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Simple Summary: Cat vocalizations are their basic means of communication. They are particularly
important in assessing their welfare status since they are indicative of information associated with the
environment they were produced, the animal’s emotional state, etc. As such, this work proposes a fully
automatic framework with the ability to process such vocalizations and reveal the context in which they
were produced. To this end, we used suitable audio signal processing and pattern recognition algorithms.
We recorded vocalizations from Maine Coon and European Shorthair breeds emitted in three different
contexts, namely waiting for food, isolation in unfamiliar environment, and brushing. The obtained results are
excellent, rendering the proposed framework particularly useful towards a better understanding of the
acoustic communication between humans and cats.

Abstract: Cats employ vocalizations for communicating information, thus their sounds can carry a wide
range of meanings. Concerning vocalization, an aspect of increasing relevance directly connected with
the welfare of such animals is its emotional interpretation and the recognition of the production context.
To this end, this work presents a proof of concept facilitating the automatic analysis of cat vocalizations
based on signal processing and pattern recognition techniques, aimed at demonstrating if the emission
context can be identified by meowing vocalizations, even if recorded in sub-optimal conditions. We
rely on a dataset including vocalizations of Maine Coon and European Shorthair breeds emitted in three
different contexts: waiting for food, isolation in unfamiliar environment, and brushing. Towards capturing the
emission context, we extract two sets of acoustic parameters, i.e., mel-frequency cepstral coefficients and
temporal modulation features. Subsequently, these are modeled using a classification scheme based on
a directed acyclic graph dividing the problem space. The experiments we conducted demonstrate the
superiority of such a scheme over a series of generative and discriminative classification solutions. These
results open up new perspectives for deepening our knowledge of acoustic communication between
humans and cats and, in general, between humans and animals.

Keywords: acoustic signal processing; pattern recognition; cat vocalizations

1. Introduction

Understanding the mechanisms that regulate communication between animals and humans is
particularly important for companion animals such as dogs (Canis familiaris) and cats (Felis silvestris
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catus), who live in close contact with their human social partners depending on them for health, care
and affection.

Nowadays, cats are one of the most widespread and beloved companion animals: they are ubiquitous,
share their life with people and are perceived as social partners by their owners [1,2]. Despite this, very
few specific studies have been carried out to understand the characteristics of cat vocalizations and the
mechanisms of vocal communication of this species with humans [3–5], let alone their automatic analysis.

Interspecific communication, whether visual, tactile, acoustic, etc. plays a fundamental role in
allowing information sharing [6]. Animals use acoustic communication to transmit information about
several specific situations (e.g., alarm, reproductive and social status). Despite the differences in the
sound-generating apparatus of different animals [3,7,8], sound patterns can be handled in a common
manner. The similarity among the various sound recognition schemes comes from the fact that a sound
source has a very distinctive and characteristic way to distribute its energy over time on its composing
frequencies, which constitutes its so-called spectral signature. This spectral signature comprises a unique
pattern that can be revealed and subsequently identified automatically by employing statistical pattern
classification techniques.

Similar studies, using machine learning techniques, have been conducted on a number of diverse
species, e.g., bats, dolphins, monkeys, dogs, elephants, and numerous bird species [9–11].

The vocal repertoire of domestic cats includes calls produced with the mouth closed (e.g., purrs
and trills), sounds produced while the mouth is held open in one position (e.g., spitting or hissing),
and calls produced while the mouth is open and gradually closed (i.e., meow or miaow) [12]. In [13],
cat vocalizations are used in different intra- and inter-specific contexts to convey information about
internal states and behavioral intentions and have been shown to differ acoustically depending on how
the sound was produced. Most of the sounds in vertebrates, including cats, are produced by means of the
myoelastic-aerodynamic (MEAD) mechanism; however, other mechanisms, such as the active muscolar
contraction (AMC), are present in cats for the emission of several vocalizations, such as purrs [14].

Cat meows represent the most characteristic intra-specific vocalization of felids, either wild or
domesticated [15]. They are also the most common type of vocalization used by domestic cats to
communicate with humans [12], whereas undomesticated felids rarely meow to humans in adulthood [16].
Meows are therefore particularly interesting for investigating cat communication towards humans.

In this work, we wish to assess the following research questions: ‘Do cat vocalizations exhibit
consistent patterns across their frequency content to the extent that emission contexts are distinguishable,
and, if so, can we use generalized sound recognition technology to model them?’. Following the recent
findings in the specific field, we used acoustic parameters able to capture characteristics associated
with the context, i.e. mel-frequency cepstral coefficients and temporal modulation [17–20] modeled by
means of both generative (having at their core the hidden Markov model technology) and discriminative
(support vector machines [21] and echo state networks [22]) pattern recognition algorithms. Unlike deep
learning techniques, which are typically characterized by low interpretability levels [23], we aimed at a
comprehensive classification scheme potentially revealing useful information about the problem at hand.
An experimental procedure was carried out on a dataset including recordings representing Maine Coon and
European Shorthair breeds to answer the research questions mentioned above, and identify the methodology
best addressing the specific problem. In a broader perspective, this ongoing project is aimed at defining if
further semantic features (e.g., f0 and/or roughness) are a means used by the animal to convey a message.

This work is organized as follows. Section 2 provides details regarding the recording protocol and the
acquired audio samples. Section 3 describes the feature extraction mechanism along with a graph-based
classifier. In Section 4, we explain the parameterization of the classification methodology as well as
experimental results. Finally, Section 5 concludes this work.
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2. Building the Dataset

This section describes the data acquisition protocol and the obtained dataset. After the end of the
project, an extended version of the dataset will be made publicly available to encourage further research
and experimental reproducibility.

2.1. Treatments

The cats recruited for the present study by the veterinarians of our research group included:

• 10 adult Maine Coon cats (one intact male, three neutered male, three intact females and three neutered
females) belonging to a single private owner and housed under the same conditions; and

• 11 adult European Shorthair cats (one intact male, one neutered male, zero intact females and nine
neutered females) belonging to different owners and housed under different conditions.

Accompanied by least one veterinarian, cats were repeatedly exposed to three different contexts that
were hypothesized to stimulate the emission of meows:

• Waiting for food: The owner started the normal routine operations that precede food delivery in the
home environment, and food was actually delivered 5 min after the start of these routine operations.

• Isolation in unfamiliar environment: Cats were transported by their owner, adopting the normal routine
used to transport them for any other reason, to an unfamiliar environment (e.g., a room in a different
apartment or an office, not far from their home environment). Transportation lasted less than 30 min
and cats were allowed 30 min with their owners to recover from transport, before being isolated in
the unfamiliar environment, where they stayed alone for a maximum of 5 min.

• Brushing: Cats were brushed by their owner in their home environment for a maximum of 5 min.

The typical vocalizations of a single exposure were composed of many repeated meows.

2.2. Data Acquisition

During the design phase of the experimental protocol, some technical and practical problems
regarding the recording process had to be solved and several specification requirements had to be met.

First, the experiment required us to obtain vocalization recordings while minimizing potential
influences caused by environmental sounds/noises. Moreover, the characteristics of the room (e.g.,
topological properties, reverberations, presence of furniture, etc.) should not affect the captured audio
signals. Data acquisition could not be conducted in a controlled anechoic environment, since an unfamiliar
space might have influenced the behavior of the cat in the waiting for food and brushing contexts. Finally,
the relative position of microphones with respect to the sound source had to be fixed in terms of distance
and angle, as many characteristics to measure in vocalizations depend on such parameters (see Section 3.1).
Figure 1 shows representative spectrograms of samples coming from the three considered classes.

Thus, the idea was to capture sounds as close as possible to the source. We explored a number of
solutions, including wearable devices directly attached to the back of the animal. Such experimental
computing systems encompassed the entire recording, processing and storing chain within a miniaturized
board. This approach proved not to be applicable to cats, since the perception of a device in contact with
the fur once again could have produced biased behavioral results; moreover, the problem of capturing
sound in proximity of the vocal apparatus remained.
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Figure 1. Time-frequency spectrograms of meows coming from the three considered classes.

Thus, we adopted a very small and lightweight microphone placed under the cat’s throat through a
collar, an object with which the animal is already familiar, or can get accustomed after a short training
period. When a cat was not used to wearing a collar, it was trained by the owner to wear it for some
days before data collection, until no sign of discomfort (such as scratching the collar, shaking, lip liking,
yawning, etc.) was reported [24–28]. This process was successful for all cats, enabling acquisition of
real-world cat vocalizations. Since the microphone placement was the same for all cats, sound modification
due to angle, distance and relative position to the mouth were consistent across the recordings, thus
marginalizing the effects of these aspects (for example information such as pitch does not change, and
features such as MFCCs may be biased by a constant factor across recordings).

Finally, one could argue that different situations can lead to different cat postures, which can influence
sound production. We do not consider this issue as a bias, since we are interested in the vocalization
regardless of how the cat produced it. A posture change is considered a legitimate and realistic effect of the
situation. Moreover, if the recording quality were sufficient to catch such an aspect, it could be considered
as a useful additional information.

Concerning the recording device, several Bluetooth headsets presented the desired characteristics in
terms of dimensions, range, and recording quality. Regarding the latter aspect, it is worth underlining that
Bluetooth microphones are usually low-budget devices packed with mono earphones and optimized for
human voice detection. For example, the frequency range correctly acquired is typically very limited if
compared to high-quality microphones. Concerning budget aspects, the recognition task can be performed
on an entry-level computer.

The selected product was the QCY Q26 Pro Mini Wireless Bluetooth Music Headset (see Figure 2).
Its technical specifications declare a microphone dynamic range of 98± 3 dB. The signal is transmitted
via Bluetooth with HFP [29] or HSP [30] profiles, thus relying on a logarithmic a-law quantization at a
sampling frequency of 8 kHz. As a consequence, the actual range of frequencies we could rely on is
0–4 kHz. We expected that the fundamental frequency emitted by cats falls within the range, whereas
some higher-frequency harmonics were likely to be cut. One of the goals of our experimentation was
testing if vocalization classification can be performed even under these conditions, thus demonstrating
that the useful information is contained within a narrow spectrum.
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Figure 2. Details of the QCY Q26 Pro Mini Wireless Bluetooth Music Headset. The small hole in the middle of
the right view is the microphone.

The size (15× 10× 23 mm) and weight (50 g) of the device were sufficiently small to be carried by
a cat without significant behavioral implications. Interestingly, this microphone (see Figure 3) is a very
low-budget solution: the whole headset, including an earphone, at the moment of writing, is sold for less
than 20e.

The adoption of the Bluetooth communication protocol greatly simplified the recording chain: it was
possible to pair the headset to a smartphone equipped with Easy Voice Recorder PRO, a high-quality
PCM audio recording applications. This aspect was fundamental to obtain recordings in a non-supervised
environment from people without specific knowledge in the IT field, like cats’ owners and/or vets.

Figure 3. Two cats provided with a Bluetooth microphone placed on the collar and pointing upwards.

Non-meowing sound recordings were discarded (actually, only one instance), and the remaining
sounds were cut so that each file contained a single vocalization, with 0.5 s of leading and trailing silence
segments. The final corpus consisted of 448 files, organized as shown in Table 1. The total number of
files referring to Maine Coon specimens is 196, and 252 for European Shorthair cats. The average length of
each file is 1.82 s, with a variance of 0.37 s. It should be noted that about 1 s of each file contains only
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background noise. This portion of signal was automatically removed during the analysis, as explained in
Section 3.

Table 1. Dataset composition (MC, Maine Coon; ES, European Shorthair; IM/IF, Intact Males/Females;
NM/NF, Neutered Males/Females).

Food (93) Isolation (220) Brushing (135)

MC (40) ES (53) MC (91) ES (129) MC (65) ES (70)

IM (20) - 5 10 - 5 -
NM (79) 14 8 17 15 21 4
IF (70) 22 - 28 - 20 -

NF (279) 4 40 36 114 19 66

3. Species-Independent Recognition of Cat Emission Context

This section describes the proposed methodology achieving recognition of cat emission context. We
relied on the basic assumption forming all modern generalized sound recognition solutions [7,31–34] stating
that the sound sources distribute their energy across the different frequency bands in a unique way. Thus,
our goal is to capture and subsequently model the specific distribution towards identifying it in novel
incoming audio recordings. The next subsections, respectively, analyze the employed features and the
classification mechanism.

3.1. Feature Extraction

This works exploited two feature sets for capturing the characteristics of cat sound events:

a mel-frequency cepstral coefficients; and
b temporal modulation features.

Before extracting these sets, we applied a statistical-model-based silence elimination algorithm
described in [35] so that both the feature extraction and classification mechanisms elaborate solely on the
structure of the available sound events.

3.1.1. Mel-Frequency Cepstral Coefficients (MFCC)

For the derivation of the first feature set, 23 mel filter bank log-energies were utilized. The extraction
method was as follows: Firstly, the short time Fourier transform was computed for every frame while
its outcome was filtered using triangular mel-scale filterbank. Consecutively, we obtained the logarithm
to adequately space the data. Finally, we exploited the energy compaction properties that the discrete
cosine transform benefits to decorrelate and represent the majority of the frame-energy with just a few
of its coefficients. Lastly, the most important twelve coefficients were kept and, in combination with
frame’s energy, a thirteen-dimension vector was formed. It should be mentioned that the first, second, and
third derivatives were appended to form the final feature vector. The processing stage was based on the
openSMILE feature extraction tool [36].

3.1.2. Temporal Modulation Features

A modulation-frequency analysis via the Fourier transform and filtering theory formed the basis
of this set, as described in [37,38]. Such an analysis has demonstrated relevant potential in the field of
generalized sound emotion recognition [20] motivating its inclusion in this work. Modulation filtering
processes slow-varying envelopes of spectral bands coming from non-stationary signals without affecting
the signal’s phase nor structure. We employed the publicly available implementation called Modulation
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Toolbox [39]. This set emphasizes the temporal modulation, while assigning high frequency values to the
spectrum parts affecting the cochlea of the listener.

The modulation representation differs from a typical power spectrogram since it emerges from
modeling the human cochlea, where the vibrations existing in the inner ear are converted into electrically
encoded signals. The basilar membrane is stimulated by incoming sounds, whose response is associated
to the stimulus’ frequency. The areas of the membrane are stimulated by components with sufficient
difference in terms of frequency. In other words, the output of the cochlea may be divisible into frequency
bands. Under this assumption, the short-time excitation energy of each channel is the output of the
corresponding band. An important observation here is that a harmonic sound event will generate similar
modulation patterns across all bands. This is exactly the advantage of the modulation spectrogram as such
redundancy is not present in traditional types of spectra coming from harmonic sounds [40].

Representative samples of both feature sets corresponding to all classes (waiting for food, isolation in
unfamiliar environment, and brushing) are depicted in Figure 4.
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Figure 4. Representative representations of Mel-scaled spectrogram and temporal modulation
corresponding to all three classes (waiting for food, isolation in unfamiliar environment, and brushing).

3.2. Pattern Recognition

The audio pattern recognition module of the proposed framework operates after the detection of cat
vocalizations. It adopts the concept of Directed Acyclic Graph (DAG), i.e., a finite directed graph with no
directed cycles [41,42]. In this way, the classification scheme can be represented as the graph G = {N, L},
where N = {n1, . . . , nm} denotes the nodes, and L = {l1, . . . , lk} the links associating the nodes. A binary
classification task was performed by each node n in N through a set of hidden Markov models (HMM),
thus originating the DAG-HMM naming.

This methodology is suitable to the specifications of audio pattern recognition. One of the main
advantages is the possibility to break any Cm-class classification problem to a series of two-class
classification problems, without having to deal with all different classes simultaneously (Cm is the number
of classes). More specifically, the presented DAG-HMM is able to split any Cm-class problem into a list of
binary classification ones.

Essentially, DAG technology generalizes the decision trees, with the advantage that redundancies
existing in the tree structure are easily understood, a process that leads to the efficient merging of redundant
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paths. Moreover, DAGs are able to sort meaningfully the (classification) tasks before executing them.
Importantly, such a property is associated with the performance achieved with respect to the overall task
in a straightforward way [43].

Here, DAG-HMM consists in Cm(Cm − 1)/2 nodes, each one responsible for carrying out a specific
classification task. The existing arcs have a single orientation, while loops are not present. Thus, each node
in N has either zero or two leaving connections.

Next, we detail how DAG-HMM is built and orderly executes the included tasks. Interestingly, we
provide a meaningful solution to DAG-HMM’s topological ordering, i.e., the ordered execution of tasks
which is inferred by an early indication of the separability of the involved classes.

3.2.1. Topological Ordering of G

As seen during early experimentations, the DAG-HMM’s performance was directly related to the
order in which the different classification tasks were carried out. More precisely, it would be beneficial
to form G so that simple tasks are placed earlier than more difficult ones. This way, classes which
might produce a large amount of misclassifications are removed during the early stages of G’s operation.
Towards getting an indication of each task’s difficulty, we measured the performance of HMM classification
mechanism on a validation set. Finally, tasks were ordered in descending classification rates meaning that
tasks associated with high rates were placed on the top of G leaving tasks associated with lower rates to be
conducted later.

The algorithm responsible for the topological ordering is given in Algorithm 1. Its inputs are the
audio dataset (Cm), the maximum number of HMM states maxStates, and maximum number of Gaussian
functions maxGaussians, while its output is the ordering of nodes in G (Line 1, Algorithm 1). Initially
the dataset was divided into training and validation sets, denoted as TS and VS, respectively (Line 2,
Algorithm 1). After initializing the task-based recognition rates (Line 3, Algorithm 1), the HMM model
space was explored for identifying the HMM providing the highest recognition rate for each task in Cm

(Line 4, Algorithm 1). Subsequently, the vector with the recognition rates r was sorted in a descending order
(Line 5, Algorithm 1) providing the indices to sort Cm (Line 6, Algorithm 1) and, in turn, the topological
order of G.

3.2.2. DAG-HMM Operation

DAG-HMM operates as follows: Initially, the features of the novel audio signal are extracted and
fed to the first node. The respective feature sequence is matched against the HMMs included in the node
producing two log-likelihoods. These are compared and the graph operation continues along the path
of the maximum log-likelihood until assigning a class to the unknown signal. The HMMs in each node
are optimized (in terms of number of states and Gaussian components), focusing on the classification
task carried out by each node. In other words, a given class may be modeled by HMMs of different
parameters across G. Figure 5 demonstrates the DAG addressing the three-class problem of classifying
cat vocalizations.
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Algorithm 1: The algorithm for determining the topological ordering of G.

1. Input: Audio dataset (Cm), maxStates, maxGaussians, Output: Ordering of nodes in G;
2. Partition the dataset into TS and VS;
3. Initialize task-based recognition rates r = [];
4. for i=1:Cm do

Initialize recognition rates for the i-th node ri=[];
for states=1:maxStates do

for nodes=1:maxGaussians do
TrainHstates,modes on TSi;
TestHstates,modes on VSi;
Compute recognition rate rstates,modes;
Append it to ri, i.e ri = [ri; rstates,modes];

end
end
Identify the maximum rate as follows rb = max(re);
Append it to r, i.e. r = [r; rb];

end
5. Sort r in descending order;
6. Sort Cm according to the indices obtained in step 5;
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Figure 5. The DAG-HMM addressing the three-class problem of classifying cat manifestations. At each level,
the remaining classes for testing are mentioned beside each node. Digging inside each node, an HMM-based
sound classifier is responsible for activating the path of the maximum log-likelihood.

4. Experimental Set-Up and Results

This section provides thorough details regarding the parameterization of the proposed framework
for classifying cat vocalizations, as well as the respective experimental results and how these compare
with classification systems commonly used in the generalized sound classification literature [44], i.e.,
class-specific and universal HMMs, support vector machines, and echo state networks. The motivation
behind these choices aimed at satisfying the condition of including both generative and discriminative
pattern recognition schemes [45,46]. Moreover, during early experimentations, it was verified that MFCCs
and temporal modulation features capture distinct properties of the structure of the available audio signals
as they achieved different recognition rates characterized by diverse mislassifications, thus we decided to
use them concurrently.
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4.1. Parameterization

During the computation of the MFCC and TM features, we employed a frame of 30 ms with
10 ms overlap, so that the system is robust against possible misalignments. Moreover, to smooth any
discontinuities, the sampled data were hamming windowed and the FFT size was 512.

Torch implementation (Torch is a machine-learning library publicly available at http://www.torch.ch) of
GMM and HMM, written in C++, was used during the whole process. The maximum number of k-means
iterations for initialization was 50 while both the EM and Baum–Welch algorithms [47] had an upper limit of
25 iterations with a threshold of 0.001 between subsequent iterations. In Algorithm 1, the number of states
of the HMMs was selected from the set s ∈ {3, 4, 5, 6} and the number of Gaussian functions from the set
g ∈ {2, 4, 8, 16, 32, 64, 128, 256} using the validation set alone.

Moving to support vector machine parameterization, its kernel function was a Gaussian radial
basis, while the soft margin parameter and γ were determined by means of a grid search guided
by cross-validation on the training set. The specific kernel was selected as it demonstrated superior
performance with respect to other well-known ones, i.e., linear, polynomial homogeneous, pa refinement
of the original idea wasolynomial inhomogeneous, and hyperbolic tangent.

The parameters of the ESN were selected by means of exhaustive search based on the minimum reconstruction
error criterion using a validation set (20% of the training one). The parameters were taken from the following sets:
spectral radius SR ∈ {0.8,0.9,0.95,0.99}, reservoir size G ∈ {100, 500, 1000, 5000, 10,000, 20,000}, and scaling factor
sc ∈ {0.1,0.5,0.7,0.95,0.99}. Its implementation was based on the Echo State Network Toolbox (the Echo State
Network Toolbox for MATLAB is publicly available at http://reservoir-computing.org/software).

4.2. Experimental Results

Towards assessing the efficacy of the proposed classification mechanism, we followed the ten-fold
cross validation experimental protocol. During this process, both training and testing parts were kept
constant between different classifiers ensuring a fair comparison. The recognition rates corresponding
to the considered approaches (DAG-HMM, class-specific HMMs, universal HMM, SVM and ESN) are
tabulated in Table 2. The corresponding achieved rates are 95.94%, 80.95%, 76.19%, 78.51%, and 68.9%.

Table 2. The recognition rates achieved by each classification approach. The highest one is emboldened.

Classification Approach Recognition Rate (%)

Directed acyclic graphs—Hidden Markov Models 95.94
Class-specific Hidden Markov Models 80.95

Universal Hidden Markov Models 76.19
Support vector machine 78.51

Echo state network 68.9

As we can see, the DAG-based classification scheme provides an almost perfect recognition rate
outperforming the rest of the approaches. The second highest rate is offered by the class-specific HMMs,
while the ESN achieves the lowest one. We argue that limiting the problem space by means of a graph
structure is significantly beneficial in the problem of classifying cat vocalizations. Even though such an
approach may be computationally expensive when the number of classes is very large, in problems with a
reasonable amount of classes, it may able to provide encouraging results.

Table 3 presents the confusion matrix associated with the best-performing approach, i.e., DAG-HMM.
We observe that the state waiting for food is perfectly recognized (100%, F1 = 0.98). The second best
recognized class is brushing (95.24%, F1 = 0.94) and the third one is isolation in unfamiliar environment
(92.59%, F1 = 0.96). The misclassifications concern the classes isolation and brushing which are wrongly

http://www.torch.ch
http://reservoir-computing.org/software
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recognized as brushing and waiting for food, respectively. After inspecting the misclassified recordings, it
was observed that the specific samples are acoustically similar (to the extent that a human listener can
assess) with samples existing in the wrongly predicted classes.

Table 3. The confusion matrix (in %) representing the classification results achieved by the DAG-HMM.

Presented
Responded Waiting for Food Isolation Brushing

Waiting for food 100 - -
Isolation - 92.59 7.41
Brushing 4.76 - 95.24

It is worth noticing that the context waiting for food was never attributed to the other contexts, as it
probably had characteristics that are specific of a positive state. The misclassifications occurred mainly
for isolation, which was attributed to another context with an expected dominant negative valence, i.e.,
brushing. However, some vocalizations that occurred during brushing were attributed to the positive
context waiting for food, suggesting that brushing can actually represent a positive stimulus for some cats.

Comment on DAG-HMM Applicability

At first sight, DAG generation could seem restrictive as it demands the construction of N(N−1)
2 nodes,

a O(n2) problem. However it is common that in practical audio classification applications, one needs to
process a set including 10–20 classes, i.e., 45–190 nodes, which is not prohibitive given the advancements
of modern information processing systems. Finally, model learning is to be conducted only once and
offline, while during the classification process, one needs only to execute repetitive Viterbi algorithms,
a process which is not computationally intensive [47].

5. Conclusions and Discussion

This work presents a solution for the task of classifying cat emission context on the basis of their
vocalizations. Our aim was to use meaningful acoustic descriptors as well as classification solutions, such
that, when a misclassification occurs, one is able to “open” the classification mechanism and get insights
on how a given limitation may be surpassed. A highlight of the system is its ability to operate in such
an imbalanced dataset in terms of both breed and sex. Moreover, the method presented here is generic
and it can be applied with slight modifications to other vocalization-classification problems as long as the
respective data become available.

Sounds were captured by a very low-budget recording device, namely a common Bluetooth headset,
and analyzed using an entry-level computer. Despite its technical limitations, the system proved to be
accurate enough in recording cat vocalizations. The reason may go back to an evolutionary explanation of
cat behavior: since meows are basically produced to communicate with humans [15], we can expect that
these sounds are close to the frequency range of human speech, which is quite broad depending on the
sex and age of the speaker; this is exactly the frequency range where Bluetooth headsets are designed to
achieve their best performances.

These results are quite encouraging and open up new perspectives for deepening our knowledge of
acoustic communication between humans and cats and, in general, between humans and animals.

In our future work, we intend to deepen our understanding of cats’ emotional states in these three
situations by complementing the proposed framework with behavioral data collected by video recordings.
To this end, we intend to explore the following directions:
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1. compare emotional state predictions made by humans with those made by an automatic
methodology;

2. explore the sound characteristics conveying the meaning of cats’ meowing by analyzing the
performance in a feature-wise manner;

3. quantify the recognition rate achieved by experienced people working with cats when only the
acoustic emission is available;

4. establish analytical models explaining each emotional state by means of physically- or
ethologically-motivated features; and

5. develop a module able to deal with potential non-stationarities, for example new unknown
emotional states.

6. Ethical Statement

The present project was approved by the Organism for Animals Welfare of the University of Milan
(approval No. OPBA_25_2017). The challenging situations to which cats were exposed were required in
order to stimulate the emission of meows related to specific contexts. They were conceived considering
potentially stressful situations that may occur in cats’ lives and to which cats can usually easily adapt.
To minimize possible stress reactions, preliminary information on the normal husbandry practices (e.g.,
brushing or transportation) to which the experimental cats were submitted and on their normal reactions
to these practices were collected by interviews with the owners. Additionally, cats were video recorded
using a camera connected to a monitor for 5 min before the stimulus, during the stimulus and for 5 min
after the stimulus, in order to monitor their behavior during the isolation challenge, with the idea of
stopping the experiment if they showed signs of excessive stress; however, such a situation never occurred.
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