
THE METHOD OF MOVING PLANES: A QUANTITATIVE
APPROACH

IL METODO DEI PIANI MOBILI: UN APPROCCIO QUANTITATIVO

GIULIO CIRAOLO AND ALBERTO RONCORONI

Abstract. We review classical results where the method of the moving planes has been

used to prove symmetry properties for overdetermined PDE’s boundary value problems

(such as Serrin’s overdetermined problem) and for rigidity problems in geometric analysis

(like Alexandrov soap bubble Theorem), and we give an overview of some recent results

related to quantitative studies of the method of moving planes, where quantitative ap-

proximate symmetry results are obtained.

Sunto. Rivisitiamo risultati classici nei quali il metodo dei piani mobili è stato usato per

dimostrare proprietà di simmetria per problemi sovradeterminati (come il Teorema di

Serrin) e per problemi di rigidità in analisi geometrica (come il Teorema di Alexandrov).

Inoltre forniamo un panoramica di recenti risultati legati a studi quantitativi del metodo

dei piani mobili, nei quali vengono dimostrati risultati di simmetria approssimata.
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1. Introduction

The method of moving planes (MMP) was introduced by Alexandrov in [4] to prove

what is nowadays called Alexandrov’s soap bubble Theorem, which asserts that spheres

are the only connected closed embedded hypersurfaces in a space form (i.e. the Euclidean

space, the Hyperbolic space and the hemisphere). Some years later, Serrin [123] employed

the same method to prove a symmetry result in potential theory, which gave rise to the
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research field which is nowadays called overdetermined problems for partial differential

equations.

Both Alexandrov’s and Serrin’s results originate a great interest in geometric analysis

and PDE’s communities. The MMP is a powerful tool which has been used to prove several

results in geometric analysis, for elliptic and parabolic PDEs, Harnack’s inequalities and

many others (see e.g. [7, 13, 14, 23, 24, 25, 87, 95, 101, 115, 116, 121]). One of the

most influencing application in the theory of PDEs is the approach of Gidas Ni Nirenberg

[70, 71] (see also [16, 17, 18, 36, 53, 54, 55, 56, 93, 94, 103, 122]). The MMP was also used

in [35] to prove asymptotic radial symmetry of positive solutions for the conformal scalar

curvature equation and other semilinear elliptic equations (see also [48, 69, 88, 108]).

The goal of this paper is to review the classical approach of the MMP (as Alexandrov

and Serrin used) and to describe some recent results which are based on a quantitative

version of the MMP.

Both the results of Alexandrov and Serrin apply the MMP and use maximum princi-

ples to obtain a symmetry result. The maximum principle is, in this setting, a tool to

obtain qualitative information on a suitable function. In particular it is used to obtain

a symmetry or rigidity result: the solution to a certain problem exists if and only if the

domain satisfies some symmetry. Once the symmetry result is obtained, it is of interest

to study its quantitative counterpart and to understand, in a quantitative way, whether

or not the solution is close to the symmetry configuration. Hence, maximum principles

must be replaced by quantitative tools (like for instance Harnack’s type inequalities) and

every step in the symmetry proof must be carefully quantified.

Now, we describe in more details the problems that we are going to consider. In order

to simplify the exposition, we prefer to state the main theorems in the simplest possible

setting, and add some remark regarding the generalizations available in literature.

We start by the well-known Alexandrov soap bubble Theorem in geometric analysis on

hypersurfaces with constant mean curvature H. We recall that the mean curvature H of

a hypersurface S of class C2 at p ∈ S is given by the arithmetic mean of its principal

curvatures at p.
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Theorem 1.1 ([3, 4]). Let Ω ⊂ Rn be a bounded connected domain with boundary S = ∂Ω

of class C2. Then the mean curvature H of S is constant if and only if S is a sphere.

As already mentioned, Theorem 1.1 was proved by Alexandrov in [4] and it is the first

paper where the method of moving planes appears (Alexandrov called it the Reflection

Principle, the name method of moving planes appears in the 70s). We mention that

since S = ∂Ω then S is an embedded hypersurface; if this assumption is dropped then

Theorem 1.1 does not hold in general (see [82] and [129] for classical counterexamples).

For immersed hypersurfaces, an Alexandrov’s type Theorem holds under the assumption

that the hypersurface S is of genus 0, i.e. S is an immersed topological sphere (see [80] for

the result and also [131] for generalizations to higher dimensional hypersurfaces immersed

in space forms and [106] for more details) or by assuming that S is stable in Rn (see [8] and

[9]). Moreover there exists non-closed constant mean curvature hypersufaces embedded

in R3 which are not diffeomorphic to a sphere, like for instance the unduloids (see [59]

and [83] for the generalization to Rn).

Still by using the MMP, several extensions of Theorem 1.1 have been proved in liter-

ature. For instance, it holds for hypersurfaces embedded in the Hyperbolic space and in

the hemisphere (see [3, 5] see also [81]) and for other type of curvature functions, such

as higher order curvature functions (see [5, 49, 73, 86, 119]). Recently, and without us-

ing the MMP, new generalization of Alexandrov’s Theorem 1.1 are given in [29], where

constant mean curvature hypersurfaces are studied in rotationally symmetric Riemann-

ian manifolds (e.g. the space forms, the Schwarzschild, the DeSitter-Schwarzschild and

Anti-DeSitter-Schwarzschild manifolds), and in [57] where the regularity assumptions on

∂Ω are minimal.

It has been recently shown that Alexandrov’s Theorem holds also in a nonlocal setting

[34, 38]. We recall that nonlocal minimal surfaces are boundaries of sets Ω ⊂ Rn which

are stationary for the s-perimeter functional

Ps(Ω) =

∫
Ω

∫
Ωc

dx dy

|x− y|n+2s
, Ωc = Rn \ Ω ,
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with s ∈ (0, 1/2). If ∂Ω is sufficiently smooth, one can show that the nonlocal mean

curvature of ∂Ω at a point p ∈ ∂Ω is given by

(1.1) HΩ
s (p) =

1

ωn−2

∫
Rn

χΩc(x)− χΩ(x)

|x− p|n+2s
dx ,

where χE denotes the characteristic function of a set E, ωn−2 is the measure of the (n−2)-

dimensional sphere, and the integral is defined in the principal value sense. By using this

notation, the nonlocal version of Alexandrov’s Theorem is the following.

Theorem 1.2 ([38] and [34]). Let Ω be a bounded open set of class C1,2s. The s-nonlocal

mean curvature HΩ
s is constant on ∂Ω if and only if ∂Ω is a sphere.

Compared to the classical Alexandrov’s Theorem 1.1, we notice that in Theorem 1.2

it is not required that Ω is connected. This is a special feature of the nonlocal setting,

where the value of Hs is not a local quantity but it depends on every point of Ω.

We mention that there exist other ways for proving Theorem 1.1, which are not based on

the MMP and involve integral and geometric identities (see [20, 29, 75, 76, 104, 112, 118]).

Up to now, there is not a corresponding approach in the nonlocal setting and proving

Theorem 1.2 by using a different approach is an interesting and challenging open problem.

Few years after Alexandrov, Serrin used the MMP to study the following problem: let

Ω be a bounded domain in Rn with boundary of class C2. Suppose there exists a function

u satisying the Dirichlet problem

(1.2) ∆u = −1 in Ω , u = 0 on ∂Ω

together with another boundary condition

(1.3) ∂νu = c on ∂Ω

where ν is the exterior unit normal to ∂Ω and c is a constant. Must Ω be a ball? Serrin

showed that the answer is affirmative.

Theorem 1.3 ([123]). Let Ω ⊂ Rn be a bounded domain whose boundary is of class C2.

There exists a solution u ∈ C1(Ω̄) ∩ C2(Ω) to (1.2) and (1.3) for some constant c > 0 if

and only if Ω is a ball and u is a radial function.
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Problems like (1.2)-(1.3) are called overdetermined boundary value problems since the

Dirichlet problem (1.2) already admits a unique solution; hence condition (1.3) is an

additional requirement and in general the problem (1.2)-(1.3) may not admit a solution.

We mention that the MMP can be used to prove a more general version of Theorem 1.3

involving uniformly elliptic quasilinear equation (see [123]). Moreover the MMP has been

used to prove an analogue result in space forms (see [91, 102]) and in a nonlocal setting

(see [60]).

As for Theorem 1.1, Theorem 1.3 can be proven by using different approaches, based on

integral identities. This allows to extend Theorem 1.3 to possibly degenerate quasilinear

equations and to fully nonlinear equations (see [2, 12, 19, 21, 22, 27, 30, 33, 37, 46, 50,

51, 52, 61, 65, 66, 67, 74, 77, 78, 79, 110, 113, 114, 117, 125, 126, 127, 128]) and also for

domains with Lipschitz singularities or contained in a convex cone (see [43, 109, 111]).

For the sake of completeness we mention that these kind of problems arise from practical

situations in physics e.g. when one considers the motion of a viscous incompressible fluid

moving in straight parallel streamlines through a pipe with planar section Ω or the torsion

of a solid straight bar of given cross section Ω. For these examples, Theorem 1.3 has the

following meaning: “the tangential stress on the pipe wall is the same at all points of the

wall if and only if the pipe has a circular cross section” and “when a solid straight bar

is subject to torsion, the magnitude of the resulting traction which occurs at the surface

of the bar is independent of position if and only if the bar has a circular cross section”

(taken from [123]). When the Laplacian is replaced by the mean curvature operator then

(1.2)-(1.3) describe the shape of a capillary surface in absence of gravity, adhering to a

given plane with constant contact angle. In this example, the analogue of Theorem 1.3

means that the wetted area on the plane is necessarily spherical (see [123, 130]). For

degenerate elliptic operators, further physical applications may be pointed out. For the

p-Laplacian (1.2)-(1.3) models torsional creep with constant stress on the boundary (see

[84]). For more general operator one has applications in the theory for electrostatic fields

(see [63]), we also refer to [10, 11] for more general applications to quantum physics.
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The last problem that we review in this manuscript is a sort of discrete version of Serrin’s

overdetermined problem (see [40, 41, 124]). This problem arises from the study of invari-

ant isothermic surfaces of a nonlinear non-degenerate fast diffusion equation (see [100]),

and the main goal is to show that positive solutions of homogeneous Dirichlet boundary

value problems or initial-boundary value problems for certain elliptic or, respectively, par-

abolic equations must be radially symmetric if just one of their level surfaces is parallel

to ∂Ω that is, if the distance of its points from ∂Ω remains constant.

In order to state the theorem we set up some notations: given a bounded domain

Ω ⊂ Rn, for x ∈ Ω̄ we denote by d(x) the distance of x from Rn \ Ω, that is

d(x) = min
y∈Rn\Ω

|x− y| , x ∈ Ω̄ .

For a positive number δ,we define the parallel surface to the boundary ∂Ω of Ω as

Γδ = {x ∈ Ω : d(x) = δ} .

Moreover, we suppose that there exists a domain G such that

(1.4) G ⊂ Ω, ∂G ∈ C1 satisfying the interior sphere condition, and ∂G = Γδ ,

for some δ > 0.

Theorem 1.4 ([40]). Let Ω ⊂ Rn be a bounded domain and let G satisfy (1.4). There

exists u ∈ W 1,∞
0 (Ω) solution to (1.2) such that

(1.5) u = c on Γδ ,

for some constant c > 0, if and only if Ω is a ball.

We mention that Theorem 1.4 was proved in [40] for more general degenerate quasilinear

operators as well as for minimizers of not differentiable functionals and for parabolic

equations.

We emphasize that in this case the only available proof of this theorem is by using the

MMP and, differently from Theorems 1.1 and 1.3, it is not available a proof which avoids

the MMP and uses instead integral and geometric identities.
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In the symmetry Theorems 1.1–1.4 the conclusion is the same: the solution to those

problems exists if and only if the domain is a ball. The rigidity of these problems is due to

the following overdetermined conditions: the mean curvature H is constant in Theorems

1.1 and 1.2, the normal derivative ∂νu is constant on ∂Ω in Theorem 1.3, the solution u

is constant on Γδ in Theorem 1.4.

It is natural to investigate the stability of this results: if the overdetermined condition

is slightly perturbed, can we say that the domain Ω is close to a ball? Can we quantify

how much the domain is close to a ball?

Stated like that, the assertion is in general false. Indeed, it has been showed in [26]

for Serrin’s Theorem and in [39] for Alexandrov’s Theorem that if the overdetermined

condition is close to a constant then the domain Ω can be close to a bunch of balls

connected by small necks (this phenomenon is called bubbling). Both [26] and [39] do not

invoke the MMP and perturb other proofs which use integral identities.

If some other condition is introduced in order to prevent the bubbling, then the MMP

can be studied in a quantitative way to obtain quantitative information of the proximity

of the solution to a single ball. In particular, we will consider the notion of touching ball

condition. We observe that the C2-regularity implies a uniform touching ball condition

and we denote by ρ the optimal uniform radius, i.e. for any p ∈ ∂Ω there exist two balls

of radius ρ centered at c− ∈ Ω and c+ ∈ Rn \ Ω̄ such that Bρ(c
−) ⊂ Ω, Bρ(c

+) ⊂ Rn+ \ Ω̄

and p ∈ ∂Bρ(c
±).

The first quantitative study of the method of moving planes was done by Aftalion Busca

and Reichel in [1], where a quantitative version of Serrin’s symmetry result was proved.

More precisely they proved the following theorem.

Theorem 1.5 ([1]). Let Ω ⊂ Rn be a bounded domain with C2,α boundary and let u ∈

C2(Ω) be a positive solution to (1.2). There exist two constants ε, C > 0 such that the

following holds. Assume that

(1.6) def(Ω) ≤ ε

where

def(Ω) = ||∂νu− c||C1(∂Ω) ,
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for a constant c > 0. Then there are two concentric balls Br, BR such that

(1.7) Br ⊆ Ω ⊆ BR ,

and

(1.8) R− r ≤ C |log def(Ω)|−1/n .

The constants ε and C depend only on the C2,α−regularity of Ω (and in particular on the

radius of the optimal touching ball condition for Ω) and on an upper bound on diam(Ω).

We mention that Theorem 1.5 was proved in [1] for semilinear equations of the form

∆u+f(u) = 0. We notice that the stability estimate (1.8) is not-optimal, and achieving a

sharper stability inequality is an open problem. We also mention that in [26] the bubbling

phenomenon has been investigated by using an integral identities approach, and in [42]

the stability estimate (1.8) has been improved to a power like rate for domains enjoying

a further geometric property.

We stress that the assumption that prevent the bubbling in [1] is the touching ball

condition. This condition will be used also for the other quantitative results reviewed

in this manuscript (see Theorems 1.6 and 1.7 below) with the exception of the nonlocal

Alexandrov’s Theorem (see Theorem 1.8 below).

The following theorem gives a sharp quantitative version of Theorem 1.4 and it was

investigated in [41].

Theorem 1.6 ([41]). Let G ⊂ Rn be a bounded domain with C2,α boundary and set

Ω = G+Bδ for some δ > 0. Let u ∈ C2(Ω) ∩ C0(Ω) be the solution to (1.2) and let

def(Ω) = sup
x,y∈∂G,
x 6=y

|u(x)− u(y)|
|x− y|

.

There exist constants ε, C > 0 such that, if

def(Ω) ≤ ε

then there are two concentric balls Br and BR such that

(1.9) Br ⊆ Ω ⊆ BR ,
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and

(1.10) R− r ≤ C def(Ω) .

The constants ε and C only depend on n, the C2,α-regularity of ∂G, the diameter of G

and δ.

The last quantitative results that we review in this manuscript are about Alexandrov

soap bubble Theorem (local and nonlocal). We first consider the classical version of

Alexandrov’s Theorem. In particular, we consider an n-dimensional, C2-regular, con-

nected, closed hypersurface S embedded in Rn+1. Given p ∈ S, we denote by H(p) the

mean curvature of S at p, and we let

osc(H) = max
p∈S

H(p)−min
p∈S

H(p) .

The quantitative version of Alexandrov’s Theorem is the following

Theorem 1.7 ([45]). Let S = ∂Ω be an n-dimensional, C2-regular, connected, closed

hypersurface embedded in Rn+1, with Ω ⊂ Rn+1 a bounded domain satisfying a touching

ball condition of radius ρ, and let

def(Ω) = osc(H) .

There exist constants ε, C > 0 such that if

(1.11) def(Ω) ≤ ε ,

then there are two concentric balls Br and BR such that

(1.12) Br ⊆ Ω ⊆ BR ,

and

(1.13) R− r ≤ Cdef(Ω) .

The constants ε and C only depend on n and an upper bound on ρ−1 and on |S|.
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Under the assumption that Ω bounds a convex domain, there exist some results in the

spirit of Theorem 1.7 in the literature. In particular, when the domain is an ovaloid, the

problem was studied by Koutroufiotis [89], Lang [92] and Moore [105]. Other stability

results can be found in Schneider [120] and Arnold [6]. These results were improved by

Kohlmann [85] who proved an explicit Hlder type stability in (1.13). In Theorem 1.7, any

convexity assumption was done and the rate of stability in (1.13) is optimal, as can be

proven by a simple calculation for ellipsoids.

We mention that Theorem 1.7 can be generalized to hypersurfaces embedded in the

Hyperbolic space and in the Hemisphere, see [47] and [44] respectively. Moreover in [44]

is shown that the same result holds by replacing the mean curvature with other symmetric

elementary functions of the principal curvatures. We emphasize that the stability estimate

(1.13) is optimal. Another optimal stability estimate for proximity to a single sphere was

obtained in [90] by using a different approach. Other quantitative studies regarding the

proximity to a single ball can be found in [62, 97, 98, 99] where a different deficit is

considered.

We notice that Theorem 1.7 is not optimal from a qualitative point of view (see [28]

and the reference therein and [31, 32]), since the touching ball condition prevents the

possibility of having a bubbling phenomenon. In this direction, Theorem 1.7 was improved

in [39] where the bubbling phenomenon was characterized (see also [58] for the anisotropic

counterpart).

The quantitative version of Theorem 1.2 was investigated in [38] where it is proved that

if HΩ
s has small Lipschitz constant then ∂Ω is close to a sphere, with a sharp estimate in

terms of the deficit. To state the result we introduce the following uniform distance from

being a ball:

ρ(Ω) = inf

{
t− s

diam(Ω)
: p ∈ Ω , Bs(p) ⊂ Ω ⊂ Bt(p)

}
.

Theorem 1.8 ([38]). If Ω is a bounded open set with C2,α boundary for some α > 2s,

then there exists a dimensional constant Ĉ(n) such that

(1.14) ρ(Ω) ≤ Ĉ(n)
diam(Ω)2n+2s+1

|Ω|2
def(Ω) ,
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where

(1.15) def(Ω) = sup
p,q∈∂Ω
p 6=q

|HΩ
s (p)−HΩ

s (q)|
|p− q|

.

We emphasize that in Theorem 1.8 no assumptions on the connectedness of Ω and on

the touching ball condition are done. This is a peculiarity of the nonlocal problem, where

every point of ∂Ω influences the value of the mean curvature at any other point of ∂Ω.

Hence, a bubbling result like the one in [39] is not possible in the nonlocal case. However,

it is an open question whether the bubbling can happen for a different type of deficit.

We mention that, under suitable regularity of ∂Ω, from Theorems 1.7 and 1.8 one can

prove that ∂Ω is C1,α close to a single sphere, which means that ∂Ω can be parametrized

as a smooth map of the form F : ∂B → ∂Ω with ‖F − Id‖C1,α ≤ Cdef(Ω). Moreover, in

the nonlocal case, we can show also more, that is the C2,α proximity to a single sphere

(see [38, Theorem 1.5]). This result gives an intriguing feature of the nonlocal case, which

is the following: if the deficit is small then Ω is convex (and close to a single sphere).

The paper is organized as follows. In Section 2 we introduce some notation which will

be used in the rest of the paper. In Section 3 we describe the method of moving planes

and recall the proofs of Theorems 1.1-1.4. In Section 4 we review the quantitative results

in Theorems 1.5–1.8. In Section 5 we state some open problem.

2. Notation

In this section we introduce some notation which is useful for the application of the

MMP. Given an arbitrary set A in Rn, a unit vector ω ∈ Rn and a parameter λ ∈ R we

define the following objects:

πλ = {ξ ∈ Rn : ξ · ω = λ}, a hyperplane orthogonal to ω

Aλ = {p ∈ A : p · ω > λ}, the right-hand cap of A

ξλ = ξ − 2(ξ · ω − λ)ω, the reflection of ξ about πλ

Aλ = {p ∈ Rn : pλ ∈ Aλ}, the reflected cap about πλ,

Âλ = {p ∈ A : p · ω < λ}, the portion of A in the left half-plane,

M = inf{λ ∈ R : Aλ = ∅} the extent of A in the direction ω.
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The MMP works as follows. Let ω be a fixed direction and consider the family of hyper-

planes {πλ}λ∈R orthogonal to ω. Since Ω is bounded, for λ very large, λ >M, we have

that πλ does not intersect Ω. We decrease the value of λ until λ =M, when πM and Ω

are tangent. Since ∂Ω is smooth (C1 is enough, see [64]), we can decrease λ and, at least

at the beginning, the reflection Ωλ of Ωλ is contained in Ω. We continue in decreasing λ

until Ωλ is contained in Ω and, since Ω is bounded, we reach a critical value

λ∗ = inf{λ ∈ R : Ωt ⊂ Ω for any t ∈ (λ,M)} .

When λ = λ∗, there are two possible critical configurations:

(i) Ωλ∗ is tangent to Ω at a point p which is not on πλ∗ ,

(ii) Ωλ∗ is tangent to Ω at a point q which is on πλ∗ .

This is the point where maximum principles enter into play in order to prove symmetry,

as we are going to show in the next sections. The rough idea in Theorems 1.3 and 1.4 is

to compare the solution u to (1.2) to its reflection v, which is defined in Ωλ∗ by

(2.1) v(x) = u(xλ∗) x ∈ Ωλ∗ .

In Theorem 1.1 we will locally compare the surface S to its reflection Sλ∗ by using the fact

that S can be locally parametrized over the tangent space to a point by a function which

satisfies an elliptic equation (the mean curvature equation). An analogous argument holds

for Theorem 1.2, where we can take advantage of the explicit expression of the nonlocal

mean curvature (1.1).

Remark 2.1. As we mentioned in the introduction, the method of the moving planes may

be applied in other manifolds, in particular in the hyperbolic space and in the sphere. In

these cases, the method needs some more explanation. Here, the notion of hyperplane

and direction are replaced by totally geodesic hypersurfaces and geodesic tangent to a fixed

direction at a reference point, respectively.

Hence, in the hyperbolic half-space model, the method consists in moving hyperbolic

hyperplanes (Euclidean half-spheres or vertical hyperplanes) along a geodesic tangent to a

fixed direction at a reference point, say en. When the critical position is reached, it may
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be convenient to consider an isometry and to regard the critical hyperplane as a Euclidean

vertical hyperplane, so that the reflection is geometrically the Euclidean one.

Analogously, in the hemisphere the method consists in moving half spherical hyperplanes

(great circles intersecting the hemisphere) along a geodesic tangent to a fixed direction at

a reference point, say the north pole. When the critical position is reached, it may be

convenient to consider the stereographic projection and apply a rotation in Rn in order to

regard the critical hyperplane as a Euclidean vertical hyperplane and, again, the reflection

is geometrically the Euclidean one.

3. Symmetry: the qualitative approach

In this section we review the symmetry results of Theorems 1.1–1.4, which follow by

applying the method of moving planes together with suitable maximum principles.

3.1. Proof of Theorem 1.1. We apply the MMP in a fixed direction ω and, for λ = λ∗,

we find the critical positions described in Section 2.

If case (i) occurs, then we locally write Sλ∗ and S as graphs of function u1 and u0,

respectively, over Br ∩ TpS, where p is the tangency point. Here we denote by TpS

the tangent hyperplane to S at p, and we fix a system of coordinates on TpS such that

p = (0, ui(0)) for i = 0, 1. Notice that since S and Sλ∗ are tangent at p then TpS and

TpSλ∗ coincide. It is well-known that u0 and u1 satisfy the mean curvature equation (see

[72, Chapter 16])

div

(
∇ui(x)√

1 + |∇ui(x)|2

)
= H(x, u(x)) ,

i = 0, 1, x ∈ Br ∩ TpS, for some r > 0. By construction of the MMP, it is clear that

w = u1 − u0 is non-negative, and since the mean curvature H is constant, w satisfies

Lw = 0 inBr ∩ TpS

for some r > 0, where L is a linear uniformly elliptic operator (this is possible by choosing

r small enough). Since w(0) = 0, by the strong maximum principle we obtain w = 0 in

Br ∩ TpS, that is, S and Sλ∗ coincide in an open neighborhood of p.
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If case (ii) occurs, we locally write Sλ∗ and S as graphs of function u1 and u0 over

TqS ∩ {x · ω ≤ λ∗}. As for case (i), we find that there exists r > 0 such thatLw = 0 in Br ∩ TqS ∩ {x · ω < λ∗},

w = 0 on Br ∩ TqS ∩ {x · ω = λ∗}.

Since ∇w(0) = 0, from Hopf’s Lemma we deduce that w = 0 in Br ∩ TqS ∩ {x · ω ≤ λ∗}.

Hence, in both cases (i) and (ii) the set of tangency points (that is, those points for

which (i) and (ii) occurs) is open. Since it is also closed and non-empty, we must have

Sλ∗ = Ŝλ∗ , i.e. S is symmetric about the hyperplane πλ∗ . Since ω is arbitrarly, we find

that S is symmetric in every direction and we obtain that S is a sphere (see e.g. [80,

Chapter VII, Lemma 2.2]).

3.2. Proof of Theorem 1.4. Let ω be a fixed direction. We apply the method of moving

planes to the domain G in the direction ω and we find the critical positions described for

λ = λ∗. A crucial remark is given by the following lemma (see [40, Lemma 2.8]):

Lemma 3.1. Let G satisfy assumption 1.4. Then we have

Ω = G+Bδ(0) = {x+ y : x ∈ G, y ∈ Bδ(0)}

and, if Gλ ⊂ G, then

Ωλ ⊂ Ω .

Let u be the solution to (1.2) and consider the function v defined in Ωλ∗ by (2.1). Since

u ≥ v on ∂Ωλ∗ , the weak comparison principle yields u ≥ v in Ωλ∗ . Hence the function

w = u− v satisfies

∆w = 0 and w = u− v ≥ 0 in Ωλ∗ .

If case (i) of the MMP occurs, we apply the strong maximum principle to w in Ωλ∗ and

obtain that w > 0 in Ωλ∗ , since w 6≡ 0 on Γδ∩Ωλ∗ . This is a contradiction, since p belongs

both to Ωλ∗ and Γδ ∩ Γλ∗δ , and hence u(p) = v(p), i.e. w(p) = 0.
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Now, let us consider case (ii) of the MMP. Notice that ω belongs to the tangent hyper-

plane to Γδ at q. By applying Hopf’s lemma in Ωλ∗ we get

∂ωw(q) < 0 .

On the other hand, since Γδ is a level surface of u and u is differentiable at q, we must

have that

∂ωw(q) = 0 ;

this gives the desired contradiction.

Hence, we have proved that for any direction we have that Ω = Ωλ∗ , i.e. Ω is symmetric

in any direction Ω. This implies that Ω is a ball and u is radially symmetric.

3.3. Proof of Theorem 1.3. As usual, we apply the MMP in a fixed direction ω and

we stop at a critical position for λ = λ∗.

In order to prove that Ω is symmetric with respect to the hyperplane πλ∗ we consider

the function w = u− v in Ωλ∗ , where v defined by (2.1). It is clear that w satisfies
∆w = 0 in Ωλ∗ ,

w = 0 on ∂Ωλ∗ ∩ πλ∗ ,

w ≥ 0 on ∂Ωλ∗ \ πλ∗ .

At this point the strong maximum principle gives either

(3.1) w > 0 in Ωλ∗

or w ≡ 0 in Ωλ∗ . The latter case would imply that Ω is symmetric about πλ∗ . Hence, we

assume that w > 0 in Ωλ∗ .

Assume that case (i) occurs, that is Ωλ∗ is internally tangent to ∂Ω at a point p not

belonging to πλ∗ and assume by contradiction that (3.1) holds true. Then Hopf’s Lemma

ensures that

∂νw(p) < 0 ,

but this contradicts the fact that ∂νw(p) = 0, since

(3.2) ∂νu(p) = ∂νv(p) = c .
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We conclude that (3.1) cannot occur in case (i).

Case (ii) is much more complicated since Hopf’s Lemma cannot apply. The proof

makes use of a refinement of the maximum principle, see Lemma 3.2 below (for its proof

see [123]). The goal is to prove that w has a second order zero in q. To do this we fix a

coordinate system with the origin at q, the xn axis in the direction of the inward normal

to ∂Ω at q, and the x1 axis in the direction of ν, that is normal to πm. In this coordinate

system the boundary of Ω is locally given by

xn = φ(x1, . . . , xn−1) φ ∈ C2 .

Since u ∈ C2, by the boundary conditions u = 0 and ∂νu = c on ∂Ω and differentiating

twice, one obtains that

(3.3) ∂2
xixj

u+ c∂2
xixj

φ = 0 , i, j = 1, . . . , n− 1 ,

(3.4) ∂2
xnxi

u(q) = 0 , i = 1, . . . , n− 1 ,

and

(3.5) ∂2
xnxnu(q) = −

n−1∑
i=1

∂2
xi
u(q)− 1 = c∆φ(q)− 1 .

By construction Ωλ∗ ⊆ Ω and ∂2
x1xj

u(q) = 0 for j = 2, . . . , n − 1, because ∂x1φ has an

extremum point at q with respect to all but the first coordinates directions.

Since

(3.6) v(x1, x2, . . . , xn) = u(−x1, x2, . . . , xn)

by (3.3), (3.4) and the last remark we have that all the first and second derivatives of u

and v coincide at q, and hence

(3.7) ∇w(q) = 0 and ∇2w(q) = 0 .

On the other hand, w satisfies

(3.8) ∆w = 0 and w > 0 in Ωλ∗

and w(q) = 0. The contradiction is obtained thanks to the so called Serrin’s corner lemma

(see [123] for the proof).
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Lemma 3.2. Let Ω ⊂ Rn be a C2 bounded domain of Rn and let ξ be a direction such

that ξ · ν = 0 in y ∈ ∂Ω. Let H(ν) be an open halfspace with unit outer normal ν,

Ω(ν) = Ω ∩H(ν) and let w ∈ C2(Ω(ν)) satisfy

∆w ≤ 0 w ≥ 0 in Ω(ν) , and w(y) = 0 .

If θ is a direction in y entering Ω(ν) such that θ · ν 6= 0, then either

∂θw(y) > 0 or ∂2
θθw(y) > 0 ,

unless w ≡ 0.

Indeed, let θ be any direction not parallel to ν. Lemma 3.2 ensures that either

∂θw(q) > 0 or ∂2
θθw(q) > 0 ,

which is a contradiction on account of (3.7).

Hence, we have proved that Ω is symmetric with respect to the hyperplane πλ∗ and

Theorem 1.3 follows since Ω is symmetric with respect to any direction ω. Moreover, by

construction, Ω is also simply connected, and then it is a ball and u must be radial.

3.4. Proof of Theorem 1.2. In this subsection we give a sketch of the proof of the

nonlocal version of Alexandrov’s Theorem, for the details we refer to [38] and [34].

We apply the MMP in a direction ω until we reach the critical position λ = λ∗, and we

prove the following inequality:

(3.9)

∫
Ω4Ωλ∗

d(x, πλ∗) dx ≤ 0 ;

where E4F denotes the symmetric difference of the two sets, that is E4F = (E \F )∪

(F \ E).

In order to prove inequality (3.9), we can assume without loss of generality that ω = e1.

Assume that case (i) of the MMP occurs. Hence there exists p ∈ ∂Ω̂λ∗ \ πλ∗ such that

p ∈ ∂Ω ∩ ∂Ωλ∗ . Then

(3.10) HΩ
s (p)−HΩ

s (p′) =
2

ωn−2

∫
Ωλ∗\Ω

(
1

|x− p|n+2s
− 1

|xλ∗ − p|n+2s

)
dx ,
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where all the integrals are intended in the principal value sense. Since xλ∗ = (2λ∗ −

x1, x2, . . . , xn) and by the convexity of the function f(t) = (1 + t)(n+2s)/2 − 1, we get that

if x ∈ Ωλ∗ then

(3.11)

1

|x− p|n+2s
− 1

|xλ∗ − p|n+2s
≥2(n+ 2s)(x1 − λ∗)(p1 − λ∗)

|xλ∗ − p|n+2s|x− p|2

≥2(n+ 2s)(x1 − λ∗)(p1 − λ∗)
diam(Ω)n+2s+2

,

where we also used the fact that, by construction, pλ∗ ∈ ∂Ω and therefore

|x− p| = |xλ∗ − pλ∗| ≤ diam(Ω) .

From (3.10) and (3.11) we get (3.9).

Now, assume that case (ii) of the MMP occurs, i.e. πλ∗ is orthogonal to ∂Ω at some

point q ∈ ∂Ω ∩ πλ∗ . In this case we consider the following quantity: ∇HΩ
s (q)· e1. Via an

approximation argument one can show that

∇HΩ
s (q)· e1 = −2(n+ 2s)

ωn−2

∫
Ω\Ωλ∗

(x− q)· e1

|x− q|n+2s+2
dx .

Since ∇HΩ
s (q)· e1 = 0 and q ∈ πλ∗ , we conclude that

0 =
2(n+ 2s)

ωn−2

∫
Ω\Ωλ∗

(x− q)· e1

|x− q|n+2s+2
dx

≥ 2(n+ 2s)

diam(Ω)n+2s+2ωn−2

∫
Ω\Ωλ∗

|x1 − λ∗| dx

=
2(n+ 2s)

diam(Ω)n+2s+2ωn−2

∫
Ωλ∗4Ω

|x1 − λ∗| dx ;

which completes the proof of (3.9).

It is clear that (3.9) implies that |Ω4 Ωλ∗| = 0. Since the direction is arbitrary, the

argument works in every direction and we conclude that Ω is symmetric in any direction

and than that Ω is a ball.

4. Almost symmetry: the quantitative approach

In this section we show how the MMP can be studied from a quantitative point of view

in order to obtain the quantitative stability results in Theorems 1.5–1.8 in terms of the

deficit def(Ω) (notice that the deficit changes according to the type of problem that we
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consider). There is a partial common strategy in the proofs of these theorems, which we

explain below. Further details will be given in the subsections below, according to the

type of problem which we consider.

The starting point for studying the MMP from a quantitative point of view is to find

an approximate center of symmetry O for the problem. This is achieved by applying the

method of moving planes in n orthogonal directions, say e1, . . . , en, and considering the

intersection between the corresponding critical planes. More precisely, by applying the

MMP in the direction ei, i = 1, . . . , n, we obtain the critical hyperplanes πλi , i = 1, . . . , n,

and we define

O =
n⋂
i=1

πλi .

Notice that, up to a translation we may assume that O is the origin of Rn.

In order to prove that O is an approximate center of symmetry, we need to prove a

theorem of approximate symmetry in one direction and to provide a quantitative estimate:

Step 1: Quantitative approximate symmetry in any direction in terms of def(Ω).

This is the main point of the quantitative proofs and it is used not only for proving

that O is an approximate center of symmetry, but it is also invoked several times at other

points of the proof of the main results. This step differs in the proofs of Theorems 1.5–

1.8, and its description will be given later in more details in subsections 4.1–4.4 below,

according to the type of problem that we consider.

Without entering now in the details of how to prove Step 1, we give an idea of the

framework needed to achieve the quantitative estimates. We mention that the framework

described here was used in [45] and [38] and differs in some step from the ones adopted

in [1] and [40].

Let ω be a fixed direction and let λ∗ be as in Section 2. The approximate symmetry

in one direction quantifies the symmetric difference between Ω and Ωλ∗ ∪ Ωλ∗ (i.e. the

maximal cap and its reflection about the critical hyperplane πλ∗). More precisely, we

denote by Σ the connected component of Ωλ∗ containing the touching point between Ω

and Ωλ∗ (of course, a priori this may be not unique since it is possible that there are more
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touching points between the two sets). We also set Σ′ as the reflection of Σ about πλ∗

(notice that Σ′ is a connected component of Ωλ∗). The approximate symmetry in one

direction implies an estimate of the following form:

(4.1) |Ω4(Σ ∪ Σ′)| ≤ Cdef(Ω) .

Since the reflection RO with respect to O can be seen as the composition of n-orthogonal

reflections, from (4.1) we find that it satisfies

(4.2) |Ω4(Σ ∪RO(Σ))| ≤ Cdef(Ω) .

Once we have (4.1) we can prove the following results.

Step 2: For any direction ω, the corresponding critical hyperplane πλ∗ stops close to O.

In particular

(4.3) dist(O, πλ∗) ≤ Cdef(Ω) ,

where the constant C does not depend on the direction.

This step is achieved by combining the almost symmetry of Ω with respect to O

and to πλ∗ . Indeed, by assuming without loss of generality that πλ∗ = {x ·ω = λ∗},

with λ∗ > 0, it is possible to show that Ω has small volume in the strip {|x · ω| ≤

λ∗}. By iterating this argument (reflecting with respect to O and to πλ∗) one can

find the bound (4.3) (see for instance [38, Lemma 4.1]).

Step 3: Once (4.3) is proved, we define

r = sup{s > 0 : Bs(O) ⊂ Ω} and R = inf{s > 0 : Ω ⊂ Bs(O)}

and prove the bound

(4.4) R− r ≤ Cdef(Ω) .

Moreover, ∂Ω is a Lipschitz graph over the sphere ∂Br(O).

Estimate (4.4) is obtained by applying the MMP again and using (4.3). More

precisely, by denoting by x and y two points on ∂Ω ∩ Br(0) and ∂Ω ∩ BR(0),



THE METHOD OF MOVING PLANES: A QUANTITATIVE APPROACH 61

respectively, we apply the MMP in the direction

ω =
y − x
|y − x|

,

and show that R− r ≤ 2dist(O, πω), and from (4.3) we obtain (4.4).

The estimate (4.4) completes the first part of the assertion of the quantitative

Theorems 1.5–1.8 which says that Ω is close to a ball in L∞ norm.

As a by product of this proof, one can prove that ∂Ω is a graph over ∂Br(O), i.e.

there exists a map Φ : ∂Br(O)→ Rn of class C0,1 and such that Φ(∂Br(O)) = ∂Ω.

In the case of Alexandrov’s Theorem (classical and nonlocal), we can do a further step:

Step 4: ∂Ω is a C1,α small perturbation of the identity map over the sphere. More precisely,

we can show that there exists a map Φ : ∂Br(O)→ Rn such that Φ(∂Br(O)) = ∂Ω

and

(4.5) ‖Φ− Id‖C1,α(∂Br(O)) ≤ Cdef(Ω) .

This step is achieved by using regularity theory: from Step 3 the map Φ is Lipschitz

continuous and we can apply elliptic regularity theory to obtain (4.5).

In the following subsections, we give some detail regarding how to prove Step 1. i.e.

the approximate symmetry in one direction.

4.1. Serrin’s overdetermined type problems. The first quantitative study of the

method of moving planes was done in [1] for Serrin’s overdetermined problem. The main

idea is to replace qualitative tools like the maximum principle with quantitative tools

like Harnack’s inequality, and to study Hopf Lemma and Serrin’s corner lemma from a

quantitative point of view. The quantitative bounds are given in terms of the deficit

def(Ω) := ‖∂νu− c‖C1(∂Ω) .

The first goal is to give quantitative bounds on the difference function w = u− v between

the solution u and the reflection v (see subsection 2 for the definition of u and v). Such

bounds are given in a subset Dδ of the connected component D of Ωλ∗ which contains the
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tangency point p. The set Dδ is defined as the set of points of D which are far from ∂D

more than δ.

More precisely, the Hopf Lemma used in case (i) is replaced by the following inequality

(see [1, Proposition 2])

(4.6) w(y) ≤ C1/δ|∂νw(p)|

for any y ∈ Dδ, where p is the tangency point in case (i) of the MMP, and C depends

only on the dimension n, |Ω| and on ρ.

Analogously, the quantitative version of Serrin’s corner lemma is given by

(4.7) w(y) ≤ C1/δ

(s · ω)|s · ν(q)|
|∂2
ssw(q)|

for any y ∈ Dδ, where q is the tangency point in case (ii) of the MMP and s in any

direction that enters D nontangentially at q (see [1, Proposition 3]).

Estimates (4.6) and (4.7) are obtained by using the usual barrier functions used in

Hopf’s boundary point Lemma and Serrin’s corner Lemma, respectively, and then by

propagating the obtained information by using Harnack’s inequality (this is one of the

reasons why we need to restrict the domain D to a smaller domain Dδ).

By using (4.6) and (4.7), one can prove that the parallel subset Σδ of the maximal cap

Σ in the direction ω has a connected component Σ̃δ such that

(4.8) ‖w‖L∞(Σ̃δ)
≤ C(diam(Ω)/δ)ndef(Ω) ,

where C does not depend on δ. This estimate says that the solution u and its reflection v

are close in L∞ norm. To obtain information on the almost symmetry of Ω in the direction

ω, we need to do some more step. In particular, we can use that u (and hence v) grows

linearly from the boundary, which implies that

dist(x, ∂Ω) ≤ Cu(x) = C(v(x) + w(x))

for any x ∈ Σ̃δ; since v(x) grows linearly from the boundary and from (4.8) we conclude

that

(4.9) dist(x, ∂Ω) ≤ Cu(x) ≤ Cδ + C(diam(Ω)/δ)n

∗ def(Ω)
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for any x ∈ ∂Σ.

The final goal is to show that there exists a symmetric set (with respect to πω) which

approximates well Ω. We define this set Xσ as

Xσ = (Σ ∪ Σ′)σ := {x ∈ Σ ∪ Σ′ : dist(x∂(Σ ∪ Σ′) > σ)} .

From (4.9) one can conclude that, if σ and δ are small compared to ρ and if

(4.10) σ > C
(
δ + C(diam(Ω)/δ)n

∗ def(Ω)
)
,

then

(4.11) Ωδ ⊂ Xσ ⊂ Ω .

By choosing σ and δ appropriately, from (4.10) we obtain that (4.11) holds provided that

δ is small compared to ρ and

(4.12) δ < σ < C| log(def(Ω))|−1/n .

As a consequence of (4.11) and (4.12) one obtains the following statement of the approx-

imate symmetry in one direction:

Proposition 4.1. For any point x ∈ ∂Ω there exists a point y ∈ ∂Ω such that

|xλ∗ − y| < C| log(def(Ω))|−1/n ,

where xλ∗ is the reflection of x about πλ∗ and C depends only on ρ, n and |Ω|.

4.2. Discrete type Serrin’s problem. The approximate symmetry in one direction

needed in Theorem 1.4 is similar to the one for Serrin’s overdetermined problem. With

respect to Serrin’s problem, here we can work inside the domain and we are able to obtain

sharp stability estimates in terms of the deficit

(4.13) def(Ω) := sup
x,y∈∂G,
x6=y

|u(x)− u(y)|
|x− y|

.

In this subsection we give the main ideas for proving the approximate symmetry in one

direction for Theorem 1.6 and we refer to [41] for the details.
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The big advantage in this problem is that we can apply the MMP procedure to G,

which is in the interior of Ω. Moreover, Serrin’s corner lemma is not needed, and we just

have to replace the strong maximum principle by the Harnack’s inequality (in case (i))

and to write a quantitative form of Hopf’s boundary point lemma (for case (ii)).

More precisely, assume that case (i) in the MMP occurs and that the tangency point

p ∈ ∂G is far from πλ∗ more than ρ/4. The point p determines a connected component

ΣG of the maximal cap Gλ∗ in the direction ω. Since p is an interior point of Ωλ∗ , we can

apply Harnack’s inequality to w and write

(4.14) sup
Br(p)

w ≤ C inf
Br(p)

w ≤ Cw(p) ,

provided that B2r(p) ⊂ Ω. Since p is a tangency point, p, p′ ∈ ∂G with |p− p′| ≥ ρ/2 and

w(p) = u(p)− v(p′) ≤ 2

ρ
def(Ω)

and from (4.14) we obtain

(4.15) sup
Br(p)

w ≤ Cdef(Ω) .

By using a suitable chain of balls, we can iterate the use of Harnack’s inequality and

obtain

(4.16) sup{w(x) : x ∈ Σ and dist(x, πλ∗ > r} ≤ Cdef(Ω) ,

where Σ is the connected component of G such that p ∈ ∂Σ. By using Carleson estimates

[15, Theorem 1.3] we can extend (4.16) to the whole Σ and obtain

(4.17) sup
Σ
w ≤ Cdef(Ω) .

If case (ii) of the MMP occurs, instead of (4.14) we have to do a quantitative study of

Hopf boundary point lemma. More precisely, if q ∈ ∂G ∩ πλ∗ is a tangency point, then

one can prove that

sup
Br/2(p−rω)

w ≤ C∂ωw(q) .

Since

∂ωu(q) = −∂ωv(q) .
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from the definition of the deficit (4.13), it follows that

sup
Br/2(q−rω)

w ≤ def(Ω)

and (4.17) follows by iterating Harnack’s inequality and arguing as before.

The final step towards the approximate symmetry in one direction is to prove that if

def(Ω) is small then

Gs ⊂ Σ ∪ Σ′ ⊂ G

for any s ∈ (Cdef(Ω), ρ/2). This implies that Σ ∪ Σ′ approximates well G (see [41,

Theorem 3.5]). Finally, the approximate symmetry in one direction follows easily.

Proposition 4.2. For any point x ∈ ∂G there exists a point y ∈ ∂G such that

|xλ∗ − y| < Cdef(Ω) ,

where xλ
∗

is the reflection of x about πλ∗ and C depends only on ρ, n and |G|.

4.3. Alexandrov soap bubble Theorem. In this subsection we show how to obtain the

approximate symmetry in one direction for Alexandrov’s Theorem. We use the following

deficit

def(Ω) := osc(H) .

We first consider the case in which p ∈ ∂Ω is a tangency point which is far from πλ∗ more

than some fixed quantity δ which is a small ratio of ρ. As done for the symmetry case,

we locally write ∂Ω and its reflection about πλ∗ as graph of function on the tangent space

to p. A crucial observation is that, since Ω satisfies a touching ball condition of radius ρ,

then we can quantify the word locally and say that ∂Ω is locally the graph of function on

a ball of radius ρ in the tangent space.

By arguing as in subsection 3.1, we have two functions u, û : Bρ(O) ∩ Tp(∂Ω) → R

which satisfy

L(u− v)(x) = H(x, u(x))−H(x, v(x)) and u− û ≥ 0 .
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Since the right hand side can be bounded in terms of def(Ω), Harnack’s inequality (see

[72, Theorems 8.17 and 8.18]) gives that

sup
Bδ(0)

(u− v) ≤ C

(
inf
Bδ(0)

(u− v) + def(Ω)

)
and since u(0) = v(0) we obtain

sup
Bδ(0)

(u− v) ≤ Cdef(Ω) .

By using interior regularity estimates (see [72, Theorem 8.32]) we obtain that

(4.18) ‖u− v‖C1(Bδ(0)) ≤ Cdef(Ω) .

Estimate (4.18) says that in a neighborhood of fixed size of p, the two surfaces Σ and Σ̂

are close in C1 norm, so that we can conclude that:

for any q ∈ Ur(q), where Ur(q) is a neighbourhood of q in Σ of fixed size r (see [45,

Formula 2.1] for the precise definition), there exists q̂ ∈ Σ̂ such that

(4.19) |q − q̂|+ |νq − νq̂| ≤ Cdef(Ω) .

In order to propagate the smallness estimate (4.19) to the whole Σ, we need to construct

a chain of balls contained in Σ and iterate the use of Harnack inequality. This iteration

is not trivial since at any step we have to use a different system of coordinates and new

functions u and û. However, the fact that the normals are C0-close guarantees that

the change of coordinate system introduce a small error of size def(Ω). Moreover, the

extension of (4.19) to the points close to πλ∗ is difficult and one has to argue carefully.

We do not enter in the details and refer to [45, Case 1 pages 283-287]. Moreover, the

proof of the approximate symmetry in one direction consists of other three cases which

have to be considered separately, according to how much the touching point is close to πλ∗

(see [45, Case 2,3,4 pages 288-292]). The final estimate that we prove is the approximate

symmetry in one direction.

Proposition 4.3. For any q ∈ Σ there exists q̂ ∈ Σ̂ such that

(4.20) |q − q̂|+ |νq − νq̂| ≤ Cdef(Ω) .
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4.4. Nonlocal Alexandrov Theorem. In the nonlocal case one can obtain directly the

estimate (4.1) which, in the other cases, we obtain as a corollary of Propositions 4.1, 4.2

and 4.3. Indeed, one can explore the proof of Theorem 1.2 from a quantitative point of

view and obtain the bound

|Ω4Ω′| ≤ Cdiam(Ω)n+s+(1/2)
√

def(Ω) ,

which gives the approximate symmetry in one direction. We notice that in this case the

approximate symmetry in one direction does not give the sharp exponent (which is linear).

However, the sharp stability estimate in Therorem 1.8 is obtained later by using again

a quantitative analysis of the method of moving planes (see [38, Step 1 in the proof of

Theorem 1.2]). Indeed, we set

(4.21) r = min
x∈∂Ω
|x| , R = max

x∈∂Ω
|x| ,

and we give an upper bound on R− r.

Let x, y ∈ ∂Ω be such that |x| = r and |y| = R. If x = y then the conclusion is trivial.

Hence, we assume that x 6= y, consider the direction

e =
y − x
|y − x|

,

and denote by π`e the corresponding critical hyperplane. One can prove that y is closer

than x to the critical hyperplane π`e , i.e.,

(4.22) dist(x, π`e) ≥ dist(y, π`e) .

From (4.22) and since e is parallel to y − x we get

(4.23) R− r = |y| − |x| ≤ 2dist(O, π`e) = 2|`e|

that combined with the fact that dist(O, π`e) ≤ C
√

def(Ω) gives that

(4.24) R− r ≤ 2C
√

def(Ω) ,

and by assuming that def(Ω) is very small, we obtain

R− r ≤ 2C(n)
√

def(Ω)
√
R− r,
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that is

(4.25) R− r ≤ C(n) def(Ω)

which gives the optimal estimate for the difference of the radii and we conclude.

5. Open problems

In this section we state some open problems which are related to quantitative studies

of MMP or to the problems which we reviewed in this paper.

Problem 1. As mentioned in the Introduction, there are essentially two ways for proving

Alexandrov Theorem 1.1. One is based on the MMP and one involves integral

and geometric identities. In the nonlocal setting, the only proof for Theorem 1.2

is by using the method of moving planes (see [34] and [38]) and it is not available

in literature a proof which uses integral identities, say in the spirit of [104] or [118].

We believe that this is a very interesting and challenging problem.

Problem 2. Once Problem 1 is solved, it would be interesting to understand if it is possible

to study the new proof based on integral identities from a quantitative point of

view. In the classical setting, the quantitative study of the proof of [118] leaded to

the quantitative results for the bubbling phenomenon in [39]. Analogously, in the

nonlocal case, a proof based of integral identities might lead to the understanding

of the bubbling phenomenon in the nonlocal case by using a deficit different from

the one used in [38].

Problem 3. Serrin’s overdetermined problem in the nonlocal setting was proved in [60] by using

the MMP. However, there are no quantitative results of proximity to a single ball

for Serrin’s overdetermined problem in the nonlocal case and it is expected that

these results may be obtained starting from the proof in [60] and performing a

quantitative analysis of the MMP.

Problem 4. The same scenario of Problems 1 and 2 occurs also for Serrin’s overdetermined

problem. More precisely, it is of interest to give a proof of Serrin’s overdetermined

problem in the nonlocal setting which is not based on the MMP but on integral
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identities. It is clear that also the quantitative aspects of such a proof would be

of strong interest.

Problem 5. Regarding the symmetry problem in Theorem 1.4 it would be of interest to study

the symmetry problem in the nonlocal case as well as its quantitative counterpart.

This can be done by using the MMP. Moreover, it would be of interest to provide

a proof of Theorem 1.4 by using an alternative approach, for instance integral

identites as it happens for Serrin’s overdetermined problem.

Problem 6. The exterior Serrin’s overdetermined problem states that if u is the capacitary

function of a set Ω with constant normal derivative on ∂Ω then Ω is a ball. This

overdetermined problem was solved in [115] by using the MMP (see also [19], [20]

and [68] for other approaches). As far as the authors know, a stability result of

this theorem is not available in literature; hence a quantitative study of the MMP

in this setting would be of interest.

Problem 7. There is an analogue of Alexandrov’s Theorem in capillarity theory for embedded

constant mean curvature hypersurfaces with boundary contained in a hyperplane

with constant contact angle. A proof of this result can be given by using the

MMP as well as integral identities (see [96]), and one can start from there to

obtain quantitative stability results for this problem.

Problem 8. Probably the most general setting where an Alexandrov’s type Theorem has been

proved is in warped product manifolds by Brendle [29] (see also [112]). The proof is

in the spirit of the ones of Montiel and Ros [104] and Ros [118], and a quantitative

investigation of that problem would be of great interest especially in order to

characterize the bubbling phenomenon in that context.

Problem 9. As already mentioned in the Introduction, an Alexandrov’s type theorem still holds

for immersed hypersurfaces of genus 0 (see [80] and [131]). The proof does not

make use of the MMP and it would be interesting to study a quantitative stability

version of this theorem.

Problem 10. One of the most beautiful applications of the MMP was done in the seminal paper

[70], where it is proved the spherical symmetry of solutions to semilinear equations

∆u+f(u) = 0 in Rn. A quantitative study of this problem is a challenging and very



70 GIULIO CIRAOLO AND ALBERTO RONCORONI

interesting problem. It is expected that one can have bubbling and that, in order

to have a stability result of proximity to a single ball by using the quantitative

MMP one has to introduce some a priori condition on the solution u.
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