix Cn. The most
relevant features are the following.

(1) For every n being an even integer, the lowest eigenvalue
λ1 is a singlet and its corresponding eigenvector is �e(1) =

1√
n

(1, − 1,1, . . . , − 1).
(2) For every n being an odd integer n � 5, the lowest

eigenvalue λ1 is a doublet. The two eigenvectors may be
written as

�e (1) = 1√
n

(1, cos(n − 1)π/n, cos 2(n − 1)π/n,

. . . cos(n − 1)2π/n),

�e (2) = 1√
n

(0, sin(n − 1)π/n, sin 2(n − 1)π/n,

. . . sin(n − 1)2π/n).

(3) For every n, the matrix Cn has the eigenvector �e =
1√
n

(1,1,1, . . . ,1). For n = 3 only, this constant eigenvector
corresponds to the lowest eigenvalue λ1.
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(4) Since tr[Cn] = 0, the lowest eigenvalue λ1 < 0, and
therefore the relaxation time τ1 > τ0 for every n.

IV. THE ANALYTIC ASYMPTOTIC SOLUTIONS

The dynamics of the system depends on three combinations
of parameters: τ0 = γ0/κ sets the unit of time for the
evolution between hits; 3a/(8R) measures the strength of
the hydrodynamic interaction and is limited by the bound
d = 2R sin π/n � 2a; finally ξ/λ, with 0 < ξ/λ < 1/2, fixes
the amplitude of the oscillations. The periodic solutions are
here obtained for arbitrary values of the parameters (within
the physical bounds given above). The plots for three and
four particles, in Figs. 3, 5, and 10, have ξ/λ = 1/4 and
3a/(8R) = √

3/5. The plots for five particles, in Figs. 7
and 8 have ξ/λ = 1/4 and 3a/(8R) = 0.2. Note that these
values of 3a/(8R) are much greater than sensible experimental
values [3,4] and in particular are not in the far field, but they are
chosen to be large here for purely graphical reasons to spread

FIG. 3. (Color online) The fastest (shortest period) solution for
n = 3 is phase-locked. (a) The trajectories of particles 1 (dashed red
line), 2 (solid green line), and 3 (dash-dotted blue line) are plotted
versus time, for one period. (b) The normal modes h1(t) in red (dashed
line), h2(t) in green (solid line), and h3(t) in blue (dash-dotted line)
are plotted versus time. Time is expressed in units of τ0. This solution
is not stable, as can be shown by numerical simulation, see Sec. IV E.
The other solution for n = 3 is the motion of all particles relaxing
and switching in phase: it has a longer period than the one illustrated
here.

the relaxation times τj , emphasizing the differences between
periodic solutions.

A. Case of n = 3

For n = 3 the lowest eigenvalue of the coupling matrix C3

is λ1 = − 1√
3
, a singlet. The next eigenvalue is a doublet, λ2 =

λ3 = 1
2
√

3
. The corresponding eigenvectors may be written as

�e (1) = 1√
3

⎛
⎝ 1

1
1

⎞
⎠ , �e (2) = 1√

2

⎛
⎝ 0

1
−1

⎞
⎠ ,

�e (3) = 1√
6

⎛
⎝−2

1
1

⎞
⎠ . (6)

We find the following periodic solutions for the system,
here listed in order of decreasing duration of the periods:

(a) the three particles are synchronized in-phase;
(b) a pair of equivalent solutions, where the trajectories are

phase locked (more precisely, time shifted).
Let us consider first case (a), with the configuration of

particles in-phase, i.e., such that x1(t) = x2(t) = x3(t). The
vector of the positions of the potential is

�s = ±λ

2

⎛
⎝ 1

1
1

⎞
⎠ .

The lowest normal mode is h1(t) = 1√
3

[x1(t) + x2(t) + x3(t)]

→ √
3 x1(t) and it solves the equation

h1(t) − (�e (1) · �s) + τ1
d

dt
h1(t) = 0,

where

(�e (1) · �s) = ±
√

3
λ

2
and τ1 = τ0

(
1 −

√
3a

8R

)−1

.

Since (�e (j ) · �s) = 0 for j 
= 1, the modes h2(t) and h3(t)
solve a homogeneous equation and the choice h2(t) = h3(t) =
0 is consistent. As the three particles hit simultaneously
a geometric switch border, all of �s → −�s. Therefore by
continuity one obtains the opposite motion in the following
time interval. The three particles perform in-phase oscillations,
satisfying the same equation as if they were uncoupled, as
depicted in Fig. 1(b), but with the longer period

T1

2τ1
= log

λ − ξ

ξ
.

Let us now obtain the phase-locked solutions, case (b) above.
The symmetry of the problem and the results of numerical
simulations suggest one should search for solutions where the
time interval between hits is fixed, say �. Assuming an initial
time t0 at one hit, the continuity of the trajectories requires

hj (t0 + r�)

= (�e (j ) · �s (r)) + [hj (t0 + (r − 1)�) − (�e (j ) · �s (r))]e−�/τj ,

(7)

with r = 1, 2, or 3.

016203-4



PATTERNS OF SYNCHRONIZATION IN THE . . . PHYSICAL REVIEW E 85, 016203 (2012)

By assuming that the system has a period T = 6�, one
obtains

hj (t0)(1 + e−3�/τj )

= −(1 − e−�/τj )
3∑

r=1

(�e (j ) · �s (r))e−(3−r)�/τj .

We choose t0 when x1(t0) = −λ/2 + ξ , particle 2 is also
moving toward λ/2, and particle 3 is moving in the opposite
direction. That is, we consider the sequence {�s (j )}, with j =
1, . . . ,6, �s (j+3) = −�s (j ), and �s (1) = �s (7):

2

λ
�s (1) =

⎛
⎜⎝

1

1

−1

⎞
⎟⎠ →

⎛
⎜⎝

1

−1

−1

⎞
⎟⎠ →

⎛
⎜⎝

1

−1

1

⎞
⎟⎠ →

→

⎛
⎜⎝

−1

−1

1

⎞
⎟⎠ →

⎛
⎜⎝

−1

1

1

⎞
⎟⎠ →

⎛
⎜⎝

−1

1

−1

⎞
⎟⎠ = 2

λ
�s (6). (8)

The initial conditions of this periodic solution are then

h1(t0)(1 + e−3�/τ1 )

= −(1 − e−�/τ1 )
λ

2
√

3
(e−2�/τ1 − e−�/τ1 + 1),

h2(t0)(1 + e−3�/τ2 )
(9)

= −(1 − e−�/τ2 )
λ√
2

(e−2�/τ2 − 1),

h3(t0)(1 + e−3�/τ2 )

= (1 − e−�/τ2 )
λ√
6

(e−2�/τ2 + 2e−�/τ2 + 1).

Finally by inserting the initial condition x1(t0) =
1√
3
h1(t0) − 2√

6
h3(t0) = − λ

2 + ξ , we find the equation that
fixes � in terms of the parameters of the problem. This is
described in the Appendix. Figure 3(a) shows the trajectories
of particles 1, 2, and 3 as a function of time, for one period
T = 6�. Time is expressed in units of τ0. Figure 3(b) plots

FIG. 4. (Color online) The period of the phase-locking solution
(dashed line) and the period of the solution with the three oscillators
in-phase (solid line) are plotted versus ξ/λ. The periods, in units of
τ0, were evaluated with 3a/(8R) = √

3/5, that is, τ0/τ1 = 0.8.

the normal modes h1(t), h2(t), and h3(t), again for one period.
The oscillations of the pair of normal modes corresponding
to the degenerate eigenvalue have an amplitude much larger
than that of the oscillations of the normal mode h1(t). We
verified that there exists a completely analogous phase-locked
synchronized solution where the role of particles 2 and 3 are
exchanged.

In Figure 4, we compare the period of the phase-locking
solution with the period of the solution with the three
oscillators in-phase, as a function of ξ/λ. One sees that the
solution where the three particles are synchronized in-phase
always has a longer period than the period of the pair of phase-
locked solutions, independently of the geometric conditions.
This is also the solution which appears in the experiment and
in the numerical simulations [4].

B. Case of n = 4

For n = 4 the lowest eigenvalue of the matrix C4 is a singlet,
λ1 = −1 − √

2; the next is also a singlet, λ2 = −1 + √
2; and

the next two are a doublet, λ3 = λ4 = 1. The eigenvectors may
be written as

�e (1) = 1

2

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠ , �e (2) = 1

2

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ ,

(10)

�e (3) = 1√
2

⎛
⎜⎝

0
−1

0
1

⎞
⎟⎠ , �e (4) = 1√

2

⎛
⎜⎝

−1
0
1
0

⎞
⎟⎠ .

The periodic solutions of the system in order of decreasing
periods are

(a) adjacent particles in antiphase configuration;
(b) all particles synchronized in-phase;
(c) the pair (1,2) are antiphase with the pair (3,4) [also an

equivalent solution where the pair (1,4) are antiphase with the
pair (2,3)];

(d) a pair of phase-locked solutions, with the same period.
In the antiphase configuration (a), the vector �s of the

positions of the potentials is proportional to the eigenvector
�e (1). Then, all the normal modes hj (t) with j = 2, 3, or 4
obey homogeneous differential equations and may consistently
vanish at all times. The normal mode h1(t) generates the
following solution:

�s = ±λ

2

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠ , (�e (1) · �s) = ±λ,

h1(t) = (�e (1) · �x(t)) = 2 x1(t),

�x1(t) = −�x2(t) = �x3(t) = −�x4(t),

h1(t) − (�e (1) · �s) + τ1
d

dt
h1(t) = 0,

with τ1 = τ0

(
1 − (1 + √

2)3a

8R

)−1

.

Here the four particles perform antiphase oscillations, satisfy-
ing the same equation as un-coupled oscillators, but with τ1
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replacing τ0. The period of this antiphase solution is

T1 = 2τ1 log
λ − ξ

ξ
.

The trajectories for this case are shown in Fig. 5(a).
The next solution, case (b) above, is the in-phase synchro-

nization and may still be written in terms of just one normal
mode, h2(t). Its relaxation time and period are

τ2 = τ0

(
1 + (

√
2 − 1)3a

8R

)−1

,

T2 = 2τ2 log
λ − ξ

ξ
< T1.

In the next solution, case (c), the couple x1(t) = x2(t) are
in antiphase with the couple x3(t) = x4(t). The vector �s of the
position of the potential is proportional to the sum �e (3) + �e (4).

FIG. 5. (Color online) (a) The “slowest” solution (longest period)
for the case n = 4 has nearest neighbors in antiphase with each other
(hence next-nearest neighbors are in-phase). The trajectories of the
pair of particles 1 and 3 (red dashed line) and the other pair (green
solid line) are plotted versus time, in units of τ0. (b) There are two
equally “fastest” solutions for n = 4. One has nearest-neighbor pairs
in-phase and the other has pairs in antiphase with each other. This
would look like panel (a), but with particles 1 and 2 in red and
particles 3 and 4 in blue. The other solution is shown in panel (b) and
has trajectories of the particles 1 to 4, respectively, red dashed line,
green solid line, blue dash-dotted line, and cyan thick line, plotted
versus time, in units of τ0.

Then we may choose h1(t) = 0, h2(t) = 0, and

�s = ±λ

2

⎛
⎜⎝

1
1

−1
−1

⎞
⎟⎠ , (�e (3) · �s) = (�e (4) · �s) = ∓ λ√

2
,

�x1(t) = �x2(t) = −�x3(t) = −�x4(t) = − 1√
2
h4(t),

h3(t) = h4(t),

τ3 = τ0

(
1 + 3a

8R

)−1

, T3 = 2τ3 log
λ − ξ

ξ
< T2.

The trajectories perform oscillations as depicted in Fig. 5(a),
but the relaxation time is replaced by τ3 and the pair of particles
1 and 2 in red and the other pair in blue. A completely
equivalent solution has the pair of particles x1(t) = x4(t) in
antiphase with the pair x2(t) = x3(t).

Finally there are phase-locked solutions, case (d) above,
also with short periods T , where x4(t) = x1(t − 3T/4),
x3(t) = x1(t − T/2), and x2(t) = x1(t − T/4). A completely
equivalent periodic solution has the reverse order x4(t) =
x1(t + 3T/4), x3(t) = x1(t + T/2), and x2(t) = x1(t + T/4).

Since the sequence of the positions of the potentials is �s =
λ
2 (1, − 1, − 1,1) → −�s → �s → −�s → . . . , we find h1(t) =
0, h2(t) = 0, and

h3(t0) = λ√
2

(1 − e−�/τ3 )2

1 + e−2�/τ3
,

h4(t0) = λ√
2

1 − e−2�/τ3

1 + e−2�/τ3
, (11)

with τ3 = τo

1 + 3a
8R

.

The period is

T = 4 � = 2τ3 log
λ − ξ

ξ
= T3,

(12)

where ξ = λ
e−2�/τ3

1 + e−2�/τ3
,

same period as case (c), and the motion is given by

x1(t) = − 1√
2
h4(t), x2(t) = − 1√

2
h3(t),

x3(t) = 1√
2
h4(t), x4(t) = 1√

2
h3(t).

The trajectories for this are shown in Fig. 5(b), for particles 1
to 4.

C. Case of n = 5

The odd-numbered systems, except n = 3 discussed above,
have general properties. For n = 5 the lowest eigenvalue of
the matrix C5 is a doublet, λ1 = λ2; the next is a singlet,
λ3, followed by a doublet, λ4 = λ5. The eigenvectors may be
written as

λ1 = λ2 = −1

2

√
29 + 22√

5
� −3.116,
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�e (1) =
√

2

5

⎛
⎜⎜⎜⎜⎜⎜⎝

1

cos 4π
5

cos 2π
5

cos 2π
5

cos 4π
5

⎞
⎟⎟⎟⎟⎟⎟⎠

, �e (2) =
√

2

5

⎛
⎜⎜⎜⎜⎜⎜⎝

0

sin 4π
5

− sin 2π
5

sin 2π
5

− sin 4π
5

⎞
⎟⎟⎟⎟⎟⎟⎠

,

λ3 =
√

13 − 22√
5

� 1.778,

�e (3) =
√

1

5

⎛
⎜⎜⎜⎜⎜⎝

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎠ , λ4 = λ5 � 2.227,

�e (4) =
√

2

5

⎛
⎜⎜⎜⎜⎜⎜⎝

1

cos 2π
5

cos 4π
5

cos 4π
5

cos 2π
5

⎞
⎟⎟⎟⎟⎟⎟⎠

, �e (5) =
√

2

5

⎛
⎜⎜⎜⎜⎜⎜⎝

0

sin 2π
5

sin 4π
5

− sin 4π
5

− sin 2π
5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The periodic solutions of the system in order of decreasing
periods are

(a) a pair of phase-locked solutions, one with
x1(t) = x3(t + 2T/10) = x5(t + 4T/10) = x2(t + 6T/10) =
x4(t + 8T/10) and the analogous solution with opposite
time-shifts;

(b) a pair of phase-locked solutions, one with
x1(t) = x2(t + 2T/10) = x3(t + 4T/10) = x4(t + 6T/10) =
x5(t + 8T/10) and the analogous solution with opposite
time-shifts;

(c) a synchronized in-phase solution xj (t) = x(t), j =
1,2, . . . ,5.

The periods of these solutions are shown in Fig. 6 and
evaluated in the Appendix.

The phase-locked solution (a) is quite relevant since for
every odd number of particles greater than 3, the system

FIG. 6. (Color online) The periods for the phase-shifted solution
(r) red with adjacent trajectories {1,3,5,2,4}, for the phase-shifted
solution (g) green with adjacent trajectories {1,2,3,4,5}, and for
the in-phase solution (b) blue, in units of τ0, are plotted versus the
hydrodynamic coupling 3a/(8R). These periods are evaluated in the
Appendix.

synchronizes into a periodic solution of this type. At any time,
three particles are moving in one direction and two are moving
in the opposite direction. We call � the uniform time interval
between any two consecutive hits. The period T = 10 �. Take,
for example, that at time t0 particles 1,3, and 5 are moving
toward the positive direction, with x1(t0) < x3(t0) < x5(t0).
Then the sequence of the vectors {�s (j )}, with j = 1, . . . ,10,
�s (j ) = −�s (j+5), is

2

λ
�s (1) =

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

−1

1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

−1

−1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

1

−1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−1

1

−1

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎝

1

1

−1

1

−1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

−1

1

−1

1

−1

⎞
⎟⎟⎟⎟⎟⎠ = 2

λ
�s (6). (13)

No eigenvector �e (j ) is orthogonal to all of the eigenvectors
{�s (j )} of this sequence, therefore all five normal modes hj (t)
contribute to the solution.

The continuity and periodicity conditions fix the initial
conditions:

hj (t0)(1 + e−5�/τj )

= −(1 − e�/τj )
5∑

r=1

(�e (j ) · �s (r)) e−(5−r)�/τj

= −λ

2
�e (j ) ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − e−5�/τj

1 − 2e−�/τj + e−5�/τj

−1 + 2e−2�/τj − e−5�/τj

1 − 2e−3�/τj + e−5�/τj

−1 + 2e−4�/τj − e−5�/τj

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and as usual τj = τ0

1 + 3a
8R

λj

. (14)

One last equation determines the time interval �. If we use
x1(t0) = − λ

2 + ξ , it is

−λ

2
+ ξ =

√
2

5
[h1(t0) + h4(t0)] +

√
1

5
h3(t0). (15)

The trajectories are shown in Fig. 7(a), for particles 1 to 5
(the coupling is chosen at 3a/(8R) = 0.2, and then the period
of the solution is T � 3.8547τ0).

Figure 7(b) shows the complex behavior of normal modes
hj (t), j = 1,2, . . . 5. The doublet of normal modes 1 and 2
presents oscillations with an amplitude much larger than that
of the oscillations of the doublet of normal modes 4 and 5.
The singlet normal mode 3, related to the center of mass∑5

j=1 xj (t), has even smaller oscillations.
Another pair of phase-locked solutions, case (b), with a

shorter period has the trajectories of particles {1,2,3,4,5} and
the equivalent solution with the arrangement of trajectories
{1,5,4,3,2}. Here, like in case (a), at any time there are
three particles moving in one direction and two moving in
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FIG. 7. (Color online) This phase-locked solution for n = 5, with
the nearest neighbors almost in antiphase, is the solution with the
longest period and is the stable state with attractive potentials. (a)
The trajectories of particles 1 to 5, respectively, (1), (2) . . . (5) red
solid line, green solid line, blue solid line, red dashed line, and green
dashed line, are plotted versus time, in units of τ0. To draw the figure,
the coupling was chosen as 3a/(8R) = 0.2, and then the period of the
solution is T � 3.8547τ0. (b) The normal modes hj (t), j = 1,2, . . . 5,
respectively, (1), (2) . . . (5) red solid line, green solid line, blue solid
line, red dashed line, and green dashed line, are plotted versus time,
in units of τ0.

the opposite direction. We call � the uniform time interval
between two hits. The period T = 10 �. Taking, for example,
that at time t0 the particles 1, 4, and 5 are moving toward
the positive direction, with x1(t0) < x5(t0) < x4(t0), then the
sequence of the vectors {�s (j )}, with j = 1, · · · ,10, �s (j ) =
−�s (j+5), is

2

λ
�s (1) =

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−1

1

1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

1

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎠ →

→

⎛
⎜⎜⎜⎜⎜⎝

1

1

−1

−1

−1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

1

1

1

−1

−1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

−1

1

1

−1

−1

⎞
⎟⎟⎟⎟⎟⎠ = 2

λ
�s (6).

(16)

As before, the continuity and periodicity conditions fix the
initial conditions:

hj (t0)(1 + e−5�/τj )

= −(1 − e�/τj )
5∑

r=1

(�e (j ) · �s (r)) e−(5−r)�/τj

= −λ

2
�e (j ) ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − e−5�/τj

1 − 2e−3�/τj + e−5�/τj

1 − 2e−�/τj + e−5�/τj

−1 + 2e−4�/τj − e−5�/τj

−1 + 2e−2�/τj − e−5�/τj

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and as usual τj = τ0

1 + 3a
8R

λj

. (17)

By using the same initial condition, x1(t0) = − λ
2 + ξ , the

equation that determines � still has the form of Eq. (15).
The trajectories are shown in Fig. 8(a), for particles 1 to 5. In

FIG. 8. (Color online) This phase-locked solution has a shorter
period than the one depicted in Fig 7. (a) The trajectories of particles
1 to 5, respectively, (1), (2) . . . (5) red solid line, green solid line, blue
solid line, red dashed line, and green dashed line, are plotted versus
time, in units of τ0. To draw the figure, the coupling 3a/(8R) = 0.2,
then the period of the solution is T ∼ 1.7407τ0. (b) The normal modes
hj (t), j = 1,2, . . . 5, respectively, (1), (2) . . . (5) red solid line, green
solid line, blue solid line, red dashed line, and green dashed line, are
plotted versus time, in units of τ0. To draw the figure, the coupling
3a/(8R) = 0.2.
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the figure, the coupling is 3a/(8R) = 0.2, and then the period
of this solution is T ∼ 1.7407τ0.

Figure 8(b) shows the normal modes hj (t), j = 1,2, . . . 5.
The doublet of normal modes 4 and 5, which has the shortest
relaxation time, oscillates with much larger amplitudes than
either the doublet of normal modes 1 and 2 or the singlet
normal mode 3.

The synchronized in-phase solution, case (c), for the five
particles is very simple, since only the mode h3(t) contributes,
whilst all the hj (t) = 0 for j 
= 3. The relaxation time and
period are

τ3 = τ0

(
1 + 3a

8R
λ3

)−1

, T3 = 2τ3 log
λ − ξ

ξ
. (18)

This is the “fastest” periodic solution.

D. Case of higher n

As the number of particles of the system increases, the
analytic periodic solutions of the system become more and
more complex. Yet a few simple features are generic.

We already mentioned that for every particle number n

being an even integer, the lowest eigenvalue λ1 is a singlet,
its eigenvector is �e (1) = 1√

n
(1, − 1,1, . . . , − 1). This allows

a periodic solution where adjacent particles are in antiphase,
just like the first solution (a) described for the system of four
particles. Since h1(t) is the unique normal mode nonvanishing,
the period of the antiphase solution is

T1 = 2τ1 log
λ − ξ

ξ
, τ1 = τ0

(
1 + 3a

8R
λ1

)−1

,

where

λ1 = (−1)n/2+1 − 2
n/2−1∑
j=1

(−1)j
cos 2jπ

n
+ cos2 jπ

n

sin jπ

n

,

that is, in particular,

λ1 ∼ −2.414 (n = 4),

λ1 ∼ −4.577 (n = 6),

λ1 ∼ −6.528 (n = 8).

This antiphase solution is the periodic solution with the longest
period, for every even n.

We also mentioned that for every n being an odd integer
n � 5, the lowest eigenvalue λ1 is a doublet. The periodic
solution with the longest period is analogous to the solution
(a) for the system of five particles. That is a pair of equivalent
solutions where a sequence of trajectories are time shifted by
a uniform time interval. For n = 7 the pair of sequences is
{1,3,5,7,2,4,6} and {1,6,4,2,7,5,3}. One may notice that if
n >> 1, adjacent particles are time shifted by almost a half
period; that is, they are approximately in antiphase. Thus the
distinction between even and odd number n decreases, as n

increases.

E. Simulations

To verify which of the analytical solutions is the dynamical
steady state, we resorted to numerical integration. Two
different codes have been developed.

First, we solved the coupled system of Eq. (2) which
corresponds to the tangential motion, using the solver ODE113

of MATLAB, which implements the Adams-Bashforth-Moulton
multistep (i.e., timestep optimizing) method. We used the
event handling facility integrated into all MATLAB’s ordinary
differential equation (ODE) solvers to intercept the instant of
time at which any one of the particles hits the switch position.
As a stabilizing measure, we imposed that at a “hit” all particles
which are in the range of δs from their switches are considered
to have hit their target and consequently their centers of
force switch their positions; several values in the interval
10−8 λ � δs � 10−5 λ have been used with no substantial
difference in the results.

Second, a different code described in Refs. [3,4,14] with a
fixed timestep, is also used, enabling testing in the absence of
noise but also the robustness at finite temperature. As well as
exploring noise, this Brownian dynamics (BD) code solves a
model which is very close to the experimental condition [4]:
the colloidal particles are free to move in a two-dimensional
environment (for which the description in terms of n rather than
2n normal modes is an approximation), and the tangential and
normal forces can be set independently at different stiffnesses.
Finally, experiments typically work at a finite sampling rate,
and this can be mimicked closely in the fixed-timestep BD
code as was discussed in a previous study [3].

The numerical solution (both the simulation approaches
described above) show the remarkable result that for every
particle number n and every initial condition, the system
evolves to a synchronized configuration corresponding to the
periodic solution with the longest period (for the case of
positive trap stiffness κ > 0 discussed up to here). If such
a configuration is a pair of equivalent solutions, as it happens
for odd n � 5, the synchronization occurs on either one of the
pair. These findings also agree with the experiment in Ref. [4].

Another result of the extensive numerical solutions is that
we never observe solutions different from the cases that were
investigated analytically (in principle, we could not have ruled
out the presence of much more complex and less symmetric
solutions).

V. REPULSIVE POTENTIAL

It is interesting to consider a harmonic repulsive potential,
κ < 0, acting on the colloidal spheres. This may be realized
experimentally by tailoring an appropriate potential landscape
with time-sharing or holographical optical traps. Then the
synchronization of the system of oscillating particles due to
the hydrodynamical interaction still occurs, but on a periodic
configuration different from the one observed in the attractive
case. With minimal changes from the previous analysis we can
describe the periodic solutions occurring in the case of repul-
sive harmonic potentials. Again the numerical simulations of
this case confirm that the systems converge onto one of the an-
alytical solutions, and in this case it is one with a short period.

With negative stiffness, if we ignore the hydrodynamic
coupling, a particle moves toward the positive x axis according
to the differential equation γ0 ẋ(t) + κ[x(t) + λ

2 ] − f (x) = 0,
where now κ < 0 is the stiffness of the repulsive harmonic
force, τ0 = γ0/|κ|, and f is a stochastic force due to thermal
agitation of the fluid, which will be ignored in the analysis
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t

x t

FIG. 9. (Color online) Trajectory of a driven oscillator with
repulsive driving force, uncoupled to other oscillators. Note the
increase in velocity between switch positions, characteristic of the
motion with potentials of negative stiffness.

of the deterministic system. In this case, the motion is
exponentially accelerated until the particle reaches the po-
sition λ

2 − ξ . At that time the center of the repulsive harmonic
potential moves from the position − λ

2 to λ
2 . The particle inverts

its motion until it reaches the position − λ
2 + ξ when the

potential jumps again. The resulting oscillatory motion for
a single particle (or one in a noncoupled system), neglecting
the stochastic force, is depicted in Fig. 9.

The period T0 of these uncoupled oscillations is T0 =
2τ0 log λ−ξ

ξ
. The oscillatory motion is similar to the attractive

potential case, shown in Fig. 1, except for the concavity.
One may repeat the analysis of the attractive case and obtain

the linear deterministic system, valid in a time interval between
two hits:(

I + 3a

8R
Cn

)
[�x(t) − �s] − τ0

d

dt
�x(t) = 0, τ0 = γ0

|κ| , (19)

where �x(t) is the n-component vector of the (local) position of
the particles, �s is the n component vector of the (local) position
of the minima of the repulsive potential proper for such a time
interval (opposite of the previous case), and Cn is the same
real symmetric circulant matrix of order n given in Eq. (3). We
again define the normal modes hj (t) = [�e (j ),�x(t)] and their
decoupled equations:

hj (t) − (�e (j ) · �s) − τj

d

dt
hj (t) = 0, τj = τ0

1 + 3a
8R

λj

. (20)

They differ from the previous Eqs. (5) only for the sign of
the time evolution. It follows that the set of periodic solutions,
described in the previous analysis for the attractive traps, still
exists in the present case of repulsive traps, with the same
periods. Only the shape of the trajectories is affected by
replacing diverging exponentials in place of converging ones.

Figures 10(a) and 10(b) are examples of this point, when
compared with the Figs. 3(a) and 3(b). We plotted the
phase-locked solution for three particles in the repulsive case.
Figure 10(a) shows the trajectories of the three particles as a
function of time, for one period T = 6�. Figure 10(b) plots
the normal modes h1(t), h2(t), and h3(t), again for one period.

FIG. 10. (Color online) (a) The trajectories for the the phase-
locked solution for three particles in the repulsive case are plotted
versus time, in units of τ0. (b) The normal modes h1(t) (red dashed
line), h2(t) (green solid line), and h3(t) (blue dash-dotted line) are
plotted versus time, in units of τ0.

The oscillations of the pair of normal modes corresponding
to the degenerate eigenvalue have an amplitude much bigger
than that of the oscillations of the normal mode h1(t).
Remarkably, the simulations show that in the case of repulsive
traps it is this periodic solution, the one with the shortest
period, which is the stable asymptotic synchronization for the
system.

With systems of higher n, we have observed in the nu-
merical simulations that again upon switching from attractive
to repulsive traps the stable solution ceases to be that with
the longest period. Instead, the system converges onto one of
the solutions with the shortest period. However, as is clear by
observing the sequence of solution periods T calculated for the
cases (n = 4 or n = 5), while there is a clearly separate largest
T , there are various solutions with small T . We have tested
numerical solutions in the physically realistic parameter space,
using the two numerical approaches outlined in Sec. IV E: the
ODE solver with the “strong” tangential motion constraint
converges to the shortest period solution, whereas the BD
simulation with the weaker “harmonic” constraint converges to
one of the shorter period solutions, but not always the shortest
one. This will be explored further in future work; our current
understanding is that the system with repulsive potentials
converges to one of the solutions with shorter periods and that
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when there are various periods grouped close together the de-
tails of the system play a strong role in selecting between these.

VI. CONCLUSION

The model studied in this paper has several unusual features.
Most studies on synchronization show that it is a threshold
process: it occurs when the coupling among the oscillators is
strong enough or when increasing the number of oscillators,
a large fraction synchronize to a common frequency [15].
In contrast, in the present model, where we studied the
deterministic system without stochastic forces, we find no
threshold. Synchronization occurs for any strength of the
hydrodynamic coupling, that is, any value of a/R, and any
number of oscillators.

Most models on synchronization are described by nonlinear
differential equations where a very limited progress is achieved
analytically, whereas the present model is piecewise linear and
all periodic solutions may be derived.

Numerical solutions in the case of attractive harmonic
potentials clearly show the synchronization to the periodic
solution with the longest period, for any number of particles.
In the case of repulsive harmonic potentials, numerical simu-
lations show the synchronization to the pair of phase-locked
solutions in the case of three particles. We have not performed
a stability analysis about the periodic solutions, but there is no
reason to expect disagreement with the results of numerical
simulations. This change of the asymptotic solution with the
change of curvature of the potential had already been shown
numerically for a linear chain in Ref. [12]. The analytical
framework developed here adequately describes experiments
on systems of colloidal particles with moving optical traps [4].
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APPENDIX

In the case of three particles with attractive harmonic traps,
the initial conditions for the normal modes for periodic phase-

locked solutions are given in Eqs. (9). We supplement them
with an initial condition,

x1(t0) = 1√
3
h1(t0) − 2√

6
h3(t0) = −λ

2
+ ξ,

and obtain an equation that determines �:

λ

6
(1 − e−�/τ1 )(e−2�/τ1 − e−�/τ1 + 1)(1 + e−3�/τ2 )

+λ

3
(1 − e−�/τ2 )(e−2�/τ2 + 2e−�/τ2 + 1)(1 + e−3�/τ1 )

=
(

λ

2
− ξ

)
(1 + e−3�/τ1 )(1 + e−3�/τ2 ). (A1)

Furthermore, τ0/τ1 + 2τ0/τ2 = 3, since λ1 + 2λ2 = 0. Let us
define

x = e−�/τ0 , p1 = τ0

τ1
< 1, p2 = τ0

τ2
> 1, p1 + 2p2 = 3,

then Eq. (A1) may be rewritten in the simpler form:

λ

3
[−xp1 + x2p1 − x3p1 + xp2 (1 + xp1 − x2p1 + 2x3p1 )

+ x2p2 (−2 − xp1 + x2p1 − 3x3p1 )] (A2)

+ ξ (1 + x3p1 )(1 − xp2 + x2p2 ) = 0.

If we choose the coupling strength 3a/(8R) = √
3/5, we have

p1 = 0.8 and p2 = 1.1. The further behavior of � as a function
of λ/ξ is depicted in Fig. 4.

If we further choose ξ = λ/4, then Eq. (A1) implies
x ∼ 0.70701565, that is,

�

τ0
= − log x ∼ 0.346702, T = 6� = −6τ0 log x .

For the case of five particles with attractive traps, Fig. 6
shows the period T in units of τ0 for the phase-shifted solution
with adjacent trajectories {1,3,5,2,4}, the period of the
phase-shifted solution with adjacent trajectories {1,2,3,4,5},
and the in-phase solution versus the hydrodynamic coupling
3a/(8R), while we fixed λ = 1 and ξ = 0.25. In the limit
of vanishing coupling, the three curves converge to T =
2τ0 log(λ − ξ )/ξ ∼ 2.1972 τ0.
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