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Abstract. We study the perfect conductivity problem when two perfectly conducting inclu-
sions are closely located to each other in an anisotropic background medium. We establish
optimal upper and lower gradient bounds for the solution in any dimension which characterize
the singular behavior of the electric field as the distance between the inclusions goes to zero.

Resumé. On ètudie le probléme de conductivité parfaite pour deux objets parfaitement conduc-
teurs proches l’un de l’autre et immergés dans un milieu anisotrope. On ètablit des estimations
optimales pour le gradient de la solution en dimension quelconque qui caractérise le comporte-
ment singulier du champ èlectrique quand la distance entre les objets tend vers zéro.

1. Introduction

When two perfectly conducting inclusions are located closely to each other, the electric field
may become arbitrarily large as the distance between the inclusions goes to zero. We aim at
establishing optimal estimates for the electric field as the distance between the inclusions goes
to zero. The background medium may be anisotropic, with anisotropy determined by a norm
in RN , N ≥ 2. Hence, the governing equation is nonlinear and, differently from most of the
results available in literature, the problem has to be studied by using nonlinear techniques.

1.1. Gradient estimates for the conductivity problem. Let Ω ⊂ RN , N ≥ 2, be a domain
representing the background medium. Denoting the two inclusions by D1

δ , D
2
δ ⊂ Ω, where δ is the

(Euclidean) distance betweenD1
δ andD2

δ which is assumed to be small, the perfectly conductivity
problem is formulated as follows

(1.1)



∆u = 0 in Ωδ

|∇u| = 0 in Di
δ , i = 1, 2,ˆ

∂Diδ

uν = 0 i = 1, 2,

u = ϕ on ∂Ω ,

where ϕ ∈ C0(∂Ω) is some given potential prescribed on the boundary of Ω.
Problem (1.1) may be regarded as a conductivity problem in the context of electromagnetism

or as an anti-plane elasticity problem in the context of elasticity, and the gradient of the solution
u is either the electrical field or the stress, respectively. Furthermore, problem (1.1) may be seen
as a limit case (for k → +∞) of the classical conductivity problem

(1.2)

{
div (ak(x)∇u) = 0 in Ω,

u = ϕ on ∂Ω,

where

ak(x) =

{
1, Ω \ (D1

δ ∪D2
δ ),

k, D1
δ ∪D2

δ ,
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with k ∈ (0,+∞) (see for instance [7]).
Assuming that D1

δ and D2
δ are smooth and far away from the boundary of Ω, the problem of

estimating |∇u| as δ goes to zero was first raised in [5] in relation to stress analysis of composites
and many results have been obtained in the last two decades.

Regarding the classical conductivity problem (1.2) (so that k > 0 is finite), in [5] the authors
observed numerically that ‖∇uδ‖L∞(Ω) is bounded independently of the distance δ between D1

δ

and D2
δ . This result was proved rigorously by Bonnetier and Vogelius [17] for N = 2 and

assuming D1
δ and D2

δ to be two unit balls, and it was extended by Li and Vogelius in [36] to
general second order elliptic equations with piecewise smooth coefficients (see also [33] where Li
and Nirenberg considered general second order elliptic systems).

When k degenerates (k → 0 or k → +∞) the scenario is very different: the gradient of the
solution may be unbounded as δ → 0 and the blow-up rate depends on the dimension. Indeed,
it has been proved that the optimal blow-up rate of |∇u| is δ−1/2 for N = 2, it is (δ| log δ|)−1

for N = 3 and δ−1 for N ≥ 4, see [1, 2, 3, 6, 7, 8, 9, 10, 11, 26, 27, 28, 30, 31, 32, 35, 42, 43]
and references therein.

1.2. The anisotropic conductivity problem. Our goal is to obtain gradient estimates for
the perfectly conductivity problem when the background medium is anisotropic, with anisotropy
described by a norm H. More precisely, the involved anisotropy arises from replacing the
Euclidean norm of the gradient with an arbitrary norm in the associated variational integrals.

The kind of anisotropy considered in this paper has been widely studied in the field of
anisotropic geometric functionals in the mathematical theory of crystals and composites which
goes back to Wulff [44]. Indeed, variational problems in anisotropic media naturally arise in
the study of crystals and whenever the microscopic environment of the interface of a medium is
different from the one in the bulk of the substance so that anisotropic surface energies have to be
considered. Moreover, these kinds of anisotropy are of strong interest in elasticity, noise-removal
procedures in digital image processing, crystalline mean curvature flows and crystalline fracture
theory. The literature is very wide and we just mention [12, 13, 14, 15, 16, 18, 21, 22, 23, 29,
34, 37, 40, 41] and references therein for an interested reader.

In order to properly state the problem, it is convenient to look at problem (1.2) from a
variational point of view. More precisely, problem (1.2) can be seen as the Euler-Lagrange
equation of the variational problem

min
v∈W 1,2

ϕ (Ω)
I[v] ,

where

I[v] =
1

2

ˆ
Ω
ak(x)|∇v|2 ,

and

W 1,2
ϕ (Ω) =

{
v ∈W 1,2(Ω) : v = ϕ on ∂Ω

}
.

It is well-known that there exists a unique solution u ∈ W 1,2(Ω) to (1.2), which is also the

minimizer of I on W 1,2
ϕ (Ω) (see for instance [6]).

Analogously, the extreme conductivity problem (1.1) can be seen as the Euler-Lagrange equa-
tion of the variational problem

min
v∈W 1,2

ϕ (Ω)

{
1

2

ˆ
Ω
|∇v|2dx : |∇v| = 0 in Di

δ , i = 1, 2

}
.
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Figure 1. Two perfectly conducing inclusions D1
δ and D2

δ are immersed in
anisotropic matrix Ω.

When the background medium is anisotropic (see Fig.1) the corresponding variational problem
is given by

(1.3) min
v∈W 1,2

ϕ (Ω)

{
1

2

ˆ
Ω
H(∇v)2dx : H(∇v) = 0 in Di

δ , i = 1, 2

}
,

where H is a norm in RN , N ≥ 2; moreover, we shall assume that H2 is strictly convex and of
class C3(RN \ {O}). Since H2 is a convex function with quadratic growth, problem (1.3) has a
solution for every bounded open set Ω and, since H2 is strictly convex and sufficiently smooth,
the solution is unique. Moreover (see Appendix A), the Euler-Lagrange equation associated to
(1.3) is

(1.4)


4Huδ = 0 in Ωδ,

H(∇uδ) = 0 in D
i
δ, i = 1, 2 ,ˆ

∂Diδ

H (∇uδ)∇ξH (∇uδ) · νds = 0 i = 1, 2,

uδ = ϕ(x) on ∂Ω ,

where Ωδ = Ω \ (D1
δ ∪D2

δ ), ν is the outward normal to ∂Di
δ, and ∆H denotes the Finsler

Laplacian
∆Huδ = div

(
H (∇uδ)∇ξH (∇uδ)

)
,

which has to be understood in the weak senseˆ
Ωδ

H (∇uδ)∇ξH (∇uδ) · ∇φdx = 0 for any φ ∈ C1
0 (Ωδ) .

Here and in the following, for ∇ξH(∇u) we mean the gradient of H evaluated at ∇u(x), for

x ∈ Ω. To avoid a confusing notation, we will use the variable x for a point in the ambient space
Ω ⊂ RN , and the variable ξ for a vector in the dual space (which is the ambient space of ∇u).

Coming back to problem (1.4), we notice that uδ is constant on each particle Di
δ with i = 1, 2,

i.e.

(1.5) uδ = U iδ on Di
δ ,
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with U iδ ∈ R, i = 1, 2. We emphasize that U1
δ and U2

δ may be different, and their values are
unknown and are determined by solving the minimization problem (1.3).

When δ = 0, the corresponding perfectly conductivity problem is given by

(1.6)



4Hu0 = 0 in Ω0,

H(∇u0) = 0 in Di
0, i = 1, 2,∑

i=1,2

ˆ
∂Di0

H (∇u0)∇ξH (∇u0) · νds = 0 ,

u0 = ϕ(x) on ∂Ω .

We notice that the third condition in (1.6) is different from third condition in (1.4), since in
(1.6) it is required that the sum of the two integrals on ∂D1

0 and ∂D2
0 vanishes. It is important

to emphasize that the solution u0 of (1.6) is not the limit of uδ as δ → 0+. Even if there is some
connection between uδ and u0 (see discussion below on the parameter R0), the behaviour of uδ
and u0 is very different close to the limit touching point between the two inclusions. As we will
show, H(∇u0) is bounded in Ω0, while H(∇uδ) may have a blow-up at the limit for δ → 0+.
Understanding this phenomenon is the main goal of this paper, and the blow-up of ∇uδ will be
characterized be the following quantity

(1.7) R0 =

ˆ
∂D1

0

H(∇u0)∇H(∇u0) · νds .

1.3. Main result. The goal of this paper is to study the gradient blow-up for problem (1.4)
under suitable regularity assumptions on the norm H. Before describing the main results, we
recall some basic facts about norms in RN (see Section 2 for more details).

Given a norm H in RN , we denote by H0 the dual norm. We recall that the sets of the form
{H0(x− x0) = const} are called Wulff shapes (or anisotropic balls).

Let δ ≥ 0 and let D1
δ and D2

δ be two perfectly conducting inclusions with D1
δ , D

2
δ ⊂ Ω which

are at distance δ one from each other. We define

Ωδ = Ω \
(
D1
δ ∪D2

δ

)
,

so that, when the inclusions touch at the limit δ = 0, we write

Ω0 = Ω \
(
D1

0 ∪D2
0

)
.

We assume that at the limit the two particles touch only at the origin, so that

D1
0 ∩D2

0 = {O} .
In this paper we consider the case when D1

δ and D2
δ are two Wulff shapes of radius R1 and

R2, respectively, i.e.
Di
δ = BH0

(
xiδ, Ri

)
,

with xiδ = (0, . . . , 0, tiδ), with tiδ ∈ R such that

H0

(
xiδ
)

= Ri +
δ

2
, i = 1, 2.

Assuming that D1
δ and D2

δ are two Wulff shapes simplifies the calculations and the exposition.
The approach can be adapted to study inclusions with boundary of class C3 which are strictly
convex close to the (unique) touching point.

Regarding the geometry of the problem, we recall that if x is a tangency point between two
Wulff shapes, then x lies on the segment joining the centers of the two sets (see Fig.2), which is
parallel to ∇H(ν(x)), where ν is the Euclidean normal (see Remark 2.3 below for a proof).

We assume that

(1.8) distH0

(
∂Ω, D1

δ ∪D2
δ

)
≥ K,
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Figure 2. The point P0 is such that P0 = R1P̂ + x1
δ .

for some fixed K > 0 and that the distance between the two (anisotropic) balls is very small, so
that

distH0

(
D1
δ , D

2
δ

)
= δ,

for some 0 < δ ≤ δ0. Here, distH0 denotes the distance in the ambient norm H0.

Let P̂ = (0, . . . , 0, t0) be such that P̂ ∈ ∂BH0(0, 1) and consider the matrix ∇2H0(P̂ ).1 We
denote by Q the matrix obtained by considering the first N − 1 rows and N − 1 columns of
∇2H0(P̂ ), i.e.

(1.9) Q =

 ∂2
ξ1ξ1

H0(P̂ ) . . . ∂2
ξ1ξN−1

H0(P̂ )
...

. . .
...

∂2
ξN−1ξ1

H0(P̂ ) . . . ∂2
ξN−1ξN−1

H0(P̂ )

 ,

and recall the definition of anisotropic normal νH at a point x, which is given by

νH(x) = ∇ξH (ν(x)) ,

where ν(x) denotes the outward Euclidean normal at x. Our main result is the following.

Theorem 1.1. Let uδ be the solution to (1.4) and let R0 be given by (1.7). For any fixed
τ ∈ (0, 1/2] we have

(1− τ)C∗ΦN (δ) + o (ΦN (δ)) ≤ ‖∇uδ‖L∞(Ωδ) ≤ (1 + τ)C∗ΦN (δ) + o (ΦN (δ))

as δ → 0+, with

ΦN (δ) =



1√
δ

N = 2 ,

1

δ| ln δ|
N = 3 ,

1

δ
N ≥ 4 ,

and

C∗ =

(
R1 +R2

2R1R2

)N−1
2

(det(Q))
N−1

2 R0C ,

where Q is given by (1.9) and C depends on N and νH(P̂ ) · ν(P̂ ).

1Notice that, even if P̂ is not univocally determined (i.e. there are two points of ∂BH0(0, 1) lying on the

xN−axis), the matrix ∇2H0(P̂ ) is well defined because H0 is centrally symmetric.
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We stress that the estimates in Theorem 1.1 are optimal, in the sense that they give the
optimal rate of blow up of the gradient as δ → 0. In the Euclidean case (i.e. when H(·) = | · |)
we obtain the same rate of blow up as in [7]. We also obtain something more: the estimates
in Theorem 1.1 almost provide a complete characterization of the leading term in the blow up.
Indeed, one can choose τ arbitrarily small and get closer and closer to the sharp characterization
of the blow up. The reason why we do not obtain the sharp characterization is purely technical,
and how to obtain the sharp characterization is an open problem.

The strategy that we use to prove our main result has some remarkable difference compared
to the one which is typically used in the Euclidean case. Indeed, in the latter case the usual
approach is to use the linearity of the Laplace operator and decompose the solution uδ in two
parts:

(1.10) uδ = vδ + wδ ,

where vδ completely characterizes the asymptotic behavior of the blow-up of the gradient of uδ
and |∇wδ| is uniformly bounded independently of δ.

Since ∆H is not linear unless H is an affine transformation of the Euclidean norm, we have
to deal with a nonlinear problem and writing uδ as in (1.10) is not helpful. Thus we first prove
that the gradient is uniformly bounded away from a small neighborhood of the touching point
and we prove, in that region, the C1,α convergence of uδ to u0 (the solution of (1.6)). Then we
find estimates on the gradient in a neighborhood of the touching point and we prove optimal
gradient bounds by using comparison principles and a suitable P -function. Our approach is
purely nonlinear, and we take inspiration from [27] where the authors study the conductivity
problem in the Euclidean case for the p-Laplacian, with p > N . However, due to the presence
of anisotropy and since p ≤ N in our case, there is some relevant difference between the two
problems.

The paper is organized as follows. In Section 2 we recall some basic facts about norms in
RN and about the Finsler (or anisotropic) Laplace operator. Section 3 is devoted to prove
some maximum principle, and we introduce a P -function which is suitable for the problem. In
Section 4 we prove uniform bounds on the gradient of the solution at points which are far from
the touching point. Finally, in Section 5 we complete the proof of Theorem 1.1. The paper
ends with two Appendixes: in the former we prove some standard facts about the perfectly
conductivity problem, and in the latter we prove two techinical lemmas which are crucial for
the proof of Theorem 1.1.

2. Norms and Finsler Laplacian

About norms in RN . In this section we recall some facts about norms in RN , N ≥ 2. Let
H : RN → R be a norm, i.e.

H is convex,(2.1)

H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0,(2.2)

H(tξ) = |t|H(ξ) for ξ ∈ RN and t ∈ R.(2.3)

Since all norms in RN are equivalent, there exist two positive constants c1, c2 such that

c1|ξ| ≤ H(ξ) ≤ c2|ξ| for any ξ ∈ RN .

The dual norm of H, which we denote by H0, is defined by

(2.4) H0(x) = sup
ξ 6=0

x · ξ
H(ξ)

for x ∈ RN ;



GRADIENT BLOW-UP IN ANISOTROPIC PERFECT CONDUCTIVITY PROBLEMS 7

analogously, one can define H as the dual norm of H0, i.e.

(2.5) H(ξ) = sup
x 6=0

x · ξ
H0(ξ)

for x ∈ RN .

Following our notation, H0 is a norm in the ambient space and gives the norm of a point
x ∈ Ω ⊂ RN and H is a norm in the dual space, which is identified with RN . Indeed, we notice
that the gradient of a function u : Ω→ RN , evaluated at x ∈ Ω, is the element ∇u(x) of the dual
space of RN , which associates to any vector y ∈ RN the number y ·∇u. Unless otherwise stated,
we will use the variable x to denote a point in the ambient space RN and ξ for an element in the
dual space. The symbols ∇ and ∇ξ denote the gradients with respect to the x and ξ variables,
respectively.

Let H ∈ C1
(
RN \ {0}

)
, from (2.3) we have

(2.6) ∇ξH(tξ) = sign(t)∇ξH(ξ), for ξ 6= 0 and t 6= 0,

and

(2.7) ∇ξH(ξ) · ξ = H(ξ), for ξ ∈ RN ,

where the left hand side is taken to be 0 when ξ = 0. If H ∈ C2
(
RN \ {0}

)
, then

(2.8) ∇2
ξH(tξ) =

1

|t|
∇2
ξH(ξ), for ξ 6= 0 and t 6= 0 ,

where ∇2
ξ is the Hessian operator with respect to the ξ variable; we also notice that

(2.9) ∇2
ξH

2(tξ) = ∇2
ξH

2(ξ), for ξ 6= 0 and t 6= 0 .

Hence, (2.7) implies that

(2.10) ∂2
ξiξk

H(ξ)ξi = 0,

for every k = 1, . . . , N .
The following properties hold provided that H ∈ C1

(
RN \ {0}

)
and the unitary ball {ξ ∈

Rn : H(ξ) < 1} is strictly convex (see [20, Lemma 3.1]):

(2.11) H0 (∇ξH(ξ)) = 1, for ξ ∈ RN \ {0},
and

(2.12) H (∇H0(x)) = 1, for x ∈ RN \ {0};
furthermore, the map H∇ξH is invertible with

(2.13) H∇ξH = (H0∇H0)−1 .

For ξ0 ∈ RN and r > 0, the ball of center ξ0 and radius r in the norm H is denoted by

BH(ξ0, r) = {ξ ∈ RN : H(ξ − ξ0) < r};
analgously,

BH0(x0, r) = {x ∈ RN : H0(x− x0) < r}
denotes the ball of center x0 and radius r in the norm H0. A ball in the norm H0 is called the
Wulff shape of H.

Assumptions on H. We shall consider norms such that the unitary balls are uniformly convex.
More precisely, we are considering a uniformly elliptic norm of class C3 outside the origin, i.e.
a function H ∈ C3(RN \ {O}) for which there exists λ∗, λ

∗ > 0 such that

(2.14)
λ∗
|v|

∣∣∣∣∣τ −
(
τ · v
|v|

)
v

|v|

∣∣∣∣∣
2

≤ 〈∇2H(v)τ, τ〉 ≤ λ∗

|v|

∣∣∣∣∣τ −
(
τ · v
|v|

)
v

|v|

∣∣∣∣∣
2

,
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for every v, τ ∈ RN , v 6= 0. We recall that, under these hypotheses, the boundary of the Wulff
shape is uniformly convex (see, for instance, [39] p.111).

Finsler Laplacian. The Finsler Laplacian (associated to H) of the function u is given by

4Hu = div (H (∇u)∇ξH (∇u)) .

We recall the maximum and comparison principles for the Finsler Laplacian (see [25, Theorem
4.1] and [25, Theorem 4.2]).

Theorem 2.1. If −4Hu ≤ 0 in Ω and u = g ≤M on ∂Ω, then u attains its maximum on the
boundary; that is, u(x) ≤M a.e. in Ω.

Theorem 2.2. Suppose that −4Hu ≤ −4Hv in Ω and u ≤ v on ∂Ω. Then u ≤ v a.e. in Ω.

Let BH0(r) and BH0(R) be two Wulff shapes centered at the origin, with r < R. It will be
useful to have at hand the explicit solution to the problem

(2.15)

 ∆Hv = 0 in BH0(R) \BH0(r),
v = Cr on ∂BH0(r),
v = CR on ∂BH0(R),

which is given by

(2.16) v(x) =


(Cr − CR)

H0(x)2−N −R2−N

r2−N −R2−N + CR if N ≥ 3,

(Cr − CR)
ln
(
R−1H0(x)

)
ln (R−1r)

+ CR if N = 2,

for any x ∈ BH0(R)\BH0(r). It is readily seen that v ∈ C3(BH0(R)\BH0(r)), it satisfies (2.15),
and H(∇v) 6= 0 (see also [25, Theorem 3.1]). Moreover, the following bounds

(2.17)
(N − 2)|Cr − CR|
[(r/R)2−N − 1]R

≤ H(∇v(x)) ≤ (N − 2)|Cr − CR|
[(r/R)2−N − 1]r

for N ≥ 3 ,

and

(2.18)
|Cr − CR|
R ln (Rr−1)

≤ H(∇v(x)) ≤ |Cr − CR|
r ln (Rr−1)

for N = 2 ,

hold for any x ∈ BH0(R) \BH0(r).

Definition of the neck. It will be useful to introduce the following notation. For a fixed w > 0
sufficiently small we define the neck of width w as the set

(2.19) Nδ(w) = {x = (x′, xN ) ∈ Ωδ such that |Q
1
2x′| < w,H0(x) < max(R1, R2)},

where Q
1
2 is the square root of the matrix Q defined in (1.9). Notice that, if w and δ are small

enough, Nδ(w) is as in Fig. 3.

Remark 2.3. Let B1
H0

and B2
H0

be two anisotropic balls which are tangent to some point. Let

x1 and x2 be the centers of B1
H0

and B2
H0

, respectively. Then the touching point lies on the

segment joining the two centers x1 and x2.
Indeed, since

B1
H0

= {y : H0(y − x1) < r1} ,
where r1 is the radius of B1

H0
, then

∇H0(x− x1) = γ1ν(x) ,
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Figure 3. The neck Nδ(w).

for some γ1 > 0. We apply H to both sides of the above equation and from (2.12) we find

1 = γ1H(ν(x)) ,

which yields

∇H0(x− x1) =
ν(x)

H(ν(x))
.

An analogous argument shows that

∇H0(x2 − x) =
ν(x)

H(ν(x))
.

We apply ∇H in the last two equations and, by using the properties of the norms, we find

x− x1

H0(x− x1)
= ∇H(ν(x)) =

x2 − x
H0(x− x2)

,

as claimed.

3. Maximum principles

In this section we prove some maximum principles for uδ, H(∇u) and for a P -function which
is suitable for our purposes.

We first notice that the maximum and minimum of uδ are attained at the boundary of Ω.

Lemma 3.1. Let uδ be the solution of problem (1.4). The maximum and the minimum of uδ
are attained on ∂Ω. In particular, we have that

max
Ωδ

|uδ| = max
∂Ω
|ϕ| .

Proof. The maximum principle for the Finsler Laplacian yields that |uδ| attains its maximum
∂Ωδ. We show that the maximum of uδ can not be attained at ∂Di

δ, with i ∈ {1, 2}. Indeed,
assume by contradiction that maxuδ = U1

δ . From Hopf’s lemma we have that |∇uδ| > 0 on ∂D1
δ ,

which contradicts the third condition of (1.4). Analogously, the maximum can not be attained
at ∂D2

δ . �

Before giving other maximum principles, we set some notation and prove some basic inequal-
ities for the Finsler Laplacian. In order to avoid heavy formulas, we use the following notation:

ui =
∂u

∂xi
, uij =

∂2u

∂xi∂xj
.
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and

∂ξiH =
∂H

∂ξi
, ∂2

ξiξj
H =

∂2H

∂ξi∂ξj
.

Since

div (H(∇u)∇ξH(∇u)) =
(
∂ξiH(∇u)∂ξjH(∇u) +H(∇u)∂2

ξiξj
H(∇u)

)
uij

where ∇u 6= 0, by setting

(3.1) aij := ∂ξiH(∇u)∂ξjH(∇u) +H(∇u)∂2
ξiξj

H(∇u) =
1

2
∂2
ξiξj

H(∇u)2 .

the Finsler Laplacian can be written as

(3.2) ∆Hu = aijuij = tr(A∇2u)

at points where ∇u 6= 0, where A is the symmetric matrix with entries aij , i, j = 1, . . . , N . We
notice that from (2.7) and (2.10) we have that

(3.3) aijuiuj = H(∇u)2

at points where ∇u 6= 0. It will be useful to set

(3.4) aijk :=
1

2
∂3
ξiξjξk

H(∇u)2 ,

and notice that if u is a solution to ∆Hu = 0 then

(3.5) aijlul = 0,

where ∇u 6= 0. Indeed, (3.5) can be proved by noticing that

aijlul = ∂ξjH(∇u)∂2
ξiξl
H(∇u)ul + ∂ξiH(∇u)∂2

ξjξl
H(∇u)ul

+ ∂2
ξiξj

H(∇u)∂ξlH(∇u)ul +H(∇u)∂3
ξiξjξl

H(∇u)ul .

By using (2.10) we obtain

aijlul = H(∇u)∂2
ξiξj

H(∇u) +H(∇u)∂3
ξiξjξl

H(∇u)ul = H(ξ)∂ξi

(
∂2
ξjξl

H(ξ)ξl

)
|ξ=∇u

,

and from (2.10) we find (3.5).
Since ∇2

ξH
2(ξ) is 0-homogeneous, the matrix A = (aij) satisfies

|aij | ≤ C0 and 2µ1Id ≤ A ≤ 2µNId ,

where C0 depends only on ‖∇2H2‖C0(∂BH(0,1)), and where µ1 and µN are the minimum and

maximum eigenvalues of ∇2
ξH

2.
Let L to be the second order elliptic operator given by

(3.6) Lv := ∂i(aijvj) = aijvij + aijluijvl .

We recall that if u is a solution to ∆Hu = 0, then u is of class C1,α ∩W 1,2
loc and, by elliptic

regularity, u ∈ C2,α where ∇u 6= 0.
We first prove that if u is a solution to ∆Hu = 0 then H(∇u) satisfies a maximum principle

and we also give a useful pointwise formula for Lu2.

Lemma 3.2. Let E ⊂ RN be a bounded domain and let u be such that ∆Hu = 0 in E. We have

(3.7) L(H(∇u)2) ≥ 2n

n− 1

(
∂ξiH(∇u)∂ξjH(∇u)uij

)2
,

and

(3.8) L(u2) = 2H(∇u)2 .
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In particular, H(∇u) satisfies the maximum principle, i.e.

(3.9) max
E

H(∇u) = max
∂E

H(∇u) .

Proof. We first prove (3.8). At points where ∇u 6= 0 we have

div
(
aij∇u2

)
= 2aijuiuj + 2uaijuij + 2u∂i(aij)uj

and, since aijuij = ∆Hu = 0, we obtain

div
(
aij∇u2

)
= 2aijuiuj + 2uujaijkuki .

From (3.3) and (3.5) we find

(3.10) div
(
aij∇u2

)
= 2H(∇u)2 ,

at points where ∇u 6= 0. By continuity, (3.10) can be extended to zero where ∇u = 0.
In order to prove (3.7), we first notice that the following Bochner formula holds (see also [38,

Lemma 2.1]):

(3.11) aij∂
2
ijH(∇u)2 = 2aijakluikujl − ∂lH(∇u)2aijluij ,

where ∇u 6= 0. Indeed, (3.11) follows from the following argument. Owing to (3.1) and (3.2)
and since ∆Hu = 0 we have

aij∂
2
ij

(
H(∇u)2

)
= aij∂j

(
∂ξkH(∇u)2uik

)
= aij ∂

2
ξkξl

H(∇u)2︸ ︷︷ ︸
2akl

uikujl + aij∂ξkH(∇u)2uijk

= 2aijakluikujl + ∂ξkH(∇u)2∂k(aijuij︸ ︷︷ ︸
∆Hu=0

)− ∂ξkH(∇u)2∂k(aij)uij

= 2aijakluikujl − 2H(∇u)∂ξkH(∇u)aijlulkuij ,

where ∇u 6= 0, which proves (3.11).
Since

LH(∇u)2 = aij∂
2
ijH(∇u)2 + aijluij∂lH(∇u)2,

from (3.11) we have

LH(∇u)2 = 2aijakluikujl,

and from

aijakluikujl ≥
(aijuij)

2

n
+

n

n− 1

(aijuij
n
− ∂ξiH∂ξjHuij

)2
,

(see [38, Lemma 2.3]) we obtain

(3.12) LH(∇u)2 ≥ 2n

n− 1

(
∂ξiH(∇u)∂ξjH(∇u)uij

)2
,

at point where ∇u 6= 0. We set E0 = {x ∈ E : ∇u = 0}; since u ∈ C1,α then E0 is closed. From
(3.12) we have that H(∇u)2 satisfies a maximum principle in E \E0 and hence maxH(∇u)2 is
attained at ∂E ∪ ∂E0. Since H(∇u) = 0 in E0, we have that H(∇u) attains the maximum at
∂E and (3.9) follows. �

Now we prove a maximum principle for a P -function which is suitable for our problem, which
take care of the presence of the neck Nδ(w), w > 0 (see formula (2.19) for its definition).

In the following we write x ∈ RN as x = (x′, xN ), where x′ ∈ RN−1 and xN ∈ R . We will
need to introduce a cut-off function f ∈ C2(Ω) such that

(3.13) |f | = 1 in Ωδ \ Nδ(w) , f = 0 in Nδ
(w

2

)
.
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Moreover we choose f such that

(3.14)
f

w
≤ |∇f |2 and |∇2f | ≤ 1

w2
in Nδ(w) \ Nδ

(w
2

)
.

(see [27] for an explicit example in the Euclidean case).

Theorem 3.3. Let uδ be such that ∆Huδ = 0 in Ωδ. Let f satisfy (3.13) and (3.14).
There exists λ0 = λ0(‖f‖C2 , ‖H‖C3(∂BH(0,1))), with λ0 = O(w−2) as w → 0+, such that the

function

(3.15) P (x) = f(x)H(∇uδ)2 + λu2
δ

satisfies the maximum principle for any λ ≥ λ0, i.e.

(3.16) max
x∈Ωδ

P (x) = max
x∈∂Ωδ

P (x)

for λ ≥ λ0.

Proof. We first prove the assertion when the maximum is attained at a point x0 where∇uδ(x0) =
0, and then we consider the case when ∇uδ(x0) 6= 0.

Step 1. Suppose that P attains the maximum at point x0 such that ∇uδ(x0) = 0. Then
P (x0) = λuδ(x0)2 and

f(x)H(∇uδ(x))2 + λuδ(x)2 ≤ λuδ(x0)2

for any x ∈ Ωδ. In particular |uδ(x)| ≤ |uδ(x0)|, and Lemma 3.1 yields that x0 ∈ ∂Ω.
Step 2. Suppose that P attains the maximum at a point x0 such that ∇uδ(x0) 6= 0. We shall

use the operator L defined in (3.6) where the coefficients aij are given by (3.1) with uδ in place
of u. From (3.7) and (3.8) we have

LP ≥ aij∂ijf(x)H(∇uδ)2 + 2aij∂if(x)∂jH(∇uδ)2 + aijl∂lf(x)H(∇uδ)2uij

+ f(x)
2n

n− 1

(
∂ξiH(∇uδ)∂ξjH(∇uδ)uij

)2
+ 2λH(∇uδ)2.(3.17)

Since H is 1-homogeneous, the quantities aij , aijlH(∇uδ) and ∂ξiH are 0-homogeneous. Hence
there exists a contant C0 depending only on ‖H‖C3(∂BH(0,1)) such that

(3.18) |aij |, |aijlH(∇uδ)| ≤ C0 , andC−1
0 ≤ |∂ξiH(∇uδ)| ≤ C0.

From (3.17), (3.18) and by using Cauchy-Schwarz inequality, we have

LP ≥
(
λ− C0‖∇2f‖C0

)
H(∇uδ)2 + 2

√
2nλf

n− 1
H(∇uδ)

∣∣∂ξiH(∇uδ)∂ξjH(∇uδ)uij
∣∣

− 4C2
0‖∇2f‖C0

∣∣∇2uδ
∣∣H(∇uδ)− C0‖∇f‖C0

∣∣∇2uδ
∣∣H(∇uδ)

=
(
λ− C0‖∇2f‖C0

)
H(∇uδ)2 +

(
2C−2

0

√
2nλf

n− 1
− 4C2

0‖∇2f‖C0

)∣∣∇2uδ
∣∣H(∇uδ).

We can choose λ0 large enough such that

λ− C0‖∇2f‖C0 ≥ 0,

and

2C−2
0

√
2nλf

n− 1
− 4C2

0‖∇f‖C0 ≥ 0,

for λ ≥ λ0. The constant λ0 depends only on ‖H‖C3(∂BH(0,1)) and ‖f‖C2 , and from (3.14) we

have that λ0 = O(w−2). From step 1 and step 2 we conclude. �
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4. Uniform bounds for the gradient

In this section we give estimates in the region where the gradient remains uniformly bounded.
In the next lemma we show that, since the inclusions are far away from the boundary of Ω, we
have that the gradient of uδ is uniformly bounded on ∂Ω independently of δ.

Lemma 4.1. Let uδ be the solution of (1.4). There exists a constant C > 0 independent of δ
such that

(4.1) max
∂Ω

H(∇uδ) ≤ C.

Proof. Let A ⊂ Ω be a smooth set such that {x ∈ Ω : dist(x, ∂Ω) > K/2} ⊂ A, with K given
by (1.8), and A ⊂ Ω. It is clear that D1

δ and D2
δ are contained in A for any δ ≤ δ0.

Let v∗ and v∗ be the solutions to
∆Hv∗ = 0 in Ω \A ,
v∗ = ϕ on ∂Ω ,

v∗ = min∂Ω ϕ on ∂A ,

and 
∆Hv

∗ = 0 in Ω \A ,
v∗ = ϕ on ∂Ω ,

v∗ = max∂Ω ϕ on ∂A ,

respectively. From Lemma 3.1, it is clear that v∗ and v∗ are, respectively, a lower and an upper
barrier for uδ at any point on ∂Ω. Hence, the normal derivative of uδ can be bounded in terms
of the gradient of v∗, v

∗, and thus H(uδ) can be bounded by some constant C which depends
only on K and ϕ, which implies (4.3). �

Now we show that the gradient is uniformly bounded on the boundary of the inclusions at
the points which are not in the neck.

Lemma 4.2. Let uδ be the solution of (1.4) and let w > 0 be fixed. There exists a constant
C > 0 independent of δ such that

(4.2) max
∂Diδ\∂Nδ(w)

H(∇uδ) ≤ C , i = 1, 2.

Proof. Let z ∈ ∂D1
δ \∂Nδ(w) and, for r1 � R1, denote by BH0(z0, r1) the interior anisotropic ball

of radius r1 and center z0 tangent to ∂D1
δ at z, i.e. BH0(z0, r1) ⊂ D1

δ and ∂BH0(z0, r1)∩ ∂D1
δ =

{z} (as follows from the uniform convexity of the norm, see Fig. 4).

Figure 4. BH0(z0, r1) and BH0(z0, r2) are used to construct upper and lower
barriers for uδ at z.



14 GIULIO CIRAOLO AND ANGELA SCIAMMETTA

Let r2 be the (anisotropic) distance of z0 from ∂D2
δ ; notice that r2 > r1 and the (anisotropic)

ball BH0(z0, r2) is exterior and tangent to D2
δ at some point z1 ∈ ∂D2

δ .
We construct an upper barrier v and a lower barrier v for uδ at z by considering the solutions

to 
∆Hv = 0 in BH0(z0, r2) \BH0(z0, r1) ,

v = U1
δ on ∂BH0(z0, r1),

v = max
∂Ω

ϕ on ∂BH0(z0, r2),

and 
∆Hv = 0 in BH0(z0, r2) \BH0(z0, r1) ,

v = U1
δ on ∂BH0(z0, r1),

v = min
∂Ω

ϕ on ∂BH0(z0, r2),

respectively, when U iδ are defined in (1.5). As follows from (2.16) we have that v and v are given
by

v(x) =


(U1
δ −max

∂Ω
ϕ)
H0(x− z0)2−N − r2−N

2

r2−N
1 − r2−N

2

+ max
∂Ω

ϕ if N ≥ 3,

(U1
δ −max

∂Ω
ϕ)

ln(r−1
2 H0(x− z0))

ln(r−1
2 r1)

+ max
∂Ω

ϕ if N = 2,

and

v(x) =


(U1

δ −min
∂Ω

ϕ)
H0(x− z0)2−N − r2−N

2

r2−N
1 − r2−N

2

+ min
∂Ω

ϕ if N ≥ 3,

(U1
δ −min

∂Ω
ϕ)

ln(r−1
2 H0(x− z0))

ln(r−1
2 r1)

+ min
∂Ω

ϕ if N = 2,

respectively. In particular, by using (2.12) we have

H(∇v(z)) =


(N − 2)

∣∣∣∣U1
δ −max

∂Ω
ϕ

∣∣∣∣ r1−N
1

r2−N
1 − r2−N

2

if N ≥ 3,

∣∣∣∣U1
δ −max

∂Ω
ϕ

∣∣∣∣ r−1
1

ln
(
r2r
−1
1

) if N = 2,

and

H(∇v(z)) =


(N − 2)

∣∣∣∣U1
δ −min

∂Ω
ϕ

∣∣∣∣ r1−N
1

r2−N
1 − r2−N

2

if N ≥ 3,

∣∣∣∣U1
δ −min

∂Ω
ϕ

∣∣∣∣ r−1
1

ln
(
r2r
−1
1

) if N = 2.

We fix r1 = cw for some small constant c > 0. Since w > 0 is fixed, there exists a constant
α > 1 such that r2 ≥ αr1 for any δ ≥ 0, with α not depending on δ. Hence we have that

r1−N
1

r2−N
1 − r2−N

2

≤ 1

cw(1− α2−N )
for N ≥ 3 ,

and
r−1

1

ln
(
r2r
−1
1

) ≤ 1

cw lnα
for N = 2 .
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Since the maximum and minimum of uδ are attained on ∂Ω (see Lemma 3.1) then by comparison
principle we obtain that

H(∇uδ(z)) ≤ C
where C depends only on the dimension N , ‖ϕ‖C0(∂Ω) and w, and does not depends on δ. �

Lemma 4.3. Let uδ be the solution of (1.4) and let w > 0. There exists a constant C > 0
independent of δ and w such that

(4.3) max
Ωδ\Nδ(w))

H(∇uδ) ≤
C

w
.

Proof. From Lemma 3.2 we know that H(∇u) satisfies the maximum principle, so that

max
Ωδ\Nδ(w)

H(∇uδ) ≤ max
∂(Ωδ\Nδ(w))

H(∇uδ) .

From Lemmas 4.1 and 4.2 it is enough to find uniform bounds on H(∇u) on ∂N±δ (w), where

(4.4) ∂N±δ (w) = ∂Nδ(w) ∩ {|Qx′| = ±w},
i.e. we aim at showing that there exists a constant C independent of δ and w such that

(4.5) max
∂N±δ (w)

H (∇uδ) ≤
C

w
.

Let P be as in Theorem 3.3 (see formula (3.15)).
Since 0 ≤ f ≤ 1 and f = 1 on N±δ (w), we have that

max
∂N±δ (w)

H(∇uδ)2 = max
∂N±δ (w)

f(x)H(∇uδ)2 ≤ max
∂N±δ (w)

P (x) ≤ max
Ωδ

P (x) .

From Theorem 3.3 there exists a constant λ0 = O(w−2) such that P (x) given by (3.15) satisfies
the maximum principle for any λ ≥ λ0 and the chain of inequalities above yields

max
∂N±δ (w)

H(∇uδ)2 ≤ max
Ωδ

P (x) = max
∂Ωδ

P (x) .

Since ‖uδ‖C0(Ωδ) ≤ ‖ϕ‖C0(∂Ω) (see Lemma 3.1) and λ0 = O(w−2) (see Theorem 3.3), we have
that there exists a constant C independent of δ and w such that

P (x) = f(x)H(∇uδ)2 + λ0u
2
δ ≤ f(x)H(∇uδ)2 + Cw−2,

and hence
max

∂N±δ (w)
H(∇uδ)2 ≤ max

∂Ωδ
P ≤ max

∂Ωδ

[
f(x)H(∇uδ)2

]
+ Cw−2.

Since f = 0 in Nδ(w/2), from Lemmas 4.1 and 4.2 we find (4.5) and the proof is complete. �

Before giving the relation between uδ and u0 (see Proposition 4.5 below), in the next Lemma
we show that gradient of u0 is bounded.

Lemma 4.4. Let u0 be the solution to (1.6). Then H(∇u0) ≤ C in Ω0.

Proof. The proof is analogous to the ones of Lemmas 4.1 and 4.2, and we only give a sketch.
Since H(∇u0) attains the maximum at the boundary (see Lemma 3.2), we have to prove that
H(∇u0) is bounded on ∂Ω and on ∂D1

0∪∂D2
0. First we recall that, in view of the third condition

in (1.6), the maximum and minimum of Lemma u0 are attained at ∂Ω. Hence, the bound on
∂Ω can be obtained as in the proof of Lemma 4.1. The bound on ∂D1

0 (and analogously the one
on ∂D2

0) can be obtained by comparison principle, more precisely by comparing u0 and v1 and

v2, where vi is the solution to ∆Hvi = 0 in Ω \D1
0, vi = u0 on ∂Di

0, i = 1, 2 v1 = max∂Ω φ and
v2 = min∂Ω φ on ∂Ω. �

We are ready to show the relation between uδ and u0.
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Proposition 4.5. Let uδ be the solution of (1.4) and u0 be the solution of (1.6).
There exists a constant 0 < α < 1 not depending on δ such that

(4.6) lim
δ→0
‖uδ − u0‖C1,α(E) = 0,

for any compact set E ⊂ Ω0. Moreover, for any i = 1, 2 and for any neck Nδ(w) of (sufficiently
small) width w we have

(4.7) lim
δ→0

ˆ
∂Diδ\∂Nδ(w)

H (∇uδ)∇ξH (∇uδ) · νds =

ˆ
∂Di0\∂Nδ(w)

H (∇u0)∇ξH (∇u0) · νds .

Proof. Thanks to Lemma 4.3 and [24, Theorem 2], for any fixed w > 0 we have that there exists
α > 0 independent of δ such that

(4.8) ‖uδ‖C1,α(K) ≤ C for any compact set K ⊂ Ωδ \ N δ(w) ,

where C is a constant independent of δ.
Let E be a compact set contained in Ω0. We want to show that uδ converges to u0 in C1,α(E).

Since E is fixed, there exist w, δ0 > 0 such that E ⊂ Ωδ \ Nδ(w) for any δ < δ0. From (4.8) we
have that uδ converges to some function ū in C1,α(E), which satisfies ∆H ū = 0 in E. In order
to show that ū is the solution to (1.6), i.e. ū = u0, we only need to check that ū satisfies the
third line in (1.6), i.e. that

(4.9)

ˆ
∂D1

0

H (∇ū)∇ξH (∇ū) · νds+

ˆ
∂D2

0

H (∇ū)∇ξH (∇ū) · νds = 0 .

We prove (4.9) by approximation. Let ε > 0 be fixed and sufficiently small, and let

BH0(x1
0, R1 + ε) ∪BH0(x2

0, R2 + ε) .

If δ < ε then D1
δ ∪D2

δ ⊂ A and we have that uδ converges to ū in C1,α(Ω \A). From ∆Huδ = 0

in Aε \D1
δ ∪D2

δ and since H(∇uδ) = 0 in D1
δ and D2

δ , the divergence theorem implies that
ˆ
∂Aε

H (∇uδ)∇ξH (∇uδ) · νds = 0 .

By letting δ to zero and since uδ → ū in C1,α, we obtain thatˆ
∂Aε

H (∇ū)∇ξH (∇ū) · νds = 0 .

Since ε > 0 is arbitrary, we obtain (4.9) and (4.6) is proved.
Once we have that uδ → u0 in C1,α on compact sets, the proof of (4.7) follows straightfor-

wardly (see for instance [27, p.736-737]). �

5. Proof of Theorem 1.1

Step 1: upper and lower bounds on the gradient in the neck. Let w > 0 be fixed. We are
going to find upper and lower bounds on the gradient of the solution in the neck in terms of
U1
δ − U2

δ , which we assume to be non negative (the case U1
δ − U2

δ ≤ 0 is completely analogous).
In particular, we aim at showing that for any fixed τ ∈ (0, 1/2) there exists a constant C
independent on δ such that
(5.1)

H(∇uδ(P ))∇ξH(∇uδ(P )) · ν(P ) ≤ −
U1
δ − U2

δ

δ + (1 + τ)R1+R2
2R1R2

QP⊥ · P⊥
(1 + o(δ2 + |P − P0|2)) + C .
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and
(5.2)

H(∇uδ(P ))∇ξH(∇uδ(P )) · ν(P ) ≥ −
U1
δ − U2

δ

δ + (1− τ)R1+R2
2R1R2

QP⊥ · P⊥
(1 + o(δ2 + |P − P0|2))− C ,

for any P ∈ ∂D1
δ ∩ ∂Nδ(w), where P0 ∈ ∂D1

δ lies on the segment joining the two centers of D1
δ

and D2
δ , and P⊥ is the projection of P on the orthogonal to P0 (see Fig.5).

We start by finding a lower bound on ∇uδ at P ∈ ∂D1
δ ∩ ∂Nδ(w). We consider an anisotropic

ball touching ∂D1
δ at P from the inside and denote it by BH0(y0, r1), so that BH0(y0, r1) ⊂ D1

δ
and y0 and r1 are the center and the radius of the ball, respectively, where we let

r1 = tR1 .

We denote by r2 the radius of the anisotropic ball with center at y0 which touches ∂D2
δ from

the outside, i.e.
r2 = distH0(y0, ∂D

2
δ ) = min{H0(x− y0) : x ∈ ∂D2

δ}.
For x 6= y0, let v be given by

v(x) =


(U1
δ − U2

δ )
H0(x− y0)2−N − r2−N

2

r2−N
1 − r2−N

2

+ U2
δ if N ≥ 3 ,

(U1
δ − U2

δ )
ln(r−1

2 H0(x− y0))

ln(r−1
2 r1)

+ U2
δ if N = 2 .

Notice that ∆Hv = 0 in RN \ {y0} and v = U iδ on ∂BH0(y0, ri), i = 1, 2. We notice that we can
find a constant M , not depending on δ, such that if the ratio

(5.3) M =



U1
δ − U2

δ

r2−N
1 − r2−N

2

if N ≥ 3 ,

U1
δ − U2

δ

ln(r2r
−1
1 )

if N = 2 .

is large enough, say M > M , then v is a lower barrier for uδ.
Now assume that M > M , so that v is a lower barrier for uδ. Since

H(∇v(P )) =



(U1
δ − U2

δ )(N − 2)

r2−N
1 − r2−N

2

r1−N
1 if N ≥ 3 ,

U1
δ − U2

δ

ln(r2r
−1
1 )

1

r1
if N = 2 .

from the mean value theorem we have that there exists r̄ ∈ (r1, r2) such that

H(∇v(P )) =
U1
δ − U2

δ

r2 − r1

(
r̄

r1

)N−1

for any N ≥ 2, and hence

(5.4) H(∇v(P )) ≥
U1
δ − U2

δ

r2 − r1

for any N ≥ 2.
Thanks to (5.4) we can give an upper bound on the quantity H(∇uδ(P ))∇ξH(∇uδ(P )) ·ν(P ).

Indeed, since v is a lower barrier for uδ then

(5.5) ∇ξH(∇uδ(P )) · ν(P ) = −∇ξH(ν(P )) · ν(P ) = −H(ν(P )) = −1 ,
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where the last equality holds because P lies on a Wulff shape. From (5.4) and (5.5) we find

(5.6) H(∇uδ(P ))∇ξH(∇uδ(P )) · ν(P ) ≤ −
U1
δ − U2

δ

r2 − r1
.

If M ≤ M , from elliptic estimates we have H(∇uδ) ≤ C, where C does not depends on δ.
Indeed, from the mean value theorem we have

U1
δ − U2

δ

r2 − r1
≤ N − 1

tN−1RN−1
1

M .

Since ∂D1
δ is of class C3, uδ is constant on ∂D1

δ , and the distance of P from ∂D2
δ is of size r2−r1,

from interior regularity estimates we have that H(∇uδ) ≤ C, where C does not depends on δ.
Hence

(5.7) H(∇uδ(P ))∇ξH(∇uδ(P )) · ν(P ) ≤ −
U1
δ − U2

δ

r2 − r1
+ C .

Let r1 = tR1, we have

(5.8) r2 − r1 = δ + (1− s)R1 +R2

2R1R2
QP⊥ · P⊥ + o(δ2 + |ω|2)

as δ and |P − P0| go to zero, and where P⊥ is the projection of P on the orthogonal to P0. We
do not prove (5.8) here, and we postpone its proof in the Appendix B (see Lemma B.1). From
(5.7) and (5.8) we obtain (5.1).

Now we obtain the lower bound (5.2). We consider a ball BH0(ȳ, ρ2) touching ∂D1
δ at P from

the outside and such that the center ȳ is contained in D2
δ and we denote by ρ1 the radius of the

concentric ball touching ∂D1
δ from the inside (here we are assuming that w is small enough).

For x 6= ȳ, let v be given by

v(x) =


−(U1

δ − U2
δ )
H0(x− ȳ)2−N − ρ2−N

2

ρ2−N
1 − ρ2−N

2

+ U1
δ if N ≥ 3 ,

−(U1
δ − U2

δ )
ln(ρ−1

2 H0(x− ȳ))

ln(ρ−1
2 ρ1)

+ U1
δ if N = 2 .

The function v is such that ∆Hv = 0 in RN \ {ȳ}, v = U1
δ on ∂BH0(y0, ρ2), and v = U2

δ on
∂BH0(y0, ρ1).

If the ratio M (defined as in (5.3) is large enough, say M > M for some constant M not
depending on δ, then v is an upper barrier for uδ and we obtain that

H(∇uδ(P )) ≤ H(∇v(P )) ≤
U1
δ − U2

δ

ρ2 − ρ1

(
ρ̄

ρ2

)N−1

for some ρ̄ ∈ (ρ1, ρ2), and we obtain

H(∇uδ(P )) ≤
U1
δ − U2

δ

ρ2 − ρ1
.

By arguing as for the upper bound before, if M ≤ M then we can find a constant C such
that H(∇uδ(P )) ≤ C. Hence, we have that

H(∇uδ(P )) ≤
U1
δ − U2

δ

ρ2 − ρ1
+ C .

By arguing as in Lemma B.2 below, we can prove that for any fixed s ∈ (0, 1/2) we have that

(5.9) ρ2 − ρ1 = δ + (1 + s)
R1 +R2

2R1R2
QP⊥ · P⊥ + o(δ2 + |P − P0|2)
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as δ and |P − P0| go to zero, and where P⊥ is the projection of P on the orthogonal to P0 and
from (5.5) we obtain (5.2).

Step 2: Bounds on U1
δ −U2

δ . In this step we aim at proving that for any fixed τ ∈ (0, 1/2) we
have that

(1− τ)

(
R1 +R2

2R1R2

)N−1
2

(det(Q))
N−1

2 C|∂ξNH0(P0)|R0ΨN (δ) + o(ΨN (δ))(5.10)

≤ U1
δ − U2

δ ≤ (1 + τ)

(
R1 +R2

2R1R2

)N−1
2

(det(Q))
N−1

2 C|∂ξNH0(P0)|R0ΨN (δ) + o(ΨN (δ))

where R0 is given by (1.7), ∂ξNH is the partial derivative of H with respect to the last variable
ξN , C depends only on the dimension N and with

(5.11) ΨN (δ) =


δ1/2 N = 2 ,

(log(1/δ))−1 N = 3 ,

1 N ≥ 4 .

Let w > 0 be fixed. From (1.4) and the divergence theorem we have that

(5.12) 0 =

ˆ
∂D1

δ

H(∇uδ)∇H(∇uδ) · ν

=

ˆ
∂D1

δ∩∂Nδ(w)
H(∇uδ)∇H(∇uδ) · ν︸ ︷︷ ︸

I1

+

ˆ
∂D1

δ\∂Nδ(w)
H(∇uδ)∇H(∇uδ) · ν .

We consider the set E = D1
0 ∪ E0, where E0 is some smooth fixed set containing D1

δ and
not containing D2

δ , and such that ∂ (E ∩Nδ(w)) ⊂ ∂D1
0 for w small enough. Notice that

∂E ∩Nδ(w) = ∂E1 ⊂ ∂D1
0 and ∂E \ Nδ(w) = ∂E2 ⊂ ∂E0.

Since ∆Huδ = 0 in Ωδ we apply the divergence theorem in E \ N δ(w) and we have that

(5.13)

ˆ
∂D1

δ\Nδ(w)
H(∇uδ)∇H(∇uδ) · ν =

ˆ
∂E2

H(∇uδ)∇H(∇uδ) · ν︸ ︷︷ ︸
I2

+

ˆ
E∩(∂N+

δ (w))∪∂N−δ (w)))
H(∇uδ)∇H(∇uδ) · ν︸ ︷︷ ︸

I3

,

where N−δ (w) are defined by (4.4). Proposition 4.5 and Lemma 4.3 yield

(5.14) I2 =

ˆ
∂E2

H(∇u0)∇H(∇u0) · ν + o(1),

as δ → 0. We recall that by definition

R0 :=

ˆ
∂D1

0

H(∇u0)∇H(∇u0) · ν .

Since u0 ∈ W 1,∞ (see Lemma 4.4), by applying the divergence theorem in the set E \ D1
0 we

have that

R0 =

ˆ
∂E
H(∇u0)∇H(∇u0) · ν ,
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and from (5.14) we obtain

(5.15)
∣∣∣I2 +R0

∣∣∣ ≤ CwN−1 + o(1),

as δ → 0, where C does not depends on w. Notice that, from Lemma 4.3 we have∣∣∣I3

∣∣∣ ≤ Cδ

w
,

where C does not depends on w. This last estimate together with (5.12) and (5.15) yield

|I1 −R0| ≤ CwN−1 +
Cδ

w
+ o(1) .

By choosing w = δ1/2 we have that

(5.16) |I1 −R0| = o(1),

as δ → 0+.
Now we estimate I1. Together with (5.16), this will imply upper and lower bounds on U1

δ −U2
δ .

We recall that I1 is given by

I1 =

ˆ
I
H(∇uδ)∇H(∇uδ) · ν ,

where we set I = ∂D1
δ ∩ ∂Nδ(w) to lighten the notation. From (5.1) and (5.2), we obtain that

for any τ ∈ (0, 1/2) we have

(5.17) −
ˆ

I

U1
δ − U2

δ

δ + (1− τ)
R1 +R2

2R1R2
QP⊥ · P⊥

dσ(1 + o(1))− Cw ≤ I1

and

(5.18) I1 ≤ −
ˆ

I

U1
δ − U2

δ

δ + (1 + τ)
R1 +R2

2R1R2
QP⊥ · P⊥

dσ(1 + o(1)) + Cw .

Hence, we have to understand the asymptotic behaviour of

(5.19) Î =

ˆ

I

dσ

δ + cQP⊥ · P⊥

as δ → 0, where c = (1± τ)
R1 +R2

2R1R2
> 0. Once we have that, since I1 is finite, the asymptotic

behaviour of U1
δ − U2

δ follows from (5.17) and (5.18).

We notice that P⊥ lies on {xN = 0}, and so we write P⊥ = x′ = (x1, . . . , xN−1) for P ∈ I.

From the implicit function theorem, there exists a function φ : {|Q1/2x′| < w} → R such that
H0(x′, φ(x′)) = R1, φ(0) = δ and (x′, φ(x′)) ∈ I. Hence (5.19) becomes

Î =

ˆ

{|Q1/2x′|<w}

√
1 + |∇x′φ(x′)|2dx′

δ + cQx′ · x′
.

Since

1 + |∇x′φ(x′)|2 =
|∇H0(x′, φ(x′))|2

(∂ξNH0(x′, φ(x′)))2
,

and (x′, φ(x′)) lies on a Wulff shape, we find that

1 + |∇x′φ(x′)|2 =
1

(∂ξNH0(x′, φ(x′)))2
=

1

(∂ξNH0(P0))2
(1 + o(x′)) ,
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as x′ → 0, and, by letting y′ = c
1
2 δ−

1
2Q

1
2x′ we obtain

Î = (c det(Q))−
N−1

2 CN |∂ξNH0(P0)|−1 Ψ−1
N (δ)(1 + o(1))

as δ → 0+. ΨN (δ) is given by (5.11), where we used Remark 5.1.
From (5.17) and (5.18) we obtain (5.10). The assumption of the theorem follows from the

mean value theorem. The proof of Theorem 1.1 is complete.

Remark 5.1. Let z ∈ RN−1, Iδ be given by

Iδ =

ˆ
|z|< 1√

δ

dz

1 + |z|2

and

ψN (δ) =


1 N = 2 ,

− log δ N = 3 ,

δ−
N−3

2 N ≥ 4 ,

Then
lim
δ→0

CNψN (δ)−1Iδ = 1 ,

where CN is a constant depending only on the dimension N .

Appendix A. Basic facts for the anisotropic conductivity problem

Let Ω be a subset of RN and {Di}i∈{1,...,m} be a family open domains, such that D
i ∩Dj

= ∅
for i 6= j, with boundaries of class C2,α, with 0 < α < 1. Let

D =
m⋃
i=1

Di .

Let ΩD = Ω \ D and let ϕ ∈ C2,α(Ω). As mentioned in the Introduction, the perfectly
conductivity problem is the following

(EH)



div (H(∇u)∇ξH(∇u)) = 0 in ΩD,
u+ = u− in ∂D ,
H(∇u) = 0 in D ,ˆ
∂Di

H (∇u)∇ξH (∇u) · νds = 0 i = 1, . . . ,m,

u = ϕ on ∂Ω ,

where ν denotes the outward unit normal to D and Ω.
By regularity elliptic theory we have that u ∈ C1,α(ΩD) (see [24]) and H(∇u)∇ξH(∇u) ∈

W 1,2
loc (Ω) (see [4, 19]).

Theorem A.1. There exists at most one solution u ∈ H1(ΩD) ∩ C1,α(ΩD) of problem (EH).

Proof. Let u1, u2 ∈ H1(ΩD) be two solutions of (EH). By multiplying the first equation of
(EH) by u1 − u2 and integrating by parts, for j ∈ {1, 2}, we have

0 =

ˆ
ΩD

H (∇uj)∇ξH (∇uj) · ∇(u1 − u2)dx−
ˆ
∂Ω
H(∇uj)∇ξH(∇uj)(u1 − u2) · νds

+

m∑
i=1

ˆ
∂Di

H(∇uj)∇ξH(∇uj)(u1 − u2) · νds

=

ˆ
ΩD

H (∇uj)∇ξH (∇uj) · ∇(u1 − u2)dx ,
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where in the last equality we used the fourth condition in (EH) and the fact that u1 = u2 on
∂Ω. Thus, by the strong convexity of H, we have

0 =

ˆ
ΩD

(H (∇u1)∇ξH (∇u1)−H (∇u2)∇ξH (∇u2))·∇(u1−u2)dx ≥ λ
ˆ

ΩD

|∇(u1 − u2)|2 dx ≥ 0.

Thus ∇u1 = ∇u2 in Ωδ and, since u1 = u2 on ∂Di, we have u1 = u2 in ΩD. �

We define the energy functional

I∞[u] =
1

2

ˆ
Ωδ

H (∇u)2 dx,

where u belongs to the set

A :=
{
u ∈W 1,2

ϕ (Ω) : H (∇u) = 0 on D
}
.

Theorem A.2. There exists a minimizer u ∈ A satisfying

I∞[u] = min
v∈A

I∞[v].

Moreover, u ∈W 1,2(ΩD) ∩ C1,α(ΩD) is a solution to (EH).

Proof. The existence of the minimizer and the Euler Lagrange equation ∆Hu = 0 follows from
standard methods in the calculus of variations. The only thing which we need to show is the
fourth equation of (EH). Let i ∈ {1, . . . ,m} be fixed and let φ ∈ C∞0 (Ω) be such that

φ =

{
1, on ∂Di,
0, on ∂Dj , for j 6= i.

Since u is a minimizer, by integrating by parts we obtain

0 = −
ˆ

ΩD

div (H(∇u)∇ξH(∇u))φdx

=

ˆ
ΩD

H (∇u)∇ξH (∇u) · ∇φdx−
ˆ
∂Ω
H(∇u)∇ξH(∇u)φ · νds

+

m∑
j=1

ˆ
∂Dj

H(∇u)∇ξH(∇u)φ · νds

=

ˆ
∂Di

H (∇u)∇ξH (∇u) · ∇φ , dx

and we conclude. �

Appendix B. Estimates for the radii of the touching balls in the proof of
Theorem 1.1

In this Appendix we prove two technical lemmas needed in the proof of Theorem 1.1. We
recall that D1

δ and D2
δ are Wulff shapes of radii R1 and R2, respectively.

In the first lemma, for a point P ∈ ∂D1
δ we consider the ball of radius r1 touching ∂D1

δ at P
from the inside; r2 is the radius of the concentric ball which touches D2

δ from the outside (see
Fig. 5).

Lemma B.1. Let s ∈ (0, 1] and let P0, P,R1, R2, r2 and r1 be as in the proof of Theorem 1.1,
then

(B.1) r2 − r1 = δ + (1− s)R1 +R2

2R1R2
QP⊥ · P⊥ + o(δ2 + |ω|2)



GRADIENT BLOW-UP IN ANISOTROPIC PERFECT CONDUCTIVITY PROBLEMS 23

Figure 5.

as δ and |P − P0| go to zero, and where P⊥ is the projection of P on the orthogonal to P0.

Proof. Without loss of generality, we may assume that the ball D1
δ has center at the origin and

D2
δ has center in Z = (0, . . . , 0, ZN ), with ZN < 0 and H0(Z) = R1 + R2 + δ. Let Q be the

center of the ball of radius r1 = tR1, t ∈ (0, 1], touching ∂D1
δ at P from the inside, and let r2

be the radius of the ball centered at Q which is tangent to ∂D2
δ . In particular

(B.2) r2 +R2 = H0(Q− Z) .

It is clear that, denoting by ν and νH the Euclidean and anisotropic outer unit normals,
respectively, we have

νH := νextH = ∇ξH (ν(x)) = ∇ξH
(
− ∇u
|∇u|

)
=

x

H0(x)
=

x

R1
,

at any point on ∂D1
δ . Since

(B.3) Q− P = −tR1νH(P ),

(B.4) P = R1νH(P ),

and

(B.5) Z = (R1 +R2 + δ)νH(P0),

then, by using (B.3), (B.4) and (B.5), we have that (B.2) can be written as

r2 +R2 = H0(Q− Z) = H0(Q− P + P − Z)

= H0 ((1− t)R1νH(P )− (R1 +R2 + δ)νH(P0))

= H0 ((1− t)R1νH(P0) + (1− t)R1(νH(P )− νH(P0))− (R1 +R2 + δ)νH(P0))

= R1H0

((
R2

R1
+ t

)
νH(P0) + ψ

)
where

ψ =
δ

R1
νH(P0)− (1− t)(νH(P )− νH(P0))
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is small for δ small and P close to P0. By Taylor expansion and using the homogeneity properties
of H0, we have

r2

R2
+ 1 =

R1

R2

{(
R2

R1
+ t

)
H0(νH(P0)) +∇H0(νH(P0)) · ψ +

1

2

(
R2

R1
+ t

)−1

∇2H0(νH(P0))ψ · ψ + o(|ψ|2)

}

=
R1

R2

{
R2

R1
+ t+∇H0(νH(P0)) · ψ +

1

2

(
R2

R1
+ t

)−1

∇2H0(νH(P0))ψ · ψ + o(|ψ|2)

}
.

as δ → 0+ and P → P0. Since tR1 = r1 we have

(B.6)
r2 − r1

R2
=
R1

R2

(
∇H0(νH(P0)) · ψ +

1

2

(
R2

R1
+ t

)−1

∇2H0(νH(P0))ψ · ψ + o(|ψ|2)

)
.

Since

∇H0 (νH(P0)) νH(P0) = 1 ,

then

∇H0(νH(P0)) · ψ =
δ

R1
− (1− t)∇H0(νH(P0)) · (νH(P )− νH(P0)) .

and since

∇2H0 (νH(P0)) νH(P0) = 0 ,

we find

∇2H0(νH(P0))ψ · ψ = (1− t)2∇2H0(νH(P0))(νH(P )− νH(P0)) · (νH(P )− νH(P0)) .

From (B.6) we obtain
(B.7)

r2 − r1

R2
=

δ

R2
+
R1

R2

−(1− t)∇H0(νH(P0)) · ζ +
(1− t)2

2

(
R2

R1
+ t

)∇2H0(νH(P0))ζ · ζ + o(δ2 + |ζ|2)

 .
where we set

ζ = νH(P )− νH(P0) .

Now we observe that 1 = H0 (νH(P )) = H0 (νH(P0) + ζ) which gives

1 = H0 (νH(P0)) +∇H0 (νH(P0)) · ζ +
1

2
∇2H0 (νH(P0)) ζ · ζ + o(|ζ|2) ,

so that, since H0(νH(P0)) = 1,

−∇H0 (νH(P0)) · ζ =
1

2
∇2H0 (νH(P0)) ζ · ζ + o(|ζ|2),

and (B.8)

r2 − r1 = δ +R1
1− t

2

1 +
R2

R1

t+
R2

R1

∇2H0(νH(P0))ζ · ζ + o(δ2 + |ζ|2) .

From (2.10), we notice that the range of ∇2H0(ξ) lies in ξ⊥ and hence

(B.8) r2 − r1 = δ +R1
1− t

2

1 +
R2

R1

t+
R2

R1

∇2H0(νH(P0))νH(P )⊥ · νH(P )⊥ + o(δ2 + |ζ|2) ,
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where νH(P )⊥ is the projection of νH(P ) on the orthogonal to νH(P0)⊥. Since P and P0 are on

the boundary of the Wulff shape, we have νH(P ) = P/R1, νH(P0) = P0/R1 = P̂ and from (1.9)
we obtain (B.9). �

In the following lemma, for a point P ∈ ∂D1
δ ∩ Nδ(w), with w small enough, we consider a

ball of radius ρ2 touching ∂D1
δ at P from the outside and having center inside D2

δ ; ρ1 is the
radius of the concentric ball which touches D2

δ from the inside (see Fig. 6).

Lemma B.2. Let P0, P, ρ2 and ρ1 be as in the proof of Theorem 1.1. There exists a constant

C independent of δ and w such that for any δ+C|w| < t <
1

2
, with δ and |w| sufficiently small,

we have

(B.9) ρ2 − ρ1 = δ + (1 + t)
R1 +R2

2R1R2
QP⊥ · P⊥ + o(δ2 + |P − P0|2)

as δ and |P − P0| go to zero, and where P⊥ is the projection of P on the orthogonal to P0.

Proof. By arguing as in the proof of Lemma B.1 we have that ρ1 and ρ2 are related by the
following identity

R2 − ρ1 = H0((R1 + ρ2)νH(P )− (R1 +R2 + δ)νH(P0)) .

By simple manipulations we have

R2 − ρ1 = (R2 − ρ2)H0(νH(P0) + φ),

where

φ =
(R1 + ρ2)(νH(P )− νH(P0))− δνH(P0)

ρ2 −R2
.

Hence

R2 − ρ1 = (R2 − ρ2)

{
H0(νH(P0)) +∇H0(νH(P0)) · φ+

1

2
∇2H0(νH(P0))φ · φ+ o(|φ|2)

}
,

as δ → 0 and P → P0, and since H0(νH(P0)) = 1, we find

ρ2 − ρ1 = (R2 − ρ2)

{
∇H0(νH(P0)) · φ+

1

2
∇2H0(νH(P0))φ · φ+ o(|φ|2)

}
.

By setting

ζ = νH(P )− νH(P0) ,

as done in the previous lemma we have that

∇H0(νH(P0)) · φ = −R1 + ρ2

R2 − ρ2
∇H0(νH(P0)) · ζ +

δ

R2 − ρ2
∇H0(νH(P0)) · νH(P0)

=
δ

R2 − ρ2
− R1 + ρ2

R2 − ρ2
∇H0(νH(P0)) · ζ

=
δ

R2 − ρ2
+
R1 + ρ2

R2 − ρ2

1

2
∇2H0 (νH(P0)) ζ · ζ + o(|ζ|2),

and we find

ρ2 − ρ1 = δ +
R1 + ρ2

2

R1 +R2

R2 − ρ2
∇2H0 (νH(P0)) νH(P ) · νH(P ) + o(|ζ|2 + δ2) .

We choose ρ2 = tR1 with t > 0. Since ∂D1
δ and ∂D2

δ are smooth, there exists a constant C > 0

such that t > δ + C|w|2. Since νH(P ) = P/R1 and νH(P0) = P0/R1, we conclude. �
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Figure 6.
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