
Noname manuscript No.
(will be inserted by the editor)

Dynamic Access Control to Semantics-aware Streamed
Process Logs

Marcello Leida · Paolo Ceravolo · Ernesto Damiani · Rasool Asal ·
Maurizio Colombo

the date of receipt and acceptance should be inserted later

Abstract Business process logs are composed of event

records generated, collected and analyzed at different

locations, asynchronously and under the responsibility

of different authorities. Their analysis is often delegated

to auditors who have a mandate for monitoring pro-

cesses and computing metrics but do not always have

the rights to access the individual events used to com-

pute them. A major challenge of this scenario is rec-

onciling the requirements of privacy and access control

with the need to continuously monitor and assess the

business process. In this paper, we present a model, a

language and a software tool-kit for controlling access to

process data where logs are made available as streams

of RDF triples referring to some company-specific busi-

ness ontology. Our approach is based on the novel idea

of dynamic enforcement: we incrementally build dy-

namic filters for each process instance, based on the

applicable access control policy and on the current pre-

fix of the event stream. The implementation and per-

formance validation of our solution is also presented.

M. Leida
Stratio, Madrid, Spain
E-mail: mleida@stratio.com

P. Ceravolo ?

Università Degli Studi di Milano, Italy
E-mail: paolo.ceravolo@unimi.it

E. Damiani
Center on Cyber-Physical Systems, Khalifa University, Abu
Dhabi, UAE

R. Asal and M. Colombo
EBTIC, Khalifa University, Abu Dhabi, UAE

1 Introduction

Business process analysis is the activity of reviewing

existing business practices and changing them so that

they fit a new, improved process model. By conducting

process analysis, companies expect to streamline

their internal processes and become more effective in

their business operation [1]. Traditionally, research in

this field spans two major areas: Process Monitoring

(PMon), also called Business Activity Monitoring,

which collects and processes events while they occur,

and Process Mining (PMin), which typically focuses on

the offline analysis of process logs. Both areas describe

business processes using abstract concepts such as

tasks, sub-processes, start and end times, properties,

relationships, work-flows etc. Such basic entities are

usually organized into a schema, which can be extended

to define additional domain-specific concepts (Figure

1). The difference between monitoring and mining

mainly lies in the collection of observable process

events. In Pmon, remote process probes broadcast

events over the network to be analyzed by monitors;

in Pmin, event data are often imported to some static

data lake. Both PMon and PMin have been extensively

studied in the literature [2–4], but the problem of

performing PMon while satisfying privacy and access

control requirements has received less attention. In

order to clarify the problem, we need first to introduce

some basic terminology of computer security. We

follow [5] distinguishing between Access Control (AC)

policies, mechanisms, and models. AC policies are

high-level requirements that express who or what

should be granted or denied access to what resources.

AC mechanisms implement such policies in an IT sys-

tem. For example, AC policies are often expressed as

rules of the form Requestor:Resource:Condition:Action

that the AC mechanism (usually implemented as a

Policy Evaluation Point (PEP)) can use to determine

whether an access request to a resource should be

granted or denied. Finally, AC models are formal

representations of the internal operation of AC mecha-

nisms, used to prove their correctness. In our case, the

resources to be accessed are business process streams

including (representations of) activities, tasks, and

their attributes. Intuition suggests that a mechanism

for enforcing AC policies on such resources could be a

filter, sanitizing the process event and leaving only the

information the requester is entitled to see. Indeed,

filters have been proposed since long as a practical

way to exclude events from, or otherwise, manipulate

business process logs [6]; but the study of automatic

generation of log filters as an AC mechanism is still

in its infancy. The problem got even more difficult

with the advent of multi-enterprise business coalitions:

besides having a huge size, today’s process streams are

generated, collected and analyzed asynchronously, at

different locations and under the control of different

organizations. In such scenarios, writing the filter cor-

responding to a given AC policy manually is awkward

and error-prone, and solutions targeting Big Data

source are needed [7,8].

In this paper, we present a model and the corre-

sponding extension to the standard XACML policy lan-

guage [9] for controlling access to process streams. The

stream is represented as a flow of RDF [10] triples com-

plying with some company-specific activity ontology.

We discuss representational issues in Sec. 2.2. In Sec.

2.4 we briefly discuss the related but distinct problem

of mapping finer-grained events (e.g. sensor readings)

to activities, whose solution is outside the scope of this

paper. Encoding process events as RDF triples is a solid

way to achieve a semantic extension of traditional pro-

cess logs, specifying the semantics of individual model

elements [11] and ensuring that process log items can be

universally understood by all applications that have the

relevant domain knowledge. This explicit encoding of

events can be exploited by our AC mechanism in enforc-

ing XACML access policies on the stream by computing

and dynamically updating a process log filter. Apply-

ing the filter generates a fully sanitized flow of events,

complying with the AC policy. Besides enforcing the

AC policy, our technique “weaves the log” in order to

preserve the semantic integrity of the sanitized process

flow (e.g., w.r.t. timing). We claim that our approach is:

(i) fully compatible with current access control models

like classic Role-Based Access Control (RBAC) [12] and

(ii) suitable for deployment in a Big Data environment

where processes are continuously monitored and users

can register continuous queries in order to be notified

by new events matching their query. Last but not least,

our approach supports policy auditing : being written

in a standard language which is suitable for auditing

[13], our extended XACML policies can be forwarded to

an independent auditor to verify their compliance with

auditing rules and other regulations without disclosing

the process data. Indeed, our technique is particularly

suitable for use cases where auditing is of paramount

importance, such as telecommunication companies and

cloud providers1. The remainder of the paper is orga-

nized as follows. Section 2 presents the process data

model used in our system. In Section 3, we discuss and

compare the related work to our approach. Section 4

summarizes our main contributions. In Section 5 we

present our extension to XACML, while Section 6 de-

scribes our enforcement mechanism in detail. Finally,

Section 7 validate our approach by providing a proof of

correctness (Section 7.1) and an experimental perfor-

mance analysis (Section 7.2). Section 8 concludes the

paper and discusses future research directions.

2 Representing Process Log Data

The collection of event logs is a pre-condition to busi-

ness process analysis. Event logs originate from the

messages generated by an executing procedure or by

a probe installed to capture events. The data structure

adopted for event logs can be organized in a variety of

ways [16].

In this Section, we discuss semantics-aware log rep-

resentation; then, we introduce our extensible RDFS

schema for representing process logs, suitable for PMin

and PMon applications.

2.1 Event-logs standards

The Process Mining community has encouraged the

adoption of the eXtensible Event Stream (XES) [17],

that is the format processed by most BPMin algorithms

and libraries. This standard correlates events generated

during a same business process execution, by the notion

of case, and sequences them based on their associated

time-stamps. It also includes the notions of the origi-

nator of an event and the resources exploited during its

execution.

1 Such organizations are subject to data protection regula-
tions from a variety of organizations ranging from the Eu-
ropean Union (Data Retention Directive) to national and
international law enforcement agencies. Regulations explic-
itly prescribe the deployment of AC mechanisms that prevent
unauthorized access to clients’ critical information [14,15]

2

A known limit of this standard is to impose a flat

multi-dimensional data structure2. A general limita-

tion of flat log formats is their redundancy, as entities

(e.g., involved resources) recurring in multiple events

are recorded in all corresponding event tuples. Rela-

tional [19] or graph-based [20] databases for storing

event log data have been proposed as a solution to

address this limitation. Besides handling process data,

using a database supports computing views on them.

Query patterns allow to extract log files collecting vari-

ants of a business process that comply with specific

perspectives [21–23]. For example, they can isolate pro-

cesses executed by a specific department, within a spe-

cific time-frame, or failing to achieve specific perfor-

mance levels. As a result, these different variants can be

comparatively assessed getting relevant insight on the

enablers of specific behaviors [24,25]. Partially moti-

vated by the same reasons, the authors of [26] proposed

an ontology-based data access procedure to support the

extraction of event logs from a legacy system, using a

domain specific conceptual model. All these techniques

perform manipulation after collection and are therefore

more suitable for Pmin than for Pmon applications.

Also, they imply data normalization, reducing redun-

dancy at the expense of requiring expensive joins at

extraction time [27].

2.2 Semantics-aware Process Log Representations

Besides multi-dimensional analysis, the conceptual

model encoding process logs can support the definition

of additional transformation functions. Representation

languages equipped with a formal semantics support
(i) the organization of data according to different levels

of abstraction, (ii) the composition of knowledge from

multiple sources, or (iii) the identification of conflicting

facts that identify the violation of expected behaviour.

Identifying the appropriate abstraction level is a key

prerequisite for event logs analysis [28]. Moreover, when

integrating logs from multiple systems, even in presence

of a common vocabulary, multiple abstraction levels

may apply at the source level, imposing specific rec-

onciliation strategies [29]. Formal semantics can extend

the capability of executing conformance checking pro-

cedures by assessing an event log in integration with

external knowledge [30].

Early proposals of semantics-aware PMin focused on

extending event logs with annotations linked to a con-

ceptual model [31,32], if necessary supporting transfor-

mation stages [33,34].

2 Object-oriented representation that can capture one-to-
many and many-to-many relationships among events have
been proposed [18] but not yet deployed in practice.

In [20], an RDF serialization of graphs is adopted to

model and analyze process logs. In this paper we rely

on a model we already used for semantic lifting [35],

model reconciliation [29] and knowledge discovery [25].

2.3 The EBTIC-BPM Process Vocabulary

Today’s PMon tools have to be flexible enough to han-

dle process information that was unknown at the time

of process model definition [20]. Our approach relies

on two standards: the Resource Description Framework

(RDF) [10] and RDF Schema (RDFS) [36]. We shall

not try to provide any RDF/RDFS tutorial in this sec-

tion: the interested reader can refer to [10,36]. Histori-

cally, RDF has been used as meta-data, i.e. to annotate

logs (and, in general, data streams) by adding informa-

tion about data provenance, collection, etc. [37]. Here,

we use RDFS to provide a vocabulary defining the ba-

sic entities of the business process domain. This simple

representation allows a high degree of flexibility and at

the same time includes all entities (concepts, relations,

and attributes) that are needed by process management

applications.

Fig. 1: The conceptual model representing the basic

business process representation.

The RDF schema shown in Figure 1 is actu-

ally just an envelope which includes only two con-

cepts: ebtic-bpm:Process, which represents the busi-

ness process and ebtic-bpm:Task, which represents

the activities that compose the process. Each concept

has a basic set of attributes: ebtic-bpm:startTime

and ebticbpm:endTime, which represent the begin-

ning and termination times. The relation between these

two basic concepts defines the simplest way to repre-

sent a business process. The ebtic-bpm:hasTask re-

lation links ebtic-bpm:Process to ebtic-bpm:Task

and represents the set of tasks belonging to a process.

Three more relations apply to the ebtic-bpm:Task con-

cept: ebtic-bpm:followedBy, ebticbpm:precededBy

and ebtic-bpm:hasSubTask, which respectively indi-

cate which tasks precede and follow a given one and

which tasks are subtasks of a given one. These rela-

tions allow layering our model with specific ontologies

3

describing the business activities addressed by an or-

ganization or additional domain knowledge originated

from normative or contractual regulations [20].

2.4 From Sensor Events to Semantics-aware Log

Entries

Most tools recording events adopt a fine-grained repre-

sentation model suitable to the events generated dur-

ing process enactment rather than to business process

activities. Activities’ and events’ representations may

have very different abstraction levels, leading to misin-

terpretation of process analysis results [38]. Consider,

for example, the event logs of a sensor network that col-

lects sensor records. The abstract start and end event

delimiting execution of a process activity may corre-

spond to variable sequences of finer-grained events [39].

Our semantic-aware log format is indeed the target of a

semantic lifting procedure [40,35] which is outside the

scope of this paper. Recently, machine learning proce-

dures have been adopted to automatically learn a map-

ping linking aggregated events with activities at the

business process level [41,42].

2.5 Software Architecture

Zeus, our process analysis platform [43], is a PMon sys-

tem based on the data model introduced in the previous

Section. As illustrated in Figure 2, Zeus includes moni-

tors that use domain-specific extensions of the EBTIC-

BPM basic vocabulary to tag process events and sub-

mits the corresponding RDF triples to the Zeus triple

store. In other words, when a monitor detects an ac-

tivity, it generates the RDF triples representing it and

sends them to the message queue. A message listener

reads the message queue and inserts the triples into the

Zeus triple store [43]. The Zeus triple store exposes a

SPARQL query service allowing external applications

to query it. SPARQL is a standard query language

for RDF graphs based on conjunctive queries on triple

patterns, which identify paths in the RDF graph [44].

SPARQL (or its ad-hoc extensions like FPSPARQL

[45]) is used for analyzing event logs of process-related

systems, enabling analysts to group related events in

the logs or find paths among events. A major feature of

the Zeus triple store that makes it suitable for handling

streams is that it allows to register continuous SPARQL

queries; such queries are automatically invoked when-

ever new triples get inserted in the Zeus triple store, and

their results are automatically returned to the client

that registered the query.

Fig. 2: The conceptual architecture of Zeus, our RDF-

based PMon system.

3 PMon Security and Access Control

In this Section, we discuss related work in two research

areas relevant to our approach: business process secu-

rity and RDF access control.

3.1 Access Control to Business Process Mining and

Monitoring

Access Control (AC) constrains “what a user can do

directly, as well as what programs executing on behalf

of the users are allowed to do” [5]. In other words, AC

decides which subject is authorized to perform certain

operations on a given object and which is not. Along the

years, many AC models like access control lists (ACL),

capability lists and role-based access control (RBAC)

have been proposed. In particular, RBAC models pro-

posed in the Nineties [12,46] are still widely used today.

AC models for business processes have been mostly

aimed at process execution, i.e. at controlling who can

perform process activities. Some early works in this area

discussed authorizations to perform Web interactions

[47] or service invocations [48]. Later, Russell and van

der Aalst [49] have surveyed various possibilities for as-

signing process activities to users. Wainer et al. [50] pro-

posed the W-RBAC access control model, featuring an

expressive logic-based language for selecting users that

are authorized to perform certain process tasks. Over

time, additional approaches for dealing with other se-

4

curity issues related to process management were intro-

duced. In the context of the ADEPT project, Barbara

Weber et al. [51] dealt with controlling access to process

schemata, extending RBAC to support design-time ac-

tions like schema changes. In turn, the CEOSIS project

proposed a way to adapt this type of AC rules when

the underlying organizational model is changed [52]. A

method for verification of security policies for business

processes is presented in [53], where the authors present

a system for automatic verification of secure models in

order to prevent implicit information leaks about con-

fidential parts of the process flow.

These lines of research are related to ours, inasmuch as

the resources to be accessed are the representations of

the activities in the process log rather than the services

performing such activities or the entities in the process

schema.

Event flows generated by process monitors have been

traditionally filtered using static ad-hoc views on event

stores [46]. This technique works as follows: for each

process schema, a number of static views is manually

defined, each of them including the information acces-

sible for users with a particular role. This way, rights

over the process are defined implicitly by each view.

The view-based approach relies on existing view defini-

tion languages (a survey on RDFS view definition can

be found in [54]) to express access rights over process

data. However, static views are costly to maintain. If

the underlying process schema is modified, views af-

fected by this change have to be identified, possibly

among a large number of existing views. Also, when

a user has multiple roles, more than one view applies,

and view combination may lead to conflicts with unex-

pected results.

An AC model aimed at process logs has been described

in the framework of the Proviado project for process

data visualization [55,56]. The Proviado access con-

trol model expresses access rights on specific process

aspects called objects. However, while the Proviado

AC language has been used to express access rights in

some process analysis case studies, no enforcement on

streams has been described. Another related line of re-

search is the one that led to Staab and Ringelstein’s

PAPEL (Provenance Aware Policy definition and Exe-

cution Language) [57].

PAPEL focuses on policies expressing temporal con-

ditions based on processing histories and uses a sticky

logging mechanism to provide the needed provenance.

A point of contact with our work is that conditions

are checked on graphs; but in the case of PAPEL, the

graph structure represents the process log’s temporal

structure. While PAPEL syntax is very different from

standard XACML, the language scope is fully comple-

mentary to ours (Section 7.2).

Finally, it is important to remark that AC is not

the only motivation for filtering process models and log

data. Selective visualization of process models has been

proposed since long to enable process analysis at dif-

ferent levels of abstraction (for example point-of-view

analysis [23]). For instance, Polyvanyy et al. [58] de-

scribe structural aggregations of the process logic in

order to realize different levels of abstraction. Greco et

al. [59] proposed an approach to produce hierarchical

process views of the process that capture process be-

havior at a different level of detail. However, none of

these techniques handles selective visualization of data

generated by process monitoring.

3.2 RDF Access Control

The protection of information encoded in RDF graphs

represents a relatively novel direction of research. In

[60] the authors present their Semantic Based Access

Control (SBAC), a model based on OWL ontologies3.

SBAC is only partly relevant to our research, as it

is aimed at controlling access to elements of RDF

Schemata (Concepts, Individuals, Attributes and

Relations). Other researchers used RDF annotations

to complement AC policies. A seminal paper on this

topic is [62], where the authors show that standard

AC policy languages like XACML can be extended via

RDF annotations and describe a reference architecture

for enforcing annotated AC policies. This line of

research was developed in more recent works. For

instance [63] presents ROWLBAC, a role-based access
control architecture defined using the OWL ontology

language. This way, existing OWL reasoners can be

used for policy evaluation and policies defined with

this language are exportable and verifiable.

Access control mechanisms targeting RDF triple stores

are more relevant to this paper. In the abundant

literature on this subject we identify two main trends:

the former relies on access control lists pointing to

specific elements of RDF graphs (concepts, relations,

attributes, and triples), while the latter uses the AC

policy to define a set of “safe views” on the triple

store’s RDFS schema. An example of the former

approach is the one proposed by Chen et al. [64],

where the standard XACML policy language is used

to control access to elements of an ontology at A-

Box level. In their implementation, a security proxy

rewrites incoming SPARQL queries in order to make

3 OWL stands for Ontology Web Language and is an ex-
tension of RDF based on Description Logics [61].

5

them policy-compliant. However, their rewriting uses a

static technique where pre-set filters are appended to

individual user queries.

Both approaches are static in nature; but the former is

complicated by the fact that simple facts (i.e., individ-

ual RDF triples) cannot be omitted or deleted by the

AC enforcement mechanism without risking to compro-

mise the integrity of the information passed on to the

requester. The latter approach makes it easier to grant

access to sub-graphs (or transformed graphs) of the

original RDF graph that preserve information integrity.

A straightforward development of the latter line of

research is run-time composition of safe views with user

queries, thus enforcing access control policies via query

rewriting. Our approach falls into this category: pro-

viding a query rewriting mechanism which allows to

maintain the integrity of the graph. However, with re-

spect to available rewriting approaches, our solution

is applied on a stream of RDF triples instead of a

static RDF graph. Most query rewriting approaches

assume that AC policies can be expressed as sets of

static views; so when a requester wants to query the

data, her safe view can be retrieved and composed with

her query. Generally speaking, given a set of views

V = {V1, V2, . . . , Vn} over a RDF graph G, and a

SPARQL query Q over the vocabulary of the views,

query rewriting computes a SPARQL query Q0 over

G such that Q0(G) = Q(V (G)). Rewriting must sat-

isfy two properties: soundness and completeness [65].

Namely:

– a rewriting is sound ⇐⇒ Q0(G) ⊆ Q(V (G));

– a rewriting is complete ⇐⇒ Q(V (G)) ⊆ Q0(G).

Checking these properties may be easy in a static

RDF triple store but is unfeasible for stream scenar-

ios where triples are generated dynamically and may

not be all present at the time of enforcement. Also,

SPARQL rewriting algorithms used to enforce access

control policies [65] tend to show high complexity either

in time or in the number of views involved. The reason

is somewhat intuitive: whenever a requester submits a

query, it is necessary to identify which safe views need

to be taken into account to rewrite it. The work com-

ing closer to our approach in terms of rewriting policies

is probably the SPARQL Query Rewriting (SQR) pro-

posal [65]. This proposal relies on the following idea:

if a variable mapping exists between a pattern in the

result description and one of the triple patterns in the

graph pattern of a query Q, then we can conclude that

view Vj is needed to rewrite Q. SQR performs the query

rewriting in two steps. In the first step, the algorithm

determines, for each triple pattern in the user query,

the set of views whose variables appear in the pattern.

In the second step, the algorithm rewrites the original

query as a union of conjunctive queries to the triple

store. Rewritten queries use the original schema graph

but select only “authorized” nodes. A similar approach

is mentioned in a patent [66] that describes a method

to rewrite SPARQL queries based on static views.

However, the approaches available so far are static

approaches which are applied on a static graph, while

our approach is applied on a stream of incoming RDF

triples, which is dynamic by nature. For this reason, it

is hard to experimentally compare the described related

works with our approach.

4 Research Contributions

Our approach provides several new contributions with

respect to the state of the art4.

A first contribution is dynamic filter generation:

upon receiving an access request, our technique auto-

matically generates a filter and keeps updating it on

the basis of the events generated by process execution.

Our filters are continuously applied to the process event

flow to keep it compliant with the AC policy. This will

ensure that queries performed by the users (e.g., to

compute performance metrics over the process) are ex-

ecuted on a “sanitized” flow of events. Our approach

is suitable for deployment in a real-time environment

where processes are continuously monitored and users

can register continuous queries in order to be notified

when new events matching their query arrive. As we

shall see in Section 6, our technique is less expensive in

terms of computation than approaches based on static

views, which use the entire AC policy to build the views

associated with a user.

A second contribution is preserving the log’s seman-

tic integrity. We use XACML obligation mechanism to

keep the sanitized flow sound with respect to the cor-

rectness of metrics computed on it, like total elapsed

time. In standard XACML, an obligation is a directive

on an action that must be carried out after access is

approved. We use obligations as a way to require filter

updates on demand, i.e. when new triples arrive.

A third contribution is our approach’s auditability

due to standard syntax of AC policies. Most existing so-

lutions provide an abstract AC model to define access

rights in an abstract format, but such access rights must

then be manually mapped to static views over process

data; this mapping process is error-prone and difficult

to debug independently. Our approach allows policy au-

thors to write their policies in standard XACML. Such

4 Our AC engine is covered by US Patent 20150172320

6

policies can be forwarded to an independent evaluator

to verify that they are compliant with auditing rules

and data protection regulations [13]. As we shall see,

our extensions to XACML are fully modular and com-

ply with the prescribed language extension points5, so

they do not affect policy audit.

5 The policy language

In order to support the Administrator in writing AC

policies in a machine-readable format, we defined an

extension of the standard XACML policy language [9].

Our extension is not focused on process logs; rather, it

provides a generic obligation language for RDF streams.

The format of our obligations is composed of five main

elements, described in detail in Table 1.

Table 1: Policy Elements.

Policy Element Description

Task This element can assume two values:
allow or deny. It provides information
on the effect of the policy: if it allows
the resources to be accessed by the Re-
questor or vice-versa

Match This element is the resource on which
the policy will be applied; it represents
a set of RDF triples that the Requestor
is allowed to access or not (according to
the value of Task)

Condition This element contains a set of graph pat-
terns which are translated for their eval-
uation into SPARQL ASK queries6 on
the process flow that needs to be satis-
fied in order to apply the policy. Condi-
tions can be connected with logical op-
erators (And, Or and Not)

Alternative This element is used to sanitize the RDF
graph when the Requestor is not autho-
rized to access the triples in the Match
Block. The Alternative element has two
children: Find and Replace containing a
graph pattern each. The Find element
tells the Filter Updater which part of the
original RDF data needs to be replaced
with the Requestor-specific Replace one.

DecisionPoint This element contains a graph pattern
that acts as a terminator: when it is
found in the flow, the PEP stops the
evaluation of Conditions7.

5 http://mvpos.sourceforge.net/xacml.htm

Following the sample process log introduced in Sec-

tion 2 we will now define a set of restrictions on the

process flow using our language.

For the sake of simplicity and as further motivated

in the evaluation section, we define a policy that is

somewhat simplified with respect to real-life ones but

will ease understanding of the results of our evalua-

tion. Let us assume that a process analyst is called in

for performing analysis on our sample process on loan

approval. Due to data protection regulations8 all de-

tails of loan applications should only be accessible to

employees involved in their assessment, and not to the

process analyst. In our sample loan application process,

all the activities related to the submission, acceptance,

and approval of a loan can be performed by different

types of agents (human or automatic systems). To en-

sure compliance with regulations, the process analyst

is not allowed to see the type of agent that performed

these actions in case the amount of the loan is equal

to (or greater than) a certain value. We define a policy

associated with the role of process analyst. The policy

replaces the type of agent with a generic one where the

conditions described previously are verified. Once the

analyst authenticates and logs into the system, a stan-

dard XACML policy is used to verify that her creden-

tials enable her to access the log after sanitization. Def-

inition 2 provides a version of this policy in simplified

English. Once access is granted, the set of obligations

shown in Definition 2 is enforced by our system against

the stream of triples of the process log, as illustrated in

Excerpt 1.

Task{deny} (1)

Match{

?task org-resource ?res.

?task lifecycle-transition ?lt

}

Condition{

?process ebtic-bpm:hasTask ?task.

?task rdf:type ?tasktype.

?tasktype rdfs:subClassOf ebtic-bpm:task

}

6 ASK queries return results of type Boolean and are best
suited to identify the existence of a graph pattern in the RDF
graph
7 The DecisionPoint element is important because the poli-

cies are applied to streams of triples. When a triple matching
the Match block is detected, Condition may not yet be satis-
fied, but it can become so due to other triples that come next
in the flow. So, the PEP goes on checking until DecisionPoint
is reached.
8 In the US, the Gramm-Leach-Bliley Financial Services

Modernization Act (GLB Act), Pub. L. No. 106-102, 113 Stat.
1338 (Nov. 12, 1999)

7

Alternative{

Find{

?task rdf:type ?tasktype.

?tasktype rdfs:subClassOf ebtic-bpm:task }

Replace{

?task rdf:type ebtic-bpm:task }

}

DecisionPoint{

?task ebtic-bpm:endTime ?endTime}

The incoming triples are verified against the Match

block; in our sample policy we look for processes hav-

ing a task performed by an agent of type “human”. In

case the triple matches the match block then the con-

ditions need to be tested in order to verify if it can

be added to the user’s sanitized RDF graph. As seen

in Equation 2, our policy expresses three disjunctive

conditions: one checking that the loan process is for an

amount of 100000 and that the task performed by a hu-

man agent is of type submission. A second condition is

checking that the loan process is still for an amount of

100000 and that the task performed by a human agent

is of type accepted and a final alternative condition is

checking in the process is for an amount of 200000 and

the task performed by the human agent is of type ap-

proved. In case one of these conditions is verified, the

triples in the find block are removed from the graph

and replaced with the ones in the replace block. The

conditions are verified on the same process until either

they are satisfied or the decision point is reached. In

our sample policy the decision point if the triple indi-

cating the ending time of the process. This way, even if

the filter updater seems to process a triple at the time,

the decision point provides a mechanism to handle the

triples of a process as related.

Policy#1:

In Process Loan it is denied Analyst with
has access to

Task Submitted with amount more than 100000,
or Task Approved with amount more than 200000,
or Task Accepted with amount more than 100000.

(2)

6 Overview of the Approach

In this section, we provide an overview of our AC mech-

anism (Figure 3). The goal of the approach is to gener-

ate a logical process log for each user (or client applica-

tion), showing only the information the user is entitled

to see according to the AC policy and preserving the

semantic integrity of the resulting RDF stream.

Fig. 3: Conceptual architecture of the AC system.

For the sake of simplicity, here we model only two

stakeholders but the same mechanism can be executed

with more actors. In the example we use, the Requester

(i.e., the analyst/auditor accessing the process) assigns

access rights to the Administrator (i.e., the process
owner or a delegate) by encoding them in an XACML

policy. The policy is enforced by a Policy Enforcement

Point (PEP) operating on the incoming stream of pro-

cess events. Let us now describe the entities mentioned

in Figure 3 in more detail.

6.1 The Filter Updater

The Filter Updater takes care of creating and incre-

mentally updating the filter to be used for comput-

ing the Requestor’s view of the process data. At any

given time, each Requestor u corresponds to a filter Vu

= <Vallow, Vdeny, Valternative>, where Vallow, Vdeny and

Valternative are sets of selectors representing the policies

(or, better, the obligations) {P1, .., Pi, .., Pn} that apply

to the requestor. We also introduce a constraint of mu-

tually exclusion between Vallow and Vdeny, so that if

Vallow ≡ ∅ ⇐⇒ Vdeny 6= ∅, because all obligations

associated to a given Requestor have to be consistent

8

with respect to the Task value (deny or allow). This is

enforced both at the time of loading the policies in the

system, by checking that only one type of obligations is

present (allow or deny), and at the time of policies edit-

ing, by preventing the policy editor to put both deny

and allow types of obligations. This implies the Filter

Updater create and update the filter Vu by maintaining

two selectors Qi and QAi for each policy Pi so that,

each element Vallow or Vdeny, and Valternative are com-

posed by a set of selectors Vallow = {Q1, .., Qi, .., Qn} or

Vdeny = {Q1, .., Qi, .., Qn} depending on the Task value

(allow or deny) and mutually exclusive, and Valternative

= {QA1, .., QAi, .., QAn}. We represent a selector Qi or

QAi as a SPARQL CONSTRUCT query composed by

the following elements:

CONSTRUCT {

[RD]}

WHERE {

[GP]}.

RD is the Result Descriptor (RD) which is triples

pattern representing the triples the query will return to

the user, while GP is the Graph Pattern (GP) in the

RDF graph that will extract the triples from the RDF

graph to filter and that will be used to create RD. Let

us assume that all users subscribe to the log at the same

time t=0. At t=0, all access policies get simultaneously

enforced and all filters are empty. Each time a monitor

generates a new triple, the Filter Updater checks if the

Requestor u is allowed to access the triple by invoking

the PEP. The results of these calls update the selec-

tors Qi and QAi. Each call to the PEP is performed

by passing the triple to filter, the PEP and returns an

element containing the policy’s unique identifier, the

type of Task (allow or deny), the Match block and the

satisfied conditions or the Alternative block in case the

triple needs to be filtered out. The results returned by

the PEP to the Filter Updater are used to update the

two selectors Qi and QAi of the policy Pi represented

by the Vallow, Vdeny and Valternative sets in the filter

Vu. The selectors are updated according to the tem-

plates shown in Table 2. Each element contained in the

response from the PEP is replaced in the template: in

case the Match block is returned, the element [RD] is

replaced by the graph pattern contained in the Match

block and the [GP] element is replaced by the graph

pattern in the Match combined with the graph pat-

terns of the elements in the Condition block. In case

an Alternative block is returned, the element [RD] is

replaced by the triples in the graph pattern defined in

the Replace part of the alternative block and the [GP]

element is defined by the graph pattern defined in the

Find part of the Alternative block minus the Graph

Pattern GP (Qi) this in order to ensure that the selec-

tors contained in Valternative only replace triples where

the policy conditions apply. In case the policy does not

apply to the triple, a null result is returned and the

selectors Qi and QAi are not updated.

Table 2: Selector Templates for each policy Pi in case

of allow types of policies.

Qi QAi

CONSTRUCT { CONSTRUCT {

[match] } [alternative.replace]}

WHERE { WHERE {

{[match]. [alternative.find].

[conditions]} (FILTER NOT EXISTS {

(UNION {[match]. GP(Qi)})?

[conditions]})*} }

As an example let us consider the policy previously

defined in 1 and the stream of triples reported in Table

3: when the first triple arrives the Filter Updater asks

the PEP if the user is allowed to see the triple, the

PEP analyses the triple against the Match block. Since

it does not match the graph patter in the Match block

and the Task is of type deny, the user is allowed to see

the triple.

Table 3: A sample stream of triples based on the RDF

translation of the BPI Challenge 2012 [67].

s p o

bpi:process1 rdf:type bpi:LoanProcess

bpi:process1 bpi:amount 120000

bpi:task1 rdf:type bpi:A SUBMITTED

bpi:agent1 rdf:type bpi:human

bpi:task1 bpi:performed by agent bpi:agent1

bpi:process1 ebtic-bpm:hasTask bpi:task1

bpi:process1 ebtic-bpm:endTime 2010-03-02

bpi:process2 rdf:type bpi:LoanProcess

bpi:process2 bpi:amount 100000

bpi:task2 rdf:type bpi:A SUBMITTED

bpi:agent2 rdf:type bpi:human

bpi:task2 bpi:performed by agent bpi:agent2

bpi:process2 ebtic-bpm:hasTask bpi:task2

bpi:process2 ebtic-bpm:endTime 2010-03-02

bpi:process3 rdf:type bpi:LoanProcess

bpi:process3 bpi:amount 200000

bpi:task3 rdf:type bpi:A APPROVED

bpi:agent3 rdf:type bpi:human

bpi:task3 bpi:performed by agent bpi:agent3

bpi:process3 ebtic-bpm:hasTask bpi:task3

bpi:process3 ebtic-bpm:endTime 2010-03-02

bpi:process4 rdf:type bpi:LoanProcess

bpi:process4 bpi:amount 100000

bpi:task4 rdf:type bpi:A ACCEPTED

bpi:agent4 rdf:type bpi:human

bpi:task4 bpi:performed by agent bpi:agent4

bpi:process4 ebtic-bpm:hasTask bpi:task4

bpi:process4 ebtic-bpm:endTime 2010-03-02

At this time the filter Vu is composed by the selector
Q1 in Vdeny:

CONSTRUCT { ?s ?p ?o }

WHERE { ?s ?p ?o}.

This selector just returns all the triples in the origi-

nal graph G since the user at the moment is allowed to

see all the triples in the graph. The set of selectors in

9

Valternative is empty because there is no need to sanitize

the flow. When the fifth triple which matches the Match

pattern arrives, the conditions need to be tested in or-

der for the Filter Updater to decide if the user is allowed

to see the triple. The system generates a SPARQL ASK

query for each condition by replacing the variables in

the graph pattern with the elements of the triple (in

this case the variables ?task and ?agent replaced with

the subject and object of the triple respectively) the

conditions are tested until one is satisfied. In this case,

the conditions are all tested but none of them is sat-

isfied, so the filter cannot decide if the user is allowed

to see the triple so the triple is kept in a buffer until

the decision point is satisfied (seventh triple); testing

the decision point is done in the same way than testing

the conditions and it is done for each triple kept in the

buffer. The selectors are not updated until the arrival

of the triple, which satisfies the first condition. At this

point, the PER return to the filter updater a response

saying that the user is not allowed to see the triple and

the elements required for updating the selectors which

at this point are the ones reported in Table 4.

The filter updater processes all the triples in Table

3 and at the end of the flow, the selectors Q1 and QA1

will look like the ones in Appendix A.

6.2 The RDF Stream Demultiplexer

The RDF Stream Demultiplexer (Figure 3) makes our

dynamic selectors available as SPARQL endpoints to

which the Requestor can freely submit her queries. The

Demultiplexer component provides Requestors with the

abstraction of separate logical process event flows. We

remark that our Demultiplexer is fully agnostic with

respect to the choice between materializing the user’s

graph Gu and using a query rewriting technique. In

the former case, the Demultiplexer applies the selectors

computed by the Updater to the original graph G as a

dynamic continuous query [43] materializing the graph

Gu, whenever a new triple passes the filter. The mate-

rialized graph Gu can be consulted by the user using

SPARQL query language transparently as a traditional

triple store. This approach maximizes performance but

requires additional storage space in order to physically

store the users’ graphs. It is a solution that is not advis-

able in case of high number of different users with short-

lived sessions but can be safely adopted for testing pur-

poses and experimentation. In the latter case, the De-

multiplexer simply waits for the requestor to submit a

query. When the query arrives, our Demultiplexer uses

the current set of selectors in Vu to rewrite the original

user query Qu with the selectors in the filter Vu, ap-

plying a standard query rewriting algorithm ([65]) and

executed the query on the original graph G. The query

rewriting technique is sound and complete, as shown

in Section 3.2 and it ensures that the triples returned

by the query are equivalent to executing the SPARQL

query to the sanitized graph Gu, the difference, in this

case, is that Gu is not materialized. Depending on de-

ployment constrains (space, processing power, number

of users and policies) one deployment solution may be

preferable to the other.

10

Table 4: Selectors after the first condition is satisfied.

Q1 QA1

CONSTRUCT { CONSTRUCT {

?s ?p ?o } ?x1 bpi:agent ?x4.

WHERE { ?x2 ebtic-bpm:hasTask ?x1

{?s ?p ?o ?x4 rdf:type bpi:unknown.}

FILTER(NOT EXISTS{ WHERE{?x1 bpi:agent ?x0.

FILTER (?s = ?x0 OR ?s = ?x1 OR ?s = ?x2) ?x0 rdf:type bpi:human.

?x2 ebtic-bpm:hasTask ?x1. ?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0. FILTER(EXISTS{?x2 ebtic-bpm:hasTask ?x1.

?x0 rdf:type bpi:human. ?x1 bpi:agente ?x0.

?x2 ebtic-bpm:endTime ?x3. ?x0 rdf:type bpi:human.

?x1 rdf:type bpi:A_SUBMITTED . ?x2 ebtic-bpm:endTime ?x3.

?x2 bpi:amount 100000. ?x1 rdf:type bpi:A_SUBMITTED .

}} ?x2 bpi:amount 100000.}

7 Validation

To validate our approach we considered three aspects:

correctness, completeness, and performance. Correct-

ness can be formally proved, as illustrated in Section

7.1. Completeness requires the availability of ground

truth and will then be assessed only on a restrict set

of triples, Section 7.1. Performance is analysed against

the SQR approach, as discussed in Section 7.2.

7.1 Correctness and Completeness

To discuss the correctness of our approach we have to

focus on the construction of the filter Vu.

Each of the selectors Qi and QAi created by the fil-

ter updater for each policy Pi returns a view over the

original RDF graph G. As discussed previously in Sec-

tion 5, our policy language allows to define two types

of obligations: allow and deny which are mutually ex-

clusive (Vallow ≡ ∅ ⇐⇒ Vdeny 6= ∅). We can define an

obligation Pi as the pair {Qi ∈ (Vallow ∪ Vdeny), QAi ∈
(Valternative)}. With the notation [[Q]]G we define the

result of the execution of a query Q over an RDF graph

G, which in case of a CONSTRUCT query is an RDF

graph.

Let us start from the case of allow type obligations,

the sanitized graph GPi
related to a specific policy is

the union of the results from the queries Qi and QAi

which can be defined as:

GPi
≡ [[Qi]]G ∪ [[QAi]]G,

since the final graph for a user u is the graph Gu re-

turned by the execution of all the policies we can define:

Gu ≡
n=|Pi|⋃
i=0

GPi
≡

n=|Pi|⋃
i=0

([[Qi]]G ∪ [[QAi]]G),

which, for the commutative property of the union op-

erator can be rewritten as:

Gu ≡

n=|Pi|⋃
i=0

[[Qi]]G

 ∪
n=|Pi|⋃

i=0

[[QAi]]G

 ,

if we define

Gu allow ≡
n=|Pi|⋃
i=0

[[Qi]]G,

Gu alternative ≡
n=|Pi|⋃
i=0

[[QAi]]G,

then, the sanitized graph Gu can be defined as:

Gu ≡ Gu allow ∪Gu alternative,

which is the union of the results of the single executions

of the selectors contained in Vallow and Valternative (as

defined using the templates in Table 2).

In the case the Task value of the policy is of deny

type, Gallow will be the set-theoretical difference be-

tween the original RDF graph G and the union of all

the triple the user is not authorized to access (Vdeny) 9.

This can be defined as:

Gu allow ≡ G \Gu deny ≡ G \

n=|Pi|⋃
i=0

[[Qi]]G

 ,

which can be rewritten as the intersection of the graphs

generated by the single execution of the queries:

Gu allow ≡

n=|Pi|⋂
i=0

G \ [[Qi]]G

 ,

this aspect need to be considered in case the deny

queries are divided into separate executions. By defini-

tion [44] the result of such queries are themselves RDF

9 Traditional view-based approaches do not consider this
types of policies [65].

11

graphs; therefore, the result of applying Vu over the

original graph G is an RDF graph Gu, which contains

only triples that the user is authorized to access.

To verify the completeness of our approach it is re-

quired to manually validate the triples resulted in the

RD generated by the Demultiplexer. During our eval-

uation, we tested around 400 triples without observing

any misalignment with a ground truth result set used

for comparison.

7.2 Performances

Generally speaking, the complexity of the evaluation

problem for SPARQL queries [68] is known to be NP-

complete in case no OPTIONAL operators are present

in the query, while is PSPACE-complete in presence

of OPTIONAL operators. Still, efficient execution of

SPARQL has been achieved in many practical systems

by using data partitioning heuristics [69].

In our policies we do not impose any restriction to

the use of the OPTIONAL operator, which can be present

in the conditions block of the policy, However, boolean

operators used to combine different conditions inside

the conditions block can be used to limit the need for

OPTIONAL operator only to exceptional cases. In order

to validate our approach, we designed a set of experi-

ments to measure performance improvement provided

by our dynamic filtering enforcement approach with re-

spect to an approach that statically apply filters such

as SQR [65]. In fact, SQR can dynamically generate

queries but the enforcement of the filtering procedure is

statically applied to any triple it processes. This means

that SQR can be applied to a stream of RDF triples,

but the triples are filtered by applying the entire pol-

icy, making it inefficient. Our approach builds the filter

dynamically by applying only the necessary part of the

policy. The experiment presented in this section is in-

tended to show that, even given the high complexity of

SPARQL query answering, our approach provides a vi-

able solution for a practical PMon system, suitable for

further improvement, e.g. by data partitioning heuris-

tics. Since stream filter execution heavily impacts the

overall performance of PMon, an improvement in this

aspect positively affects the entire behavior of the sys-

tem. We implemented our AC mechanism as a set of

components for the Zeus process analyzer [43]. In our

implementation, Requestors request a SPARQL end-

point address or submit a SPARQL query through a

Web Service interface, after standard authentication.

The Web Service takes care of passing the Requestor’s

credentials to the other components where policies are

extracted and applied. In our experiment, the Demul-

tiplexer physically decouples the RDF graph Gu from

the original graph G of triples. The data used for this

experiment is the BPI Challenge 2012 [67] introduced

in Section 2. The log is composed of 13.087 process

instances and 262.200 activity instances divided into

24 different activity types. The log is available in the

OpenXES10 format and therefore it has been converted

into RDF in order to be used with our system. The

resulting RDF graph is composed of 2.379.557 triples.

Experiments were carried out on a desktop pc with pro-

cessor Intel core i5 2,53 ghz with 8 GBytes (1067 MHz)

of RAM memory and Hard Disk of 500 GBytes (5400

rpm). The test-suite has been developed using Java11

version 7. The test-suite is composed by a Java imple-

mentation of the AC module, represented by the con-

ceptual architecture in Figure 2 and described in detail

in Section 6, the flow of events, a log re-player and a

flow listener. The flow of events is represented by a mes-

sage queue12 ensuring that the overhead introduced by

the message queue does not influence the performance

of our approach. The events (represented by the triples

in the RDF log) are inserted in the message queue by

a Log re-player, which reads the RDF representation

of the BPI Challenge Log and submits the triples to

the message queue with a configurable delay between

triples. From our experience in a real deployment of

the analyser we observed that the arrival rate of triples

is not constant: normally the process monitors generate

bursts of triples to represent new activities in the mon-

itored process. In the BPI Challenge log an activity is

defined by a block of 10 triples providing information

on the identifier of the activity, its type, the process the

activity belongs to, preceding activities, the start time

and end time of the activity and the values of its at-

tributes. This behaviour has been simulated in the log

re-player which sends to the message queue blocks of 10

triples with a variable delay with an average value of

1000ms between the blocks. The benchmark represents

the worst case scenario for our approach: the number of

different activity types is relatively small. The Listener

is invoked every time a triple is detected in the message

queue and takes care of testing the triples against the

PEP (Figure 3) informing the Filter Updater with the

obligations to apply to the triples flow. In order to sim-

ulate a stream analysis environment, the cache of the

events log where the conditions are tested is cleaned

and the RDF triples made persistent in the final triple-

store. The policy used for the experiments is the one

defined in 1. The queries we used in the static SQR

test are reported in Appendix A (they are equal to the

10 http://www.xes-standard.org/
11 http://www.oracle.com/technetwork/java/
12 for this experiment we used ActiveMQ http://activemq.

apache.org/

12

selectors when all the policy is applied). We executed

three runs for each test and compared the average of

the resulting times.

Results of our evaluation are shown in Figure 4,

which shows query execution time in milliseconds (ms).

It compares our dynamic filtering approach versus the

SQR static approach, the X axis reports the number of

triples processed. In the chart is also present the time

of execution of the queries used to check the condi-

tions performed by our PEP. In our experimentation,

RDF triples are regularly removed from the stream and

stored in the final repository (every 20000 complete pro-

cesses the stream is cleared). The vertical bars in the

chart represents the moments in the stream where one

of the conditions of the policy is verified. It is possible

to see how our approach remains well under the static

one until the fifth vertical bar when the selectors of

the filter updater became equivalent to the queries ex-

ecuted by the static approach. It is also worth noticing

that the time of execution of the testing of the condi-

tions is minimal 13. Also, our test has been carried out

on one policy at a time; in a production environment

where multiple AC policies are applied, the improve-

ment in query execution time due to building the filter

dynamically will improve.

13 The spikes in the chart are due to the Java garbage col-
lector when the triples buffer is cleaned.

13

Fig. 4: Performance results of dynamic filter

8 Conclusions and Perspectives

In this paper, we presented a model and a toolkit for

controlling access to RDF streams generated by busi-

ness process monitoring. Our approach introduces a

new notion of dynamic enforcement: dynamic filters

are incrementally built for each process monitoring in-

stance, based on the applicable AC policy, on the re-

questor and on the current content of the process event

log. We consider dynamic filtering a major innovation in

enforcing multiple AC policies on huge graph streams.

When static filters are used, all user queries use identi-

cal filters for determining which events of the audit log

they can access. Our dynamic filters respond to real-

time events in the process environment, setting only the

traps that suit the specific process trace when select-

ing events to audit. Policy-wise, our approach is based

on obligations in the standard XACML language and

enables auditing of AC policies on work-flow streams

like any other policy expressable in XACML. Today, re-

sults of audits on many compliance-driven (e.g. ”need-

to-know”) mandates depend on the audited organiza-

tion having certified access control regimes in place. We

consider this to be a key factor for the practical adop-

tion of our approach. A related line of research regards

extending the scope of our XACML obligations. It is

important to remark that this would not require ex-

tending their syntax: in the spirit of kindred languages

like PAPEL [57], it would suffice to add additional lay-

ers of metadata expressing the timing (and possibly the

physical location of probes) of process event generation.

RDF formats for such layers have been available since

long [70], and conditions on such additional metadata

layers can be straightforwardly expressed using our cur-

rent obligations. We see a number of other directions

for further developing our approach. First of all, we de-

signed our approach to be suitable for Big Data-style,

low-level parallelisation by executing our filters in par-

allel over a high number of data partitions correspond-

ing to probe locations. We plan to explore this aspect

in a future paper. Another aspect worth exploring is us-

ing reasoning to keep our dynamic filter compact. In our

current implementation, when a Zeus process monitor

submits a triple to which a policy applies, the dynamic

filter gets updated unless it already contains a specific

selector for the incoming triple. However, it may con-

ceivably be the case that the filter already contains a

selector that will filter out that triple anyway (e.g. be-

cause it filters a concept that subsumes concepts related

to the incoming triples).

If the Filter Updater could notice this selector ab-

sorption, it would avoid adding a condition to the fil-

ter that will never be checked. However, the amount

of reasoning to be done to notice absorption may in

some cases be substantial and the eventual gain (or

loss) in performance would largely depend on the log

content. Trying to take into account absorption in fil-

ter construction may also interfere with automatic cost

reordering of conjunctions in SPARQL query planning,

a crucial issue for SPARQL performance [68]. We plan

to explore this subject in a future paper.

Acknowledgement

This work has been partly supported by Abu Dhabi-

IT Fund under project 3093 “Grid-Enabled Business

Process Management and e-Government”.

14

Appendix A

Selector Q1 in Vdeny

CONSTRUCT {?s ?p ?o .}

WHERE {?s ?p ?o .

FILTER(NOT EXISTS {

?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:endTime ?x3.

?x1 rdf:type bpi:A_SUBMITTED .

?x2 bpi:amount 100000 .

FILTER (?s = ?x0 OR?s = ?x1 OR ?s = ?x2)}&& NOT EXISTS {

?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:endTime ?x3.

?x1 rdf:type bpi:A_APPROVED .

?x2 bpi:amount 200000 .

FILTER (?s = ?x0 OR?s = ?x1 OR ?s = ?x2)}&& NOT EXISTS {

?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:endTime ?x3.

?x2 bpi:amount 100000 .

?x1 rdf:type bpi:A_ACCEPTED .

FILTER (?s = ?x0 OR?s = ?x1 OR ?s = ?x2)})}

Selector QA1 in Valternative

CONSTRUCT{?x1 bpi:agente ?x4.

?x2 ebtic-bpm:hasTask ?x1.

?x4 rdf:type bpi:unknown.}

WHERE{

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:hasTask ?x1.

FILTER (EXISTS{

?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:endTime ?x3.

?x1 rdf:type bpi:A_SUBMITTED .

?x2 bpi:amount 100000 .}OR EXISTS{

?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:endTime ?x3.

?x1 rdf:type bpi:A_APPROVED .

?x2 bpi:amount 200000 .}OR EXISTS{

?x2 ebtic-bpm:hasTask ?x1.

?x1 bpi:agente ?x0.

?x0 rdf:type bpi:human.

?x2 ebtic-bpm:endTime ?x3.

?x2 bpi:amount 100000 .

?x1 rdf:type bpi:A_ACCEPTED .})}

References

1. A. Shtub and R. Karni, “Business Process Improvement,”
in ERP. Springer US, 2010, pp. 217–254. [Online]. Avail-
able: http://dx.doi.org/10.1007/978-0-387-74526-8 13

2. W. van der Aalst, A. Adriansyah, A. K. A. de Medeiros,
F. Arcieri, T. Baier, T. Blickle, J. C. Bose, P. van den
Brand, R. Brandtjen, J. Buijs, A. Burattin, J. Car-
mona, M. Castellanos, J. Claes, J. Cook, N. Costantini,
F. Curbera, E. Damiani, M. de Leoni, P. Delias, B. F.
van Dongen, M. Dumas, S. Dustdar, D. Fahland, D. R.
Ferreira, W. Gaaloul, F. van Geffen, S. Goel, C. Günther,
A. Guzzo, P. Harmon, A. ter Hofstede, J. Hoogland, J. E.
Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. La Rosa,
F. Maggi, D. Malerba, R. S. Mans, A. Manuel, M. Mc-
Creesh, P. Mello, J. Mendling, M. Montali, H. R.
Motahari-Nezhad, M. zur Muehlen, J. Munoz-Gama,
L. Pontieri, J. Ribeiro, A. Rozinat, H. Seguel Pérez,
R. Seguel Pérez, M. Sepúlveda, J. Sinur, P. Soffer,
M. Song, A. Sperduti, G. Stilo, C. Stoel, K. Swenson,
M. Talamo, W. Tan, C. Turner, J. Vanthienen, G. Varva-
ressos, E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. We-
ber, M. Weidlich, T. Weijters, L. Wen, M. Westergaard,
and M. Wynn, “Process mining manifesto,” in Business
Process Management Workshops, F. Daniel, K. Barkaoui,
and S. Dustdar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 169–194.

3. M. Alles, G. Brennan, A. Kogan, and M. A.
Vasarhelyi, Continuous Monitoring of Business Process
Controls: A Pilot Implementation of a Continuous Auditing

System at Siemens, ch. 10, pp. 219–246. [Online].
Available: https://www.emeraldinsight.com/doi/abs/10.
1108/978-1-78743-413-420181010

4. S. Barbon Junior, G. M. Tavares, V. G. T. da Costa,
P. Ceravolo, and E. Damiani, “A framework for
human-in-the-loop monitoring of concept-drift detection
in event log stream,” in Companion Proceedings of the
The Web Conference 2018, ser. WWW ’18. Republic
and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2018, pp.
319–326. [Online]. Available: https://doi.org/10.1145/
3184558.3186343

5. R. Sandhu and P. Samarati, “Access control: principle
and practice,” Communications Magazine, IEEE, vol. 32,
no. 9, pp. 40–48, 1994.

6. C. W. Gunther and W. M. P. van der Aalst, “A Generic
Import Framework For Process Event Logs,” Business
Process Management Workshops, Workshop on Business
Process Intelligence (BPI 2006), volume 4103 of Lecture
Notes in Computer Science, Tech. Rep., 2006.

7. W. v. d. Aalst and E. Damiani, “Processes meet big data:
Connecting data science with process science,” IEEE
Transactions on Services Computing, vol. 8, no. 6, pp. 810–
819, Nov 2015.

8. P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-
Mauroux, E. Damiani, A. Mazak, M. Van Keulen,
M. Jarrar, G. Santucci, K.-U. Sattler, M. Scannapieco,
M. Wimmer, R. Wrembel, and F. Zaraket, “Big
data semantics,” Journal on Data Semantics, vol. 7,
no. 2, pp. 65–85, Jun 2018. [Online]. Available:
https://doi.org/10.1007/s13740-018-0086-2

15

9. “eXtensible Access Control Markup Language (XACML)
Version 2.0,” OASIS Access Control TC, Tech. Rep., Feb.
2005. [Online]. Available: http://docs.oasis-open.org/
xacml/2.0/access\ control-xacml-2.0-core-spec-os.pdf

10. P. Hayes and B. McBride, “Resource Description
Framework (RDF),” W3C, Recommendation, 2004.
[Online]. Available: http://www.w3.org/TR/rdf-mt/

11. O. Thomas and M. Fellmann, “Semantic EPC: Enhanc-
ing Process Modeling Using Ontology Languages,” in
SBPM, ser. CEUR Workshop Proceedings, M. Hepp,
K. Hinkelmann, D. Karagiannis, R. Klein, and N. Sto-
janovic, Eds., vol. 251. CEUR-WS.org, 2007.

12. D. Ferraiolo and R. Kuhn, “Role-Based Access Control
(RBAC): Features and Motivations,” 1995. [Online].
Available: http://csrc.nist.gov/rbac/

13. O. Chowdhury, H. Chen, J. Niu, N. Li, and E. Bertino,
“On XACML’s Adequacy to Specify and to Enforce
HIPAA,” in Proceedings of the 3rd USENIX Conference on
Health Security and Privacy, ser. HealthSec’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 11–11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
2372366.2372381

14. D. Banisar and S. G. Davies, “Global Trends in Privacy
Protection: An International Survey of Privacy, Data
Protection, and Surveillance Laws and Developments,”
in John Marshall Journal of Computer & Information

Law, 1999, vol. XVIII. [Online]. Available: http:
//ssrn.com/abstract=2138799

15. H. Al-Ali, E. Damiani, M. Al-Qutayri, M. Abu-Matar,
and R. Mizouni, “Translating bpmn to business rules,” in
International Symposium on Data-Driven Process Discovery
and Analysis. Springer, 2016, pp. 22–36.

16. P. Ceravolo, E. Damiani, M. Torabi, and S. Barbon, “To-
ward a new generation of log pre-processing methods for
process mining,” in Business Process Management Forum,
J. Carmona, G. Engels, and A. Kumar, Eds. Cham:
Springer International Publishing, 2017, pp. 55–70.

17. H. Verbeek, J. C. Buijs, B. F. Van Dongen, and W. M.
Van Der Aalst, “Xes, xesame, and prom 6,” in Forum at

the Conference on Advanced Information Systems Engineer-

ing (CAiSE). Springer, 2010, pp. 60–75.
18. G. Li, E. G. L. de Murillas, R. M. de Carvalho, and W. M.

van der Aalst, “Extracting object-centric event logs to
support process mining on databases,” in International

Conference on Advanced Information Systems Engineering.
Springer, 2018, pp. 182–199.

19. S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski,
and J. Mendling, “Efficient and customisable declara-
tive process mining with sql,” in International Conference
on Advanced Information Systems Engineering. Springer,
2016, pp. 290–305.

20. M. Leida, B. Majeed, M. Colombo, and A. Chu,
“A Lightweight RDF Data Model for Business
Process Analysis,” in Data-Driven Process Discov-

ery and Analysis, ser. Lecture Notes in Business
Information Processing, P. Cudre-Mauroux, P. Cer-
avolo, and D. Gaevi, Eds. Springer Berlin Heidel-
berg, 2013, vol. 162, pp. 1–23. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40919-6 1

21. T. Vogelgesang and H.-J. Appelrath, “A relational data
warehouse for multidimensional process mining,” in In-
ternational Symposium on Data-Driven Process Discovery

and Analysis. Springer, 2015, pp. 155–184.
22. L. Berberi, J. Eder, and C. Koncilia, “A process ware-

house model capturing process variants,” Enterprise Mod-
elling and Information Systems Architectures, vol. 13, pp.
77–85, 2018.

23. W. M. P. van der Aalst, “Process Cubes: Slicing,
Dicing, Rolling Up and Drilling Down Event Data
for Process Mining,” in Asia Pacific Business Process

Management, ser. Lecture Notes in Business Information
Processing, M. Song, M. Wynn, and J. Liu, Eds.
Springer International Publishing, 2013, vol. 159, pp.
1–22. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-02922-1 1

24. P. Ceravolo, A. Azzini, E. Damiani, M. Lazoi, M. Marra,
and A. Corallo, “Translating process mining results into
intelligible business information,” in Proceedings of the

The 11th International Knowledge Management in Orga-
nizations Conference on The changing face of Knowledge

Management Impacting Society. ACM, 2016, p. 14.
25. P. Ceravolo and F. Zavatarelli, “Knowledge acquisition in

process intelligence,” in Information and Communication

Technology Research (ICTRC), 2015 International Confer-
ence on. IEEE, 2015, pp. 218–221.

26. D. Calvanese, M. Montali, A. Syamsiyah, and W. M. P.
van der Aalst, “Ontology-driven extraction of event logs
from relational databases,” in Business Process Manage-

ment Workshops, M. Reichert and H. A. Reijers, Eds.
Cham: Springer International Publishing, 2016, pp. 140–
153.

27. C. A. Ardagna, P. Ceravolo, and E. Damiani, “Big data
analytics as-a-service: Issues and challenges,” in 2016
IEEE International Conference on Big Data (Big Data),
Dec 2016, pp. 3638–3644.

28. S. Smirnov, H. A. Reijers, and M. Weske, “A seman-
tic approach for business process model abstraction,” in
Advanced Information Systems Engineering, H. Mouratidis
and C. Rolland, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 497–511.

29. A. Azzini and P. Ceravolo, “Consistent process min-
ing over big data triple stores,” in Big Data (BigData

Congress), 2013 IEEE International Congress on. IEEE,
2013, pp. 54–61.

30. O. Nykänen, A. Rivero-Rodriguez, P. Pileggi, P. A.
Ranta, M. Kailanto, and J. Koro, “Associating event
logs with ontologies for semantic process mining and
analysis,” in Proceedings of the 19th International Academic

Mindtrek Conference, ser. AcademicMindTrek ’15. New
York, NY, USA: ACM, 2015, pp. 138–143. [Online].
Available: http://doi.acm.org/10.1145/2818187.2818273

31. A. K. A. de Medeiros, W. van der Aalst, and C. Pedrinaci,
“Semantic process mining tools: core building blocks,” in
16th European Conference on Information Systems, 2008.
[Online]. Available: http://oro.open.ac.uk/23397/

32. K. Okoye, A. R. H. Tawil, U. Naeem, and E. Lamine, “Se-
mantic process mining towards discovery and enhance-
ment of learning model analysis,” in 2015 IEEE 17th
International Conference on High Performance Computing

and Communications, 2015 IEEE 7th International Sympo-

sium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and
Systems, Aug 2015, pp. 363–370.

33. A. H. Cairns, J. A. Ondo, B. Gueni, M. Fhima,
M. Schwarcfeld, C. Joubert, and N. Khelifa, “Using
semantic lifting for improving educational process
models discovery and analysis.” in Proceedings of the 4th
International Symposium on Data-driven Process Discovery
and Analysis (SIMPDA 2014), 2014. [Online]. Available:
ceur-ws.org/Vol-1293/paper11.pdf

34. O. Kingsley, A. R. H. Tawil, U. Naeem, S. Islam, and
E. Lamine, “Using semantic-based approach to manage

16

perspectives of process mining: Application on improv-
ing learning process domain data,” in 2016 IEEE Inter-

national Conference on Big Data (Big Data), Dec 2016, pp.
3529–3538.

35. A. Azzini, C. Braghin, E. Damiani, and F. Zavatarelli,
“Using semantic lifting for improving process mining: a
data loss prevention system case study.” 2013, pp. 62–73.

36. D. Brickley, R. Guha, and B. McBride, “RDF
Vocabulary Description Language 1.0: RDF Schema,”
W3C, Recommendation, 2004. [Online]. Available:
http://www.w3.org/TR/rdf-schema/

37. Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey
of Data Provenance in e-Science,” SIGMOD Rec.,
vol. 34, no. 3, pp. 31–36, Sep. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1084805.1084812

38. T. Baier and J. Mendling, “Bridging abstraction layers
in process mining by automated matching of events and
activities,” in Business Process Management, F. Daniel,
J. Wang, and B. Weber, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 17–32.

39. H. Al-Ali, E. Damiani, M. Al-Qutayri, M. Abu-Matar,
and R. Mizouni, “Translating bpmn to business rules,” in
Data-Driven Process Discovery and Analysis, P. Ceravolo,
C. Guetl, and S. Rinderle-Ma, Eds. Cham: Springer
International Publishing, 2018, pp. 22–36.

40. A. De Nicola, T. Di Mascio, M. Lezoche, and F. Tagliano,
“Semantic lifting of business process models,” in Enter-

prise Distributed Object Computing Conference Workshops,
2008 12th. IEEE, 2008, pp. 120–126.

41. F. Mannhardt, M. De Leoni, H. A. Reijers, W. M. Van
Der Aalst, and P. J. Toussaint, “From low-level events
to activities-a pattern-based approach,” in International
Conference on Business Process Management. Springer,
2016, pp. 125–141.

42. T. Baier, C. Di Ciccio, J. Mendling, and M. Weske,
“Matching of events and activities-an approach using
declarative modeling constraints,” in International Con-

ference on Enterprise, Business-Process and Information
Systems Modeling. Springer, 2015, pp. 119–134.

43. M. Leida and A. Chu, “Distributed SPARQL Query An-
swering over RDF Data Streams,” in Big Data (BigData

Congress), 2013 IEEE International Congress on, 2013, pp.
369–378.

44. E. Prud’hommeaux and A. Seaborne, “SPARQL
Query Language for RDF,” W3C, Recommenda-
tion, 2008. [Online]. Available: http://www.w3.org/TR/
rdf-sparql-query/

45. S.-M.-R. Beheshti, B. Benatallah, H. Motahari-Nezhad,
and S. Sakr, “A Query Language for Analyzing
Business Processes Execution,” in Business Process

Management, ser. Lecture Notes in Computer Science,
S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds.
Springer Berlin Heidelberg, 2011, vol. 6896, pp.
281–297. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-23059-2 22

46. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman, “Role-Based Access Control Models,”
Computer, vol. 29, no. 2, pp. 38–47, Feb. 1996. [Online].
Available: http://dx.doi.org/10.1109/2.485845

47. G. Herrmann and G. Pernul, “Viewing Business-process
Security from Different Perspectives,” Int. J. Electron.

Commerce, vol. 3, no. 3, pp. 89–103, Mar. 1999.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
1189867.1189874

48. H. Koshutanski and F. Massacci, “An Access Control
Framework for Business Processes for Web Services,”
in Proceedings of the 2003 ACM Workshop on XML

Security, ser. XMLSEC ’03. New York, NY, USA:
ACM, 2003, pp. 15–24. [Online]. Available: http:
//doi.acm.org/10.1145/968559.968562

49. N. Russell, W. Aalst, A. Hofstede, and D. Edmond,
“Workflow Resource Patterns: Identification, Represen-
tation and Tool Support,” in Advanced Information
Systems Engineering, ser. Lecture Notes in Computer
Science, O. Pastor and J. Falco e Cunha, Eds. Springer
Berlin Heidelberg, 2005, vol. 3520, pp. 216–232. [Online].
Available: http://dx.doi.org/10.1007/11431855 16

50. J. Wainer, A. Kumar, and P. Barthelmess, “DW-
RBAC: A formal security model of delegation and
revocation in workflow systems,” Inf. Syst., vol. 32,
no. 3, pp. 365–384, May 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2005.11.008

51. B. Weber, M. Reichert, W. Wild, and S. Rinderle-
Ma, “Balancing flexibility and security in adaptive
process management systems,” in Proceedings of the 2005

Confederated international conference on On the Move

to Meaningful Internet Systems - Volume Part I, ser.
OTM’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp.
59–76. [Online]. Available: http://dx.doi.org/10.1007/
11575771 7

52. S. Rinderle-Ma and M. Reichert, “Managing the Life
Cycle of Access Rules in CEOSIS,” in Proceedings of the

2008 12th International IEEE Enterprise Distributed Object
Computing Conference, ser. EDOC ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 257–266.
[Online]. Available: http://dx.doi.org/10.1109/EDOC.
2008.16

53. A. Lehmann and D. Fahland, “Information Flow
Security for Business Process Models - just one
click away,” in BPM (Demos), ser. CEUR Workshop
Proceedings, N. Lohmann and S. Moser, Eds., vol.
940. CEUR-WS.org, 2012, pp. 34–39. [Online]. Avail-
able: http://dblp.uni-trier.de/db/conf/bpm/bpmd2012.
html#LehmannF12

54. L. Etcheverry and A. A. Vaisman, “Views over RDF
Datasets: A State-of-the-Art and Open Challenges,”
CoRR, vol. abs/1211.0224, 2012.

55. S. Bassil, M. Reichert, and R. Bobrik, “Access Control
for Monitoring System-Spanning Business Processes in
Proviado,” in EMISA, 2009, pp. 125–139.

56. M. Reichert, S. Bassil, R. Bobrik, and T. Bauer,
“The Proviado Access Control Model for Business
Process Monitoring Components,” Enterprise Modelling

and Information Systems Architectures - An International

Journal, vol. 5, no. 3, pp. 64–88, December 2010.
[Online]. Available: http://dbis.eprints.uni-ulm.de/674/

57. C. Ringelstein and S. Staab, “Papel: Provenance-Aware
Policy Definition and Execution,” Internet Computing,
IEEE, vol. 15, no. 1, pp. 49–58, 2011.

58. A. Polyvyanyy, S. Smirnov, and M. Weske, “The
Triconnected Abstraction of Process Models,” in Pro-
ceedings of the 7th International Conference on Business
Process Management, ser. BPM ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 229–244. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03848-8 16

59. G. Greco, A. Guzzo, and L. Pontieri, “Mining hierarchies
of models: from abstract views to concrete specifica-
tions,” in Proceedings of the 3rd international conference

on Business Process Management, ser. BPM’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 32–47. [Online].
Available: http://dx.doi.org/10.1007/11538394 3

60. S. Javanmardi, M. Amini, and R. Jalili, “An Access Con-
trol Model for Protecting Semantic Web Resources.”

17

61. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen,
J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein, “Owl web ontology language
reference,” W3C, Recommendation, 2004. [Online].
Available: http://www.w3.org/Submission/SWRL/

62. E. Damiani, S. De, C. Vimercati, C. Fugazza, and
P. Samarati, “Extending Policy Languages to the Seman-
tic Web,” in In Proc. of the International Conference on
Web Engineering, 2004, pp. 330–343.

63. T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu,
W. Winsborough, and B. Thuraisingham, “ROWLBAC:
representing role based access control in OWL,” in
Proceedings of the 13th ACM symposium on Access control
models and technologies, ser. SACMAT ’08. New York,
NY, USA: ACM, 2008, pp. 73–82. [Online]. Available:
http://doi.acm.org/10.1145/1377836.1377849

64. W. Chen and H. Stuckenschmidt, “A Model-driven Ap-
proach to enable Access Control for Ontologies,” in
Wirtschaftsinformatik (1), 2009, pp. 663–672.

65. W. Le, S. Duan, A. Kementsietsidis, F. Li, and
M. Wang, “Rewriting queries on SPARQL views,”
in Proceedings of the 20th international conference on

World wide web, ser. WWW ’11. New York, NY,

USA: ACM, 2011, pp. 655–664. [Online]. Available:
http://doi.acm.org/10.1145/1963405.1963497

66. S. D. Aravind Yalamanchi, Jayanta Banerjee, “Access
control for graph data,” US Patent US20 100 268 722 A1,
10 21, 2010. [Online]. Available: http://www.patentlens.
net/patentlens/patent/US 7062320/

67. B. van Dongen. (2012) BPI Challenge 2012.
[Online]. Available: http://dx.doi.org/10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f

68. J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and
Complexity of SPARQL,” ACM Trans. Database Syst.,
vol. 34, no. 3, pp. 16:1–16:45, Sep. 2009. [Online].
Available: http://doi.acm.org/10.1145/1567274.1567278

69. X. Wang, T. Yang, J. Chen, L. He, and X. Du,
“Rdf partitioning for scalable sparql query processing,”
Frontiers of Computer Science, vol. 9, no. 6, pp. 919–933,
2015. [Online]. Available: http://dx.doi.org/10.1007/
s11704-015-4104-3

70. A. Sheth, C. Henson, and S. Sahoo, “Semantic Sensor
Web,” Internet Computing, IEEE, vol. 12, no. 4, pp. 78–
83, 2008.

18

