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Abstract

The aim of this investigation was to compare serum growth hormone (GH), insulin-like

growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) in re-

sponse to a combined sprint and resistance training (CSRT) program in young and middle-

aged men.Thirty-eight healthy, moderately trained men participated in this study. Young

and middle-aged men were randomly assigned to, a young training group (YT = 10, 21.4±
1.2yrs) ora young control group (YC = 9, 21.6±1.8 yrs), a middle-aged training group (MAT =

10, 40.4±2.1 yrs) or a middle-aged control group (MAC = 9, 40.5±1.8 yrs). Participants per-

formed the Wingate Anaerobic Test (WAnT) before and after a 13-week CSRT program

(three sessions per week). Blood samples were collected at rest, after warm-up, immedi-

ately post-WAnT, and 10 min post-WAnT. CSRT induced increases in GH at rest and in

response to the WAnT in YT and MAT (P<0.05). CSRT-induced increases were observed

for IGF-1 and IGFBP-3 at rest in MAT only (P<0.05). Pre-training, GH, IGF-1 and IGFBP-3

were significantly higher at rest and in response to the WAnT in young participants as com-

pared to their middle-aged counterparts (P<0.05). Post-training, YT and MAT had com-

parable basal GH (P>0.05). In response to the WAnT, amelioration of the age-effect was

observed between YT and MAT for IGF-1 and IGF-1/IGFBP-3 ratio following CSRT (P>
0.05). These data suggest that CSRT increases the activity of the GH/IGF-1 axis at rest and

in response to the WAnT in young and middle-aged men. In addition, CSRT reduces the

normal age-related decline of somatotropic hormones in middle-age men.

Introduction

The aging process is associated with a precipitous decline in skeletal muscle mass and strength,

estimated as 35–40% between 20 and 80 yrs[1], with an accelerated decline after 50 yrs[2].
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Moreover, cross-sectional studies have observed that the ability to develop muscle strength

and power declines from 40 to 80 yrs[3, 4]. It has been suggested that reduced muscle function

may result from neural degeneration combined with muscle atrophy. Muscle atrophy occurs

when muscle protein degradation exceeds muscle protein synthesis. Said muscle atrophy may

be partly attributable to a reduction in anabolic hormone production [5], whilstage-associated

physical inactivity may exacerbate muscle loss. Moreover, the reduction in systemic anabolic

hormones may be further exacerbated by physical inactivity in older adults[6].

The systemic reduction in insulin-like growth factor-1 (IGF-1)has been attributed, in part,

to decreased secretion of growth hormone (GH), the main secretagogue of IGF-1. GH secre-

tion reduces ~14% per decade after the second decade [7], and reaches, by the age of ~60 yrs,

half of the GH secretion of younger counterparts (20–30 yrs[8]). IGF-1, the main stimulated

protein downstream of GH, concomitantly decreases with age (~10% per decade) and is asso-

ciated with cell proliferation, cell differentiation, energy metabolism and prevention of apopto-

sis [9]. Most IGF-1 circulates in the blood bound to IGF-binding proteins (IGFBPs) which

mediate bioavailability into tissue [10]. The most abundant is the insulin-like growth factor-

binding protein 3 (IGFBP-3), which carries 90–95% of IGF-1 in circulation [11]. Hence, it is

necessary to consider IGFBP-3 when total serum IGF-1 is determined to provide a measure

of bioavailability. Serum IGFBP-3 is regulated by GH signaling [12, 13] and reduced with

advanced age [14]. The main function of IGFBP-3 is to permit IGF-1 transport and to regulate

anti-proliferative and apoptotic effects through cell surface receptor by opposing IGF-1 action

[15, 16]. Moreover, IGFBP-3 is a valuable tool for diagnosis of GH perturbation during the

aging process [17].

Because GH naturally declines with age, there has been increasing interest in the role of GH

as an anti-aging factor, and some evidence suggests GH administration increases fatty acid oxi-

dation, protein synthesis and, consequently, lean body mass [18]. To date, however, there have

been no approved clinical studies to assess the effects of GH administration on muscle mass

loss with aging. In fact, GH administration has been shown to have no effect on muscle func-

tion in healthy aged men and women [19].As GH administration is widely used as a muscle

mass and performance enhancer [20], whether exercise could be a nonpharmacological inter-

vention to enhance GH and subsequently muscle mass and muscle strength, requires further

investigation.

Whilst acute exercise-induced elevations in GH and IGF-1 are consistently reported [20–

26], the effect of long-term exercise training on basal GH and IGF-1 secretion is more ambigu-

ous. It is well known that GH response exercise training depends on several factors including

age, diet, stress, or training intensity [20, 27]. Metabolic (i.e glucose) and hormonal (i.e. cate-

cholamines, cortisol, testosterone) factors also influence GH [28–30] which in turn are also

dependent upon exercise intensity and training type[31, 32]. In this context, increase of these

hormones is greater following anaerobic training in young and middle-aged trained men [6,

31–33]. Moreover, Nevill et al. [34] suggested that serum GH response to treadmill running

was greater in sprinters compared to endurance athletes. In addition, endurance training (run-

ning for eight weeks) resulted in increased systemic IGF-1 (+15%) in subjects aged ~66 yrs

[35], yet Vitiello, Wilkinson [36] observed no perturbation in IGF-1 amongst moderately and

well-trained endurance athletes aged ~69 yrs. As such, intensive training using sprint or resis-

tance training appears necessary to induce changes to serum GH. Moreover, numerous studies

suggest sprint training may elicits greater increase in muscle strength than the endurance

training[31, 34]. Borst et al. [37] suggested that 25 weeks’ resistance training in middle-aged

men (~37 yrs) resulted in increased GH and IGF-1 with increase in strength performances.

However, Adams et al. [38] suggested it necessary to add different types of exercise to resis-

tance exercise in order to obtain higher muscle power during sprint exercise. In fact, some
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authors suggest combined sprint and resistance training is more efficient than sprint training

only [39] or resistance training only [40].

Most existing GH and IGF-1 exercise studies have focusedon young (~20 yrs) and elderly

(>65 yrs) subjects. Therefore, there is a paucity of data concerning the effect of concurrent

exercise training (sprint interval and resistance exercises) on somatotropic hormones in adults

~40 yrs. Thus, we examined the effect of 13 weeks’concurrenttraining on GH, IGF-1, and

IGFBP-3 in young (~20 yrs) and middle-aged (~40 yrs) men before and after supramaximal

exercise. We hypothesized a priori that younger participants would have greater GH, IGF-1,

and IGFBP-3. Moreover, we hypothesized that training would increase somatotropic hormone

concentrations in both age groups.

Materials and methods

Participants

Military Participants reviewed and signed consent forms specifically approved by the “Depart-
ment of staff and training committee” (Bouchoucha, Tunisia). The “Departement of staff and
training committee" approved the entire study design which has been conducted according to

the principles expressed in the Declaration of Helsinki.

During the design of the study, statistical power analysis was carried out to calculate sample

size. This procedure showed that nine subjects for each of four groups were needed to achieve

a statistical power of 80% to detect a small effect (d = 0.29) when assessed by four-factor mixed

analysis of variance (ANOVA) with a level of significance of 5%. Therefore, thirty-eight

healthy, moderately trained men (military participants) were recruited for participation in the

present investigation.

To assess the physical condition of military participants, we used an adapted version of the

Baeckequestionnaire [41]. Before the study, subjects performed 1 h of running and leisure-

time physical activity at least three times per week (180 min�week-1). Inclusion criteria in-

cluded the absence of the following: contraindications to maximal exercise testing (e.g., cardio-

vascular or pulmonary disease); endocrine disorders; metabolic syndrome symptoms (e.g.,

hypertension, impaired fasting glucose).Following recruitment and familiarization, partici-

pants completed medical history and dietary questionnaires. Thereafter, young and middle-

aged participants were randomized to receive 13 weeks’ combined sprint and resistance train-

ing (CSRT), or control. Therefore, four groups existed: a young training group (YT = 10; age

21.4±1.2yrs, body height 178.3±3.2 cm, body mass 74.4±5.4 kg), a young control group (YC =

9; age 21.6±1.8 yrs, body height 179.7±6.4 cm, body mass 69.5±7.3 kg), a middle-aged training

group (MAT = 10; age 40.4±2.1 yrs, body height 175.8±5.2 cm, body mass 78.4±5.2 kg) and a

middle-aged control group (MAC = 9; 40.5±1.8 yrs, body height 177.3±4.4 cm, body mass 76.6

±3.9 kg).

A conventional dietary survey was conducted by a sports nutritionist of the Department of

Physical Education and Military Sport to monitor individual participants’ diets over the 13

weeks. Participants were asked to abstain from high glycemic loads, saturated and trans-fatty

acids, caffeine, alcohol, drugs, vitamins or supplements, and low-fiber diets for the duration of

the study.

Before training (during the medical examination), subjects were familiarized with testing

procedures to negate learning effect. Participants avoided physical activity for 48 h preceding

each test. The testing period was divided into two phases: before (P1), and after (P2), training.

Each period lasted seven days and included anthropometric measurements andtwo consecu-

tive laboratory visits separated by 48 h. The second phase (P2) began 48 h after training cessa-

tion and finished seven days later. All tests were performed in the morning 2h postprandial
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(standard breakfast: 10 kcal�kg-1, 55% carbohydrate, 33% lipids and 12% protein). Anthropo-

metric parameters were measured on the morning of the first day. Measurement of body mass

(kg) and height (cm) were taken from all participants. Body mass was measured to the nearest

0.1 kg, with subjects in light clothing and without shoes, using electronic scales (Kern, MFB

150K100). Height was determined to the nearest 0.5cm with a measuring tape fixed to the wall.

Subsequently, skin-folds were measured using Harpenden calipers (Harpenden skinfold cali-

pers, Sweden). Percentage body fat was determined by the four skin-folds method [42].

Exercise tests

During the medical exam, participants performed the Astrand-Ryhming test [43]on a cycle

ergometer (Monark Ergoline: ER900, Ergoline, Jaeger, Würzburg, Germany) to estimate maxi-

mal oxygen uptake (VO2max). Heart rate (S810, Polar Instruments Inc., Oulu, Finland) and rat-

ing of perceived exertion (RPE; Borg 1973) was recorded at the end of each stage. A maximal

test was confirmed when participants achieved a minimum of any three of the following crite-

ria; volitional exhaustion, peak heart rate within 10 beats of age predicted maximum, blood

lactate above 8 mmol�L-1, final RPE>18 on Borg scale.

48 hours later (day 2), subjects performed a force-velocity (F/V) test [44] on a cycle ergome-

ter (Monark Ergomedic 894E Peak Bike, Monark, Varberg, Sweden). The test began 5 min

after warm-up (15 min at a power output corresponding to 50% estimated VO2max). This test

comprised five short trials (6 s) against increasing resistance (2 kg each sprint) until the veloc-

ity began to decrease during the 6 s trials. Recovery time between each trial was 5 min. The

highest pedaling cadence recorded after each trial was collected from a photoelectric cell fixed

on the wheel of the cycle ergometer and connected to a computer. The load that permitted the

highest peak power output was used for the Wingate Anaerobic Test (WAnT).

48 hours later (day 3), subjects performed the WAnT on a mechanically-braked Monark

cycle ergometer (Monark Ergomedic 894E Peak Bike, Monark, Varberg, Sweden). The test

commenced 5 min after warm-up. Subjects were asked to cycle maximally for 30s. Maximal

power during the trial was considered as the highest value (Wpeak), while average power during

the WAnT was considered as mean power (Wmean).

Before the F/V test and the WAnT, a heart rate monitor (S810, Polar Instruments Inc.,

Oulu, Finland) was used to control exercise and warm-up intensity. Warm-up intensity was

calculated using the re-engineered equation of Swain et al. [45] to determine the maximum

heart rate percentage (%MHR) using %VO2max:

%MHR ¼ 0:6463�%VO2maxþ 37:182

Where %MHR is the percentage of maximal heart rate and %VO2max is the percentage of esti-

mated maximal oxygen uptake.

A pilot study was carried out to ensure the reproducibility and sensitivity of Wpeak and

Wmean indices, using two measurements of 10 subjects in a single day. Both indices showed

excellent intraclass correlation coefficients (ICC = 0.91–0.94), small standard error of mea-

surements (SEM; 3.41–4.56%, <5%) and a small coefficient of variation (CV; <5%).

Similar testing procedures have been used in numerous studies involving normal weight

adolescent [46], young adults [47–49], and middle-aged men [32,50–53]. The standard WAnT

procedure has limitations because factors such as i) active muscle mass volume and ii) exercise

bioenergetics tend to alter maximal power output (Pmax) (for review see Driss and Vander-

walle [54]. Standardized WAnT intensity has previously failed to utlize an optimal load due to

heterogenous F/V profiles of individuals [44, 55–58]. According to Driss and Vanderwalle[54],

the load during a standardized WAnT underestimates Pmax in normal weight and powerful
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adults. Moreover, the load used by researchers at the Wingate Institute was modified several

times: 75g�kg-1 body weight[59], then 67g�kg-1[60], then 75g�kg-1[61].

Exercise training program

Trained subjects (YT and MAT) underwent 13 weeks’CSRT as previously described [53]. Briefly,

CSRT involved three consecutive sessions separated by 48 h: sprint running sessions (13 sessions),

resistance training sessions (13 sessions) and sprint cycling sessions (13 sessions). Sessions were

performed during the morning and lasted no longer than 70 min, inclusive of 15 min warm-up

(jogging and stretching) and 15 min cool-down (jogging and stretching).

During the first training session, YT and MAT performed a sprint running session, which

included three to five sets of three to five short bouts at maximum velocity. A passive recovery

of 2–3 min was permitted between each set.

Forty-eight hours later, YT and MAT performed the resistance training session, which

included five to six exercises targeting all major muscle groups (squat with Smith machine,

machine leg extension, machine leg curl, calf raises over a step, triceps pushdown with cable

machine, bicep preacher curl, and bench press. The load used during these exercises (% of

one-repetition maximum [1-RM]) was progressively increased from 40 to 65% of 1-RM, and

increased by 5% of 1-RM per week[62]. To produce maximal power output (i.e.,

velocity × load), the positive phase [63] of each exercise was performed as fast as possible [64].

The number of repetitions was maintained as 10–15 per set, and the number of sets increased

from three to fourover the training period. Therefore, training volume increased progressively

during the CSRT program. Rest period between sets were 3–5 min for upper body muscles[65]

and at least 1 min for lower limbs to allow for tolerance to increased repetitions.To adjust

loads during resistance training sessions, we determined muscle strength using a 1-RM for the

six resistance exercises, before CSRT, during the sixthweek and post-CSRT. All subjects were

familiarized with the test procedures. Ten-minute warm-up (stretching and cycling at 50%

VO2max) preceded the test. After 5 min rest, subjects performed 5 repetitions at approximately

50% of the estimated 1-RM followed by another set of 3 repetitions at 70% of the estimated

1-RM. Subjects then performedone repetition of progressively heavier loads until failure. Max-

imum strength was determined as the maximum load that could be lifted once with proper

technique.

During the third training session, subjects performed a sprint cycling session. Each series

comprised three to five repetitions of 10–30 s. The 10–30 s trials were performed maximally.

Subjects recovered actively (at a power output corresponding to 50%VO2max) for 3–5 min

between each sprint.

Blood sampling and analysis

Upon the participants’ arrival, a heparinized catheter (Insyte-W, 1.1 mm o.d. × 30 mm) was

inserted into an antecubital vein, following sitting for 20 min. Blood was obtained between

08:00 and 09:00 h. to control for diurnal variation on visit two of exercise testing. Venous

blood samples were drawn at four times: at rest (0 [after 20 min sitting on the bike]), after

warm-up (W), immediately post-WAnT (end) and 10 min post-WAnT (10). For each sample, 10

mL of blood was collected in tubes containing ethylenediaminetetraacetic acid (EDTA) to

determine concentrations of serumGH, IGF-1, and IGFBP-3. Samples were centrifuged imme-

diately (at 3000 rpm for 15 min at 4˚C), before being divided into appropriate aliquots and

stored at -80˚C for later analysis.

Blood sample was collected from the finger (20μL) at the third minute post-WAnT and

placed in Eppendorfs for measurement of peak blood lactate concentration ([La]peak). Blood
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lactate concentration was determined using an enzymatic lactate analyzer (Microzym, Cetrix,

France).

GH was assayed by chemiluminescence (Immulite, Diagnostic Products Corp., Los Ange-

les, CA, USA). The GH assay sensitivity limit was 0.1 ng�ml-1 and inter- and intra-assay CV

was 5.7–10% and 4.9–8.3% respectively. IGF-1 was measured using the non-extraction IGF-1

immunoradiometric assay (IRMA) kit (Diagnostic Systems Laboratories, Webster, TX, USA).

The theoretical sensitivity, or minimum detection limit, as calculated by interpolation of the

mean plus twostandard deviations (SD) of 20 standard replicas 0 ng�ml-1 was 2 ng�ml-1. The

inter-assay CV was 7.4% and 4.2% at concentrations of 35.5 ng�ml-1 and 383.9 ng�ml-1 respec-

tively. Theintra-assay CV was 6.8% and 6.3% for mean concentrations of 34.03ng�ml-1and

373.86 ng�ml-1respectively. IGFBP-3 concentrations were measured by using the non-extrac-

tion IRMA kit (Diagnostic Systems Laboratories, Webster, TX, USA). The lower threshold of

detection, calculated as the mean two SD of 22 standard replica 0 ng�ml-1 of IGFBP-3, was

~0.5 ng�ml-1. The intra-assay CV was 1.8% and 3.9% for mean concentrations of 82.7 ng�ml-1

and 7.4 ng�ml-1 respectively. The inter-assay CV was 1.9% and 0.6% for mean concentrations

of 76.9 ng�ml-1and 8.0 ng�ml-1 respectively. All biochemical assays were run in duplicate.

Statistical analysis

Data were analyzedusing SPSS version 23.0 for Windows (SPSS, Inc. Chicago, IL, USA).

Means and standard deviations (SD) were calculated after verifying normality of distributions

using the Kolmogorov-Smirnov procedure. For anthropometric, physiological and physical

performance, along with area under the curve (AUC), data were analyzed using a multifacto-

rial three-way (time [P1, P2] × age [young, middle-aged] × group [trained, control]) ANOVA.

Hormone responses were analyzed using a four-factor ANOVA (time [P1, P2] × Wingate

time [warm-up, immediately post-WAnT and 10 min post-WAnT] ×age [young, middle-

aged] × group [trained, control]).

Total AUCs for GH, IGF-1, and IGFBP-3 were calculated to determine the total hormone

exposure over the measured period. It simplified the statistical analyses by rendering the multi-

variate results into univariate result [66]. The AUC is determined using the linear trapezoidal

method which uses linear interpolation between data points.

Greenhouse-Geisser corrections were used when the assumption of sphericity (Mauchly’s

test) was violated. To help protect against type II errors, an estimate of power (ώ) and effect

size (η2
p) were calculated. Bonferroni-adjusted pairwise post hoc comparisons were performed

where appropriate. Pearson’s product-moment correlation coefficients were calculated to

assess relationships between variables. Significance level was set a priori at P<0.05.

Results

Anthropometric data

At P1, there was a significant main effect of age for body mass (F = 4.99, P = 0.03, η2
p = 0.13,

ώ = 0.58), whereby YT and YC were significantly lighter than MAT and MAC (P<0.05). At

P2, both training groups experienced a decrease in body mass from P1 (72.4±5.2 and 76.2±5.4

kg for YT, and MAT respectively [P<0.05]), whereas the control groups’ body mass was not

significantly different from P1 (P>0.05). The main effect of time (from P1 to P2) was signifi-

cant (F = 8.85, P<0.01, η2
p = 0.21, ώ = 0.82) after CSRT.

At P1, there was no main effect of age for body fat percentage (11.7±1.4%, 11.3±1.8%, 12.9

±1.2%, and 12.4±2.2% for YT, YC, MAT, and MAC respectively; F = 2.45, P = 0.13, η2
p = 0.07,

ώ = 0.33). At P2, both training groups experienced a decrease in body fat from P1 (10.2±0.8%

and 11.2±1.4% for YT, and MAT respectively; F = 14.52, P<0.01, η2
p = 0.30, ώ = 0.96), while
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control groups’ body fat percentages were not significantly different from P1 (F = 2.16,

P>0.05). We also observed significant interaction between Time×Group (F = 5.82, P = 0.02,

η2
p = 0.15, ώ = 0.65).

At P1, no significant main effect of age for fat-free mass (FFM) was observed (65.2±5.5kg,

64.1±4.5kg, 62.1±5.2kg, and 60.4±3.2kg for YT, YC, MAT, and MAC respectively with

F = 2.14, P = 0.15, η2
p = 0.06, ώ = 0.30). At P2, FFM was 66.1±5.1kg, 64.6±5.7kg, 63.8±5.4kg,

and 61.4±4.4 kg for YT, YC, MAT, and MAC respectively. No group experienced a significant

change in FFM between P1 and P2 (P>0.05) and there was no main effect of time (F = 0.68,

P = 0.41, η2
p = 0.02, ώ = 0.13).

Physical performance and physiological response

The results of the WAnT are displayed in Table 1. There was a significant main effect of age in

Wpeak (F = 5.98, P = 0.02, η2
p = 0.15, ώ = 0.66). At P1, Wpeak was significantly higher in young

groups compared to middle-aged groups (P<0.05). However, this main effect of age for Wpeak

at P1 (P<0.001) was ameliorated at P2 (P>0.05).

In addition, Wpeak increased significantly after training in both YT and MAT (P<0.05). At

P2, trained groups exhibited significantly (P<0.05) higher Wpeak compared to control groups.

Significant interaction between Time×Group was registered in Wpeak (F = 4.92, P = 0.03, η2
p =

0.13, ώ = 0.58). No main effect of age or time (P>0.05) were observed for Wmean.

[La]peak increased significantly (P<0.05) in trained groups (YT and MAT) after CSRT

(Table 1). A significant main effect of time was observed (F = 20.13, P<0.01, η2
p = 0.37, ώ =

0.99) for [La]peak, whilst there was no main effect of age (F = 1.38, P = 0.25, η2
p = 0.04, ώ =

0.21) between groups at P2.

For VO2max, we observed a significant main effect of time (F = 18.35, P<0.01, η2
p = 0.35,

ώ = 0.99). Estimated VO2max increased significantly after CSRT in both trained groups

(P<0.001), but not in control groups (P>0.05). There was no significant main effect of age

(F = 2.69, P = 0.11, η2
p = 0.07, ώ = 0.36) in VO2max between groups at P2.

Growth hormone response

There was a significant main effect of age for GH (F = 17.47, P<0.01, η2
p = 0.34, ώ = 0.98) and

GH AUC (F = 18.26, P<0.01, η2
p = 0.35, ώ = 1.00) (Table 2).

Table 1. Wingate outcoumes and physiological parameters determined before (P1) and after (P2) training.

YT (n = 10) YC (n = 9) MAT (n = 10) MAC (n = 9)

Wpeak (W) P1 1016±126a,d 1000±312e 885±155a 887 ± 102

P2 1050±123c 944 ±246e 997±145b 824 ± 113

Wmean (W) P1 584 ±58 500± 93 434±86 445 ±37

P2 598 ±71 473±80.6 563±67 402±80

VO2max (mL�min-1�kg-1) P1 42.2 ±6.1a 43.8 ±5.1 39.8 ±9.5a 38.5 ±3.2

P2 45.5 ±5.7c 42.1 ±3.2 45.6 ±11.2b 40.1 ±3.8

La peak (mmol�l-1) P1 14.6 ±2.2a 13.9 ±3.4 13.4 ±2.7a 13.2 ±3.2

P2 16.1 ±2.3c 14.3 ±3.3 15.1 ±2.6b 13.3 ±3.1

Data are means ±SD; maximal Power (Wpeak); mean power (Wmean) in absolute values (W); Peak lactate concentration (Lapeak); Maximal oxygen uptake

(VO2max); young trained (YT); young control (YC); middle-aged trained (MAT); middle-aged control (MAC); before training (P1); after training (P2).
a significant differences from before and after training, a: P < .05.
b significant differences between MAT and MAC, b: P < .05.
c Significant differences between YT and YC, c: P < .05.
d significant differences between YT and MAT, d: P < .05.
e significant differences between YC and MAC, e: P < .05.

https://doi.org/10.1371/journal.pone.0183184.t001
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Significantly higher GH was observed at rest, after warm-up, immediately post- and 10 min

post-WAnT in the young groups as compared to the middle-aged groups at P1 (P<0.05). This

main effect of age was not present in GH0 or GHw between MAT and YT at P2 (P>0.05).

There was a main effect of time for GH (F = 17.83, P<0.01, η2
p = 0.34, ώ = 0.98) and GH

AUC (F = 10.83, P<0.01, η2
p = 0.34, ώ = 0.93). For YT, GH0, GHend, and GH10 were signifi-

cantly higher at P2 compared to P1 (P<0.05). For MAT, GH0, GHend, GHw, and GH10 were

significantly greater at P2 as compared to P1 (P<0.05). We observed no significant changes

from P1 to P2 for GH in control groups (P>0.05).

We observed significant interaction between the Time×Group (F = 7.55, P = 0.01, η2
p = 0.18,

ώ = 0.76). GH0 and GH10 (both P<0.01) were significantly higher in YT compared to YC at P2.

GH0, GHend, and GH10 were significantly higher in MAT compared to MAC at P2 (P<0.05).

IGF-1 response

A significant main effect of Wingate-time (F = 203.19, P<0.01, η2
p = 0.86, ώ = 1.00) was

observed in all groups (Table 3).

At P1 and P2, IGF-1 increased throughout the progression of the WAnT in all groups

(P<0.05), i.e., from IGF-10 to IGF-110.In addition, significant interaction between Wingate-

Time×Age (F = 16.25, P<0.001, η2
p = 0.32, ώ = 1.00) Wingate-Time×Group (F = 3.57,

P = 0.02, η2
p = 0.10, ώ = 0.78), Wingate-Time×Time (F = 12.82, P<0.001, η2

p = 0.27, ώ =

1.00), Wingate-Time×Time×Group (F = 5.00, P<0.001, η2
p = 0.13, ώ = 0.91), and Wingate-

Time ×Time×Group×Age (F = 3.71, P = 0.01, η2
p = 0.10, ώ = 0.79) were observed in IGF-1.

We observed a significant main effect of age for IGF-1 (F = 42.08, P<0.01, η2
p = 0.55, ώ =

1.00) and IGF-1 AUC (F = 41.02, P<0.01, η2
p = 0.50, ώ = 1.00). IGF-1 was significantly higher

at all phases of the WAnT in young as compared to middle-aged groups at P1 (P<0.05). How-

ever, this age effect was not present at P2 (P>0.05 between YT and MAT), whilst, for the control

groups, the main effect of age remained statistically significant at P2 (P<0.01). A main effect of

time was observed in IGF-1 AUC (F = 30.42, P = 0.01, η2
p = 0.17,ώ = 1.00). Significantly greater

IGF-1w and IGF-1end in YT, and IGF-110, IGF-1w, and IGF-1end was observed at P2 compared

Table 2. GH concentration (ng�ml-1) determined before (P1) and after (P2) training.

GH0 GHw GHend GH10 GH AUC

YT (n = 10) P1 0.33±0.21a,d 8.65±2.26d 12.49±4.57a,d 12.51±2.55d 256.90±39.70a,d

P2 0.71±0.39c 9.42±4.11 14.46±5.45d 16.74±5.36a,c,d 309.91±75.31

YC (n = 9) P1 0.32±0.30e 8.60±1.44e 12.66±3.79e 13.31±5.22e 262.60±39.22e

P2 0.45±0.03e 8.83±3.93e 13.10±2.17e 14.33±8.89e 267.20±70.04e

MAT (n = 10) P1 0.24±0.31a 5.78±3.10 a 8.15±4.23a 9.06±3.33a 187.33±36.60a

P2 0.85±0.94b 8.75±2.97 10.78±1.73b 12.97±2.26b 262.91±46.72b

MAC (n = 9) P1 0.13±0.01 5.99±3.96 9.02±3.30 9.64±2.52 191.71±65.62

P2 0.14±0.03 8.15±2.40 10.60±1.75 11.39±1.66 208.50±17.73

Data are means ±SD; plasma GH concentration at rest (GH0); after warm-up (GHw); at the end of exercise (GHend); during recovery (GH10); GH AUC: Area

under the curve (ng�ml-1 per min), young trained (YT); young control (YC); middle-aged trained (MAT); middle-aged control (MAC); before training (P1);

after training (P2) and training
a significant differences from before and after training, a: P < .05.
b significant differences between MAT and MAC, b: P < .05.
c Significant differences between YT and YC, c: P < .05.
d significant differences between YT and MAT, d: P < .05.
e significant differences between YC and MAC, e: P < .05.

https://doi.org/10.1371/journal.pone.0183184.t002
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to P1 in MAT (P<0.05). When compared to control groups, significantly greater IGF-1end was

observed in MAT compared to MAC at P2 (P<0.05). This last result is confirmed by a signifi-

cant interaction between Time×Group (F = 60.90, p = 0.00, η2
p = 0.64, ώ = 1.00).

IGFBP-3 response

There was a significant main effect of Wingate-Time (F = 13.50, P<0.01, η2
p = 0.28, ώ = 1.00).

At P1 and P2, IGFBP-3 increased throughout the progression of the WAnT in all groups

(P<0.05), i.e., from IGFBP-30 to IGFBP-310 (Table 4).

Table 3. IGF-1 concentrations (ng�ml-1) determined before (P1) and after (P2) training.

IGF-10 IGF-1w IGF-1end IGF-110 IGF-1 AUC

YT (n = 10) P1 327.60±137.54d 383.80±169.02a,d 417.91±172.67a,d 678.81±117.33d 13767.70±4425.0a,d

P2 340.90±130.97d 436.79±176.66d 556.63±136.98c 749.87±113.10c,d 15886.71±4034.13

YC (n = 9) P1 340.22±154.45e 323.65±135.19e 433.73±113.92e 465.40±58.12e 13846.01±2541.70e

P2 361.78±139.05e 353.18±146.30e 443.82±100.05e 528.12±118.73e 12994.21±3763.7e

MAT (n = 10) P1 157.10±54.0 a 223.78±53.25a 292.55±61.62 a 300.44±58.11 8379.40±1172.31a

P2 191.00±66.42 268.11±70.56 458.39±71.78 b 392.03±84.64 10403.32±1032.53b

MAC (n = 9) P1 150.89±87.83 257.58±46.14 358.89±75.70 401.58±78.95 9077.52±1363.22

P2 153.88±59.25 210.43±44.97 238.29±38.88 331.73±40.52 7951.21±1192.63

Data are means ±SD; plasma IGF-1 concentration at rest (IGF-10); after warm-up (IGF-1w); at the end of exercise (IGF-1end); during recovery (IGF-110),

IGF-1 AUC: Area under the curve (ng�ml-1 per min), young trained (YT); young control (YC); middle-aged trained (MAT); middle-aged control (MAC); before

training (P1); after training (P2).
a significant differences from before and after training, a: P < .05.
b significant differences between MAT and MAC, b: P < .05.
c Significant differences between YT and YC, c: P < .05.
d significant differences between YT and MAT, d: P < .05.
e significant differences between YC and MAC, e: P < .05.

https://doi.org/10.1371/journal.pone.0183184.t003

Table 4. IGFBP-3 concentrations (ng�ml-1) determined before (P1) and after (P2) training.

IGFBP-30 IGFBP-3w IGFBP-3end IGFBP-310 IGFBP-3AUC

YT (n = 10) P1 4072±389d 4019±422 4220±333d 4100±449d 132162±12088

P2 4163±328 c 4211±405 4330±350 c 4349±398 c, d 13174±8902c

YC (n = 9) P1 3749±403e 3886±358e 4012±384e 3677±373 123202±12087

P2 3788±349e 3826±305e 4022±335e 3632±348 122455±5192e

MAT (n = 10) P1 3060±389 a 3743±290 a 3596±295 3759±372 112767±9871

P2 4130±416 4010±294 3951±238b 3936±391b 124857±6672b

MAC (n = 9) P1 3373±403 3613±332 3789±366 3775±383 111005±7022

P2 3332±379 3648±328 3763±357 3731±375 111860±9854

Data are means ±SD; plasma IGFBP-3 concentration at rest (IGFBP-30); after warm-up (IGFBP-3w); at the end of exercise (IGFBP-3end); during recovery

(IGFBP-310), young trained (YT); IGFBP-3 AUC: Area under the curve (ng�ml-1 per min), young control (YC); middle-aged trained (MAT); middle-aged

control (MAC); before training (P1); after training (P2)
a significant differences from before and after training, a: P < .05.
b significant differences between MAT and MAC, b: P < .05.
c Significant differences between YT and YC, c: P < .05.
d significant differences between YT and MAT, d: P < .05.
e significant differences between YC and MAC, e: P < .05.

https://doi.org/10.1371/journal.pone.0183184.t004
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There was a significant main effect of age for IGFBP-3 (F = 25.57, P<0.01, η2
p = 0.43, ώ =

1.00). Significantly higher basal IGFBP-3 was observed for YT and YC compared to MAT and

MAC at P1 (P = 0.001 and P = 0.002 respectively). However, this main effect of age was not

observed at P2 (i.e., between YT and MAT at P2; P>0.05).

Significant increases in IGFBP-3 were observed in MAT at rest (P = 0.001) and during

warm-up (P = 0.003) at P2 compared to P1. When compared to control groups, IGFBP-30,

IGFBP-3end, and IGFBP-310 were significantly higher in trained groups compared to control

groups at P2 (P<0.05). In fact, a main effect of group was also observed (F = 14.12, P<0.01,

η2
p = 0.29, ώ = 0.95).

IGF-1/IGFBP-3 ratio

The IGF-1/IGFBP-3 ratio was affected by Wingate-time (F = 130.27, P<0.01, η2
p = 0.79, ώ =

1.00). Post-hoc Bonferroni adjustments indicated the ratio increased significantly (P<0.05)

from rest to the end of exercise in all groups at P1 and P2. i.e. from IGF-1/IGFBP-30 to IGF-1/

IGFBP-310 (Fig 1).

A main effect of age (F = 25.57, P<0.01, η2
p = 0.43, ώ = 1.00) was observed for IGF-1/

IGFBP-3 at P1 and was significantly higher at all phases of the WAnT in young compared to

middle-aged groups (P<0.05). However, this age effect was not present following CSRT

(P>0.05 between YT and MAT), whilst, for control groups, the main effect of age remained

statistically significant at P2 (P<0.01). Significant interactions were observed between Age×-
Group (F = 14.29, P<0.01, η2

p = 0.30, ώ = 1.00). CSRT induced significant increases in IGF-1/

IGFBP-3w and IGF-1/IGFBP-3end in YT, and increases in IGF-1/IGFBP-310, IGF-1/IGFBP-3w

and IGF-1/IGFBP-3end in MAT (P<0.05). When compared to control groups, significantly

higher IGF-1/IGFBP-3end were observed in MAT as compared to MAC at P2 (P<0.05) with

significant interactions observed between Time×Group (F = 32.82, P<0.01, η2
p = 0.49 and ώ =

1.00).

Correlative analysis

Before training, a significant positive correlation existed between GH0 and Wpeak for YT

(r = 0.563, P = 0.003). GHend was also positively correlated with Wpeak at P1 (r = 0.792,

P = 0.001) and P2 (r = 0.710, P<0.001) in MAT, but only at P2 in YT (r = 0.268, P = 0.002).

Discussion

The primary finding of the present investigation is that 13 weeks’ CSRT induced a significant

increase in Wpeak in both YT and MAT which ameliorated the effect of age between these

groups. Increased sprint performance was associated with increased GH at rest, in response to

the WAnT, and during recovery in YT and MAT, whilst IGF-1 and IGFBP-3 increased at rest

in MAT only. Prior to CSRT, an effect of age was observed in GH, IGF-1, IGFBP-3, and IGF-

1/IGFBP-3 basally and in response to exercise. However, CSRT ameliorated this age effect as

both training groups (MAT and YT) had comparable basal GH and GH AUC, IGF-1end and

IGF-1 AUC, and IGF-1/IGFBP-3.

The results of the AUC analysis for GH and IGF-1 suggest CSRT produce prolonged eleva-

tions in these hormones in response to the WAnT. Moreover, the increased IGF-1/IGFBP-3

ratio in response to exercise in trained groups suggests that there may be more unbound IGF-

1 available for hormone-receptor interactions.

GH increases are associated with improvements in lean body mass and reduced fat mass

[67] which was supported by the present investigation. In the current study, trained groups

exhibited a trend for greater FFM at P2 (~0.9–1.7kg increases) and significantly less fat mass
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Fig 1. [IGF-1]/[GFBP-3] ratio changes determined before (P1; above) and after (P2; below) training. Plasma [IGF-1]/

[GFBP-3] ratio at rest (0), after warm-up (w), at the end of exercise (end), and during recovery (10) in young trained (YT),

young control (YC), middle-aged trained (MAT), and middle-aged control (MAC) groups. Data are presented as

mean ± standard error for clarity.

https://doi.org/10.1371/journal.pone.0183184.g001
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which may increased oxidative capacity as more active tissue would permit a greater oxygen

uptake [68].Our observation of increased estimated VO2max of ~16% following CSRT is in line

with previous investigators who report increased cardiorespiratory fitness following high

intensity training [69, 70]. In their recent review, Sloth et al. [71] suggested short term sprint

interval training performed alone induces increases of 4.2–13.4% VO2max in young adult

males. Therefore, the combination of sprint interval training with strength exercise appears a

pragmatic approach to improve aerobic capacity in young and middle-aged subjects. These

adaptations may be explained by increased enzymatic activity and mitochondrial mass [71–

73]. However, a mechanistic explanation is outside the scope of this investigation.

As increased aerobic capacity is associated with increased blood lactate during intense efforts

[54, 74], the higher blood lactate observed in trained groups may be due to increased ATP hydro-

lysis leading to greater lactate efflux in the plasma compartment as supported previously [53, 75].

CSRT produced a significant increase in Wpeak in trained groups, which supports several

studies that report anaerobic training leading to enhanced power production in young [76]

and older [77, 78] subjects. Interestingly, we found a positive correlation between serum

growth factors and physical performance alterations, providing further associative evidence

linking growth factors to improved muscle power [79].

In the present study, training-induced increases in basal GH occurred between trained

groups, and ameliorated the age effect at P2. Such findings are in accordance with recent inves-

tigations demonstrating that intense training increases GH in males [80, 81]. However, other

studies have not observed perturbations to basal GH after sprint [34, 82, 83] or resistance [83]

training performed alone.The relatively short half-life of GH and the “snapshot” nature of

basal hormone sampling may explain discrepancies in resultsas GH during rest loses half of its

physiologic activity in10-30 minutes following secretion [84]. This brief period of hormonal

activity depends on several factors such as diet, sleep duration, blood sampling (stress response

from the vascular puncture) and time of the day [20, 84] which contributes to fluctuations in

basal GH. The most reproducible pulse of GH secretion however, occurs in response to intense

exercise, when rate of secretion exceeds rate of degradation [85]. For example, Nevill et al. [34]

reported GH to be tenfold higher than basal levels in sprinters following exercise and were

greater than those measured in endurance athletes. GH increases may also be exercise volume

dependent as 30s all-out sprints resulted in greater GH response than 6 s sprints and remained

high for>90 minutes compared to 60 min following 6 s sprint [86]. An alternative explanation

for discrepancies with previous investigations is the utilisation of concurrent trainingin the

present study, rather than only resistatnce or only sprint training previously investigated.

GH anabolic actions are mostly mediated through IGF-1 and include regulation of whole

body protein synthesis and breakdown[20]. Interestingly, the increased GH AUC following

CSRT was associated with increase in IGF-1 AUC in YT and MAT suggesting that CSRT is a

potent stimulus of the GH/IGF-1 axis. Data from the present investigation are in agreement

with some [87] but not all [88] previous investigations in reporting increased basal IGF-1 fol-

lowing exercise training. For example, Cooper, Taaffe (76] reported comparable IGF-1 in mas-

ters runners and minimally exercising men aged 60–70 yrs (129±10 ng�ml-1and 124±11 ng�ml-1,

respectively). Differences in exercise modality and participant characteristics may explain dis-

crepancies in findings, as the present investigation studied the influence of CSRT in young and

middle-aged, rather than older, men as in the aforementioned investigation. Whilst increased

systemic IGF-1 is generally considered to confer an anabolic advantage, a recent investigation

[89] reported decreased systemic IGF-1 following 12 weeks’ resistance exercise in older adults

(74±6yrs), despite increased lean mass. These authors concluded that, during periods of active

muscle building, IGF-1 is redistributed from circulation into tissue. Moreover, increased IGF-1

was observed without significant alteration in IGFBP-3 AUC in MAT following CSRT. IGFBP-
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3 is known to enhance IGF-1 retention in the circulation and block its access to the cognate

receptor (IGF-1R)[15, 16]. The effect of intense training on IGFBP3 in elderly is still conflicting

[90], and further investigation in large population is needed to better understand its variability

over time in response to intense training.

There is sufficient evidence that anabolism in the elderly are intimately tied to alterations in

GH/IGF-1 axis and declines in total and free IGF-1 response [91]. Nevertheless, CSRT appears

to reduce this age-related effect on IGF-1/IGFBP-3 (a surrogate for IGF-1 bioavailability)

between trained groups at rest, at the end of WAnT, and during recovery with important

increases at all phases following the WAnT. IGF-1 bioavailability appears a strong predictor

on the effectiveness of the IGF-1 action [92] and its increase confirms improvements of GH/

IGF-1 axis in young and middle-aged trained men with training.

Conclusion

In conclusion, 13 weeks’ CSRT improved peak power output and body composition in young

and middle-aged military men. This training intervention increases circulating GH in trained

groups at rest and in response to exercise. Training-induced increases in basal GH occurred

with amelioration of the age effect between trained groups. GH improvements in middle-aged

men were associated with increased IGF-1 levels following CSRT. These were associated with

increased IGF-1 bioavailability index in young and middle-aged trained groups following

training. As such, CSRT appears to counteract the aging effect of somatotropic hormones.
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