A NEW CASTELNUOVO BOUND FOR TWO CODIMENSIONAL SUBVARIETIES OF \mathbb{P}^{r}

ALBERTO ALZATI
(Communicated by Louis J. Ratliff, Jr.)

Abstract

Let X be a smooth n-dimensional projective subvariety of $\mathbb{P}^{r}(\mathbb{C})$, $(r \geq 3)$. For any positive integer k, X is said to be k-normal if the natural map $H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathrm{P} r}(k)\right) \rightarrow H^{0}\left(X, \mathscr{\theta}_{X}(k)\right)$ is surjective. Mumford and Bayer showed that X is k-normal if $k \geq(n+1)(d-2)+1$ where $d=\operatorname{deg}(X)$. Better inequalities are known when n is small (Gruson-Peskine, Lazarsfeld, Ran). In this paper we consider the case $n=r-2$, which is related to Hartshorne's conjecture on complete intersections, and we show that if $k \geq d+1+(1 / 2) r(r-1)-2 r$ then X is k-normal and I_{X}, the ideal sheaf of X in \mathbb{P}^{r}, is $(k+1)$-regular.

About these problems Lazarsfeld developed a technique based on generic projections of X in \mathbb{P}^{n+1}; our proof is an application of some recent results of Ran's (on the secants of X): we show that in our case there exists a projection such generic as Lazarsfeld requires.

When $r \geq 6$ we also give a better inequality: $k \geq d-1+(1 / 2) r(r-1)-$ $(r-1)[(r+4) / 2]$ ([] means: integer part); it is obtained by refining Lazarsfeld's technique with the help of some results of ours about k-normality.

1. Introduction

Let X be a smooth, nondegenerate (i.e. not contained in a hyperplane), n dimensional projective subvariety of $\mathbb{P}^{r}(\mathbb{C})$. For any positive integer k, X is said to be k-normal if the natural map $H^{0}\left(\mathbb{P}^{r}, \mathscr{O}_{\mathbb{P}^{r}}(k)\right) \rightarrow H^{0}\left(X, \mathscr{O}_{X}(k)\right)$ is surjective, i.e. if the hypersurfaces of degree k cut out a complete linear system on X. Let d be the degree of X.

It is well known that for $k \gg 0$ every X is k-normal, but people look for precise bounds; such bounds are often called Castelnuovo bounds after the classical work of Castelnuovo [C] (completed by Gruson-Lazarsfeld-Peskine [GLP]) concerning the case $n=1$.

If $r \geq 2 n+1$, the best possible linear inequality is: X is k-normal if $k \geq d+n-r$ (see [L]). It was proved for $n=1$ by Gruson-Lazarsfeld-Peskine [GLP], (for X singular too); for $n=2$ by Lazarsfeld [L]; for $n=3$ by Ran [R2] when $r \geq 9$.

Received by the editors August 10, 1990 and, in revised form, October 12, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 14M07; Secondary 14N05.
Key words and phrases. Projective varieties, k-normality.
The author is member of the G.N.S.A.G.A. of the Italian C.N.R.

For other values of n we know only this result of Mumford: X is k-normal if $k \geq(n+1)(d-2)+1$ (see [BM]).

For small codimensions other inequalities are known, but they have to do with k-normality for small k : if $n \geq(2 / 3)(r-1) \quad X$ is 1 -normal if $r \geq 5$ (see [Z], this is the best possible value); if $n=r-2$ and $k \geq 2, X$ is k normal if $r \geq 6$ and $r \geq \min \{k+4,6 k-2\}$ (see [AO1, AO2]); Peskine has an approach to: if $n=r-2, r \geq 5, X$ is k-normal if $k \leq r-4$ (see [S]). Finally we want to recall that X is (a complete intersection and therefore) k-normal if $n=r-2, r \geq 6$, and $d \leq(r-1)(r+5)$ (see [HS]).

Obviously many of these results are surpassed if Hartshorne's conjecture about complete intersections is proved.

Let $[x$] denote the integer part of a real number x. In this paper we show the following results:

Theorem 1.1. Let X be a nondegenerate, degree d, 2-codimensional, smooth, subvariety of $\mathbb{P}^{r}(\mathbb{C})$.

Then X is k-normal if $k \geq d+1+(1 / 2) r(r-1)-2 r$. If $r \geq 6, X$ is k-normal if $k \geq d-1+(1 / 2) r(r-1)-(r-1)[(r+4) / 4]$.
Theorem 1.2. With the same assumptions of Theorem 1.1, let I_{X} be the ideal sheaf of X.

Then I_{X} is $(k+1)$-regular if $k \geq d+1+(1 / 2) r(r-1)-2 r$; and if $r \geq 6$, I_{X} is $(k+1)$-regular if $k \geq d-1+(1 / 2) r(r-1)-(r-1)[(r+4) / 4]$.

Note that 1.1 is better than Mumford's inequality in many cases. Our technique is very simple. We apply the ideas of Lazarsfeld contained in [L], which we follow step by step. The crucial point, as Lazarsfeld himself pointed out, is its Lemma 1.2. Here we use a result of Ran about the r-secants of X (see [R3]).

When $r \geq 6$ our results from [AO1, AO2] allow us to improve the technique of Lazarsfeld by using a stronger result of regularity for the vector bundles introduced in [L].

2. Following Lazarsfeld

Let P be a point in \mathbb{P}^{r}. Let $p: M \rightarrow \mathbb{P}^{r}$ be the blowing up of \mathbb{P}^{r} at P. Denoting by $q: M \rightarrow \mathbb{P}^{r-1}$ the natural projection, for any positive integer h, one obtains a homomorphism $w_{h}: q_{*}\left(p^{*} \mathscr{O}_{\mathbb{P}^{r}}(h)\right) \rightarrow q_{*}\left(p^{*} \mathscr{\mathscr { O }}_{X}(h)\right)$ of sheaves on \mathbb{P}^{r-1}.

Let f be the linear projection of X centered at P, so that $f_{*} \mathscr{O}_{X}(h)=$ $q_{*}\left(p^{*} \mathscr{O}_{X}(h)\right)$. We choose homogeneous coordinates on \mathbb{P}^{r} in such a way that P is defined by $T_{0}=T_{1}=\cdots=T_{r-1}=0$. Then $\left(T_{r}\right)^{s}$ determine sections in $H^{0}\left(\mathbb{P}^{r}, \mathscr{O}_{X}(s)\right)=H^{0}\left(\mathbb{P}^{r-1}, f_{*} \mathscr{O}_{X}(s)\right)$.

Combining these with the canonical map $\mathscr{O}_{\mathbb{P}^{r-1}} \rightarrow f_{*} \mathscr{O}_{X}$, one deduces a homomorphism

$$
\begin{equation*}
w: \mathscr{O}_{\mathbb{P}^{r-1}}(-h) \oplus \mathscr{O}_{\mathbf{P}^{r-1}}(-h+1) \oplus \cdots \oplus \mathscr{O}_{\mathbf{P}^{r-1}} \rightarrow f_{*} \mathscr{O}_{X} \tag{2.1}
\end{equation*}
$$

w may be identified with w_{h}.
Now for every $y \in \mathbb{P}^{r-1}$, let $L_{y}=p\left(q^{-1}(y)\right)$ be the line $\langle P, y\rangle$, and let X_{y} be the scheme-theoretic intersection $X \cap L_{y} . \quad w_{h} \otimes \mathbb{C}(y)$ is identified with the restriction homomorphism $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(h)\right) \approx H^{0}\left(L_{y}, \mathscr{O}_{L y}(h)\right) \rightarrow$
$H^{0}\left(L_{y}, \mathscr{O}_{X y}(h)\right)$. Suppose that

$$
\begin{equation*}
H^{1}\left(L_{y}, I_{X y / L y}(h)\right)=0 \tag{*}
\end{equation*}
$$

then $w_{h} \otimes \mathbb{C}(y)$ is surjective and therefore w_{h} is surjective too, (see [L, Lemma 1.2]).

Now let E be the kernel of w_{h}, we have this exact sequence

$$
\begin{equation*}
0 \rightarrow E \rightarrow \mathscr{O}_{\mathbb{P}^{r-1}}(-h) \oplus \mathscr{O}_{\mathbb{P}^{r-1}}(-h+1) \oplus \cdots \oplus \mathscr{O}_{\mathbb{P}^{r-1}} \rightarrow f_{*} \mathscr{O}_{X} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

of sheaves on \mathbb{P}^{r-1}. Since $f_{*} \mathscr{O}_{X}$ is a sheaf of $(r-2)$-dimensional CohenMacaulay modules over \mathbb{P}^{r-1}, E is locally free, $\operatorname{rank}(E)=h+1, c_{1}(E)=$ $-d-h(h+1) / 2$. (In fact, the vector bundle map in the previous sequence (2.2) drops rank on a hypersurface of degree d.)

Now we have the following fact, whose proof is in [L, Lemma 1.5]:
Lemma 2.3. For any integer k such that $k \geq h, X$ is k-normal if

$$
H^{1}\left(\mathbb{P}^{r-1}, E(k)\right)=0
$$

The previous construction is due to Gruson and Peskine; the following idea is due to Lazarsfeld. Recall that a coherent sheaf F on some projective space \mathbb{P} is said to be m-regular if $H^{i}(\mathbb{P}, F(m-i))=0$ for $i>0$. Suppose that, for a positive integer x :
there is an exact sequence $0 \rightarrow E \rightarrow B \rightarrow A \rightarrow 0$ of vector
bundles on \mathbb{P}^{r-1} where A^{*} is $(-x+1)$-regular and B^{*} is $(-x)$ regular.
Then by Proposition 2.4 of [L], E is $\left\{-c_{1}(E)-x[\operatorname{rank}(E)]+x\right\}$-regular.
Actually in [L] the proof is given when $x=2$, but the general case follows immediately from Lazarsfeld's proof.

3. Proofs of Theorems 1.1 and 1.2

Obviously we have to prove the theorems only when X is not a complete intersection.

First we choose an integer h such that condition (*) is satisfied. By Corollary 2 of [R3] we know that through a generic point P of \mathbb{P}^{r} there are no lines that are r-secants (or more than r-secants) for X. So if we project X from P on a generic hyperplane, we have that (*) is satisfied for $h \geq r-1$. From now on we fix a generic point P, a projection f, as in $\S 2$, and the integer $h=r-1$.

Exactly as in [L, Lemma 2.1], we can consider the graded module $F=$ $\bigoplus H^{0}\left(\mathbb{P}^{r-1}, f_{*} \mathscr{O}_{X}(s)\right)=\bigoplus H^{0}\left(\mathbb{P}^{r}, \mathscr{O}_{X}(s)\right)$ over the homogeneous coordinate ring $\mathbb{C}\left[T_{0}, T_{1}, \ldots, T_{r-1}\right]$ of \mathbb{P}^{r-1}. The exact sequence (2.1) gives rise to generators of F : one in degree 0 , one in degree 1 , and so on. These can be expanded to a full set of generators of F by adding (say) p more generators in degrees $a_{1}, a_{2}, \ldots, a_{p}$. By setting $A=\bigoplus \mathscr{O}_{\mathrm{P} r-1}\left(-a_{i}\right)$, this system of generators determines upon sheafifying an exact sequence:

$$
\begin{equation*}
0 \rightarrow B \rightarrow A \oplus \mathscr{O}_{\mathbf{P}^{r-1}}(-r+1) \oplus \cdots \oplus \mathscr{O}_{\mathbf{P} r-1} \rightarrow f_{*} \mathscr{O}_{X} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

which defines a vector bundle B on \mathbb{P}^{r-1}. Comparing (2.2) with (3.1), one sees that E is isomorphic to the kernel of the surjective map $B \rightarrow A$. So we get an exact sequence $0 \rightarrow E \rightarrow B \rightarrow A \rightarrow 0$ of vector bundles on \mathbb{P}^{r-1}.

In [L, Proposition 2.4] it is proved that condition ($* *$) is satisfied for A and B with $x=2$. So we have that E is $\{d+(r-1) r / 2-2 r+2\}$ regular. In particular $H^{1}\left(\mathbb{P}^{r-1}, E(k)\right)=0$ if $k \geq\{d+(r-1) r / 2-2 r+1\}$, so that by Lemma 2.3, the first part of Theorem 1.1 is proved.

To prove the first part of Theorem 1.2, we remark that we get the $(p+1)$ regularity of I_{X} if we have the p-normality of X, and, by using 2.2 , the $(p+1)$ regularity of E, (see [L, p. 427]).

Now to prove the second part of 1.1 and 1.2 we have only to show that, when $r \geq 6$, condition ($* *$) is satisfied for A and B with $x[(r+h) / h]$. To prove that B^{*} is $(-x)$-regular, we have to prove that $H^{i}\left(\mathbb{P}^{r-1}, B(x-i-1)\right)=0$ for $i=0,1, \ldots, r-2$. For $i=0$ we get the vanishing because there are no syzygies of degree $1,2, \ldots, r$ among the generators of F because there are no hypersurfaces of degree $1,2, \ldots, r$ that contain X (otherwise X is a complete intersection, see [R1]). For $i=1$ we get the vanishing by the construction of B. For $i \geq 2$, by using (3.1), by putting $q=i-1$, we have only to show that $H^{q}\left(X, \mathscr{O}_{X}(x-2-q)\right)=0$ for $q=1,2, \ldots, r-3$; now if $x-2<q$ we use Kodaira vanishing, if $x-2=q$ we use Barth theorem, if $x-2>q \geq 1$ we use [AO2].

To show that A^{*} is $(-x+1)$-regular, by definition of A, we have only to show $H^{0}\left(\mathbb{P}^{r-1}, A(x-2)\right)=0$.

By [AO2, R1] we can say that, for $t=1,2, \ldots,[(r-4) / 4]$,

$$
H^{0}\left(X, \mathscr{O}_{X}(t)\right) \cong H^{0}\left(\mathbb{P}^{r}, \mathscr{O}_{\mathbb{P}^{r}}(t)\right) ;
$$

for the same values of t we have that

$$
H^{0}\left(\mathbb{P}^{r-1}, B(t)\right)=H^{1}\left(\mathbb{P}^{r-1}, B(t)\right)=0
$$

so that by using (3.1), we have:

$$
\begin{aligned}
H^{0}\left(X, \mathscr{\sigma}_{X}(t)\right) \cong & H^{0}\left(\mathbb{P}^{r}, \mathscr{\sigma}_{\mathbb{P}}(t)\right) \cong H^{0}\left(\mathbb{P}^{r-1}, f_{*} \mathscr{O}_{X}(t)\right) \\
\cong & H^{0}\left(\mathbb{P}^{r-1}, A(t)\right) \oplus H^{0}\left(\mathbb{P}^{r-1}, \mathscr{\vartheta}_{\mathbb{P}^{r-1}}(t-h)\right) \\
& \oplus H^{0}\left(\mathbb{P}^{r-1}, \mathscr{\vartheta}_{\mathbb{P}^{r-1}}(t-h+1)\right) \oplus \cdots \oplus H^{0}\left(\mathbb{P}^{r-1}, \mathscr{\sigma}_{\mathbb{P}^{r-1}}(t-1)\right) \\
& \oplus H^{0}\left(\mathbb{P}^{r-1}, \mathscr{\vartheta}_{\mathbb{P}^{r-1}}(t)\right)
\end{aligned}
$$

As $h=r-1>t$, we get $H^{0}\left(\mathbb{P}^{r-1}, A(t)\right)=0$ for $t=1,2, \ldots,[(r-4) / 4]$ and therefore, $H^{0}\left(\mathbb{P}^{r-1}, A(x-2)\right)=0$ for $x=[(r+4) / 4]$.

Acknowledgment

I wish to thank Professor R. Lazarsfeld for his explanations about some technical tools used in his paper and the referee for his suggestions.

References

[AO1] A. Alzati and G. Ottaviani, A linear bound on the t-normality of codimension two subvarieties of \mathbb{P}^{n}, J. Reine Angew. Math. 409 (1990), 35-40.
[AO2] _ A vanishing theorem for the ideal sheaf of codimension two subvarieties of \mathbb{P}^{n}, Proc. Conf. "Projective Varieties Trieste," (1989) (to appear).
[BM] D. Bayer and D. Mumford, What can be computed in algebraic geometry?, Proc. Computer Algebra as a Tool for Research in Math. and Phys., Courant Institute, New York, April 1984.
[C] G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica, Rend. Circ. Mat. Palermo (2) 7 (1893), 89-110.
[GLP] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Mat. 72 (1983), 491-506.
[HS] A. Holme and M. Schneider, A computer aided approach to codimension two subvarieties of $\mathbb{P}^{n}, n \geq 6$, J. Reine Angew. Math. 357 (1987), 205-220.
[L] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), 423-429.
[R1] Z. Ran, Systèmes linéaires complets de sections hypersurfaces sur les variétés projectives de codimension 2, C. R. Acad. Sci. Paris Sér. I, Math. 298 (1984), 111-112.
[R2] , Local differential geometry and generic projections of threefolds, J. Differential Geom. 32 (1990), 131-137.
[R3] _, The (dimension +2)-secant lemma, preprint, 1989.
[S] M. Schneider, Vector bundles and low-codimensional submanifolds of projective space: a problem list, preprint, 1990.
[Z] F. L. Zak, Projections of algebraic varieties, Mat. Sb. 116 (1981), 593-602 (Russian); English transl.: Math. USSR Sb. 44 (1983), 535-544.

Dipartimento di Matematica, "F. Enriques" Università degli Studi di Milano, via C. Saldini 50, 20133-Milano, Italy

