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MS6 — P7: Ca-walstromite and its relevance in understanding ring
carbonates at deep mantle conditions
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CaSiO; walstromite is the triclinic ring-silicate polymorph of CaSiO; and is stable between 3 and 9 GPa at
ambient temperature. In the studies of the Earth’s interior, it is considered important for two main reasons.
Firstly, it is one of the main Ca-bearing phases in the Earth’s mantle transition zone [1]. This has been
proved by both laboratory experiments at high pressure (P) and temperature (7)) and by natural findings in
diamonds [1, 2]. Despite this, its thermoelastic behaviour and its stability at high 7" are still poorly known.
The only existing phase diagram has been determined through multi-anvil experiments, which shows that
walstromite transforms to an assemblage of CaSi,Os + Ca,SiOy4 [3]. Secondly, the different CaSiOs
polymorphs constitute a low-P analogue for the study of ultra-high-P carbonate structures at conditions of
the lower mantle. Carbonate minerals are considered as one of the main carbon-host phases in the mantle.
They are stable from crust to lower mantle conditions, as demonstrated by direct observation of carbonates
inclusions in superdeep diamonds [e.g. 4]. To date, the different possible structures adopted by carbonates
during their polymorphic phase transitions are still unclear [5], even if recent important experimental [e.g.
6, 7] and theoretical studies [e.g. 8, 9] have demonstrated the transition in complex tetrahedral ring or
chain carbonate structures. However, ring-carbonates are unquenchable at ambient P and 7" conditions and
is extremely difficult to perform extreme high-pressure single crystal diffraction with suitable quality of
data for accurate structural details determination. Since CaSiO; polymorphs show the same ring-structure
and are quenchable, they constitute evaluable analogue to understand the crystal chemistry of HP-
carbonate structures. We performed in-situ high-pressure Diamond Anvil Cell experiments on a synthetic
sample of the triclinic Ca-walstromite polymorph at the beamline ID15b at ESRF (Grenoble). The sample
was synthesized at 6.5 GPa and 1500°C with a multi-anvil module. We report its phase transition towards
a monoclinic structure walstromite-II, at 8.5 GPa, studied by single crystal X-ray diffraction. The
monoclinic structure is topologically similar to the triclinic one, but the arrangement of 3-fold ring silicate
groups determines a denser structure by about 3%. The walstromite-11 structure is significantly denser if
compared to wollastonite chain silicate structure. Since the Ca-walstromite is a low-P quenchable
structural analogue to 3-fold ring high-P carbonates (Fig. 1), from this preliminar high-P experiment we
can envisage that also higher P carbonates, like dolomite IV (Fig. 1), might have a phase transition to
higher density structures at extremely high P.
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Figure 1. Left - crystal structure of the triclinic polymorph of the CaSiOs; centre - crystal structure of the monoclinic

polymorph and right - crystal structure of dolomite IV, where it is evident the presence of corner-sharing tetrahedral
COy units in threefold rings as in the Ca-walstromite structure (/eff and centre).
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