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ABSTRACT. Let X be a smooth n-dimensional projective subvariety of P"(C),
(r > 3). For any positive integer k, X is said to be k-normal if the natu-
ral map HO(P’, @ (k)) — HO(X, Ox(k)) is surjective. Mumford and Bayer
showed that X is k-normalif k > (n+1)(d —2)+ 1 where d = deg(X) . Bet-
ter inequalities are known when n is small (Gruson-Peskine, Lazarsfeld, Ran).
In this paper we consider the case n = r — 2, which is related
to Hartshorne’s conjecture on complete intersections, and we show that if
k>d+1+(1/2)r(r— 1) — 2r then X is k-normal and Iy, the ideal sheaf
of X in P’,is (k + 1)-regular.

About these problems Lazarsfeld developed a technique based on generic
projections of X in P"*!; our proof is an application of some recent results of
Ran’s (on the secants of X ): we show that in our case there exists a projection
such generic as Lazarsfeld requires.

When r > 6 we also give a better inequality: k >d — 1 + (1/2)r(r — 1)—
(r—=1D[(r+4)/2] ([] means: integer part); it is obtained by refining Lazarsfeld’s
technique with the help of some results of ours about k-normality.

1. INTRODUCTION

Let X be a smooth, nondegenerate (i.e. not contained in a hyperplane), n-
dimensional projective subvariety of P"(C). For any positive integer k, X is
said to be k-normal if the natural map HO(P’, & (k)) — HO(X, Ox(k)) is
surjective, i.e. if the hypersurfaces of degree k cut out a complete linear system
on X. Let d be the degree of X .

It is well known that for k£ > 0 every X is k-normal, but people look
for precise bounds; such bounds are often called Castelnuovo bounds after the
classical work of Castelnuovo [C] (completed by Gruson-Lazarsfeld—Peskine
[GLP]) concerning the case n=1.

If r > 2n + 1, the best possible linear inequality is: X is k-normal if
k >d+n—r (see[L]). It was proved for n = 1 by Gruson-Lazarsfeld-Peskine
[GLP], (for X singular too); for n = 2 by Lazarsfeld [L]; for » = 3 by Ran
[R2] when r > 9.
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For other values of n we know only this result of Mumford: X is k-normal
if k>(n+1)(d-2)+1 (see [BM]).

For small codimensions other inequalities are known, but they have to do
with k-normality for small k: if n > (2/3)(r — 1) X is l-normal if r > §
(see [Z], this is the best possible value); if n = r—2 and k > 2, X is k-
normal if > 6 and r > min{k +4, 6k —2} (see [AO1, AO2]); Peskine has an
approachto: if n=r—2, r>5, X is k-normal if k < r—4 (see [S]). Finally
we want to recall that X is (a complete intersection and therefore) k-normal
if n=r-2,r>6,and d <(r—1)(r+5) (see [HS]).

Obviously many of these results are surpassed if Hartshorne’s conjecture
about complete intersections is proved.

Let [x] denote the integer part of a real number x. In this paper we show
the following results:

Theorem 1.1. Let X be a nondegenerate, degree d, 2-codimensional, smooth,
subvariety of P’(C).

Then X is k-normal if k >d+ 1+ (1/2)r(r—1)=2r. If r > 6, X is
k-normal if k >d — 1+ (1/2)r(r—1) — (r = 1)[(r + 4)/4].

Theorem 1.2. With the same assumptions of Theorem 1.1, let Iy be the ideal
sheaf of X .

Then Ix is (k+ 1)-regularif k >d+ 1+ (1/2)r(r—1)—2r; andif r>6,
Ix is (k+ 1)-regular if k >d — 1+ (1/2)r(r—1) = (r = 1)[(r + 4)/4].

Note that 1.1 is better than Mumford’s inequality in many cases. Our tech-
nique is very simple. We apply the ideas of Lazarsfeld contained in [L], which
we follow step by step. The crucial point, as Lazarsfeld himself pointed out,
is its Lemma 1.2. Here we use a result of Ran about the r-secants of X (see
[R3]).

When r > 6 our results from [AO1, AO2] allow us to improve the technique
of Lazarsfeld by using a stronger result of regularity for the vector bundles
introduced in [L].

2. FOLLOWING LAZARSFELD

Let P be a point in P". Let p: M — P’ be the blowing up of P" at P.
Denoting by ¢g: M — P’~! the natural projection, for any positive integer 4,
one obtains a homomorphism wy: g.(p*@e-(h)) — q.(p*@x(h)) of sheaves on
P!,

Let f be the linear projection of X centered at P, so that f.@x(h) =
q.(p*@x(h)). We choose homogeneous coordinates on P’ in such a way that
P is defined by To =Ty =---=T,_; =0. Then (7;)° determine sections in
HO(P", Ox(s)) = HY(P™!, f.Ox(s)).

Combining these with the canonical map &:,-1 — f,Ox, one deduces a
homomorphism

(2.1) W: Gpr-1(—h)®Opr-(-h+ 1)® - ®Fpr-1 — f.Ox;

w may be identified with w, .

Now for every y € P"~!, let L, = p(¢~'(y)) be the line (P,y), and
let X, be the scheme-theoretic intersection X N L,. w, ® C(y) is identi-
fied with the restriction homomorphism H°(P!, & (h)) ~ H(Ly, @Ly(h)) —
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HO(L,, &x,(h)). Suppose that

(%) Hl(Ly, IXy/Ly(h)) =0,
then w, ® C(y) is surjective and therefore w,, is surjective too, (see [L, Lemma
1.2]).

Now let E be the kernel of w,,, we have this exact sequence
(2.2) 0= E—>Opr(-h)®Cp1(-h+1)® - - ®Opr—1 — fu0Ox =0

of sheaves on P'~!. Since f,&y is a sheaf of (r — 2)-dimensional Cohen-
Macaulay modules over P’~!, E is locally free, rank(E) = A+ 1, ¢|(E) =
—d —h(h+1)/2. (In fact, the vector bundle map in the previous sequence (2.2)
drops rank on a hypersurface of degree d .)

Now we have the following fact, whose proof is in [L, Lemma 1.5]:

Lemma 2.3. For any integer k such that k > h, X is k-normal if
HY P!, Ek))=0.

The previous construction is due to Gruson and Peskine; the following idea
is due to Lazarsfeld. Recall that a coherent sheaf F on some projective space
P is said to be m-regular if H'(P, F(m —i)) =0 for i > 0. Suppose that, for
a positive integer x :

there is an exact sequence 0 - E — B — A4 — 0 of vector
(%) bundles on P’~! where A* is (—x+1)-regular and B* is (—x)-
regular.

Then by Proposition 2.4 of [L], E is {—c;(E) — x[rank(E)] + x}-regular.
Actually in [L] the proof is given when x = 2, but the general case follows
immediately from Lazarsfeld’s proof.

3. PROOFs OF THEOREMS 1.1 AND 1.2

Obviously we have to prove the theorems only when X is not a complete
intersection.

First we choose an integer 4 such that condition (x) is satisfied. By Corollary
2 of [R3] we know that through a generic point P of P” there are no lines that
are r-secants (or more than r-secants) for X . So if we project X from P on
a generic hyperplane, we have that (x) is satisfied for # > r — 1. From now on
we fix a generic point P, a projection f, as in §2, and the integer h=r—1.

Exactly as in [L, Lemma 2.1], we can consider the graded module F =
@ HOP !, f.Ox(s)) = @ HO(P’, @x(s)) over the homogeneous coordinate
ring C[Tp, Ty, ..., T,_;] of P'~!. The exact sequence (2.1) gives rise to gen-
erators of F: one in degree 0, one in degree 1, and so on. These can be
expanded to a full set of generators of F by adding (say) p more genera-
tors in degrees a;, aa, ..., a,. By setting 4 = @ Fp--1(—a;), this system of
generators determines upon sheafifying an exact sequence:

(3.1) 0-’B-’A®ﬁpr—l(-r+l)@"'@ﬁpr-l'—*f;ﬁ,\’—’o,

which defines a vector bundle B on P’~!. Comparing (2.2) with (3.1), one
sees that E is isomorphic to the kernel of the surjective map B — A. So we
get an exact sequence 0 - E — B — 4 — 0 of vector bundles on P"~!.
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In [L, Proposition 2.4] it is proved that condition (*x) is satisfied for 4 and
B with x = 2. So we have that E is {d + (r — 1)r/2 — 2r + 2} regular. In
particular H'(P'~!, E(k)) = 0 if k > {d + (r — 1)r/2 — 2r + 1}, so that by
Lemma 2.3, the first part of Theorem 1.1 is proved.

To prove the first part of Theorem 1.2, we remark that we get the (p + 1)-
regularity of Iy if we have the p-normality of X, and, by using 2.2, the (p+1)-
regularity of E, (see [L, p. 427)).

Now to prove the second part of 1.1 and 1.2 we have only to show that, when
r > 6, condition (*x) is satisfied for 4 and B with x[(r + h)/h]. To prove
that B* is (—x)-regular, we have to prove that H/(P"~! B(x —i—1)) =0
for i=0,1,...,r—2. For i = 0 we get the vanishing because there are
no syzygies of degree 1, 2,...,r among the generators of F because there
are no hypersurfaces of degree 1,2, ..., r that contain X (otherwise X is
a complete intersection, see [R1]). For i = 1 we get the vanishing by the
construction of B. For i > 2, by using (3.1), by putting ¢ = i — 1, we have
only to show that H9(X,Ox(x -2-¢q))=0 for g=1,2,...,r—3; now if
X — 2 < g we use Kodaira vanishing, if x — 2 = g we use Barth theorem, if
x—2>q>1 we use [AO2].

To show that A4* is (—x + 1)-regular, by definition of 4, we have only to
show HO(P™~! A(x -2))=0.

By [AO2, R1] we can say that, for t=1,2, ..., [(r—4)/4],

HY(X, Ox(1)) = H'(P', Gp:(1));
for the same values of ¢ we have that
HO(P™', B(t)) = H'(P™!, B(t)) = 0,
so that by using (3.1), we have:
HO(X, Ox(1)) = HY(P", Gp:(1)) = HOB™™", fulOx(1))
= HOP™!, A(t)) @ HOP™ !, Gpri(t — h))
SH P, G (t—h+1)®--- @ H P!, Gprai(t — 1))
® H'P™!, G- (1)).
As h=r—1>t,weget HY(P"™"!, A(t)) =0 for t =1,2,...,[(r—4)/4]
and therefore, HO(P'~!, A(x —2)) =0 for x = [(r + 4)/4].
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