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Abstract The performance of identification algorithms
(“taggers”) for hadronically decaying top quarks and W
bosons in pp collisions at

√
s = 13 TeV recorded by the

ATLAS experiment at the Large Hadron Collider is pre-
sented. A set of techniques based on jet shape observables are
studied to determine a set of optimal cut-based taggers for use
in physics analyses. The studies are extended to assess the
utility of combinations of substructure observables as a mul-
tivariate tagger using boosted decision trees or deep neural
networks in comparison with taggers based on two-variable
combinations. In addition, for highly boosted top-quark tag-
ging, a deep neural network based on jet constituent inputs
as well as a re-optimisation of the shower deconstruction
technique is presented. The performance of these taggers is
studied in data collected during 2015 and 2016 correspond-
ing to 36.1 fb−1 for the t t̄ and γ + jet and 36.7 fb−1 for the
dijet event topologies.
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1 Introduction

With the increase of the Large Hadron Collider (LHC) [1]
centre-of-mass energy to 13 TeV in Run 2, it is important
for searches for physics phenomena beyond the Standard
Model to probe processes involving highly boosted massive
particles, such as W and Z bosons and top quarks [2–4],
as well as Standard Model measurements using these tech-
niques [5–7]. To fully exploit these final states, it is impor-
tant to reconstruct and accurately identify the hadronic decay
modes of these massive particles which serve as an effective
tool to reject events produced by background processes and
improve the sensitivity in searches for physics beyond the
Standard Model. Techniques to achieve this aim were stud-
ied by both the ATLAS and CMS collaborations during the
course of Run 1 of the LHC [8–11]. In this paper, these
studies are performed with Run 2 data with particular atten-
tion to the investigation of multivariate techniques based on
both jet shape observables and an approach using the jet con-
stituents as input observables in addition to the optimisation
of the shower deconstruction technique for highly boosted
top-quark tagging.

In Sect. 2 the ATLAS detector is briefly described, fol-
lowed by a description of the Monte Carlo and data samples
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used in the analysis in Sect. 3. The set of jet reconstruction and
tagging techniques investigated in this work is described in
Sect. 4. The optimisation procedure for each tagger, as well as
a comprehensive comparison of the tagging techniques using
Monte Carlo simulation are presented in Sect. 5. In Sect. 6,
the pp collision data recorded in 2015 and 2016 are used to
evaluate the performance of these tagging techniques, with
the measurement of signal and background efficiencies using
boosted lepton+jet t t̄ , dijet and γ + jet topologies and the
robustness of the various techniques when confronted with
varying levels of event pile-up. Finally, concluding remarks
are given in Sect. 7.

2 ATLAS detector

The ATLAS detector [12,13] at the LHC covers nearly the
entire solid angle around the collision point.1 It consists of an
inner tracking detector (ID) surrounded by a thin supercon-
ducting solenoid, electromagnetic and hadronic calorimeters,
and a muon spectrometer composed of three large super-
conducting toroid magnets and precision tracking cham-
bers. For this study, the most important subsystems are the
calorimeters, which cover the pseudorapidity range |η| <4.9.
Within the region |η| < 3.2, electromagnetic calorimetry is
provided by barrel and endcap high-granularity lead/liquid-
argon (LAr) sampling calorimeters, with an additional thin
LAr presampler covering |η| < 1.8 to correct for energy loss
in material upstream of the calorimeters. Hadronic calorime-
try is provided by a steel/scintillator-tile calorimeter, seg-
mented into three barrel structures within |η| < 1.7, and two
copper/LAr hadronic endcap calorimeters which instrument
the region 1.5< |η| < 3.2. The forward region 3.1< |η| < 4.9
is instrumented with copper/LAr and tungsten/LAr calorime-
ter modules.

Inside the calorimeters, the inner tracking detector mea-
sures charged-particle trajectories in a 2 T axial magnetic
field produced by the superconducting solenoid. It covers
a pseudorapidity range |η| < 2.5 with pixel and silicon
microstrip detectors, and the region |η| < 2.0 with a straw-
tube transition radiation tracker.

The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the deflec-
tion of muons in a magnetic field generated by superconduct-
ing air-core toroid magnets. The precision chamber system

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
�R ≡ √

(�η)2 + (�φ)2.

covers the region |η| < 2.7 with three layers of monitored
drift tubes, complemented by cathode strip chambers in the
forward region where the background is highest. The muon
trigger system covers the range |η| < 2.4 with resistive plate
chambers in the barrel and thin gap chambers in the endcap
regions.

A two-level trigger system is used to select events for
offline analysis [14]. The first step, named the level-1 trigger,
is implemented in hardware and uses a subset of detector
information to reduce the event rate from 40 MHz to 100
kHz. This is followed by a software-based high-level trigger
which reduces the final event rate to an average of 1 kHz.

3 Data and simulated samples

The taggers described in this article were initially designed,
as described in Sect. 5, using Monte Carlo (MC) simulated
samples for two signal processes (i.e. events containing the
decay of heavy resonances) and one background process (i.e.
light quark and gluon jets). The dijet process was used to
simulate jets from gluons and non-top quarks. It was mod-
elled using the leading-order Pythia8 (v8.186) [15] gener-
ator with the NNPDF2.3LO [16] parton distribution func-
tion (PDF) set and a set of tuned parameters called the
A14 tune [17]. Events were generated in slices of leading
jet transverse momentum (pT) to sufficiently populate the
kinematic region of interest (between 200 and 2500 GeV).
Event-by-event weights were applied to correct for this gen-
eration methodology and to produce the expected smoothly
falling jet pT distribution of the multijet background. The
signal samples containing either high-pT top-quark or W -
boson jets were obtained from two physics processes mod-
elling phenomena beyond the Standard Model. For the W -
boson sample, high-mass sequential standard model [18]
W ′ → WZ → qq̄qq̄ events were used. For the top-quark
sample, high-mass sequential standard model Z ′ → t t̄ events
were used as a source of signal jets. Both the W bosons and
top quarks were required to decay hadronically. The two sig-
nal processes were simulated using the Pythia8 [15] genera-
tor with theNNPDF2.3LOPDF set and A14 tune for multiple
values of the resonance (W ′ or Z ′ boson) mass between 400
and 5000 GeV in order to populate the entire jet pT range2

from 200 to 2500 GeV and to reduce the impact of MC sta-
tistical uncertainties on the calculated signal efficiencies.

For the study of W -boson and top-quark jets in data,
described in Sect. 6, a number of MC samples are needed

2 As the combination of these signal samples with different generated
heavy resonance masses results in irregular top-quark and W -boson pT
distributions, the events are reweighted at the generator level to either a
constant or a falling jet pT distribution, as is typical for light jets. This
procedure is described in Sect. 5.2.
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to model both the t t̄ signal and backgrounds. The Powheg-

Box v2 generator [19–21] was used to simulate t t̄ and
single-top-quark production in the Wt- and s-channels at
next-to-leading order (NLO), while for the single-top-quark
t-channel process, the NLOPowheg- Box v1 generator and
the CT10 [22] NLO PDF set was used. For all processes
involving top quarks, the parton shower, fragmentation, and
the underlying event were simulated using Pythia6 (v6.428)
[23] with the CTEQ6L1 [24] PDF set and the correspond-
ing Perugia 2012 tune (P2012) [25]. The top-quark mass
was set to 172.5 GeV. The hdamp parameter, which controls
the matching of the matrix element to the parton shower,
was set to the mass of the top quark. The t t̄ process is
normalised to the cross-sections predicted to next-to-next-
to-leading order (NNLO) in αS and next-to-next-to-leading
logarithm (NNLL) in soft-gluon terms while the single-top-
quark processes are normalised to the NNLO cross-section
predictions [26].

Several additional variations of the t t̄ generator are
used for the estimation of modelling uncertainties. Esti-
mates of the parton showering, hadronisation modelling
and underlying-event uncertainty are derived by comparing
results obtained with the Powheg- Box v2 generator inter-
faced to Herwig++ (v2.7.1) [27] instead of Pythia6. To
estimate the hard-scattering modelling uncertainty, the NLO
MadGraph5_aMC@NLO (v2.2.1) generator [28] (here-
after referred to as MC@NLO) is used with Pythia6. To
estimate the uncertainty in the modelling of additional radia-
tion, the Powheg- Box v2 generator with Pythia6 is used
with modified renormalisation and factorisation scales (×2 or
×0.5) and a simultaneously modified hdamp parameter value
(hdamp = mtop or hdamp = 2×mtop) as described in Ref. [29].

Samples of W/Z+jets and Standard Model diboson
(WW /WZ /Z Z ) production were generated with final states
that include either one or two charged leptons. TheSherpa [30]
generator version 2.1.1 and version 2.2.1 were used to simu-
late these processes at NLO with the CT10 PDF set to simu-
late the diboson and W/Z+jets production processes, respec-
tively. The W/Z+jets events are normalised to the NNLO
cross-sections [31].

For the study of γ + jet events in data, events con-
taining a photon with associated jets were simulated using
the Sherpa 2.1.1 generator, requiring a photon transverse
momentum above 140 GeV. Matrix elements were calculated
with up to four partons at LO and merged with the Sherpa

parton shower [32] using the ME+PS@LO prescription [33].
The CT10 PDF set was used in conjunction with the dedi-
cated parton shower tune developed by the Sherpa authors.

The MC samples were processed through the full ATLAS
detector simulation [34] based on Geant4 [35]. Addi-
tional simulated proton–proton collisions generated using
Pythia8 (v8.186) with theA2M [17] tune andMSTW2008LO

PDF set [36] were overlaid to simulate the effects of addi-

tional collisions from the same and nearby bunch crossings
(pile-up), with a mean number of 24 collisions per bunch
crossing. All simulated events were then processed using the
same reconstruction algorithms and analysis chain as is used
for the data.

Data were collected in three broad categories to study
the signal efficiency and background rejection. For the sig-
nal, a set of observed top-quark and W -boson jet candidates
is obtained from a sample of t t̄ candidate events in which
one top quark decays semileptonically and the other decays
hadronically, the lepton-plus-jets decay signature. The back-
ground is studied using data samples enriched in dijet events
and γ + jet events. In addition to covering different pT

regions, the dijet and γ + jet samples differ in what par-
tons initiated the jets under study. In the γ + jet topology
the jets are mostly initiated by quarks over the full pT range
studied, while for the dijet topology the fraction of quarks
initiating jets is slightly smaller than the gluon fraction at
low pT and becomes large at high pT. The data for the t t̄
and γ + jet studies were collected during normal operations
of the detector and correspond to an integrated luminosity of
36.1 fb−1. For the dijet analysis, additional data where the
toroid magnet was turned off are used. This adds an addi-
tional 0.6 fb−1. For both datasets, only data collected while
all relevant detector subsystems were fully functional and in
which at least one primary vertex was reconstructed with at
least five associated ID tracks consistent with the LHC beam
spot are used [37].

The lepton-plus-jets events were collected with a set of
single-electron and single-muon triggers that became fully
efficient for pT of the reconstructed lepton greater than
28 GeV. The dijet events were collected with a single large-
R jet trigger, where the jet was reconstructed using the same
algorithm described in Sect. 4.1 and with a radius parameter
of R = 1.0. This trigger became fully efficient for an offline
jet pT of approximately 450 GeV. The γ + jet jet events were
collected with a single-photon trigger that became fully effi-
cient for an offline photon pT of approximately 155 GeV.

4 Jet substructure techniques

The identification of hadronic jets originating from the decay
of boosted W and Z bosons and top quarks can broadly, and
somewhat arbitrarily, be divided into two stages: jet recon-
struction and jet tagging. In the first, the hadronic energy
flow of the event is exclusively divided into a number of jets,
composed of constituents, with the primary goal being to
most accurately reconstruct the interesting energy flows in
the case of true signal jets while suppressing contributions
from the underlying event and event pile-up. In the second,
the information about the jet constituents is distilled into a
single observable by different means to obtain a criterion
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by which to identify a jet as originating from a hadronically
decaying massive particle, such as a W boson or a top quark.
A number of techniques and observables pertaining to these
two categories have been described and investigated exten-
sively in previous work [8,9] with only a short summary
of the relevant techniques presented here. In the case of the
identification of W bosons, the techniques and conclusions
are more broadly applicable to both W and Z bosons, with
dedicated studies concerning the separation of W -boson jets
from Z -boson jets performed in Ref. [38].

4.1 Jet reconstruction

In this work, jets are reconstructed with the intention of cap-
turing the full energy flow resulting from the decay of a mas-
sive particle. This reconstruction primarily uses inputs in the
form of noise-suppressed topological clusters of calorimeter
cells [39] that are individually calibrated to correct for effects
such as the non-compensating response of the calorimeter
and inactive material, and which are assumed to be mass-
less [40]. These topoclusters are then used as inputs to build
two different types of jets. The first uses the anti-kt algo-
rithm [41] with a radius parameter of R = 1.0 to form jets
which are further trimmed3 to remove the effects of pile-up
and the underlying event. Trimming [44] is a grooming tech-
nique in which the original constituents of the jets are reclus-
tered using the kt algorithm [45] with a radius parameter Rsub

to produce a collection of subjets. These subjets are then dis-
carded if they have less than a specific fraction ( fcut) of the
pT of the original jet. The trimming parameters used here
are Rsub = 0.2 and fcut = 0.05. These large-R jets are then
calibrated in a two-step procedure that first corrects the jet
energy scale and then the jet mass scale [40,46]. The result-
ing set of constituents forms the basis from which further
observables are calculated. The second type of jet clustering,
needed for the HEPTopTagger algorithm [47,48], makes use
of the Cambridge/Aachen (C/A) jet algorithm [49,50] with a
radius parameter of R = 1.5 which aims to identify top-quark
jets across a broad pT range, in particular reaching low pT.
These jets, used in conjunction with the HEPTopTagger algo-
rithm described in Sect. 4.3.4, are also groomed to mitigate
the effects of pile-up. Trimming with subjet radius parame-
ter of Rsub = 0.2 and momentum fraction fcut = 0.05, the
same as those used in the trimming of the anti-kt R = 1.0 jet
collection, is found to produce jet reconstruction and identi-
fication performance independent of the average number of
interactions per bunch crossing.

3 When using topoclusters [39] as jet inputs, the trimming algorithm, as
opposed to pruning [42] or split-filtering [43] was found to be optimal in
terms of accurately reconstructing the important aspects of the energy
flow as shown in Ref. [8].

In simulation, in addition to jets reconstructed from
detector-level observables, a set of jets based on generator-
level information is also used to characterise the performance
of a given tagging algorithm. These jets are reconstructed
with the anti-kt algorithm with a radius parameter R =
1.0, using stable particles from the hard scatter with life-
times greater than 10 ps, excluding muons and neutrinos, as
constituents. These jets, to which no trimming algorithm is
applied, are referred to as truth jets, and the related observ-
ables are denoted by the superscript “true”.

4.2 Jet labelling

As the aim of this study is the evaluation of the performance
of jet tagging algorithms, the labelling of the particle that
initiated the jet is of particular importance. For signal jets,
this labelling is based on the partonic decay products of the
particle of interest (W boson or top quark) in a three-step
process. First, reconstructed jets are matched to truth jets with
a matching criterion of �R( jtrue, jreco) < 0.75. Next, those
truth jets are matched to truth W bosons and top quarks (W ,
t) with a matching criterion of �R( jtrue, particle) < 0.75.
Finally, the partonic decay products of the parent W boson or
top quark (two quarks for hadronically decaying W bosons
and an additional b-quark) are matched to the reconstructed
jet. A reconstructed jet is labelled as a W -boson or top-quark
jet if the parent particle and all of its direct decay products are
contained within a region in (η, φ) with �R < 0.75 × Rjet,
where Rjet is the jet radius parameter. In the case ofW bosons,
this means that both of the daughter partons from the W →
qq̄ ′ decay are contained within the jet. For jets matched to
the parent W boson, at pT ∼ 200 GeV only 50% of the jets
are fully contained when using this criterion while for pT

> 500 GeV the containment rises to nearly 100%. In the case
of top-quark jets, the possible final-state topologies for the jet
are more complex, including the possibility of the large-R jet
containing only the b-quark from the top decay, only the two
quarks from the W -boson decay, or a pairing of a b-quark and
one of the daughterW -boson quarks within�R < 0.75×Rjet

around the jet axis. As seen in Fig. 1, the fraction of large-
R jets falling into each category depends strongly on the
pT of the parent particle with only 60% of jets being fully
contained at 600 GeV and with 100% containment not being
reached even at 1500 GeV. The value 0.75 × Rjet for the
jet labelling criteria is chosen as a compromise between the
resulting labelling efficiency and the resolution of the top-
quark and W -boson jet mass peak. The jet pT dependence
of the variation in containment, particularly in the case of
top-quark tagging in which a top-quark jet is labelled as such
only when the top parton, the b-quark from its decay as well
as the two light quarks from the subsequent W -boson decay
are contained within the region �R < 0.75 × Rjet around
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Fig. 1 Containment of the W -boson (a) and top-quark (b) decay products in a single truth-level anti-kt R = 1.0 jet as a function of the particle’s
transverse momentum

the jet axis, serves as a strong motivation for the various
optimisation strategies described in Sect. 5.

4.3 Tagging techniques

After reconstructing the jet as a collection of constituents,
a number of methods can be used to classify a jet as origi-
nating from a heavy particle (W boson or top quark) decay
as opposed to a light jet originating from gluons and quarks
of all flavours other than top quarks. The motivation behind
the various techniques differs, but they all attempt to form
a decision criterion by which to identify a jet as originating
from a W boson or top quark.

4.3.1 Jet moments

The first broad class of observables studied for classifica-
tion are directly based on the constituents of the trimmed
jet and attempt to quantify a particular feature of the jet in
an analytic way. Of these features, the most powerful is the
jet mass, which for a jet formed from the decay of a heavy
particle has a scale associated with the mass of the particle,
whereas for light jets high masses are less likely as they need
to be generated through QCD emissions. Traditionally, the
jet mass was calculated as the invariant mass of the collec-
tion of topoclusters of the trimmed jet (mcalo) [8]. However,
at very high pT, the resolution of this observable decreases
when energy depositions from individual particles begin to
merge in clusters. To mitigate this effect, the fine spatial gran-
ularity of the inner detector is used to calculate the jet mass
as the invariant mass of the ghost-associated [51] charged-
particle tracks scaled by the ratio of the transverse momenta
of the trimmed jet and the associated tracks to form the track-

assisted mass (mTA). To achieve good performance across a
broad range of jet transverse momenta, an average of mcalo

and mTA, weighted by the inverse of their resolutions is cal-
culated to form the combined mass (mcomb) [46].

In addition to the jet mass, a number of other observables
quantify the extent to which the jet constituents are clus-
tered or uniformly dispersed and can be used to augment the
discrimination power from the jet mass alone. This can be
done by explicitly using a set of axes (e.g. N -subjettiness, τ21

and τ32), declustering the jet (e.g. splitting measures,
√
d12

and
√
d23), or using all jet constituents to quantify the dis-

persion of the jet constituents in an axis-independent way
(e.g. planar flow or energy correlation functions). In previ-
ous ATLAS studies [8,9], it was found that for W boson
tagging, energy correlation variables, in particular D2, were
the best-performing tagging observables while for top-quark
tagging the N -subjettiness ratio, τ32, was found to be optimal
among the techniques considered. This can be understood
from an analytical point of view in the context of W -boson
tagging [52] and is attributed to additional wide-angle radia-
tion present in parton jets originating from W -boson decays,
which is more fully exploited in the energy correlation func-
tions than in the N -subjettiness moments.

The full set of jet moments studied in this work is sum-
marised in Table 1 while a more complete description of
the observables under study can be found in Ref. [8]. These
moments are studied individually when paired with the jet
mass (mcomb) as well as in multivariate combinations, sim-
ilar to those studied in Refs. [10,53,54], with the intention
of exploiting correlations between the observables and cre-
ating a more powerful single discriminant across a broad pT

range from 200 to 2000 GeV, the range commonly probed in
searches.
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Table 1 Summary of jet moments studied along with an indication of
the tagger topology to which the observable is applicable. In the case
of the energy correlation observables, the angular exponent β is set
to 1.0 and for the N -subjettiness observables, the winner-take-all [55]
configuration is used. A concise description of each jet moment can be
found in Ref. [8]

Observable Variable Used for References

Calibrated jet kinematics pT, mcomb Top,W [46]

Energy correlation ratios e3,C2, D2 Top,W [52,56]

N -subjettiness τ1,τ2,τ21 Top, W [57,58]

τ3,τ32 Top

Fox–Wolfram moment RFW
2 W [59,60]

Splitting measures zcut W [61,62]√
d12 Top, W√
d23 Top

Planar flow P W [63]

Angularity a3 W [64]

Aplanarity A W [60]

KtDR KtDR W [65]

Qw Qw Top [61]

4.3.2 Topocluster-based Tagger

All of the jet moments presented in Sect. 4.3.1 and sum-
marised in Table 1 make use of a specific physical moti-
vation to distil the individual jet constituent measurements
into a single observable. However, recent simulation-based
studies have found that the more direct use of the jet con-
stituents [66–69] as inputs to a machine-learning algorithm
can lead to significant improvements in discriminating power
as compared to more traditional, jet-moment-based discrim-
inants. Therefore, in this work, a classifier that makes use of
lower-level input observables is investigated which focuses
specifically on the identification of high-pT top quarks with
pT > 450 GeV. This classifier is referred to as “TopoDNN”
throughout the work.

4.3.3 Shower deconstruction

Shower deconstruction (SD) [70] is an approach which
attempts to classify jets according to the compatibility of
the radiation pattern of the jet with a predefined set of parton
shower hypotheses in a manner similar to the matrix element
method [71]. For a set of input subjets, intended to be rep-
resentative of the partonic decay products of the top quark,
loose compatibility with the decay of a top quark is ensured
by requiring that the jet has at least three subjets, that two
or more subjets have a mass in a window centred around the
W -boson mass (�mW ), and that at least one more subjet can
be added to obtain a total mass in a window centred around
the top-quark mass (�mtop). If the jet passes these require-

ments, then a set of potential shower histories is constructed
for the signal and background models. Each shower history
represents a possible means by which the chosen model could
have resulted in the given subjet configuration. A probability
is assigned to each shower history based on the parton shower
model from which the χ variable is defined as the likelihood
ratio of the signal and background hypotheses. The logarithm
of this likelihood ratio log χ is used as the final discriminant.
The precise values of the parameters in this algorithms are
described in Sect. 5.4.

4.3.4 HEPTopTagger

An alternative approach to top-quark tagging is the HEP-
TopTagger (HTT) algorithm [47,48]. Unlike the previous
observables that are calculated from the constituents of the
R = 1.0 trimmed jets, this technique relies on reconstructing
jets using the C/A algorithm with R = 1.5 to allow the tag-
ging of fully contained boosted top quarks to be effective at
lower values of pT (> 200 GeV) and to take advantage of
the C/A clustering sequence which attempts to reverse the
decay structure of the top-quark decay. The constituents of
the ungroomed uncalibrated C/A jet are analysed with the
HEPTopTagger algorithm, which identifies the hard jet sub-
structure and tests it for compatibility with the 3-prong pat-
tern of hadronic top-quark decays using an algorithm which
is designed to mitigate the effects of pile-up by removing
low-pT portions of the jet. The HEPTopTagger studied in
this paper is the original algorithm, from Ref. [47], not the
extended HEPTopTagger2 algorithm [72] and is executed
with mcut = 50 GeV, Rmax

filt = 0.25, Nfilt = 5, fW = 15%,
settings found to be optimal in Ref. [9]. The result of the
algorithm is a top-quark-candidate four-vector. The jet is con-
sidered to be tagged if the mass of this resultant top-quark-
candidate four-vector is between 140 and 210 GeV and its
pT is larger than 200 GeV.

5 Tagger optimisation

A wide variety of techniques, described in Sect. 4, exist for
identifying W -boson and top-quark jets. In this section, each
of these techniques is explored and optimised and an inclu-
sive comparison of the performance of each technique is
made based on the W -boson or top-quark (signal) efficiency
and light-jet (background) rejection, defined as the inverse of
the background efficiency. This performance is quantified in
exclusive kinematic regimes based on the pT of the associated
anti-kt R = 1.0 truth jet (ptrue

T ) to more closely resemble the
kinematics of the parent particle and allow comparison of tag-
gers employing different jet clustering algorithms. Finally, to
mitigate any bias in the tagging performance due to differ-
ences between the pT spectra of the signal and background
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jet samples, the simulated signal samples described in Sect. 3
are combined and weighted (separately for W bosons and top
quarks) such that the truth pT distribution of the ensemble of
signal jets matches that of the light-jet background.

5.1 Cut-based optimisation

The first approach to tagging is based on selection cuts on jet
shape observables. This approach was studied in preparation
for Run 2 [73,74] to provide a set of guiding techniques
that were used extensively in searches. The primary goal of
these taggers is to provide a simple set of selections on jet
moments that yield a constant signal efficiency as a func-
tion of the transverse momentum of the jet across a broad pT

range, thus being widely applicable. In the case of W -boson
tagging, one of these observables is taken to bemcomb and the
discrimination power is augmented by a selection on another
jet moment defined in Table 1, while in the case of top tag-
ging, a more inclusive strategy is explored where all pairwise
combinations of jet moments are investigated. This optimi-
sation is performed as a function of the pT of the associated
anti-kt R = 1.0 truth jet for both W -boson and top-quark
tagging. The tagging strategy resulting from this optimisa-
tion provides a benchmark in terms of tagging performance
to which other tagging strategies can be compared.

This simple tagger is optimised using a sample of signal
W -boson or top-quark jets as well as background light jets
extracted from the samples described in Sect. 3. In each event
the two reco jets matched to the two highest-pT truth jets
within |η| < 2 are studied. In the case of signal, W -boson
(top-quark) jets are retained if they are truth labelled as such
according to the procedure in Sect. 4.2 and have a transverse
momentum greater than 200 GeV (350 GeV). In the case of
background, no labelling procedure is applied and the two
highest-pT jets from the dijet sample are retained.

For this study, the general optimisation procedure to deter-
mine the two-variable selection criteria is the same for both
W -boson and top-quark jet tagging. For each pair of observ-
ables, the selection criteria which give the chosen signal effi-
ciency and the largest background rejection are considered
optimal and taken as the selection criteria in that region of
jet pT. In the case of mcomb, the selection region is two-sided
for W -boson tagging, selecting a region near mW , and one-
sided in the case of top-quark tagging, selecting an inclusive
region of high jet mass. In the case of the other jet moments,
the selection criteria are always one-sided, the direction of
which depends on the particular observable in question. This
procedure is repeated for exclusive bins of jet pT and a
sequence of selection criteria for each of the jet moment
observables is derived. Finally, this sequence of selection
criteria is parameterised by a smooth function dependent on
the jet pT. All single-sided cuts are parameterised as a func-
tion of pT with a polynomial function to describe features

which occur due to correlation of the combined-tagger vari-
able. In the case of the W -boson tagging, the mcomb selec-
tion is fit using a four-parameter (pi ) function of the form√

(p0/pT + p1)2 + (p2 · pT + p3)2 chosen to encapsulate
the dominant effects on the jet mass resolution. Throughout
this work, the targeted signal efficiencies are taken to be con-
stant with respect to jet pT with values of 50% for W -boson
tagging and 80% for top-quark tagging. These signal effi-
ciency working points are largely based on those commonly
used in searches for physics beyond the Standard Model. In
the case of top-quark tagging, a working point with higher
efficiency is commonly used because the dominant back-
grounds involve processes including real top quarks [2,75]
while in the case of searches for signals involving W -boson
jets, the backgrounds are largely dominated by processes
involving light-quark jets [76,77] thereby requiring a selec-
tion that more effectively rejects background at the expense
of signal efficiency.

In Fig. 2, the resulting background rejections as a function
of the jet ptrue

T are shown for a selection of the most powerful
two-variable combinations. Based on this study, in the case
of W tagging, the combination of mcomb and D2 is most
powerful in the kinematic range of interest and is taken as
the baseline pairing for W tagging. However, at higher jet
ptrue

T , where the power of D2 decreases,
√
d12 retains constant

discrimination power. In the case of top-quark jet tagging,
the behaviour of the most powerful taggers provide a large
background rejection at low ptrue

T , plateauing at a lower value
for high jet ptrue

T mostly due to the migration of the light-
jet mass distribution to higher values and a looser τ32 cut
to maintain the constant signal efficiency. The two-variable
combinations that do not involve mass perform marginally
better than those with mass across the entire kinematic range
studied. As a consequence, the specific cut-based top-quark
jet tagger used in an analysis may depend on the context of
the analysis and not on the performance alone. Therefore,
the baseline two-variable cut-based top-quark jet tagger is
selected to be the one composed of one-sided selections on
mcomb and τ32, as it has been commonly used in ATLAS.

5.2 Jet-moment-based multivariate taggers

Some of the moments presented in Sect. 4.3.1 contain com-
plementary information and it has been shown that combin-
ing these observables by creating a multivariate W -boson
or top-quark classifier provides higher discrimination, albeit
to differing degrees [10,78,79]. In this work boosted deci-
sion tree (BDT) and deep neural network (DNN) algorithms
are investigated following a procedure similar to the one in
Ref. [79]. The goal is to discriminate W -boson and top-quark
jets from light jets and to provide a single jet-tagging dis-
criminant that is widely applicable in place of the single jet
moment, described in Sect. 5.1, to augment the discrimi-
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Fig. 2 The W -boson (a) and top-quark tagging (b) background rejection as a function of jet ptrue
T for the best performing two-variable combinations

at fixed signal efficiency

nation of mcomb alone across a broad pT range, providing
another widely applicable and more powerful tagger.

The two algorithmic classes used here, BDTs and DNNs,
are explored in parallel to determine if one of the archi-
tectures is better suited to exploit differences between the
input observables and their correlations among high-level
variables in signal and background. The DNN used here is a
fully-connected feed-forward network. Given that both algo-
rithms have access to the same set of input features, of which
there are approximately ten, it is expected that the discrim-
ination power will be approximately the same. The internal
settings, so called hyper-parameters, used for the BDTs and
DNNs are summarized in Appendix A. For the design of
all multivariate discriminants, exclusive subsamples of sig-
nal and background jets are derived from the more inclu-
sive sample selected as in Sect. 5.1 to be used separately for
the training and testing of the discriminant. To ensure that
all jet substructure features are well-defined for the training,
two additional selection criteria are applied to the jet mass
(mcomb > 40 GeV) and number of constituents (N const ≥3).
The jets which fail to meet these criteria are not used in the
training. However, in the evaluation of the performance of
the tagger, such jets are classified as background jets only if
they fail the mcomb requirement, taking this auxiliary selec-
tion into account in the calculation of the signal efficiency
and background rejection. The chosen input observables used
for either W -boson or top-quark tagging are the full set of
observables summarised in Table 1, noting that both the jet
mass (mcomb) and transverse momentum are directly used as
inputs. Therefore, when defining a final working point for this
tagger, unlike in the case of the cut-based taggers in Sect. 5.1,
no additional direct selection beyond the mcomb > 40 GeV

requirement is imposed on the mass. Finally, in the design of
the classifiers, all studies are performed in a wide ptrue

T bin4

and jets are given weights to create a constant ptrue
T spec-

tra so as to not bias the training. However, the performance
comparison of these taggers with the cut-based ones, as well
as the full comparison of all tagging techniques in Sect. 5.5,
is made with ptrue

T distributions for signal jets weighted to
match that of the multijet background sample.

The set of observables used in the BDT classifiers is deter-
mined using a procedure in which the observables applicable
to each topology, specified in Table 1, which give the largest
increase in relative performance are sequentially added to the
network. For each successive observable that is to be added to
the classifier, the BDT classifier is trained with jets from the
training set and the relative performance is evaluated using
jets from the testing sample and the variable which gives the
greatest increase in relative background rejection at a fixed
relative signal efficiency of 50% (W -boson tagging) and 80%
(top-quark tagging) is retained. Relative signal efficiency and
relative background rejection take into account only the jets
that satisfy the training criteria, where relative signal effi-
ciency is defined as

εrel
sig =

N tagged
signal,mcomb>40 GeV,Nconst>2

N tagged and untagged
signal,mcomb>40 GeV,Nconst>2

and in a similar manner, relative background rejection is
defined as 1/εrel

bkg. The smallest set of variables which reaches
the highest relative background rejection within statistical
uncertainties is selected. The minimum number of selected

4 These bins are taken to be [200, 2000] GeV for W boson tagging and
[350, 2000] GeV for top quark tagging.
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Fig. 3 The relative background rejection of the jet-shape-based BDT
discriminant for different sets of variables, with more variables added
successively at the 50% (W -boson tagging) and 80% (top-quark tag-
ging) relative signal efficiency working point for W -boson (a) and
top-quark (b) tagging. Only jets which satisfy the training criteria are
considered when calculating the relative signal efficiency and relative

background rejection. The performance is evaluated with constant ptrue
T

spectra. Uncertainties are not presented. The horizontal dashed lines
indicate the level of performance saturation, while the vertical dashed
lines and solid arrow represent the set of jet moments used in the final
construction of the discriminant

variables is 11 for W -boson tagging and 10 for top-quark
tagging. The relative background rejection achieved at each
stage for both classifiers is shown in Fig. 3.

In a similar manner, the observables used in the DNN clas-
sifier are chosen by comparing the performance when using
different sets of input variables to find the set of observables
which gives the largest relative background rejection at a
fixed relative signal efficiency. In this case, variables are not
added in succession due to the time requirements to train the
large number of networks. Instead, groups of observables are
chosen by selecting variables according to their dependence
on the momentum scale of the jet substructure objects, what
features of the substructure they describe and their depen-
dence on other substructure variables. A summary of all the
variables tested for the DNN is shown in Table 2. For each
group, the DNN classifier is constructed using the training
set of jets and the relative performance is evaluated using
the jets in a testing set. The relative background rejection
achieved inclusively in jet ptrue

T is shown in Fig. 4. The per-
formance of the DNN tagger depends on both the number
of variables and the information content in the group. The
chosen groups of inputs for W -boson tagging and top-quark
tagging are listed in Table 2. Within statistical uncertainties,
the number of variables necessary for maximum rejection at
a fixed relative signal efficiency of 50% (W -boson tagging)
and 80% (top-quark tagging) is found to be 12 variables for
W -boson tagging (Group 8 in Table 2) and 13 variables for
top-quark tagging (Group 9 in Table 2).

Similarly to the cut-based two-variable optimised taggers,
for the chosen BDT and DNN taggers the working points are
defined as a function of the reconstructed jet pT so that they
yield constant signal efficiencies versus pT. In both cases,
the target signal efficiency working point is obtained by the
fixed jet mass requirement of mcomb > 40 GeV, relevant
N const criteria and a single-sided selection on the relevant dis-
criminant. The performance of the resulting BDT and DNN
discriminants is characterised by the background rejection,
evaluated as a function of jet ptrue

T , for a fixed signal effi-
ciency of 50% (W -boson tagging) and 80% (top-quark tag-
ging), where the relative variation of the signal efficiency for
the fixed-efficiency taggers is less than 5%. It can be seen in
Fig. 5 that in the case of W -boson tagging, the performance
improvements beyond the cut-based taggers are highest at
low jet pT and decrease at higher ptrue

T , presumably due to
the merging of calorimeter energy depositions and subse-
quent loss of granularity in discerning substructure informa-
tion. However, in the case of top-quark tagging, the improve-
ments in performance are more sizeable, showing increases
in background rejection of roughly a factor of two over the
entire kinematic range studied. This is presumably due to the
greater complexity of the top-quark decay in contrast to that
of the isolated W boson, indicating that among the observ-
ables studied here, excluding the multivariate classifiers, no
single observable adequately captures the full set of features
that provide ability to discriminate signal from background.
There are richer correlations between the observables that can
be further exploited by the multivariate classification algo-
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Table 2 A summary of the set of observables that were tested for W -boson and top-quark tagging for the various DNN input observable groups
as well as the final set of DNN and BDT input observables as chosen using Figs. 3 and 4

W boson tagging Top quark tagging

DNN Test groups Chosen inputs DNN test groups Chosen inputs

Observable 1 2 3 4 5 6 7 8 9 BDT DNN 1 2 3 4 5 6 7 8 9 BDT DNN

mcomb ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
pT ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
e3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
C2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
D2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
τ1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
τ2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
τ3 ◦ ◦ ◦ ◦
τ21 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
τ32 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
RFW

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
a3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
A ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
zcut ◦ ◦ ◦ ◦ ◦ ◦ ◦√
d12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦√
d23 ◦ ◦ ◦ ◦ ◦ ◦ ◦

KtDR ◦ ◦ ◦ ◦ ◦ ◦ ◦
Qw ◦ ◦ ◦ ◦ ◦ ◦ ◦
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Fig. 4 Distributions showing the training with different set of variables
and relative improvement in performance for the DNN W -boson (a)
and top-quark (b) taggers at the 50% and 80% relative signal efficiency
working point, respectively. The grouping of observables was decided
prior to training and discriminator performance evaluation. Only jets

which satisfy the training criteria are considered when calculating the
relative signal efficiency and relative background rejection. The perfor-
mance is evaluated with constant ptrue

T spectra. Uncertainties are not
presented
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Fig. 5 The background rejection comparison of W -boson taggers at
fixed 50% signal efficiency working point (a) and top-quark taggers
at fixed 80% signal efficiency working point (b) for the multivariate
jet-shape-based taggers as well as the two-variable optimised taggers,
which are composed of a selection on mcomb and D2 in the case of

W -boson jet tagging and mcomb and τ32 for top-quark jet tagging. The
performance is evaluated with the ptrue

T distribution of the signal jets
weighted to match that of the multijet background samples. Statistical
uncertainties of the background rejection are presented

rithms. A common feature of both tagging topologies is that
the particular algorithm (i.e. BDT and DNN) used to con-
struct the discriminant does not influence the performance
that can be obtained. This is somewhat expected due to the
relatively small number of inputs found to be useful for the
DNN and helps to put a ceiling on the performance achiev-
able using the combination of those jet moments examined
in this work [67].

5.3 Topocluster-based deep neural network tagger

Recently, a number of jet phenomenology studies have found
that using lower-level information more directly pertaining
to the jet energy flow can lead to further improvements in the
ability to distinguish signal W -boson and top-quark jets from
light jets [66–69,80–84]. Furthermore, it was seen in Fig. 5
that the performance gains for the high-level variables BDT
and DNN combination are significantly larger for top-quark
tagging than forW -boson tagging. Consequently, a top-quark
jet tagger based directly on the jet constituents, focusing on
the high-pT top quarks with pT > 450 GeV, is designed.

The jet tagger based on low-level jet input information
studied in this work closely follows that described in Ref. [68]
and the reader is referred there for a more in-depth review of
the optimisation of the techniques used; only a brief summary
is provided in the following. The first aspect of note which
sets this tagger apart from those studied in Refs. [66,67,69]
is that there is no use of pixelation in this tagger, similar
to the taggers studied in Ref. [80]. Compared to the taggers

studied in Ref. [80], the architecture of this tagger does not
employ sequenced, variable-length inputs and the input fea-
tures used in this tagger are the four-vectors of fixed-number
of topoclusters in the individual large-R anti-kt trimmed jet
in the (pT, η, φ) representation, noting that topoclusters are
taken as massless by convention. As a preprocessing step, the
pT of each constituent four-vector is normalised by 1/1700
to bring the scale of the input network features within the
same magnitude between approximately 0 and 1. The (η, φ)

location of the set of constituents is then transformed by a
process that involves a translation, a rotation, and a flip based
on the assumed three-subjet topology of a top-quark decay.
Of the full set of constituents, only the 10 highest-pT con-
stituents are used as input to the neural network. This was
found to provide optimal background rejection for this net-
work architecture as compared to using more or fewer clus-
ters and can be qualitatively understood by examining the
fraction of the jet pT carried by each of the clusters, shown
in Fig. 6 where the distribution of the pT-fraction for a subset
of the 10 highest-pT clusters is shown along with the mean
value of each of the 20 highest-pT cluster distributions. It is
seen that the first 10 clusters, on average carry more than 99%
of the pT of the jet. Therefore, including further clusters sat-
urates the information for the network to disentangle when
discriminating signal from background. If a jet has fewer
than 10 constituents, the remaining inputs to the neural net-
work are taken to be null vectors. The three components of
each four-vector are used as input to a fully connected neu-
ral network with four hidden layers composed of 300, 102,

123



375 Page 12 of 54 Eur. Phys. J. C (2019) 79 :375

 fraction of cluster
T

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 u
ni

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Pythia 8 Pythia 8
Multijet Z'

 Cluster 0
 Cluster 1
 Cluster 2
 Cluster 9

ATLAS              Simulation
 = 13 TeVs

=1.0 jetsRtkTrimmed anti-

 > 450 GeV
T

p

(a)

 sorted)
T

p jet cluster index (RLeading trimmed large-
0 2 4 6 8 10 12 14 16 18

 fr
ac

tio
n 

of
 c

lu
st

er
〉 Tp〈

3−10

2−10

1−10

1
Pythia8 multijet

Pythia8 Z'
ATLAS              Simulation

 = 13 TeVs
=1.0 jetsRtkTrimmed anti-

 > 450 GeV
T

p

Errors represent RMS

 fraction dist.
T

p       of 

(b)

Fig. 6 The distribution of the fraction of pT carried by the highest-pT
cluster (Cluster 0) along with the next-highest (Cluster 1), third-highest
(Cluster 2), and tenth-highest-pT (Cluster 9) clusters (a) along with
the average value of the ratio of the cluster pT to the jet pT for the
20 highest-pT clusters (b). The dashed lines in a show distributions for
signal jets, and the full lines show distributions for background jets. The
vertical lines on each point in b represent the RMS of the corresponding

distribution of the fraction of pT of a given cluster in a. In a, the distri-
bution for the tenth-highest-pT cluster (Cluster 9) extends beyond the
maximum value of the vertical axis. The light-quark jet sample is taken
from jets that pass the multijet selection as described in Sect. 6.2.1 while
the top-quark jet sample is taken from jets that pass the semileptonic
selection as described in Sect. 6.1.1

12 and 6 nodes, respectively. This network architecture was
determined through manual hyper-parameter tuning, explor-
ing configurations with between 4–6 layers and 40–1000
nodes per layer, and where the used architecture and hyper-
parameters are exactly the same as the one used in [68]. The
network is trained on jets where only the initial top parton
is required to be matched to the reconstructed jet obtained
from the Z

′
(signal) and light jets (background) in the high-

pT region from 450 to 2400 GeV in pT. To remove bias in
the training due to the difference in kinematics between the
signal and background samples, a subset of the background
ensemble of jets is selected in a random fashion such that
the jet pT distribution is the same in both signal and back-
ground, as opposed to the BDT and DNN taggers described
in Sect. 5.2, which use event-by-event reweighting.

5.4 Shower deconstruction tagger

The shower deconstruction tagging method was studied
extensively in Run 1 [9]. The aim of the method, described
in Sect. 4.3.3, is to determine whether the subjet pattern is
compatible with a parton shower profile typical of a top-quark
decay. In previous ATLAS studies, the subjets were defined
by forming C/A subjets with R = 0.2 using the ungroomed
large-R jet constituents as inputs. However, in Run 2, shower
deconstruction was recommissioned in the context of the
search for a heavy W

′
boson decaying to a top quark and

a bottom quark where the mass-splitting between the W
′
and

the top quark was large enough to produce top quarks with
momenta of roughly 1 TeV and above [85]. The approach
taken in Run 1 to reconstruct the subjet inputs to the shower
deconstruction algorithm was found to have a low signal effi-
ciency, largely due to the subjet multiplicity falling below
three and therefore producing a set of subjets that are unable
to fulfil the initial consistency checks between the subjet pair-
ings and triplets withW -boson and top-quark masses, respec-
tively. This drop in efficiency was recovered by altering the
manner in which subjets are constructed to instead use the
exclusive-kt jet clustering algorithm, run on the constituents
of the trimmed large-R jet. Since splitting scales are less
dependent on the large-R jet pT than the geometric distance
between the jet and its constituents, a stopping criterion is
imposed to halt clustering if kt splitting scales larger than
15 GeV are found. At that stage, the resulting set of subjets
are used as subjet inputs to shower deconstruction. Because
the computation time of shower deconstruction scales expo-
nentially with the number of input subjets, the total number
of subjets is limited to at most the six highest-pT subjets,
compared to a limit of nine in Run 1, with no loss in per-
formance. Finally, the parameters controlling the top-quark
topology check using subjet pairings and triplets, mW and
mtop respectively, were fixed to 20 GeV and 40 GeV, the
same as in Run 1.
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5.5 Summary of tagger performance studies in simulation

A direct comparison of the performance of all of the tagging
techniques, described in Sect. 4 and individually optimised
in Sect. 5, is important in providing guidance as to which
technique can be most beneficial when applied in an analysis.
The primary metric used to assess the performance of the
taggers is the background rejection as a function of the signal
efficiency, characterised in the form of a receiver operating
characteristic (ROC) curve, shown in Figs. 7 and 8 for W -

boson and top-quark tagging, respectively, for both a low- and
high-pT kinematic region. For comparison, two relatively
simple cut-based taggers composed of selections on mcomb

and a single substructure observable are shown. In the case of
W -boson tagging, a fixed mass window requirement of 60 <

mcomb < 100 GeV is applied and a cut on the D2 observable is
used for the ROC curve. In the case of top-quark tagging, the
mass selection is one-sided, requiring mcomb > 60 GeV, and
a requirement on τ32 is varied to obtain the ROC curve. These
simple taggers, along with the specific working points tuned
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to give constant signal efficiency and maximal background
rejection, are provided as a point of reference for subsequent
optimisations that were performed for studies of the more
advanced techniques.

When examining Figs. 7 and 8, it can be seen that a careful
tuning of the simple two-variable cut-based taggers can lead
to sizeable gains due to taking into consideration the corre-
lation between mcomb and the auxiliary jet moment observ-
able. The gains are significantly larger in the case of the
BDT- and DNN-based high-level observable discriminants,
and lead to larger improvements for top-quark tagging than
for W -boson tagging. However, the BDT and DNN algo-
rithms perform similarly to each other for all signal efficien-
cies, indicating that they are leveraging the correlations of
the input jet moment observables equally well. Therefore,
when studying the performance of these tagging techniques
in data in Sect. 6, only the DNN-based taggers are included.
The performance of the BDT-based taggers was studied and
found to be similar. Finally, in the case of top-quark tag-
ging, where more dedicated tagging techniques are studied,
the conclusion is similar. Dedicated approaches, including
shower deconstruction and HEPTopTagger, are more perfor-
mant than a simple cut-based approach onmcomb and τ32, but
the combination of many jet-moment observables in a BDT
or DNN yields the best overall performance out of the tech-
niques tested in this study. Of particular note, however, is the
comparison of the BDT and the fully-connected feed-forward
DNN taggers using high-level observables and those using
lower-level inputs, namely the jet constituents, here taken to
be topoclusters. The performance of these two approaches
is similar, with the TopoDNN tagger having slightly higher
background rejection at high jet pT, resulting in conclusions
qualitatively similar to those found in Ref. [69], particularly
at high jet pT where the details of the signal sample used for
training are less relevant.

6 Performance in data

The taggers studied in the previous sections are validated
using signal and background-enriched data samples col-
lected during 2015 and 2016 at a centre-of-mass energy of√
s = 13 TeV and corresponding to an integrated luminosity

of 36.1 fb−1. In the case of W -boson and top-quark jets, the
lepton-plus-jets t t̄ signature is used, which provides a sample
of signal jets in a pT range of approximately 200–1000 GeV.
In the case of background light jets, two topologies are stud-
ied: a γ +jet sample enriched in light-quark jets and spanning
a pT range of approximately 200–2000 GeV and a multijet
sample which probes a mixture of light-quark and gluon jets
in a pT range of approximately 500–3500 GeV. The primary
aim of these studies is to validate the modelling of the Monte
Carlo simulation in data for the techniques studied in Sect. 4.

This is achieved by directly studying the full spectrum of a
subset of important observables used in the tagging as well
as directly measuring both the signal efficiency and back-
ground efficiency of the various techniques in the phase space
accessible in this data sample. In the case of the measured
signal efficiency and background rejection, the performance
is evaluated differentially as a function of the jet transverse
momentum as well as the average number of interactions per
bunch crossing (μ).

6.1 Signal efficiency in boosted t t̄ events

To study the modelling of signal W -boson and top-quark
large-R jet tagging, a sample of data enriched in t t̄ events
where one top quark decays hadronically and the other
semileptonically in both the electron and the muon decay
channel is selected in a similar manner to Refs. [8,9]. The
inclusive sample of events is decomposed into two exclusive
subsamples, enriched in W -boson jets and top-quark jets,
based on the proximity of a b-jet to the large-R jet. The inclu-
sive distributions of the key observables used in each tagging
method are examined and the signal efficiency is measured
for a set of fixed signal efficiency working points, for which
systematic uncertainties can be derived and associated with
a particular tagging method.

6.1.1 Analysis and selection

To select the inclusive set of lepton-plus-jets t t̄ events, both
the data and Monte Carlo simulated events are required to
pass either an inclusive electron trigger or an inclusive muon
trigger, where the thresholds were varied between the 2015
and 2016 datasets due to increases in instantaneous lumi-
nosity. In the electron channel, events from the 2015 data-
taking period are required to pass at least one of three trig-
gers: one isolated electron with pT > 24 GeV, one elec-
tron with pT > 60 GeV without any isolation requirement,
or one electron with pT > 120 GeV without any isolation
requirement and relaxed identification criteria. In the 2016
data-taking period, the thresholds of these electron triggers
required pT > 26 GeV, pT > 60 GeV and pT > 140 GeV,
respectively. In the muon channel, events from the 2015 data-
taking period are required to pass at least one of two muon
triggers: one isolated muon with pT > 20 GeV or one muon
with pT > 50 GeV and no isolation requirement. In the 2016
data-taking period, the thresholds of these triggers required
pT > 26 GeV and pT > 50 GeV, respectively.

Events are then required to contain exactly one electron
or muon candidate with pT > 30 GeV that is matched to
the trigger-level counterpart associated with the appropriate
trigger. Electron candidates are reconstructed as ID tracks
that are matched to a cluster of energy in the electromagnetic
calorimeter. Electron candidates are required to be within
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Fig. 9 A comparison of the observed data and predicted MC distribu-
tions of the mass of the leading pT anti-kt trimmed jet in the event for
the W boson (a) and top quark (b) selections in a sample enriched in lep-
ton+jets t t̄ events. Simulated distributions are normalised to data. The t t̄
sample is divided into a set of subsamples (e.g. t t̄ (top)) based on criteria

described in Sect. 4.2. The statistical uncertainty of the background pre-
diction (Stat. uncert.) results from limited Monte Carlo statistics as well
as the limited size of the data sample used in the data-driven estimation
of the multijet background

|η| < 2.47, excluding the calorimeter transition region from
1.37 < |η| < 1.52, and satisfy the “tight” likelihood-based
identification criterion based on shower shape and track
selection requirements [86,87]. Muons are reconstructed as
tracks found in the ID that are matched to tracks reconstructed
in the muon spectrometer. They are required to be within
|η| < 2.5 and are required to satisfy the “medium” muon
identification quality criteria defined in Ref. [88]. For both
electrons and muons, the reconstructed lepton candidate is
required to be isolated from additional activity in the event
by imposing isolation criterion defined by a sum of pT of
tracks in an isolation cone with variable radius depending on
the lepton pT [88,89].

In addition to identified leptons, small-radius jets are used
to reconstruct the missing transverse momentum and iden-
tify the signal topology. These jets are reconstructed from
topoclusters calibrated to the electromagnetic scale using the
anti-kt algorithm with a radius parameter of R = 0.4. The
energy of these jets is corrected for the effects of pile-up by
using a technique based on jet area [51] and the jet energy
is further corrected using a jet energy scale calibration based
on both Monte Carlo simulation and data [40]. To ensure that
the reconstructed jets are well-measured, they are required
to have pT > 20 GeV, |η| < 2.5 and to satisfy “loose” qual-
ity criteria to prevent mismeasurements due to calorimeter
noise spikes and non-collision backgrounds [90]. For jets
with pT < 60 GeV and |η| < 2.4, a requirement that the jets
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Fig. 10 A comparison of the observed data and predicted MC distri-
butions of the mass of the leading pT C/A R = 1.5 trimmed jet in events
passing the top-quark selection in a sample enriched in lepton+jets t t̄
events. Simulated distributions are normalised to data. The t t̄ sample is
divided into a set of subsamples (e.g. t t̄ (top)) based on criteria described
in Sect. 4.2. The statistical uncertainty of the background prediction
(Stat. uncert.) results from limited Monte Carlo statistics as well as the
limited size of the data sample used in the data-driven estimation of the
multijet background
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Fig. 11 A comparison of the observed data and predicted MC distri-
butions of the anti-kt R = 1.0 trimmed jet D2 (a) and τ32 (b) for the
W -boson and top-quark selections, respectively, in a sample enriched
in lepton+jets t t̄ events. Simulated distributions are normalised to data.
The t t̄ sample is divided into a set of subsamples (e.g. t t̄ (top)) based on

criteria described in Sect. 4.2. The statistical uncertainty of the back-
ground prediction (Stat. uncert.) results from limited Monte Carlo statis-
tics as well as the limited size of the data sample used in the data-driven
estimation of the multijet background
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Fig. 12 A comparison of the observed data and predicted MC distri-
butions of the anti-kt R = 1.0 trimmed jet DNN discriminant for W
boson (a) and top quark (b) tagging for the respective event selections in
a sample enriched in lepton+jets t t̄ events. Simulated distributions are
normalised to data. The t t̄ sample is divided into a set of subsamples

(e.g. t t̄ (top)) based on criteria described in Sect. 4.2. The statistical
uncertainty of the background prediction (Stat. uncert.) results from
limited Monte Carlo statistics as well as the limited size of the data
sample used in the data-driven estimation of the multijet background
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Fig. 13 A comparison of the observed data and predicted MC distribu-
tions of the TopoDNN top tagger discriminant for the top-quark event
selection in a sample enriched in lepton + jets t t̄ events. Simulated dis-
tributions are normalised to data. The t t̄ sample is divided into a set of
subsamples (e.g. t t̄ (top)) based on criteria described in Sect. 4.2. In this
case, a pT > 450 GeV selection is applied to the large-R jet to specif-
ically focus on the kinematic region of interest for which this tagging
algorithm was designed, as described in Sect. 5.3. The statistical uncer-
tainty of the background prediction (Stat. uncert.) results from limited
Monte Carlo statistics as well as the limited size of the data sample used
in the data-driven estimation of the multijet background

arise from the primary vertex, using the ID tracks associated
with the jet, is imposed to suppress pile-up jets [91].

For the identification of b-quark candidate jets, jets recon-
structed from ID tracks with the anti-kt algorithm with radius
parameter R = 0.2 are used. These jets are b-tagged using a
multivariate discriminant based on impact parameter and sec-
ondary vertex information [92]. The 70% signal efficiency
point selection is used. Event-by-event scale factors, evalu-
ated in t t̄ events [93], are applied to account for mismodelling
of the selection efficiency.

The missing transverse momentum is reconstructed as the
negative vectorial sum of the momenta of all reconstructed
physics objects in the plane transverse to the beamline [94].
In this case, the sum consists of the single identified lepton
and the full set of reconstructed and fully calibrated small-R
calorimeter jets as well as ID tracks not associated with the
lepton or jets. These ID tracks are included to account for
the soft hadronic energy flow in the event. In the following
the magnitude of the missing transverse momentum vector
is denoted by Emiss

T .
First, events containing a leptonically decaying W boson

are preselected by requiring one electron or muon candi-
date with pT > 30 GeV and rejecting events that contain

10− 5− 0 5 10 15 20

E
ve

nt
s 

/ 1

1

10

210

310

410

510

610
Data 2015+2016

 (top)tt
)W (tt

 (other)tt
)WSingle Top (

Single Top (other)
 + jetsW

 + jets, multijetZ, VV
Total uncert.
Stat. uncert.

 modelling uncert.tt

ATLAS
-1 = 13 TeV, 36.1 fbs

=1.0 jetsRtkTrimmed anti-
-jet) < 1.0b jet, R(large-RΔ

 > 350 GeV
T

p

 > 60 GeVcombm

)χ jet log(RLeading large-
10− 5− 0 5 10 15 20

D
at

a/
P

re
d.

0.5

1

1.5

Fig. 14 A comparison of the observed data and predicted MC distribu-
tions of the log χ shower deconstruction discriminant for the top-quark
event selection in a sample enriched in lepton+jets t t̄ events. Simulated
distributions are normalised to data. The t t̄ sample is divided into a set
of subsamples (e.g. t t̄ (top)) based on criteria described in Sect. 4.2. The
ensemble of jets with a large negative log χ value correspond to the set
of jets where no subjet configuration is roughly consistent with a top-
quark jet topology, as described in Sect. 5.4. The statistical uncertainty
of the background prediction (Stat. uncert.) results from limited Monte
Carlo statistics as well as the limited size of the data sample used in the
data-driven estimation of the multijet background

additional electrons or muons with pT > 25 GeV. The miss-
ing transverse momentum is required to be greater than
20 GeV and the scalar sum of Emiss

T and the transverse
mass of the leptonically decaying W boson candidate5 must
satisfy Emiss

T + mW
T > 60 GeV. To ensure the topology

is consistent with a t t̄ event, at least one small-R jet is
required to have pT > 25 GeV and to be close to the lep-
ton (�R(lepton, jet) < 1.5). To study W -boson and top-
quark tagging, the highest-pT large-R jet is studied, which
is either a trimmed anti-kt R = 1.0 jet or a C/A R = 1.5
jet in the case of HEPTopTagger, with pT > 200 GeV and
|η| < 2.0. The C/A jets are also trimmed using the same
trimming parameters as for the anti-kt jets, such that their
kinematics are robust against pile-up. Since HEPTopTagger
is designed to tag ungroomed jets, the constituents of the
C/A jet before trimming are used as inputs to the tagging
algorithm. The signal top-quark jet candidate is required to
be well-separated from the semileptonic top-quark decay by
requiring �R >1.5 between the large-R jet and the small-

5 mW
T =

√
2p


TE
miss
T (1 − cos �φ) is calculated from the transverse

momentum of the lepton, p

T, and Emiss

T in the event. �φ is the azimuthal
angle between the lepton momentum and the Emiss

T direction.
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R jet close to lepton. Additionally, the angular separation in
the transverse plane between the lepton and the large-R jet
is required to be �φ > 2.3.

Finally, the sample preselected as above is divided into
two subsamples, intended to be representative of a fully con-
tained top-quark decay or an isolated and fully contained W -
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Fig. 15 A comparison of the observed data and predicted MC distri-
butions of the HEPTopTagger mass for the top-quark event selection in
a sample enriched in lepton-plus-jets t t̄ events. Simulated distributions
are normalised to data. The t t̄ sample is divided into a set of subsam-
ples (e.g. t t̄ (top)) based on criteria described in Sect. 4.2. The statistical
uncertainty of the background prediction (Stat. uncert.) results from lim-
ited Monte Carlo statistics as well as the limited size of the data sample
used in the data-driven estimation of the multijet background

boson decay based on the proximity of a b-tagged track jet to
the highest-pT large-R jet. The track jets are clustered from
at least two tracks using the anti-kt algorithm with a radius
parameter of R = 0.2. All tracks must fulfil |η| < 2.5 and
pT > 10 GeV. The sample enriched in top quarks (“top-quark
selection”) is defined by requiring a b-tagged track jet to
have an angular separation of �R(b-jet, large-R jet) < 1.0
(�R(b-jet, large-R jet) < 1.5) from the large-R anti-kt
trimmed jet (C/A jet). In order to enhance the fraction of
fully contained top quarks, an additional requirement of
pT > 350 GeV (pT > 200 GeV) is also applied. The sample
enriched in W -boson jets (“W -boson selection”) is defined
by requiring a b-tagged track jet to have angular separa-
tion �R(b-jet, large-R jet) > 1.0 from the large-R anti-
kt trimmed jet. Because the geometrical separation of the
daughter b-quark and the top parton decreases with increas-
ing pT, this requirement limits the efficiency of the W -boson
selection at high jet pT, which limits the kinematic reach to
approximately 600 GeV. These requirements result in rela-
tively pure samples of W -boson and top-quark jets as shown
in Fig. 9 for the anti-kt R = 1.0 trimmed jet mass, includ-
ing the full set of systematic uncertainties summarised in
Sect. 6.3, while Fig. 10 shows the C/A R = 1.5 trimmed
jet mass. The disagreement between the peak positions in
Monte Carlo simulation and data observed nearmW andmtop

is attributed to a mismodelling of the jet mass scale as stud-
ied in Ref. [95]. In this paper, the t t̄ and single-top Monte
Carlo samples are divided into three subsamples based on
the jet labelling criteria outlined in Sect. 4.2 to highlight
the fraction of events in each sample of interest (“t t̄ (top)”
and “t t̄ (W )”), with all other events in these samples being
grouped together in a single subsample (“t t̄ (other)”). The
backgrounds are derived from the Monte Carlo simulations
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Fig. 16 The anti-kt trimmed jet mass distribution in the pass (a) and
fail (b) categories for the mcomb + τ32 top-quark tagger working point
after the chi-square fit has been performed. The templates shown here
are those used in the chi-square fit for the extraction of the three normali-

sation factors. The first, t t̄ signal, includes only the t t̄(top) contribution,
while t t̄ background includes contributions from t t̄(W ) and t t̄(other)
and the non-t t̄ background component includes all other backgrounds.
Only statistical uncertainties are shown
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Fig. 17 The signal efficiency on contained W -boson jets for the two-
variable mcomb + D2 W -boson tagger as a function of the large-R jet
pT (a) and the average number of interactions per bunch crossing μ (b)
in data and simulation. Statistical uncertainties of the signal efficiency
measurement in data and simulation are shown as error bars in the top
panel. In the bottom panel, the ratio of the measured signal efficiency in

data to that estimated in Monte Carlo simulation is shown with statistical
uncertainties as error bars on the data points and the sum in quadrature
of statistical and systematic uncertainties as a shaded band. When con-
sidering experimental uncertainties arising from the large-R jet, only
those coming from the jet energy scale and resolution are considered
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Fig. 18 The signal efficiency on contained W -boson jets for the jet
shape-based DNN W -boson tagger as a function of the large-R jet pT
(a) and the average number of interactions per bunch crossing μ (b)
in data and simulation. Statistical uncertainties of the signal efficiency
measurement in data and simulation are shown as error bars in the top
panel. In the bottom panel, the ratio of the measured signal efficiency

in data to that estimated in Monte Carlo is shown with statistical uncer-
tainties as error bars on the data points and the sum in quadrature of
statistical and systematic uncertainties as a shaded band. When consid-
ering experimental uncertainties arising from the large-R jet, only those
coming from the jet energy scale and resolution are considered

described in Sect. 3, with the exception of the multijet back-
ground, which is estimated using a data-driven method based
on looser lepton selection criteria with a dedicated evalua-
tion of the probability of prompt lepton reconstruction and
the probability of fake/non-prompt lepton reconstruction, as
was performed in Ref. [2]. The event yield in the simulation
is normalised to that in the data at this stage of the selection
throughout Sect. 6.1.1.

The primary tagging observables used by the other tagging
techniques described in Sect. 4 are examined in Figs. 11, 12,

13, 14 and 15. For these spectra, the full set of systematic
uncertainties described in Sect. 6.3 are included for the D2

and τ32 observables, whereas for the other spectra, no ded-
icated experimental systematic uncertainty in the scale or
resolution of the observable itself is included. Instead, the
mismodelling of the simulation relative to data is taken into
account as a derived uncertainty in the in situ measurement of
the signal efficiency of the tagger itself, in a manner similar to
that commonly used to evaluate mismodelling in the detector
response in the context of the identification of heavy-flavour
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Fig. 19 The signal efficiency on contained top-quark jets for the two-
variable mcomb + τ32 top-quark tagger as a function of the large-R jet
pT (a) and the average number of interactions per bunch crossing μ (b)
in data and simulation. Statistical uncertainties of the signal efficiency
measurement in data and simulation are shown as error bars in the top
panel. In the bottom panel, the ratio of the measured signal efficiency

in data to that estimated in Monte Carlo is shown with statistical uncer-
tainties as error bars on the data points and the sum in quadratre of
statistical and systematic uncertainties as a shaded band. When consid-
ering experimental uncertainties arising from the large-R jet, only those
coming from the jet energy scale and resolution are considered

)
si

g
∈

S
ig

na
l e

ffi
ci

en
cy

 (

0.5

1

1.5
Data 2015+2016

PowhegPythia6

Total uncert.

ATLAS
-1 = 13 TeV, 36.1 fbs

lepton+jets selection
=1.0 jetsRtkTrimmed anti-

 = 80%): DNNsig∈Top tagger (

 [GeV]
T

p jet RLeading large-
400 600 800 1000D

at
a/

P
re

d.

0.5
1

1.5

(a)

)
si

g
∈

S
ig

na
l e

ffi
ci

en
cy

 (

0.5

1

1.5
Data 2015+2016

PowhegPythia6

Total uncert.

ATLAS
-1 = 13 TeV, 36.1 fbs

lepton+jets selection
=1.0 jetsRtkTrimmed anti-

 = 80%): DNNsig∈Top tagger (
 > 350 GeV

T
p

μ
10 20 30 40D

at
a/

P
re

d.

0.8
1

1.2

(b)

Fig. 20 The signal efficiency on contained top-quark jets for the jet
shape-based DNN top-quark tagger as a function of the large-R jet
pT (a) and the average number of interactions per bunch crossing μ (b)
in data and simulation. Statistical uncertainties of the signal efficiency
measurement in data and simulation are shown as error bars in the top
panel. In the bottom panel, the ratio of the measured signal efficiency

in data to that estimated in Monte Carlo is shown with statistical uncer-
tainties as error bars on the data points and the sum in quadrature of
statistical and systematic uncertainties as a shaded band. When consid-
ering experimental uncertainties arising from the large-R jet, only those
coming from the jet energy scale and resolution are considered

jets [96]. However, for nearly all regions of phase space, the
overall relative yield of data is well-described by the Monte
Carlo prediction within the theoretical uncertainties, derived
from the comparison of various t t̄ Monte Carlo generators.

6.1.2 Signal efficiencies

Due to the relatively high purity of the samples of W -boson
and top-quark jets that result from the selection described
in Sect. 6.1.1, it is possible to measure the signal efficiency

in data. This measurement, when compared with the Monte
Carlo prediction, can be used to estimate the systematic
uncertainty of a particular tagging method when applied in
the context of an independent analysis. It can also be used
to provide an in situ correction in the form of a jet-by-jet
efficiency scale factor [93,96]. Because the aim is to provide
an efficiency measurement for a particular tagging method,
it is necessary to define selection criteria based on the par-
ticular tagging discriminants described in Sect. 4 for which
the comparison of the Monte Carlo prediction to data was
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Fig. 21 The signal efficiency on contained top-quark jets for the
TopoDNN top-quark tagger as a function of the large-R jet pT (a) and
the average number of interactions per bunch crossing μ (b) in data and
simulation. Statistical uncertainties of the signal efficiency measure-
ment in data and simulation are shown as error bars in the top panel. In
the bottom panel, the ratio of the measured signal efficiency in data to

that estimated in Monte Carlo is shown with statistical uncertainties as
error bars on the data points and the sum in quadrature of statistical and
systematic uncertainties as a shaded band. When considering experi-
mental uncertainties arising from the large-R jet, only those coming
from the jet energy scale and resolution are considered
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Fig. 22 The signal efficiency on contained top-quark jets for the
Shower Deconstruction top-quark tagger as a function of the large-R jet
pT (a) and the average interactions per bunch crossing μ (b) in data and
simulation. Statistical uncertainties of the signal efficiency measure-
ment in data and simulation are shown as error bars in the top panel. In
the bottom panel, the ratio of the measured signal efficiency in data to

that estimated in Monte Carlo is shown with statistical uncertainties as
error bars on the data points and the sum in quadrature of statistical and
systematic uncertainties as a shaded band. When considering experi-
mental uncertainties arising from the large-R jet, only those coming
from the jet energy scale and resolution are considered

shown in a rather inclusive selection of signal-like events in
Sect. 6.1.1. In particular, the seven tagger working points for
which the signal efficiency is measured here are:

• D2 +mcomb (W boson): A pair of selections on mcomb

and D2, tuned as a function of pT, that give the largest
background rejection for a fixed 50% signal efficiency
for fully contained W -boson jets;

• mcomb + τ32 (top quark): A pair of selections on mcomb

and τ32, tuned as a function of pT, that give the largest

background rejection for a fixed 80% signal efficiency
for fully contained top-quark jets;

• DNN (W boson): A single-sided selection of mcomb >

40 GeV and a selection on the DNN discriminant, tuned
to give a fixed 50% signal efficiency as a function of pT

for fully contained W -boson jets;
• DNN (top quark): A single-sided selection of mcomb >

40 GeV and a selection on the DNN discriminant, tuned
to give a fixed 80% signal efficiency as a function of pT

for fully contained top-quark jets;
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Fig. 23 The signal efficiency on contained top-quark jets for the HEP-
TopTagger top-quark tagger as a function of the large-R jet pT (a) and
the average number of interactions per bunch crossing μ (b) in data and
simulation. Statistical uncertainties of the signal efficiency measure-
ment in data and simulation are shown as error bars in the top panel.
In the bottom panel, the ratio of the measured signal efficiency in data
to that estimated in Monte Carlo is shown with statistical uncertainties

as error bars on the data points and the sum in quadrature of statisti-
cal and systematic uncertainties as a shaded band. When considering
experimental uncertainties arising from the large-R jet, only those com-
ing from the jet energy scale and resolution are considered. The signal
efficiency on contained top-quark jets for the HEPTopTagger is not con-
stant with respect to jet pT as the tagger was not re-optimised after the
Run-1 analysis [9]

• TopoDNN (top quark): A selection on the DNN discrim-
inant, tuned to give a fixed 80% signal efficiency as a
function of pT for fully contained top-quark jets;

• Shower Deconstruction (top quark): A single-sided selec-
tion of mcomb > 60 GeV and a selection on log χ , tuned
to give a fixed 80% signal efficiency as a function of pT

for fully contained top-quark jets;
• HEPTopTagger (top quark): A requirement on the HEP-

TopTagger candidate trimmed jet kinematics to have a
mass between 140 and 210 GeV and a pT larger than
200 GeV.

The numbers of signal-like events in data that pass and
fail each of these requirements are obtained from a chi-
square template fit of “signal” and “background” distribu-
tions predicted by Monte Carlo simulations to the data to
correct for mismodelling of the cross-section of the vari-
ous processes contributing to the phase space of interest.
The labelling of “signal” events follows Sect. 4.2 and is
based on Monte Carlo simulations of t t̄ and single-top-quark
events. To increase the stability of the fit, background tem-
plates whose shapes are similar are merged. This proce-
dure results in a signal (t t̄(W ) and single top(W )) and back-
ground (t t̄(top)+ t t̄(other)+ single top(other)+ non-t t̄) com-
ponent template in the case of W -boson tagging and a signal
(t t̄(top)) and two background (t t̄(W )+ t t̄(other) and non-t t̄)
component templates in the top-quark efficiency measure-
ment, and the normalisation of each template is allowed to
float freely in the fit. The fit is performed using distributions
of the mass of the leading anti-kt trimmed jet, thus separating

signal and background events, as demonstrated in Fig. 16 in
the case of the simple mcomb + τ32 top-quark tagger. For the
measurement of the HEPTopTagger signal efficiency, the fit
is performed using distributions of the mass of the leading
C/A trimmed jet instead. Distributions of events that either
pass or fail the tagger under study are fit simultaneously. The
total normalisation of each grouped background component
is allowed to float and is extracted in the fit, while the effi-
ciency of the tagger on background events is fixed to the
value in Monte Carlo simulation. Normalisations of signal
distributions in the pass and fail categories (N tagged

fitted signal and

N not tagged
fitted signal) are extracted from the fit. Therefore, the tagger

efficiency for signal events in data can be extracted as

εdata = N tagged
fitted signal

N tagged
fitted signal + N not tagged

fitted signal

.

This can be compared to the tagger efficiency in Monte Carlo
simulation, which is based on the numbers of predicted signal
events that pass, N tagged

signal , and fail, N not tagged
signal , the tagger under

study:

εMC = N tagged
signal

N tagged
signal + N not tagged

signal

.

The signal efficiency is measured in data and obtained in
simulations as a function of the pT of the large-R jet as well as
the average number of interactions per bunch crossing (μ).
The results are shown in Figs. 17 and 18 for the W -boson
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Fig. 24 A comparison of the observed data and predicted MC distribu-
tions of the mass of the leading pT anti-kt trimmed jet in events for the
multijet (a) and γ + jet (b) selections. The data-driven normalisation
correction, described in Sect. 6.2.1, is shown in the legend beside the

specific sample to which it applies. Systematic uncertainties are indi-
cated as a band in the lower panel and include all experimental uncer-
tainties related to the selection of events, as well as the reconstruction
and calibration of the large-R jet
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Fig. 25 A comparison of the observed data and predicted MC distri-
butions of the mass of the leading pT C/A R =1.5 trimmed jet in events
for the multijet (a) and γ + jet (b) selections. The data-driven nor-
malisation correction, described in Sect. 6.2.1, is shown in the legend

beside the specific sample to which it applies. Systematic uncertainties
are indicated as a band in the lower panel and include all experimental
uncertainties related to the selection of events, as well as the reconstruc-
tion and calibration of the large-R jet
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Fig. 26 A comparison of the observed data and MC predictions in the
multijet and γ +jet event samples for the anti-kt R =1.0 trimmed jet D2
(a, c) and τ32 (b, d) spectra. The data-driven normalisation correction,
described in Sect. 6.2.1, is shown in the legend beside the specific sam-

ple to which it applies. Systematic uncertainties are indicated as a band
in the lower panel and include all experimental uncertainties related to
the selection of events, as well as the reconstruction and calibration of
the large-R jet

taggers and in Figs. 19, 20, 21, 22 and 23 for the top-quark
taggers.

The signal efficiency for the W -boson and top-quark tag-
gers in Monte Carlo simulation is compatible with the mea-
sured efficiency in data within uncertainties. In the case
of the W -boson tagger working points, there is a system-
atic difference between the target 50% signal efficiency and
that measured in data due to event topology differences

between W -boson jets from these two samples, as was inves-
tigated in Ref. [8]. The total uncertainty of the measured
signal efficiency is typically about 50% and 15% for the W -
boson and top-quark tagger efficiencies, respectively, and is
largely dominated by the subtraction of the non-contained
top-quark contribution. In most of the kinematic phase space,
these uncertainties are dominated by systematic uncertain-
ties, described in Sect. 6.3, specifically by the theoretical
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Fig. 27 A comparison of the observed data and MC predictions in the
multijet and γ + jet event samples for the anti-kt R =1.0 trimmed jet
spectra of the W -boson (a, c) and top-quark (b, d) DNN discriminants.
The data-driven normalisation correction, described in Sect. 6.2.1, is

shown in the legend beside the specific sample to which it applies. Sys-
tematic uncertainties are indicated as a band in the lower panel and
include all experimental uncertainties related to the selection of events,
as well as the reconstruction and calibration of the large-R jet

uncertainties in t t̄ modelling, largely coming from the sub-
traction of the component of the t t̄ Monte Carlo prediction
that consists of either non-W -boson jets or non-contained
top-quark jets.

When examining the measured signal efficiency as a func-
tion of the average number of interactions per bunch cross-
ing, it is found to be quite robust against increasing levels
of event pile-up, even when considering only the statistical

uncertainties due to the size of the data sample, noting that
the systematic uncertainties are correlated between bins.

6.2 Background rejection from multijet and γ + jet events

In addition to studying the modelling of signal W -boson and
top-quark jets using a sample of t t̄ events, the behaviour of
background light jets is studied in two sets of events (enriched
in multijet and γ + jet processes) to cover a broad kine-
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Fig. 28 A comparison of the observed data and MC predictions in
the multijet (a) and γ + jet (b) event samples for the anti-kt R =1.0
trimmed jet spectra of the TopoDNN top tagger discriminant. The data-
driven normalisation correction, described in Sect. 6.2.1, is shown in

the legend beside the specific sample to which it applies. Systematic
uncertainties are indicated as a band in the lower panel and include all
experimental uncertainties related to the selection of events, as well as
the reconstruction and calibration of the large-R jet
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Fig. 29 A comparison of the observed data and MC predictions in the
multijet (a) and γ +jet (b) event samples for the anti-kt R =1.0 trimmed
jet spectra of the log χ shower deconstruction discriminant. The data-
driven normalisation correction, described in Sect. 6.2.1, is shown in

the legend beside the specific sample to which it applies. Systematic
uncertainties are indicated as a band in the lower panel and include all
experimental uncertainties related to the selection of events, as well as
the reconstruction and calibration of the large-R jet
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Fig. 30 A comparison of the observed data and predicted MC distri-
butions in the multijet (a) and γ + jet (b) event samples for the HEP-
TopTagger mass. The data-driven normalisation correction, described
in Sect. 6.2.1, is shown in the legend beside the specific sample to which
it applies. Systematic uncertainties are indicated as a band in the lower
panel and include all experimental uncertainties related to the selection

of events, as well as the reconstruction and calibration of the large-R
jet. The difference in the shape of the HEPTopTagger mass distribution
between the multijet and the γ + jet selections, in particular the absence
of a pronounced top-mass peak in the γ + jet selection, is caused by the
difference in the jet pT thresholds
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Fig. 31 A comparison of the observed data and predicted MC distri-
butions of the anti-kt R =1.0 trimmed jet mcomb observable for events
from the multijet (a) or γ + jet (b) selections that pass the selection on
the jet-shape-based W -boson DNN tagger. The data-driven normalisa-
tion correction, described in Sect. 6.2.1, is shown in the legend beside

the specific sample to which it applies. Systematic uncertainties are
indicated as a band in the lower panel and include all experimental
uncertainties related to the selection of events, as well as the recon-
struction and calibration of the large-R jet
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Fig. 32 A comparison of the observed data and predicted MC distri-
butions of the anti-kt R =1.0 trimmed jet mcomb observable for events
from the multijet (a) or γ + jet (b) selections that pass the selection
on the jet-shape-based top quark DNN tagger. The data-driven nor-
malisation correction, described in Sect. 6.2.1, is shown in the legend

beside the specific sample to which it applies. Systematic uncertainties
are indicated as a band in the lower panel and include all experimental
uncertainties related to the selection of events, as well as the reconstruc-
tion and calibration of the large-R jet

matic range and probe the behaviour of quark- and gluon-
enriched regions of phase space separately [97]. The first
sample, multijet events, provides a means to study a mixture
of light-quark and gluon jets in the kinematic range from pT

of approximately 450–3000 GeV while the γ + jet sample
is greatly enhanced in the fraction of quark jets produced
and provides a means to study jets with pT from ∼ 200 to
2000 GeV. As in the case of the study of signal W -boson and
top-quark jets in Sect. 6.1, the distributions of important tag-
ging observables are examined and the background rejection
is quantified in both data and Monte Carlo simulation.

6.2.1 Analysis and selection

To select the multijet sample, events are selected in both data
and Monte Carlo simulation using a single-jet trigger based
on a single large-R anti-kt trimmed jet with R = 1.0 with an
online requirement of ET > 360 GeV during 2015 data taking
and 420 GeV in 2016. Events are then required to have at least
one fully-calibrated large-R anti-kt trimmed jet with radius
1.0 with pT > 450 GeV so that the trigger is fully efficient.
After this selection, the modelling of the highest-pT large-
R jet (both anti-kt R =1.0 trimmed and C/A R = 1.5) in
the event is examined with respect to both the Pythia and
Herwig++ generators described in Sect. 3.

In the case of the γ + jet sample, events are selected in
both data and Monte Carlo simulation with a single-photon

trigger which selects photons satisfying “loose” quality cri-
teria and which pass an online requirement of ET > 120 GeV
in 2015 and 140 GeV in 2016. Photon candidates are required
to be within |η| < 2.5 and satisfy a likelihood-based identi-
fication criterion based on shower shape observables in the
electromagnetic calorimeter as well as the relative amount of
energy in the hadronic and electromagnetic calorimeters, and
are required to be isolated from other activity in the event.
Both the identification and isolation criteria are required to
satisfy the “tight” working point described in Ref. [98]. In
addition, large-R jets are required to have pT > 200 GeV,
|η| < 2.0 and to be well-separated from the reconstructed
photon with �φ(jet, γ ) > π

2 . Finally, events with at least
one photon with ET > 155 GeV are selected to ensure that
the trigger is fully efficient.

In both selections, the normalisation of the simulated mul-
tijet and γ + jet predictions is derived directly from data
after the initial inclusive selection, taking into account the
small contribution from hadronically decaying W -boson, Z -
boson and t t̄ events. First the predicted contribution from
processes containing real hadronically decaying W bosons
and top quarks is subtracted from data. The remaining Monte
Carlo samples are then normalised to reproduce the same
yield as the background-subtracted data.

Figures 24 and 25 show a comparison of the distributions
of the leading anti-kt R =1.0 and C/A R =1.5 jet mass in
the inclusive multijet and γ + jet selections. In addition, the
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Fig. 33 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the two-variable W -boson tagger in the multijet (a, c) and γ + jet (b, d) selection

primary tagging observables used to perform W -boson and
top-quark tagging described in Sect. 4 are shown in Figs. 26,
27, 28, 29 and 30. In general, the modelling of the shape of
the tagging discriminants in data by the Monte Carlo simula-
tion agrees at the 20% level, with non-negligible differences
observed when comparing Pythia8 to Herwig Monte Carlo
predictions. Finally, the jet mass distribution for jets that are
positively tagged using the jet-shape-based DNN discrimi-
nant optimised in Sect. 5.2 is shown in Figs. 31 and 32 for
the multijet and γ + jet topologies. Good agreement between
data and Monte Carlo simulation is observed within uncer-
tainties, which are dominated by Monte Carlo modelling. It
is further observed that the jet mass distribution is strongly

distorted after the application of the tagger, a feature which
is shared by all tagging techniques described in Sect. 4.

6.2.2 Background rejection measurements

In a similar manner to the measurement of the signal effi-
ciency in Sect. 6.1.2, the background rejection 1/εbkg is mea-
sured for the W -boson and top-quark tagging working points
described in Sect. 6.1.2. This measurement is performed in
both the multijet and γ + jet topologies as a function of the
transverse momentum of the highest-pT jet in the event, taken
to be the leading jet studied in Sect. 6.2.1, as well as μ.

The approach in this measurement is simpler than the chi-
square fit approach used in Sect. 6.1.2 due to the purity of
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Fig. 34 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the DNN W -boson tagger in the multijet (a, c) and γ + jet (b, d) selection

these samples. In particular, after subtracting the signal con-
tamination from data and performing the normalisation of
the multijet and γ + jet samples in the inclusive selection
described in Sect. 6.2.1, the background efficiency is calcu-
lated directly as the fraction of events that satisfy the full
set of tagging criteria in data and in Monte Carlo simula-
tion. The results are shown in Figs. 33, 34, 35, 36, 37, 38
and 39, for the full set of tagging techniques. In the case of
W -boson tagging (Figs. 33, 34), the dependence of the back-
ground rejection on jet pT arises from the requirement of a
fixed signal efficiency. At low jet pT, there is a non-negligible
fraction of signal W -boson jets which are not sufficiently col-
limated due to radiation from parton shower outside of the

jet area despite the signal labelling requirement on the �R
between the quarks from W -boson decay and the jet axis. As
a result, a broader jet-mass selection is required to maintain
the 50% signal efficiency. As the jet pT increases, the sam-
ple of signal jets becomes better contained within a radius
of 1.0, thereby allowing a stricter mass requirement, and the
background rejection increases. However, the W -boson sig-
nal jets become fully contained at pT ∼ 800 GeV, and with
increasing jet pT the experimental resolution worsens and the
Sudakov peak of the light-jet mass migrates into the signal
region, thereby leading to a degradation of the background
rejection.
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Fig. 35 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the two-variable top-quark tagger in the multijet (a, c) and γ + jet (b, d) selection

Good agreement is generally observed between the pre-
dicted and measured rejections. For the multijet topology, the
Pythia8 prediction of the background rejection describes
the observed one, while the Herwig++ prediction is lower
than the rejection in data. Although the rejections for the two
topologies are similar, there are relatively large uncertain-
ties at higher jet pT, with clear differences observed between
the generators examined for the dominant samples in each
topology. In particular, in the case of W -boson tagging, it is
observed that these generator differences are larger for the
more complex jet-shape DNN tagger, shown in Fig. 34, than
for the cut-based tagger, shown in Fig. 33. In the case of top-
quark tagging, in addition to the trend between the jet-shape

DNN and cut-based taggers, a similar trend can be seen in
which a more algorithmically involved classifier, namely the
TopoDNN tagger, shown in Fig. 37, shows larger differences
between generators than the jet-shape DNN tagger, shown in
Fig. 36.

When examining the background rejection with respect
to μ, in the case of W -boson tagging, a trend of increasing
background rejection for higher μ exists. This is observed in
both the multijet and γ + jet topologies and found to be the
same size for both themcomb+D2 W -boson tagger and the jet
shape-based DNN W -boson tagger. In the case of top-quark
tagging, themcomb+τ32 top-quark tagger, the jet shape-based
DNN top-quark tagger, and the TopoDNN tagger show no
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Fig. 36 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the DNN top-quark tagger in the multijet (a, c) and γ + jet (b, d) selection

clear trend as a function of pile-up, likely due to the high-
pT regime selected by the top-quark taggers. However, the
Shower Deconstruction top-quark tagger shows minor trends
with the background rejection decreasing as the level of pile-
up increases. The background rejection of the HEPTopTagger
shows little dependence on μ. In all cases, this trend is well-
described by the Monte Carlo simulation.

6.3 Systematic uncertainties

A number of sources of systematic uncertainty enter into
the evaluation of the modelling of data by the Monte Carlo
simulation. These uncertainties derive both from theoretical

assumptions within the Monte Carlo predictions and from the
reconstruction and calibration of the detector response to the
physics objects and therefore affect the three topologies to
varying degrees. These sources of uncertainty, their effect in
this analysis, and the manner in which they are estimated are
summarised in Tables 3 and 4. Systematic uncertainties are
propagated to the signal efficiency measurement by repeating
the fit for varied templates that correspond to each systematic
uncertainty source and comparing the extracted efficiency for
the varied and nominal templates.

From this set of uncertainties, those originating from the
measurement of leptons, photons, anti-kt R = 0.4 calorime-
ter jets, and the Emiss

T soft term are found to be negligible in
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Fig. 37 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the TopoDNN top-quark tagger in the multijet (a, c) and γ + jet (b, d) selection

all cases. Additionally, the uncertainty related to the estima-
tion and subsequent subtraction of the multijet background
in the t t̄ analysis in Sect. 6.1 and the background with a
real hadronic W /Z -boson or top-quark decay in the multijet
and γ + jet analysis in Sect. 6.2 are found to be negligible.
The uncertainties due to the application of flavour tagging in
the t t̄ analysis of signal jets are subdominant and affect the
yield results with an impact of the order of 20% in the region
of mcomb below 100 GeV. Similarly, the component of the
flavour tagging uncertainties pertaining to the misidentifica-
tion of light-flavour jets as b-jets tend to have a larger effect
at low values of the multivariate classifier score, in Figs. 12
and 13 where non-top-quark jet contributions are more dom-

inant. However, due to the localization of these effects, they
have a negligible impact on the measurement of the signal
efficiency. The uncertainties in both the scale and resolution
of the observable of interest (e.g. mcalo, D2 and τ32) are eval-
uated by comparing the large-R jets formed from calorimeter
cell topoclusters to those formed from ID tracks [95]. These
sources of uncertainty generally cause small (10%) changes
in the yield of events near the most highly populated regions
of the distributions of observables but are generally the dom-
inant uncertainties when examining both the tails of these
distributions and the regions near mW and mtop in Sect. 6.1.
Likewise, in the case of the HEPTopTagger, the subjet energy
scale uncertainty, which itself is based on Run 1 studies, is
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Fig. 38 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the shower deconstruction top-quark tagger in the multijet (a, c) and γ + jet (b, d) selection

a dominant source of systematic uncertainty in the shape of
the HEPTopTagger mass near mtop but this uncertainty does
not propagate strongly into the final evaluation of the signal
efficiency due to the broad mass window selection described
in Sect. 4.3.4.

The dominant systematic uncertainties of these techniques
are those related to the theoretical modelling of the Monte
Carlo predictions. In particular, in Sect. 6.1, the contribu-
tion of the uncertainty in the modelling of parton shower and
hadronisation is dominant in all cases, leading to variations
in the yield of the Monte Carlo when examining the distri-
butions of mcomb, D2, and τ32 of up to 30%. This is also true
when examining the modelling of the multivariate classifiers,

shown in Figs. 12 and 13. In the tails of these distributions,
the uncertainty in the modelling of additional radiation in t t̄
events yields variations that are comparable in size. The same
behaviour can be observed in the study of the modelling of
light jets, particularly in Sect. 6.2.1, where predictions from
both Pythia8 and Herwig++ show shape differences rang-
ing up to approximately 25% for certain jet moments as well
as for the DNN top tagger. As seen in Sects. 6.1.2 and 6.2.2,
these uncertainties manifest themselves as large variations in
the measured signal efficiency and background rejection. In
the case of the tagging efficiency measurement of top quarks
in particular, the measured signal efficiency is found to be
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Fig. 39 The estimated light-jet rejection 1/εbkg as a function of the leading jet pT and the average number of interactions per bunch crossing μ

for the HEPTopTagger in the multijet (a, c) and γ + jet (b, d) selection

susceptible to both the truth-level labelling of the top quark
and the particular working point chosen for the tagger.

7 Conclusion

Various methods to tag boosted, hadronically decaying W
bosons and top quarks are studied in data and simulation. A
number of techniques, including the use of physically moti-
vated jet moments, shower deconstruction and the HEPTop-
Tagger which were studied in Run 1 are re-optimised for
use in LHC Run 2 conditions. Additionally, the multivariate

combination of high-level jet moments using boosted deci-
sion trees and neural networks as well as the combination of
low-level energy flow information in the form of topoclusters
using a deep neural network is studied both in data and Monte
Carlo simulation. The performance of these techniques is
evaluated using Monte Carlo simulation for jets in the pT

range from 500 to 2000 GeV and compared in terms of the
central value of the background rejection at fixed signal effi-
ciency. This study indicates that a multivariate combination
of information can enhance performance to exceed that of
techniques based on more physically motivated individual
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Table 3 Summary of theoretical systematic uncertainties considered in the performance measurements in data

Source Affected topologies Description

Event generator choice t t̄ Hard-scattering modelling uncertainty estimated as
the difference between Powheg+Herwig and
MC@NLO+Herwig [29]

Showering choice t t̄ Parton shower and hadronisation modelling
uncertainty estimated from the difference between
Powheg+Pythia6 and Powheg+Herwig [29]

Modelling of extra QCD radiation t t̄ Uncertainty in amount of initial/final-state radiation
estimated as the difference between the nominal
Powheg+Pythia6 generator and radLo and radHi
tunes of Powheg+Pythia6. The radiation
variations include variation of renormalisation and
factorisation scales and the hdamp parameters [29]

t t̄ total cross-section uncertainty t t̄ Uncertainty in normalisation of t t̄ MC contribution
of magnitude ± 5.5% [26]

Single-top total cross-section
uncertainty

t t̄ Uncertainty in normalisation of single-top MC
contribution of magnitude ± 5.3% (a conservative
estimate enveloping the uncertainties on t-channel,
s-channel and Wt-channel)

W+jets total cross-section
uncertainty

t t̄ Uncertainty in normalisation of W +jets MC
contribution of magnitude ± 5.0% [99]

W+jets theory scale uncertainties t t̄ Uncertainty arising from the choice of
renormalisation and factorisation scale, CKKW
matching scale and QSF scale [100]. For the
renormalisation and factorisation scale, ×0.5 and
×2 variations are considered and the
renormalisation and factorisation scales are varied
independently as well as in correlated and
anti-correlated ways. The envelope of the
variations is considered as the final
renormalisation+factorisation scale uncertainty

Signal normalisation Multijet, γ + jet The uncertainty in the subtraction of processes
containing a hadronically decaying top quark or
vector boson, conservatively taken to be 25%

features across the full jet pT range for both W -boson and
top-quark tagging.

The performance of the various tagging techniques is stud-
ied using a sample of 36.1fb−1 of 13 TeV proton–proton col-
lision data collected by the ATLAS detector at the LHC in
2015 and 2016. A sample of lepton-plus-jets t t̄ events is used
to study the signal W -boson and top-quark jet tagging effi-
ciency and compare the predicted efficiency in Monte Carlo
simulation to that in data for a set of working points for the
tagging strategies from which in situ calibrations and sys-
tematic uncertainties can be derived. Likewise, background
light-jet-enriched event topologies are studied using multi-
jet and γ + jet samples. We have demonstrated that tagging
efficiencies and the relevant uncertainties for both signal and
background can be extracted from data. This opens oppor-
tunities for complex W -boson and top-quark taggers using
state of the art techniques such as DNNs and new inputs to be

utilized with ATLAS data in the future. In general, it is found
that the inputs to and the performance of the studiedW -boson
and top-quark taggers currently in use in physics analyses are
well-modelled by Monte Carlo simulations. However, in all
studies, it is found that the primary limiting factor in the
description of the tagging efficiency by the Monte Carlo pre-
diction derives from the theoretical modelling of the Monte
Carlo processes studied, particularly the parton shower and
hadronisation model of the t t̄ process. Finally, the small pile-
up dependence of each tagger working point is characterised
to understand the relative susceptibility of each strategy to
pile-up contamination within the jet. In general, the signal
efficiency is found to be quite robust against increased lev-
els of event pile-up whereas the background rejection shows
residual pile-up dependence, particularly in the case of the
W taggers. In all cases, however, the dependence is well-
described by the Monte Carlo simulation.
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Table 4 Summary of experimental systematic uncertainties considered in the performance measurements in data

Source Affected topologies Description

Anti-kt R =1.0 trimmed jet
moment scale

t t̄ , multijet, γ + jet The uncertainty in the scale of the detector response for all jet moments
derived by comparing the calorimeter quantity with the reference track
jet [8]

Anti-kt R =1.0 trimmed jet
moment resolution

t t̄ , multijet, γ + jet The uncertainty in the resolution of the detector response conservatively
estimated as a 2% absolute uncertainty in pT, a 20% relative uncertainty in
jet mass, and a 15% relative uncertainty in all other jet moments [95]

C/A R = 1.5 subjet energy scale t t̄ , multijet, γ + jet The uncertainty in the scale of the detector energy response for subjets used
in the HEPTopTagger algorithm conservatively estimated to be 3% based on
Run 1 studies [9]

Anti-kt R = 0.4 jet energy scale
and resolution

t t̄ The uncertainty in the scale and resolution of the detector response for the jet
pT derived from simulation and in situ calibration measurements [40]

Emiss
T track soft term t t̄ The uncertainty on the component of the Emiss

T calculation due to energy flow
that is unassigned to a calibrated physics object, estimated in-situ in Z+jet
events [94]

Flavour tagging t t̄ The uncertainty in the scale factor correcting the efficiency response of the
detector to identify heavy-flavour b- and c-jets as well as light-flavour jets
derived in situ using t t̄ events [92,96]

Lepton reconstruction and
calibration

t t̄ The uncertainty in the scale factor correcting the efficiency to trigger on,
reconstruct, and identify leptons as well as uncertainties in their energy and
pT scale and resolution [88,89,101]

Photon reconstruction and
calibration

γ + jet The uncertainty in the scale factor correcting the efficiency to trigger on,
reconstruct, and identify photons [102] as well as uncertainties in their
energy scale and resolution [103]

Multijet background normalisation t t̄ The uncertainty in the data-driven prediction of the yield of multijet events,
conservatively taken to be 50% based on the estimate in Ref. [2]

Multijet lepton misreconstruction
efficiencies

t t̄ The statistical uncertainty of the real and fake/non-prompt lepton
reconstruction efficiencies estimated in Ref. [2] is propagated through the
matrix method

Luminosity uncertainty t t̄ , multijet, γ + jet A 2.1 % relative uncertainty in the MC yield, based on the luminosity
uncertainty of the combined 2015+2016 dataset based on [104]

Pile-up uncertainty t t̄ , multijet, γ + jet Uncertainty in the reweighting of MC pile-up profile to the measured pile-up
profile in data based on disagreement between instantaneous luminosity in
data and in simulation [104]
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Appendix

A BDT and DNN hyper-parameters

In this section, a description of the tuned hyper-parameters
of the BDT and DNN are presented in Tables 5 and 6.

Table 5 Brief description of the BDT parameters and the chosen param-
eters

Setting name Description Choice

Software package Package used for
training

TMVA 4.2.1 [105]

BoostType Type of boosting
technique

GradientBoost

NTrees Number of trees in the
forest

500

MaxDepth Max depth of the
decision tree allowed

20

MinimumNodeSize Minimum fraction of
training events
required in a leaf node

1.0%

Shrinkage Learning rate for
GradientBoost
algorithm

0.5

UseBaggedBoost Use only a random
(bagged) subsample of
all events for growing
the trees in each
iteration

True

BaggedSampleFraction Relative size of bagged
event sample to
original size of the
data sample

0.5

SeparationType Separation criterion for
node splitting

GiniIndex

nCuts Number of grid points in
variable range used in
finding optimal cut in
node splitting

500

Table 6 Chosen DNN parameters and architecture for shape-based W -
boson and top-quark tagging

W -boson tagging Top-quark tagging References

Software
package

Keras 1.0.8 with Theano backend,
lwtnn 2.0

[106–108]

Layer type Dense Dense [106]

Number of
hidden
layers

4 5 [106]

Architecture 16, 14, 9, 6 18, 16, 14, 10, 5 –

Activation
function

Rectified linear
unit (relu)

Rectified linear
unit (relu)

[109]

Optimizer Adam Adam [110]

Learning rate 0.0001 0.00005 [110]

L1 regulariser 0.001 0.001 [109]

NN weight
initialisa-
tion

Glorot uniform Glorot uniform [111]

Batch size 200 200 [109]

Batch nor-
malisation

Yes Yes [112]

Number of
epochs

100 with early
stopping

100 with early
stopping

[106]

Training
input group

Group 8 Group 9 –
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