

Programme and Book of Abstracts

Fifth Meeting of the Italian (AIC) and Spanish Crystallographic (GE3C)
Associations (MISCA V)

Summary

Committees	3
Sponsor	4
Conference Schedule	5
Abstracts	
Plenary lectures	11
Awards	14
Commercial presentations	23
MS1 - Crystallography out of Academia	27
MS2 - In situ and in operando studies of systems structural evolution	31
MS3 - Coordination compounds to coordination materials	37
MS4 - Crystal growth: from fundamentals to applications in nature and	
technology	44
MS5 - Bio-crystallography: from Structure to Function	51
MS6 - Mineral structures and mineral characterization	58
MS7 - Crystal forms in Pharma	66
MS8 - Contemporary challenges in Structural Biology	73
Posters of Session 1: MS1 – MS4	79
Posters of Session 2: MS5 – MS8	99

Committees

Steering Committee

G. Diego Gatta AIC President Univ. Milano

Fernando Lahoz Past GE3C President CSIC, Zaragoza

Organizing Committee

Luigi Vitagliano IBB-CNR, Napoli, Chair

Michele Saviano IC-CNR, Bari, Chair

Filomena Sica Univ. Federico II, Napoli

Piergiulio Cappelletti Univ. Federico II, Napoli

Consiglia Tedesco Univ. Salerno

Luciana Esposito IBB-CNR, Napoli

Rita Berisio IBB-CNR, Napoli

Luca De Luca IBB-CNR, Napoli

Alessia Ruggiero IBB-CNR, Napoli

Nicole Balasco IBB-CNR, Napoli

Annalisa Guerri Univ. Firenze

Simona Galli Univ. Insubria

Scientific Committee

Matteo Alvaro Univ. Pavia

Giuseppe Falini Univ. Bologna

Felipe Gándara CSIC, Madrid

Pilar García Orduña CSIC, Zaragoza

> Andrea Ilari IBPM-CNR. Roma

Sol López-Andres Univ. Complutense, Madrid

> Lucia Maini Univ. Bologna

Alfonso Martínez de la Cruz CICBioGUNE, Bilbao

> Paolo Pio Mazzeo Univ. Parma

Marta E.G. Mosquera Univ. Alcalá de Henares

MS2 – P2: Compressibility of hibonite (CA6): a single crystal synchrotron radiation high-pressure study.

Fernando Cámara^a, Paolo Lotti^a, Davide Comboni^a, Marco Merlini^a

^aDipartimento di Scienze della Terra 'A. Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, I-20133 Milano, Italy. fernando.camara@unimi.it

The elasticity of hibonite (ideally CaAl₁₂O₁₉, space group $P6_3/mmc$) has been investigated by synchrotron radiation high-pressure single crystal X-ray diffraction, using a membrane-driven diamond anvil cell mounting Boehler-Almax design diamonds and methanol:ethanol:water (16:3:1) and helium as pressure-transmitting fluids, at the ID15B beamline of ESRF, Grenoble, $(\lambda = 0.4111 \text{ Å})$ up to 19.5 GPa. We collected 26 pressure data points. On compressing, no displacive phase transition has been observed. We have fitted lattice volume data with a BM2 EoS, using EosFit7c [1], and obtain zero-pressure isothermal bulk modulus (K_{0T}) of 204(1) GPa and a unit-cell volume of 590.44(14) Å³. Linearized EoS were fitted using cubed lattice parameters [1] and obtained zero-pressure isothermal bulk modulus (K_{0T}) of 256(3) GPa for a lattice parameter and of 141(1) GPa for c lattice parameter. Therefore, the structure is significantly stiff, and strain develops predominantly on the c direction. Hibonite structure is based on the periodic repetition along [0001] of ten layers of approximately closest-packed oxygen atoms. The sequence can be expressed as (chhhcchhhc), where c and h symbolize cubic and hexagonal closest-packed layers, respectively. The cubic close-packed layers constitute blocks that have the spinel structure $(S = [M_6O_8]^{2+})$ and are interlayered between blocks having the hexagonal close-packed character R (= $[AM_6O_{11}]^2$ -), resulting in a staking with a S'RSR'S' sequence, where R' and S' are rotated 180° around c relative to R and S. Hibonite has the structural formula $A^{[XII]}M1^{[VI]}M2^{[V]}M3_2^{[IV]}M4_2^{[VI]}M5_6^{[VI]}O_{19}$, where Ca is 12- fold coordinated at site A and Al^{3+} ions are distributed over three distinct octahedra [M1, M4 and M5], the M3 tetrahedron, and the unusual fivefold coordinated trigonal bipyramid M2. The hibonite sample comes from Sierra de Comechingones (Argentina) and has composition (Ca_{1.01}Na_{0.01})_{1.02} $(Al_{11.58}V_{0.33}Ti_{0.02}Mg_{0.06}Si_{0.01})_{1.00}O_{19}$. Structure refinements yields V ordered in $M2^{[V]}M4_2^{[VI]}$ sites with composition $^{M2}(Al_{0.94}V_{0.06})$ and $^{M4}(Al_{1.73}V_{0.27})_2$ whereas Mg orders in $M3_2^{[IV]}$ (with composition $^{M3}(Al_{1.94}Mg_{0.06})_2$). Evolution of polyhedral volumes show that $M2^{[V]}M4_2^{[VI]}$ and A show a decrease of ca. 10% whereas it is lesser for the rest of the sites. The $M2^{[V]}$ $M4_2^{[VI]}$ and A sites belong to the *R*-block, whereas $M1^{[VI]}M3_2^{[IV]}M5_6^{[VI]}$ constitute the *S*-block. Therefore, there is a heterogeneity of the strain along [0001], which alternates between the S-blocks and the more compliant R-block. Congruently, high-T studies [2] have observed that the R-block expands more than the S-block. It remains uncertain if this heterogeneity is due to compositional stain (V ordered at the *R*-block) or to intrinsic behavior of the hibonite structure.

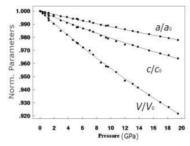


Figure 1. Normalized parameters versus pressure (in GPa).

- [1] R.J. Angel, J. Gonzalez. Platas, M. Alvaro Z. Kristallogr. 2014, 229, 405.
- [2] M. Nagashima, T. Armbruster, T. Hainschwang Min. Mag. 2010, 74, 871