Perlasca et al. BMC Bioinformatics (2019) 20:422
https://doi.org/10.1186/s12859-019-2959-2

BMC Bioinformatics

SOFTWARE Open Access

UNIPred-Web: a web tool for the
integration and visualization of biomolecular
networks for protein function prediction

Paolo Perlasca', Marco Frasca! @, Cheick Tidiane Ba', Marco Notaro!, Alessandro Petrini,
Elena Casiraghi', Giuliano Grossi', Jessica Gliozzo'*?, Giorgio Valentini' and Marco Mesiti'”

Check for
updates

Abstract

Background: One of the main issues in the automated protein function prediction (AFP) problem is the integration
of multiple networked data sources. The UNIPred algorithm was thereby proposed to efficiently integrate —in a
function-specific fashion— the protein networks by taking into account the imbalance that characterizes protein
annotations, and to subsequently predict novel hypotheses about unannotated proteins. UNIPred is publicly available
as R code, which might result of limited usage for non-expert users. Moreover, its application requires efforts in the
acquisition and preparation of the networks to be integrated. Finally, the UNIPred source code does not handle the
visualization of the resulting consensus network, whereas suitable views of the network topology are necessary to
explore and interpret existing protein relationships.

Results: We address the aforementioned issues by proposing UNIPred-Web, a user-friendly Web tool for the
application of the UNIPred algorithm to a variety of biomolecular networks, already supplied by the system, and for
the visualization and exploration of protein networks. We support different organisms and different types of networks
—e.g,, co-expression, shared domains and physical interaction networks. Users are supported in the different phases
of the process, ranging from the selection of the networks and the protein function to be predicted, to the navigation
of the integrated network. The system also supports the upload of user-defined protein networks. The vertex-centric

and the highly interactive approach of UNIPred-Web allow a narrow exploration of specific proteins, and an
interactive analysis of large sub-networks with only a few mouse clicks.

Conclusions: UNIPred-Web offers a practical and intuitive (visual) guidance to biologists interested in gaining
insights into protein biomolecular functions. UNIPred-Web provides facilities for the integration of networks, and
supplies a framework for the imbalance-aware protein network integration of nine organisms, the prediction of
thousands of GO protein functions, and a easy-to-use graphical interface for the visual analysis, navigation and
interpretation of the integrated networks and of the functional predictions.

Keywords: Imbalance-aware protein function prediction, Imbalance-aware protein networks integration,
Visualization of protein networks, Web service for protein function and network integration

Background

The recent CAFA (Critical Assessment of Functional
Annotation) and CAFA?2 challenges showed that the inte-
gration of multiple data sources plays a key role in the
automated function prediction of proteins (AFP) [1-3].
Individual data sources, usually represented as protein
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networks, often carry complementary information each
other, and often a source can be more informative for
some specific protein functions and less informative
for other functions [4], thus raising the need to inte-
grate protein networks in a function-specific setting —a
consensus network produced for each protein function.
Moreover, for most protein functions only few annotated
proteins are available [5], thus creating a strong imbalance
between annotated (positive) and unannotated (negative)
proteins. Accordingly, an imbalance-aware integration is
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also needed. In this context, the UNIPred algorithm
(Unbalance-aware Network Integration and Prediction)
has been recently proposed [4]: it computes for each
input network a function-specific informativeness score,
which is then used to build the consensus network. Both
the integration and prediction steps in UNIPred take
into account the scarcity of positive proteins. The exten-
sive experimental results presented in [4, 6] showed that
COSNet and UniPred, the predictive algorithms used by
UNIPred-WEB, compared favorably with a large set of
state-of-the-art network-based methods, including e.g.
GeneMANIA-SW [7], the classical label propagation algo-
rithm [8], MS-kNN, one of the top-ranked methods in the
recent CAFA challenge [1], and the eight best methods of
the MouseFunc challenge [9].

UNIPred is available as R code, which implements the
integration core procedure, whereas the prediction pro-
cedure is implemented by the R package COSNet [10].
Both implementations assume that the adjacency matrix
and the protein annotations are already preprocessed and
transformed into R binary objects. This makes not imme-
diate the usage of UNIPred for a generic user, which is
required to retrieve the input information (the protein
pairwise similarities and the function to protein associ-
ations) and to transform it into suitable R matrices, in
addition to processing and supplying to COSNet the out-
put of the integration step. Furthermore, the integrated
network might contain thousands of nodes and edges,
and the matrix format returned by the available R code
is far from being of immediate interpretation for the
user.

The UNIPred-Web tool is proposed to specifically over-
come these limitations. A collection of around two thou-
sand heterogeneous networks has been retrieved from
the literature and prepared for the integration —networks
cover nine prokaryotic and eukaryotic organisms. The
system also allows the upload of user-defined networks.
A graphical interface guides the user during the selec-
tion of the organism, the GO protein function, the input
networks, and eventually the proteins to be predicted
(see “Experimental setting interface” section). The exper-
iment is then submitted to a scheduler, which manages
the requests of different users and allocates the required
resources. An email is sent to the user when the integra-
tion process is completed, and the user can then visualize
and explore the resulting network. The visualization starts
from a target protein selected by the user, and it allows to
interactively personalize the resulting subgraph —the user
can easily expand or reduce the graph size, move nodes,
see information associated with nodes and edges, and
apply different visualization options (see “Visual analysis
and exploration of the integrated networks” section).

We added an Appendix to include some UNIPred-
Web tool usage scenarios to integrate biological networks,
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explore the subnetwork centered on a specific target
protein, load user-defined networks, visualize the predic-
tions with respect to a GO term, and enlarge the visu-
alization of the subnetwork in order to conduct further
analyses.

Implementation

In this section we firstly provide a description of the input
networks which are made available by UNIPred-Web.
Note that users can either use, integrate, and explore the
provided networks, or can provide their own networks.
Secondly, we describe the algorithmic engine behind
UNIPredWeb. Specifically, we discuss UNIPred [4] for
networks integration, and COSNet [6, 11] for protein
function predictions.

Networks and organisms

Input networks in UNIPred-Web have been retrieved
from the literature, following the schema proposed in
[7] and adopted by the GeneMANIA server [12], where
protein networks are grouped by type, including co-
expression (GEO [13]), co-localization (LocSigDB [14]),
genetic interactions and pathways (NCI-Nature Path-
way Interaction Database [15]), physical interactions
(BioGRID [16], MINT [17], and IntAct [18]), protein
domain profiles [19, 20]. Moreover, to obtain more accu-
rate predictions, UNIPred-Web also includes networks
from the STRING v10 database [21], which supplies net-
works (one for each organism) already merging several
sources of information into the pairwise protein con-
nections (e.g. sequence homology, textmining, and co-
expression). Ensemble protein identifiers are adopted to
represent proteins with frequently used aliases (when
available).

Available networks belong to nine different organ-
isms: Escherichia coli (NCBI taxonomy id 562), Ara-
bidopsis thaliana (3702), Saccharomyces cerevisiae (4932),
Caenorhabditis elegans (6239), Drosophila melanogaster
(7227), Danio rerio (7955), Homo sapiens (9606), Mus
musculus, (10090), Rattus norvegicus (10116). Functional
annotations are downloaded from the GO repository, by
considering the latest UniProt GOA release for every
organism [22]. Only experimentally validated associations
are retained.

The integration engine

For a given organism, the network integration problem
consists in merging every selected network &, represented
through a weighted undirected graph G® = <V, W(k)>
on the proteins/vertices V (or a subset of it) and con-
nections W® | into a consensus network G = (V, W)

integrating all available networks. Given a GO function d,
every protein i € V holds a label y,(i) € {0, 1} denoting
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that protein i is currently associated with d (label 1, posi-
tive protein) or not (label 0, negative protein). Integrating
networks specifically for a GO term d requires associat-
ing every network G® with a coefficient r;k) related to
its informativeness for d, and then linearly combining all
networks using the computed coefficients.

UNIPred allows the construction of a dedicated com-
posite network for each GO term, and is able to capture
the predictive capability of single networks in classify-
ing positive proteins, by giving more weight to the net-
works which carry most information. More precisely this
method operates a network projection onto the plane so
that each protein i € V is associated with a labeled bi-
dimensional point Pi(k), embedding the local imbalance in
the corresponding node position. The coordinates plﬁk) =

(Plfﬁ) ; Pf@) are computed as:
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In other words, P(1 is the weighted sum of positive
neighbors, while P;’]g is the weighted sum of negative
neighbors. The position of each point in the plane thereby
reflects the topology of the connections towards neigh-
boring positive and negative nodes. The algorithm then
learns the straight line which best separates positive and
negative points, in the sense we describe below. Since
every point i € V already has a label y;, each line sep-
arating positive and negative points is associated with
the number TP(k) of positive points correctly classified

(true positives) for the term d, the number FN ® of pos-
itive points wrongly classified (false negatlves) and the

number FPg() of negative points wrongly classified (false
positives). The optimal line is the one maximizing the
F—-measure:

*)

® 27P)

a = (k) (k) k)~
27P + FPY + N

The value F;k) corresponding to the optimal line is then

considered as relevance r d) for the input network G%.
The method is imbalance-aware since the F—~measure by
definition penalizes more heavily the misclassification of
positive instances, with respect to the penalty for mis-
classifying negatives. Moreover, maximizing Ffik) moves
the known labeling y4 = (yaq),-.-,¥aqv))) towards a
minimum of the energy of the underlying Hopfield net-
work — allowing the model to better fit the input data
(see [4]). The overall execution time obviously depends
on the number and the size of the networks to be inte-
grated; to speed-up the computation, the time consuming
procedures are implemented in C language.
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The prediction engine

Once the consensus network has been obtained, solving
the prediction problem for the selected GO functional
term d and for a user-selected set of proteins U/ C V con-
sist in: 1) computing a score function ¢ : U — R, which
ranks proteins U so as to assign higher scores to pro-
teins more likely to be associated with d; 2) to determine a
bipartition (LI, U™) of queried proteins respectively into
the sets of proteins being putatively annotated or not with
the function d.

If the user has not specified a list of proteins to be pre-
dicted, the algorithm ends and the user can proceed with
the visualization tool; otherwise, the prediction algorithm
is invoked, which will provide both the protein rankings
(according to function ¢) and the classification of queried
proteins— bipartition (U™, U~ )— (see “Visual analysis
and exploration of the integrated networks” section for a
description of the visualization results). Even to predict
the selected proteins U (or all available proteins in the
case the user chose this option) UNIPred-Web adopts an
imbalance-aware classifier: the COSNet algorithm, a state-
of-the-art method specifically designed to predict protein
functions by coping with the label imbalance affecting GO
terms and having performance competitive with the state-
of-the-art methodologies proposed for AFP [4, 6, 11].
An extension of COSNet, originally proposed as a binary
classifier, is adopted to infer also the protein ranking ¢
[23, 24]. The function ¢ corresponds to the internal
neuron energy at equilibrium, normalized in the range
[ —1, 1]: the higher the score, the higher the likelihood that
the protein possesses the given GO function. Intermediate
scores (nearby 0) correspond to more uncertain predic-
tions. We used the R package of COSNet [10] that effi-
ciently implements in C language the Hopfield network
dynamics and parameters learning procedure.

Results

In this section we describe the UNIPred-Web facilities
for the specification of network integration, for the visu-
alization and exploration of the integrated network. The
different options that can be exploited by the user for the
personalization of the visualization are discussed along
with an usage example. Finally, we compare our system
with the state of the art and outline its peculiarities.

Experimental setting interface
Figure 1 shows the starting panel of UNIPred-Web which
is available at http://unipred.di.unimi.it. In the top-left
corner (area a) there is the “integration” button that allows
the specification of the integration and prediction activi-
ties, as shown in Fig. 2.

A system-generated name for the current experiment
is proposed, that the user can personalize (this is the
reference to be exploited in the visual analysis). Once


http://unipred.di.unimi.it

Perlasca et al. BMIC Bioinformatics (2019) 20:422

Page 4 of 19

UNIPred-Web

Integration Integration-001-2578 View

@
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Fig. 1 Overall organization of the UNIPred-Web application. The area (a) allows the specification of the networks to be integrated and the target
protein from which the integrated network exploration should be started. The area (b) reports details of the integrated network. The area (c) is the
canvas where the graph is drawn and can be manipulated. The area (d) reports the operations that can be applied on the integrated network

the organism and the GO term of interest are selected,
the interface allows the specification of the networks to
be integrated: a default set of networks has been pre-
selected for each organism, and radio buttons are available
to select/remove individual networks or to select/remove
all the networks of a specific type (Fig. 3). The selec-
tion is based on the source type (e.g. co-expression, co-
localization, genetic interaction) or on the network name
(by means of the text search box in the top of the form).
For each network, the name, and the number of nodes and
edges are reported.

Users can also upload their own network by activat-
ing the toggle switch “User defined network” (Fig. 2).
The network must be supplied in the triplet tab-delimited
text format (the required format is explained in the help
tab on the top-right of the interface in Fig. 1 and an
example is reported in Fig. 15 the Appendix.). Through
another toggle switch, the user can request the predic-
tion of the association of proteins with the GO term
selected: the prediction can involve all the proteins, or

alternatively a subset of proteins specified by the user in
a newline-separated textual file. UNIPred predictions are
both binary (associated/non-associated) and real-valued
(areal score such that the higher the value, the more likely
is the association between the protein and the GO term).
The user-defined network and functional prediction facil-
ities are optional. Finally, the system requires an email
address to send a notification at the end of the execution.
The computation is run in batch mode, allowing the user
to plan a novel integration, or to navigate the output of
previous experiments.

Visual analysis and exploration of the integrated networks
When the process is completed, the system allows to
access the result through a dedicated button in the naviga-
tion bar (button Integration 001-2492 View in the example
in Fig. 4). The button is shown automatically when the
computation is done on the fly, or after loading the exper-
iment by specifying the code reported in the notification
e-mail (“load” button, top-right Fig. 1).
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Integration and Prediction

ID Integration Integration-001

Organism Escherichia coli
GO
Select
Networks
Select
User defined
networks
Prediction

All genes

o Genes selection

File

Protein Identifier

Fig. 2 Form for the specification of the networks integration and prediction
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Integration and Prediction View

ID Integration
Organism
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Fig. 5 Web interface for starting the navigation of the integrated network

Integration-001
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ER3413_105

Cancel

In the form displayed (Fig. 5), the user specifies the
target protein from which the exploration should start.
The subgraph of nodes connected to the target node
is then visualized. Showing a reduced portion of the
integrated network allows a better visualization of the

Figure 6 shows an example of rendering of an
integrated network that is centered on the E.coli protein
ER3413_105.

Depending on the selection of the prediction option, the
rendering of the resulting graph changes as follows:

local characteristics of the network around the target

protein.

e No prediction. All nodes are drawn as white circle.

4 /

i/
ER34; 3510 /

UNIPred-Web Integration-001-2435 View
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4
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Fig. 6 Vertex-centric exploration of the integrated network and information provided for each node and each edge
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e Prediction all. All nodes are colored and the color
graduation reflects the prediction score assigned to
the protein. Moreover, nodes can have a different
shape: a square is used for annotated protein that are
instances of the GO class, whereas a circle is used for
the other proteins.

e Prediction selection. The nodes for which a
prediction is requested are represented through the
colored square or circle nodes (as we have done for
the Prediction all case). All the others nodes
are represented as white circles.

To get information about a protein/edge shown in the
canvas, the user just needs to click on it. In Fig. 6
the system shows for the protein ER3413 1204, some
main alias identifiers, the type of node and, in case of
prediction, both the binary and real-valued predictions.
For the edge connecting the proteins ER3413 105 and
ER3413 4296, the system reports the target nodes, its
weight, and the network sources in which it is actually
present. At this stage, to improve the visualization, the
user is allowed to drag each vertex within the canvas to
obtain a personalized view.

Interacting view

By clicking on the settings button (first button in the area
(d) of Fig. 1), the panel in Fig. 7 is shown. This panel
allows the personalization of network visualization from
different perspectives:

e Selection of visible nodes (area a in Fig. 7). By using
this drop-down menu it is possible to view in the
canvas the entire set of nodes or limiting the view
according to the specific node type.

e Removing edges relying on their weights (area b in
Fig. 7). By using the bar, only the edges whose weight
is above a given threshold are maintained in the
canvas. This feature is quite useful for keeping in the
canvas only the edges with higher connectivity
relevance.

e Colors and shapes of nodes/edges (area c in Fig. 7). A
set of buttons and check boxes are provided for
controlling the color and/or the shape of the nodes in
the canvas according to their source type. In this way,
the user can highlight the contribution given by
individual sources to every connection in the
integrated network —for instance, the user can select
the subset of nodes/connections present just in
co-expression networks, or present in co-expression
and/or physical interactions networks.

e Selection of the layout (area d in Fig. 7). The web tool
is equipped with different visualization options
(layouts) for making the analysis of the generated
network more user-friendly. The most interesting are

Page 7 of 19

Layout Settings
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Circle layout options
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Fig. 7 Panel for the personalization of the network visualization. (a)
Panel for selecting nodes to be shown in the canvas; (b) panel for
removing edges based on their weights; () panel for choosing the
colors and shapes of nodes/edges. (d) panel for layout selection; (e)
panel for specifying options to improve the chosen visualization

the cose, grid, concentric, circle and breadthfirst
layouts (discussed below). Once selected the layout,
some options can be specified for improving the
current visualization (area e in Fig. 7). We have
selected a set of basic parameters that can be used by
non-experts users. By clicking on the advanced
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(b)

Fig. 8 Cose layout. a default visualization; b advanced settings option selected

settings checkbox, these basic parameters can be
customized for improving the visualization. Such a
feature is specifically designed to appropriately deal
with networks of big size. As an example, in Fig. 8a is
shown a network with the default settings, whereas,
in Fig. 8b we show the result of the manual adaptation
obtained by applying the visualization options. As the
reader can see, the black cloud of nodes is separated
in three well shaped clusters of nodes.

In our work we have exploited the layouts made avail-
able by the Cytoscape. js library that, in some cases,

have been enhanced for working with our weighted
networks. Figure 9 shows the application of a selection
of different layouts to the same network. Each layout
depends on several options whose values determine the
actual rendering of the network; for each layout there is
a basic and an advanced setting group of options. In gen-
eral, the advanced setting version increases the effects
of each option but sometimes it can change how nodes
are ordered into the graph rendering: as an example, the
graph in Fig. 8b is obtained from the graph in Fig. 8a
by increasing the node repulsion option. The cose [25]
visualization option leverages a physics simulation based
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Fig. 9 Layout visualization options applied to the same network. a Cose. b Concentric. ¢ Circle. d Breadthfirst

on the traditional force-directed layout algorithm with
extensions handling multi-level nesting. With the grid
visualization option, the proteins in the subnetwork are
placed in a grid and their connections are shown in the
canvas. This rendering offers to the user the possibil-
ity to visualize groups of proteins tending to form highly
connected components. With the concentric visualization
option, the target protein is positioned at the center of the
canvas and vertices at distance one, two or three are drawn
in different concentric circles, as shown in Fig. 9b. This
rendering allows the user to better understand the con-
nectivity of the target with its neighborhood and how the
functional annotations are propagated from the annotated
proteins to the others. In the default mode, the level of a

node corresponds to the degree of the node. The nodes
with the highest degree are positioned towards the center,
while those with the lowest degree are inserted towards
the outside. If two nodes have the same degree, they are
inserted in the same level. However, it does not guaran-
tee that the root node is inserted in the middle of the
view. In advanced mode, the nodes are positioned accord-
ing to the distance from the node indicated as "root" of the
experiment. Nodes at the same distance from the root are
positioned on the same level. With the circle visualization
option, all vertices are posed in a circle: vertices with a
higher in-out-edge-degree are positioned closer in the cir-
cle. In the default mode, nodes are reordered according to
the degree while in the advanced one, the sorting function
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changes: the nodes are positioned in ascending order of
weight. This visualization, as shown in Fig. 9c, allows to
better appreciate the nodes for which there is a high inter-
connection strength from those whose connections are
minimal. This feature might help to graphically detect hub
proteins, i.e. those possessing higher centrality indexes,
such as node degree, betweenness, and local clustering
coefficient. For instance, node degree has been shown
being a proxy for gene multifunctionality [26]. Finally, the
breadthfirst visualization option puts nodes in a hierarchy,
based on a breadth-first traversal of the graph, as shown
in Fig. 9d.

Node-specific options

The graphical view can be further personalized by
operating on single nodes. Left-clicking on a node allows
to drag the node in a different position in the can-
vas; right-clicking on a node displays the following
choices:

Pin the tooltip: the tooltip is kept in the canvas.
Close tooltip: the corresponding tooltip is closed.
Center view on this node: the current network is
redrawn in the canvas by positioning the current
node at the center of the canvas.

e Showr/hide this label: it allows to hide or show the
label associated with the current node.

e Lock/unlock this node: it allows to fix the position of
the current node (eventual modifications of the
layout do not affect the current node position).

Table 1 Operations to be applied on the integrated network
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e One step from here: it allows to include in the
visualization the nodes that are a step-forward
from the current node. Whenever no nodes can
be added, an alert is given to the user. This facility
is particularly useful for the exploration of the
subnetwork, since only nodes one-edge far from
the target node are shown by default (to limit the
number of nodes to be displayed); this option
allows thereby the user to explore other parts of
the network not shown in the default visualization.

Visualization facilities

Table 1 reports the available facilities on the right side of
the canvas. Moreover, further facilities have been devel-
oped for searching the integrated network and for the
management of predictions. Specifically:

e Searching on the integrated network. Since the
number of nodes and edges in the canvas can be
high, the system provides users with a search
function for both nodes and edges. In the first case it
is possible to specify part of the name of a node to
filter the data, while in the second case it is also
possible to filter the edges on the basis of their
weight, as shown in Fig. 11. In both cases, clicking
on a node/edge, the system highlights the position
of the selected item in the canvas by opening the
correspondingtooltip.

e Visualizing the prediction output. For what concerns
the predictions, UNIPred adopts two different type of

Name Symbol Options Description
Labels > None The labels on the nodes can be shown or hidden.
B save data
Save O] As CSV(zIp) The integrated network currently displayed in the canvas can
E=HSONIED) be download in different compressed formats (csv, json).

Search Q 2 Node and edge search relying on node ids. In case of edge
search, it is possible to specify one of the ids of its extremes.
When the node/edge is identified, the visualization is focused
on it, a window is opened containing details of the selected
element.

Settings & None It allows to open/close the panel on the right hand side of the
canvas with the visualization options.

Save image a None The network currently shown in the canvas is saved in PNG
format.

Refresh 15 None Layout refresh (the position of the nodes is computed again).

Prediction Lt A table is shown containing the prediction of the edges. Two
option: i Current visualization: only the prediction values of
the nodes contained in the canvas are reported; ii Integrated
network: the prediction values of the entire integrated network
are reported.

Info (i ) None A window with the information related to the current page is

visualized.
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outputs according to the user selection: a) subset of
vertices specified in the uploaded text file; b) all
available vertices. In both cases the system allows to
display and save the prediction results both for the
subnetwork present in the canvas and for the whole
integrated network. Figure 12 shows an example of
displaying the results of the prediction for the
running example.

An usage example

Suppose that the networks reported in Fig. 3 have been
integrated with the prediction all option and that
by means of the interface in Fig. 5 the user has started
the navigation of the integrated network from the protein
ER3413 1008. The subgraph in Fig. 10(a) is shown
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that is centered in the node ER3413 1008 and reports
the proteins in its neighborhood (those that are directly
related with it). By exploring the properties of these
proteins, the user can decide to expand the neighborhood
of node ER3413 4158 and the expanded network in
Fig. 10b is shown. In order to better analyze the structure
of the sub graph, in this figure all node labels with the
except for nodes ER3413 1008 and ER3413 4158
are hidden. By appropriately clicking the check boxes
in Fig. 10c, the user can customize the visualization by
changing the shape of the nodes also originated from
a shared protein domain network (representing them
through an hexagon) and by changing the color of the
nodes also presenting in a physical interaction domain
network. Finally, by acting on the tooltips of some nodes,

ER341311 005ER3

41;_1009 Q
ER3413_4158
ER3473_ 1040 ER341;74157
ER341; 2404

ER341;_3712 Q
Q ER84713.1008
ER3473_655 Q
Q ER3413_4159
ER3473_ 1007 ER3413_1004 O

ER3413_1006 Q Q O
ER3473_964 ER3413_2779 O
(a)

O
-
O

© O
(d)

@)
o ©
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ER34 1;_

1608

O Selection Color Shape
Q7 N\ ~ o 7 0
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Fig. 10 By clicking on the node ER3413 4158 of the network in (a), its neighborhood vertices are reported in (b) where all the labels except those
belonging to particularly interesting nodes are hidden. In (d) the modifications described in (c) are applied. As a result, the nodes are highlighted by
changing color and shape, according to a specific biological functions. In (e) all the physical interaction domain nodes labels are displayed
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Search Edges

Only edges with weight greater than:

0

Total edges:60 - Edges found:4

Edge Id Source

R3413_1204 ER3413_1205
04--ER3413_1352 ER3413_1204

ER3413_105

ER3413_887

Fig. 11 Web interface for searching edges

0.19295575
L
Target Weight A
ER3413_1204 0.19295575
ER3413_1352 0.17728439
ER3413_2246 0.16706703
ER3413_1204 0.15948221

Cancel

he can display all the physical interaction domain nodes
labels (Fig. 10e). Further usage examples are available in
the Appendix.

Protein function prediction approaches and network
integration web tools

Different web-tools for protein function prediction sup-
plying also network integration are available, including
the CombFunc [27], INGA [28], N-Browse [29], SIFTER
[30], MouseNet v2 [31], the IMP tool [32], and the
GeneMANIA server [33]. CombFunc and INGA com-
bine sequence similarity, protein domain information,
protein—protein interaction, and gene expression data
to assess the protein function, but do not provide a
graphical view of the underlying protein network. N-
Browse provides a graphical user interface (GUI), sup-
porting interaction in the visualization of nodes and
edges, and allowing the user to select the networks
involved in the analysis; however, solely three organ-
isms are supported, and N-Browse runs as a Java web
service, which might be not immediate for a generic
user. SIFTER is a sequence-based web interface explor-
ing a protein family’s phylogenetic tree as a statistical
graphical model of function evolution. The search is
limited to one protein at a time, or must include the
whole proteome, and the user cannot specify a sub-
set of query proteins. MouseNet v2 extends MouseNET

[34], a previous prediction server for laboratory mouse,
by including new microarray data derived from diverse
biological contexts and embedding other eight model
vertebrates to exploit the orthology-based projection of
their genes on MouseNet. However the search is limited
to one organism. The IMP system provides an easy-
to-use interface to query one or more proteins at the
same time, even from different organism, by exploit-
ing gene homology information. SIFTER, MouseNet and
IMP hide the data integration phase to the user, which
consequently cannot evaluate the impact of specific con-
nection types on the final integrated network. More-
over, they do not provide the user with the possi-
bility to interact with the resulting integrated protein
network.

Finally, the GeneMANIA prediction server allows
the user to specify customized queries, to interact
in the visualization process, and provides a graphi-
cal view of the obtained consensus network. Never-
theless, it assigns weights using a Gaussian random
field methodology, in which the label-imbalance char-
acterizing the GO terms is not handled. The work
presented in this paper deeply extend the characteris-
tics of the system proposed in [35]. Specifically more
functionalities have been proposed for the rendering
of the networks and for loading a user-defined protein
network.
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Prediction

Search

expID Name

81 ER3413_442
81 ER3413_105
81 ER3413_1204
81 ER3413_106
81 ER3413_2639
82 ER3413_1058
81 ER3413_1147
82 ER3413_1219
82 ER3413_2516

Fig. 12 Exploration of the prediction results

Save as CSV Save as JSON

ScoreA Positive
0.55%9 1
0.549 1
0.438 1
0.29 i §
0.158 1
0.111 0
0.11 0
0.086 0
0.083 0

Close

Conclusions

In this paper we presented the features of a Web appli-
cation for the integration, visualization, analysis and nav-
igation of biological networks. The application has been
realized by integrating different technologies: Php and
Javascript with Angular]S, Node.js and Cytoscape.js for
the client-side and server-side management and visualiza-
tion of networks. A MySQL database is used to keep track
of the curated networks and of the results of the inte-
grated corresponding views. At the current stage the Web
application is fully supported by the last version of Fire-
fox and Chrome in different operating systems (Windows
10, Mac OS Yosemite, Ubuntu 18 LTS) and partially sup-
ported by Edge. By adopting a vertex-centric rendering
of a subnetwork, the system offers different customized
visualizations that can be exploited for identifying useful
patterns in the analyzed network. The vertex-centric visu-
alization allows the user to focus on the interactome of
specific proteins, but at the same time the user can also
easily extend in an interactive way the subnetwork to be
visualized by simply clicking on the nodes of the net-
work itself. UNIPred-Web is able to compute and visualize

protein function predictions for a large set of model
organisms, through the integration of different types of
interaction networks available from the server or sup-
plied by the user. As future work we are planning to
introduce machine learning algorithms for suggesting to
the user the best visualization by considering user feed-
back in the proposed visualizations. Moreover, we plan to
model network visualization at different resolution levels
for reducing the amount of vertices to be included in the
current canvas and allowing a hierarchical visualization
of big biological networks. Note that all these demanding
applications can be deployed in virtualized environments
combined with hardware accelerators [36]. Finally, more
sophisticated approaches for the integration of networks
will be explored following the design approach adopted
in [37].

Appendix

Usage scenarios

In this Appendix we introduce some scenarios for better
presenting the capabilities of UNIPred-Web. The detailed
presentation can be useful for non-expert users that wish
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to conduct simple visual analysis of the integrated net-
works. Further examples are included directly in the Web
application for making much more usable the application
itself.

Scenario 1: Integration of heterogeneous networks
Suppose that a cancer research laboratory is interested in
investigating novel therapeutic approaches to lung cancer
by studying the TGF-B signaling pathway and the role
of the SMADs protein in the development of metastasis
(epithelial-mesenchymal transition - EMT). By exploit-
ing the functionalities of UNIPred-Web, the biologist can
require the integration of the following three networks
belonging to Homo-sapiens with respect to the Gene
Ontology term GO: 0001837 (i.e. EMT):

® STRING v10 (id: 1980 — number of nodes: 3.632 —
number of edges: 6.088 — category: STRING);

® Pathway.Wu-Stein-2010 (id: 1963 — number of
nodes: 5299 — number of edges: 78.010 — category:
Pathway);

e Physical Interactions.IREF-BIOGRID
(id: 1797 — number of nodes: 14.917 — number of
edges: 155.470 — category: Physical Interactions).

The integration can be specified through the Integration
and Prediction menu described in the paper.

The integration requires more or less three minutes
for completing and produces an integrated network with
17.518 nodes and 503.926 edges. The user can wait that
the process is completed and then click on the tab report-
ing the status of the computation. Alternatively, he can use
the message that it is sent to the specified email address
when the computation is completed. In this case, he
can:

e click on the link that is received by mail (e.g.
http://unipred.di.unimi.it/?load=
2592), or

® copy and past the experiment identifier e.g. 2592 on
the 1oad button on the right top corner of the
interface.

Within the tab Integration-001-2592-View corre-
sponding to the current integration, the user can look for
the protein SMAD1. By using the search facility, the user
points out that this biomolecule is internally represented
through the Ensembl Gene ID ENSG00000170365,
and can select it as target protein of this experiment
and proceeds with the visualization of the subnetwork
centered on it. The target protein is highly connected
with 214 proteins as shown in Fig. 13 and the user
can use the different layout visualization options for
improving the visual analysis of the integrated net-
work. At the current stage the shape of the proteins
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that are directly connected with the target protein
has been customized for pointing out the source from
which they have been acquired (the used shapes are
reported in the menu in the bottom right corner of
Fig. 13).

From the integrated network, we can visualize a broader
range of proteins connected to our target of interest and
related to a specific protein function. Thus, we might
unveil proteins related to our current study that are less
investigated in literature and more difficult to detect
from a simple literature search in such a systematic way.
For example, we usually focus on proteins and pathways
involved in the development, progression and metasta-
sis of lung cancer and we are less up-to-date about new
findings in different cancer types. For instance, by using
UNIPred-Web integration module, we might decide to
start studying a novel protein that could be involved
in EMT but not yet extensively investigated in lung
cancer.

Scenario 2: Integration with user defined network and
prediction

Suppose now that the biologist wishes to identify
“in-silico” a new protein that might be involved in
the generation of metastasis of the lung cancer with
the goal of studying the gene product later in vitro
and/or in vivo. With this goal in mind, he decides to
integrate in the UNIPred-Web database the OncoPPi
network [38], which shows protein-protein interactions
(PPIs) between cancer-associated proteins. He down-
loads the OncoPPi network file, available in the xgmml
format (file ncomms14356-s4.zip) and the mapping
file (file ncomms14356-s2.x1sx) between the gene-
symbol (OncoPPi identifiers) and the ensemble-genelD
(identifiers required by UniPred-Web). He downloads
the OncoPPi network file, available in the xgmml for-
mat (file ncomms14356-s4.zip) and the mapping file
(file ncomms14356-s2.xlsx) between the gene-symbol
(OncoPPi identifiers) and the ensemble-genelD (identi-
fiers required by UniPred-Web). This experimental sce-
nario is shown in Fig. 14. Since the input network file
required by UniPred-Web is the classical tab sepa-
rated tuple (proteinIDl \tab proteinID2 \tab
score), the OncoPPi network file is parsed by map-
ping the gene-symbol versus the ensemble-ID by using
the gene-symbol as key. Finally, a network with 77 nodes
and 397 interactions is obtained (no proteins/links are
lost during the mapping phase). An excerpt of the consid-
ered network is reported in Fig. 15. The used scripts are
available from [39].

By using the Integration and Prediction interface the
previous three networks are selected and this user defined
network is uploaded by activating the corresponding
field. Moreover, also the prediction field is activated and
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Fig. 13 Exploration of the subnetwork for Scenario 1
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the prediction all option selected. In this way, we
can predict the class of unlabeled proteins using the
COSNet algorithm. Also in this case, the integration
takes few minutes for being completed and the experi-
ment identifier 2594 is generated that can be used for
conduction visual analysis. By inspecting the generated
network from the target protein considered in Scenario
1 we can observe that two proteins are added to the
integrated network (represented with a triangle) from
the user defined network expressing a positive score
with respect to the considered GO term as reported in
Fig. 16.

We can also identify the first 8 proteins that are pre-
dicted as positive by COSNET: BAMBI, TGFB1, TGFB2,
TGFBR1, BMP2, HMGA2, GSK3B and FRZB. It is worth
noting that these proteins are annotated for the GO
term EMT (G0:0001837) and some of them have been
already described as involved in lung cancer, thus con-
firming UNIPred-Web as a valuable tool to visualize
biomolecular networks and to perform protein function
prediction. Moreover, by pressing the Predictions

button (Current View option), the user can show a
list of all COSNET predictions ordered by decreasing
score, visualize, at the same time, whether the proteins
already have an annotation (positive = 1, square shape
in the network). Proteins without an annotation and
with a high COSNET score may be possible candidates
for further literature investigation followed by biological
validation studies. For instance, the second ranked pro-
tein predicted by COSNET is ID4 (ENSG00000172201)
which is related to EMT in lung cancer [40, 41].
This is another evidence that UNIPred-Web is able
to correctly predict GO terms and that its integra-
tion in the daily research practice can facilitate the
definition of new interesting targets for bio-medical
research.

Scenario 3: visual analysis and navigation

By using the facilities made available by the web appli-
cation, we can inspect the characteristics of the net-
work proteins and also the relationships among them.
For example, in Fig. 16 the biologist can click on
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Fig. 14 Specification of the Experiment for Scenario 2

the protein ENSG00000175387 belonging to the user
defined network and look at its characteristics. Specifi-
cally, he can see its aliases in other databanks, the types for
which evidences have been acquired. Finally, the predic-

ENSG00000137693 ENSG00000164924 1 tion score is reported, as well as the information that the
ENSG00000137693 ENSG00000170027 1 protein is not a member of the training set (positive =
ENSG00000137693 ENSG00000074219 1 0). The user can also expand the visualization along e.g.
ENSG00000137693 ENSG00000150457 1 the protein ENSG00000175387 by clicking with the
ENSG00000184937 ENSG00000184937 1 right mouse on the node and then selecting the option
ENSG00000184937 ENSG00000136997 1 “one step from here’, thus adding to the network all the
ENSG00000141540 ENSG00000141540 1 proteins in the neighborhood of the clicked node; by
ENSG00000141540 ENSG00000134853 1 changing the position of the two proteins belonging to the
ENSG00000141540 ENSG00000186575 1 user defined network the visualization in Fig. 17 can be
ENSG00000141540 ENSG00000136240 1 obtained.
ENSG00000141540 ENSG00000108773 1 The visualization points out a relationship that only
ENSG00000141540 ENSG00000152822 1 occurs in the user defined network between the pro-
ENSG00000141540 ENSG00000160867 1 teins ENSG00000175387 and ENSG00000034152
ENSG00000141540 ENSG00000141736 1 and the target protein. Moreover, the target pro-
ENSG00000141510 ENSG00000141510 1 tein and the protein ENSG00000175387 are con-
ENSG00000141510 ENSG00000118046 1 nected both directly and by means of several two
ENSG00000141510 ENSG00000173039 1 steps paths. The three considered proteins SMAD1
(ENSG00000170365), SMAD2 (ENSG00000175387)
Fig. 15 Excerpt of an user-defined network and the protein MAP2K3 (ENSG00000034152) are part
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Fig. 16 Exploration of the subnetwork for Scenario 2

of two different pathways: TGF-S and Ras-MAPK. Since
these three proteins are connected in our network, we
can hypothesize that there is some sort of communi-
cation between the pathways. A literature search con-
firms that there is a non canonical crosstalk mechanism,

associated with EMT in cancer cells, between TGEF-
B and Ras-MAPK [42]. This indicates that the option
“one step from here” can be used to highlight impor-
tant intersections among pathways that require further
investigations.

Fig. 17 Navigation of neighbourhood proteins in Scenario 3
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