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ABSTRACT

In this work, we propose a robust iris segmentation method for non-ideal ocular images, referred to
as Polar Spline RANSAC, which approximates the iris shape as a closed curve with arbitrary degrees
of freedom. The method is robust to several nonidealities, such as poor contrast, occlusions, gaze
deviations, pupil dilation, motion blur, poor focus, frame interlacing, differences in image resolution,
specular reflections, and shadows. Unlike most techniques in the literature, the proposed method ob-
tains good performance in harsh conditions with different imaging wavelengths and datasets. We also
investigate the role of different illumination compensation techniques on the iris segmentation pro-
cess. The experiments showed that the proposed method results in higher or comparable accuracy
with respect to other competing techniques presented in the literature for images acquired in non-ideal
conditions. Furthermore, the proposed segmentation method is generalizable and can achieve com-
petitive performance with different state-of-the-art feature extraction and matching techniques. In
particular, in conjunction with a well-known recognition schema, it achieved Equal Error Rate of
4.34% on DB WVU, Equal Error Rate of 5.98% on DB QFIRE, and pixel-wise classification error
rate of 0.0165 on DB UBIRIS v2. Moreover, experiments using different illumination compensation
techniques demonstrate that algorithms based on the Retinex model offer improved segmentation and
recognition accuracy, thereby highlighting the importance of adopting illumination models for pro-
cessing non-ideal ocular images.

c⃝ 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Iris recognition refers to the automated process of recogniz-
ing individuals based on their iris pattern, Daugman (2002).
Due to its distinctive texture that varies in its details across in-
dividuals, the iris is a powerful biometric trait and the recog-
nition systems based on iris have been deployed in a wide
range of applications such as national ID cards, border con-
trol, user authentication in smartphones, etc. Iris recognition
systems perform accurately when iris images are acquired from
cooperative users under reasonably controlled conditions since
the accuracy of such systems can be negatively impacted by
non-ideal conditions characterized by harsh illumination, non-
cooperative or moving subjects and unconstrained acquisition.
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Designing methods to process such non-ideal images can sig-
nificantly reduce the level of user cooperation necessary during
the acquisition process, relax the acquisition constraints, and
expand the possible applications for iris recognition systems.

One of the most challenging tasks in iris recognition is the
segmentation of the iris region from the input ocular or face
image. Segmentation algorithms must cope with the fact that
the iris region is a relatively small area that is behind the moist
cornea, constantly in motion, and frequently occluded by eye-
lids and eyelashes. Moreover, the quality of iris samples can
be reduced by external factors, such as sensor noise, low coop-
eration from the user, poor illumination conditions, and large
standoff distances (See Table 1). The resulting nonidealities
manifest themselves in images acquired using traditional iris
scanners or in images captured at a distance using digital cam-
eras. Fig. 1 shows examples of non-ideal samples acquired us-
ing a commercial sensor (Irispass), Fig. 2 shows non-ideal im-
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Table 1. Factors resulting in non-ideal iris images.
Source of nonideality Effects

Acquisition sensor Low signal-to-noise ratio (SNR)
Frame interlacing
Poor focus
Motion blur

Low cooperation from the user Strong occlusion
Gaze deviation

Uncontrolled distance from Strong differences in iris radii
the camera Differences in illumination conditions

Illumination conditions Low illumination
High illumination and pixel saturation
Non-constant illumination
Pupil dilation
Specular reflections
Shadows

(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of nonidealities in iris images acquired using a commer-
cial sensor (WVU database): (a) strong occlusion, (b) poor illumination,
(c) blur due to poor focus or motion, (d) gaze deviation, (e) pupil dilation,
and (f) interlacing. All the images have size of 640 × 480 pixels.

(a) (b) (c)

Fig. 2. Examples of non-ideal images acquired at different distances and il-
lumination conditions using an infrared camera (Q-FIRE database): (a)
medium illumination and large iris diameter, (b) low illumination and
medium iris diameter, and (c) high illumination and small iris diameter.
All the images shown have been obtained by cropping a frame with size
640 × 480 pixels centered in the virtual center of the pupil. The samples
present strong differences in terms of iris diameter (from approximately
110 pixels to more than 300 pixels).

ages captured using an infrared camera (Dalsa 4M30) placed at
varying distances from the subject (ranging from 5 to 25 feet),
and Fig. 3 shows non-ideal images acquired in natural light and
uncooperative conditions using a single-lens reflex digital cam-
era (Canon 5D) placed at varying distances from the subject
(ranging from 4 to 8 meters).

Different studies report that strong nonidealities in iris im-
ages (especially strong occlusions and poor illumination con-
ditions) can severely impact the recognition accuracy of iris
recognition systems, as Proenca and Alexandre (2012a); Jillela
et al. (2013); Donida Labati et al. (2012); Schmid et al. (2013);
Tabassi et al. (2011).

(a) (b) (c)

Fig. 3. Examples of non-ideal images acquired using a digital single-lens
reflex digital camera in an uncooperative scenario, at different distances
from the camera, and in natural light conditions (UBIRIS v.2 database):
(a) gaze deviation, (b) occlusions, and (c) small iris diameter. All the images
have size of 400 × 300 pixels.

Robust segmentation methods able to deal with non-ideal iris
images acquired under poor illumination conditions should reli-
ably extract the iris boundaries, i.e., the inner pupillary bound-
ary and the outer limbus boundary, even if there are local re-
gions that are underexposed or overexposed (see Fig. 1, Fig. 2,
and Fig. 3).

To achieve this goal, this paper focuses on the design of an
iris segmentation algorithm for non-ideal iris images acquired
under poor illumination conditions and capable of working in
different spectral bands. The algorithm can process ocular im-
ages acquired using both infrared and visible light illumination
techniques. The first step of the method reduces the effect of
specular reflections and noise. The second step is to estimate
the internal iris boundary using an iterative algorithm. The third
step is the illumination compensation. The final step is the seg-
mentation of the external iris boundary using a novel method
based on RANdom SAmple Consensus (RANSAC), which we
refer to as Polar Spline RANSAC (PS-RANSAC). For the in-
tegration of this segmentation method into a complete iris bio-
metric system, we also propose an iris normalization strategy in
which the limits of the iris region are estimated from a segmen-
tation mask. Fig. 4 shows the schema of the segmentation and
template computation tasks of the iris recognition process.

The most important contribution of this work lies in the de-
velopment of the PS-RANSAC algorithm, which approximates
the iris boundaries as non-conic entities. PS-RANSAC takes
advantage of the robustness of RANSAC to noisy data and the
capability of Splines for representing functions with an arbi-
trary number of degrees of freedom. In Choi et al. (2009),
RANSAC techniques have demonstrated better accuracy in ap-
proximating series that have high signal-to-noise ratios. How-
ever, other RANSAC-based iris segmentation techniques in the
literature, as in Chou et al. (2010); Wang and Qian (2011), as-
sume a conic shape for the iris boundary, which can restrict
the success of iris segmentation when dealing with non-ideal
images. In our experiments, PS-RANSAC obtained important
improvements in terms of accuracy and robustness to noise with
respect to state-of-the-art techniques. Another valuable contri-
bution of this paper is the experimental evaluation of the ben-
efits of various illumination compensation algorithms on seg-
mentation accuracy and recognition performance. This paper
presents the first systematic comparison of different illumina-
tion compensation techniques on the recognition accuracy of
an iris system based on a segmentation method that can effec-
tively deal with non-ideal samples. A further contribution is the
exhaustive analysis of recent techniques for overcoming non-
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idealities in iris images that can degrade the performance of
segmentation methods.

Experiments were conducted using three databases of non-
ideal samples: the “West Virginia University Non-ideal Iris Im-
age Database”, the “Quality-Face/Iris Research Ensemble” (Q-
FIRE) database , and the “Noisy Visible Wavelength Iris Image
Databases v.2” database, which specifically include images ex-
hibiting various types of nonidealities. Results show that the
proposed segmentation method offers a considerable improve-
ment in accuracy compared with other techniques presented in
the literature for datasets acquired in non-ideal scenarios. The
proposed method also achieved satisfactory performance on
three datasets of images acquired in more favorable conditions:
the CASIA-IrisV4 Interval database, the IIT Delhi Iris Database
Version 1, and the ND-Iris-0405 database. Moreover, the re-
sults show that illumination compensation techniques based on
the Retinex model yield better segmentation and recognition
accuracy.

The paper is structured as follows. Section 2 presents related
work. Section 3 describes the illumination compensation meth-
ods considered in this work and the novel segmentation strat-
egy. Section 4 details the experiments performed and the re-
sults obtained. Section 5 presents a discussion on the achieved
accuracy and Section 6 concludes the paper.

2. Related Work

The study described in Schmid et al. (2013) revealed that
discarding low-quality iris samples can considerably improve
recognition performance. The authors demonstrated that their
proposed quality assessment method could decrease the error
rate by 20 to 35 percent.

The IREX II Iris Quality Calibration and Evaluation (IQCE)
competition, conducted by the National Institute of Standards
and Technology (NIST) and presented in Tabassi et al. (2011),
evaluated the effects of various nonidealities in iris images on
the performance of an iris system. The list of characteristics
that affected the results was sorted by relevance as follows: us-
able iris area, iris-pupil contrast, pupil shape, iris-sclera con-
trast, gaze angle, sharpness, dilation, interlacing, gray-scale
spread, iris shape, iris size, motion blur, and signal-to-noise
ratio. This study showed that characteristics related to the il-
lumination conditions (iris-pupil contrast, iris-sclera contrast,
and gray-scale spread) strongly influence the performance of
iris segmentation methods.

Nonidealities in iris images caused by illumination factors
can be present both in samples acquired using specialized iris
scanners as well as in images acquired at a distance using com-
mercial digital cameras. Iris scanners typically use an array of
illumination sources placed in the vicinity of the eye to obtain
uniformly illuminated images. In this scenario, the most impor-
tant problem that arises is related to non-uniform illumination
of the iris region due to incorrect positioning of the user with
respect to the acquisition sensor. Images acquired at a distance
can suffer from similar problems and can also present low con-
trast between the iris and the surrounding regions due to the
large distance between the eye and the illumination source or

the influence of ambient illumination. Furthermore, in natural
light conditions, dark eyes present a low pupil-iris contrast and
low contrast between the iris and eyelashes.

When illumination is not ideal, traditional approaches for iris
segmentation can yield poor results due to the following rea-
sons:

• the iris-sclera contrast can be low and non-uniform,

• the iris-pupil contrast can be low and non-uniform,

• the contrast between the iris and eyelashes can be low and
non-uniform,

• the iris region can exhibit gray-level intensity levels simi-
lar to that of the skin, and

• the iris region can exhibit reflections.

In the literature, various studies have been presented on iris
segmentation methods that are robust to samples affected by
nonidealities, as in Donida Labati et al. (2012); Jillela and Ross
(2014, 2013); Proenca and Alexandre (2012b). Moreover, sev-
eral studies have evaluated preprocessing methods for reducing
various nonidealities in iris images. Table 2 briefly reviews the
methods in the literature designed to overcome specific nonide-
alities.

This section first provides an overview of iris segmentation
algorithms designed for application to non-ideal images and
then presents descriptions of various illumination compensation
techniques adopted in iris recognition systems.

2.1. Iris segmentation methods
Iris segmentation includes the determination of the inner and

outer iris boundaries as well as the estimation of the iris re-
gions occluded by eyelids, eyelashes, hair, glasses and reflec-
tions. Usually, a segmentation method first estimates the iris
boundaries and then refines the segmentation by removing re-
flections and occlusions. Table 3 presents a general overview
of methods for estimating iris boundaries.

The majority of methods for segmenting iris boundaries ap-
proximate the contours as pre-defined geometric shapes, such
as circles or ellipses. One segmentation method that is widely
used in iris recognition systems was presented in Daugman
(2002). To define both the inner and outer iris boundaries,
this method uses the integro-differential operator (IDO) that
searches for a circular contour with maximum variation in in-
tensity across its boundary in the radial direction. It also
searches for the boundaries of the eyelids by changing the shape
of the integral path from circular to arcuate. Many variants of
this method have been presented in the literature, some of which
are designed to search for elliptical shapes, like in Shamsi and
Kenari (2012). An example of an algorithm designed to reduce
the computation time of the IDO method is the “intDiff” con-
stellation, presented in Tan et al. (2010).

The technique based on the Hough transform described
in Wildes (1997) is also very popular. This technique searches
for pre-defined parametrized shapes by applying a voting pro-
cedure that analyzes the edges extracted from the input im-
age. Because of its simplicity and robustness to noisy data,
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Fig. 4. Schema of the segmentation and template computation tasks of the iris recognition process.

it has been widely used in the literature. The techniques
described in Feng et al. (2006); Masek and Kovesi (2003)
present Hough-transform-based methods that search for circu-
lar shapes and the work proposed in Zuo and Schmid (2010)
presents a Hough-transform-based method that searches for el-
liptical shapes. Moreover, some segmentation methods apply
the Hough transform after invoking a pre-processing step in-
tended to reduce both the level of noise and the area to be
searched in an iris image. For example, the method described
in Proença and Alexandre (2006) applies region clustering be-
fore boundary segmentation.

Methods based on the RANSAC algorithm strive to achieve
greater robustness to nonidealities in iris images. RANSAC is
an iterative method for curve fitting based on data that contain
outliers. For particularly noisy data, this method can usually
achieve better results than the Hough transform. The work pre-
sented in Chou et al. (2010) uses RANSAC to refine the iris
boundaries obtained using classifiers that select contour points
from features extracted from four-spectral images. Similarly,
in Wang and Qian (2011), RANSAC is used to refine the bound-
aries obtained using linear basis functions in the polar coor-
dinate system. The method presented in Morley and Foroosh
(2017) uses a version of RANSAC with a modified metric dis-
tance to estimate a circle approximating the pupil boundary
from features extracted using a deep Convolutional Neural Net-
work (CNN). The RANSAC algorithm has also been used to
segment the eyelids in Chou et al. (2010); Li et al. (2010); Liu
et al. (2009).

Other interesting techniques for approximating iris bound-
aries based on previously defined shapes include the “Pulling
and Pushing” method presented in He et al. (2009) and “Star-
burst” method described in Ryan et al. (2008).

To reduce the noise present in iris templates, recent articles
have studied segmentation methods that are able to extract the
iris boundaries without requiring any assumption about their
shapes. Such iris segmentation methods can be divided into
the following categories: approaches based on active contours,
incremental methods, methods based on analysis of local char-

acteristics, and methods based on deep learning.
Many approaches reported in the literature for the segmen-

tation of poor-quality iris images involve the computation and
analysis of local characteristics of an iris image to enable the
labeling of different regions using clustering or classification
methods. In most cases, this computation is a preliminary step
with the purpose of reducing the search area and decreasing the
amount of noise. Examples include Tan et al. (2010); Proença
and Alexandre (2006); Li et al. (2010); Proença (2010); Du
et al. (2011). Some studies have also investigated segmentation
techniques that use computational intelligence to locate only
those pixels that describe the iris region, as in Broussard et al.
(2007). The study in Zhao and Kumar (2015) presents a total-
variation based formulation which uses L1 norm regularization
to robustly suppress noisy texture pixels for the accurate iris
localization.

Segmentation methods that are based on active contours iter-
atively adapt the segmented shape to the edges extracted from
the image. One well-known method of this type was presented
in Shah and Ross (2009); Ross and Shah (2006). In each itera-
tion, the curve that describes the iris boundary evolves toward
the edges of the iris contour based on an evaluation of the Thin
Plate Spline energy to analyze the relation between the active
contours and the geodesics (curves of minimal length). An-
other active contour method is proposed in Zhang et al. (2010)
that uses a different distance measure, called the semantic iris
contour map. The method presented in Abdullah et al. (2017)
introduces an external force to the active contour model to ro-
bustly segment non-ideal samples. In Jillela et al. (2013), active
contours have also been used to segment the iris region in peri-
ocular images.

In incremental methods, an initial approximation of the iris
shape is first obtained, and refinement algorithms are then ap-
plied to represent the iris boundaries as two closed curves with
arbitrary degrees of freedom. The method described in Daug-
man (2007) first computes a simple preliminary estimation of
the iris center by applying the IDO method. Then, it searches
for points on the contours by selecting the pixels that corre-
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Table 2. State of the art for addressing nonidealities in iris recognition.
nonideality Studies in the literature

Occlusions Iris segmentation – Proenca and Alexandre (2012a); Jillela et al. (2013); Donida Labati et al. (2012)]

Poor focus Focus compensation – Kang and Park (2005); He et al. (2008a); Boddeti and Kumar (2008); Kang and Park (2007)
Super-resolution – Nguyen et al. (2011, 2012, 2010)

Low resolution Image reconstruction – Alonso-Fernandez et al. (2015)

Gaze deviation Gaze adjustment – Daugman (2007); Kennell et al. (2009); Yang et al. (2014)

Pupil dilation Dilation compensation – Tomeo-Reyes et al. (2015); Thornton et al. (2007); Hollingsworth et al. (2009)

Reflections Reflection detection – Zuo and Schmid (2010); Ross and Shah (2006); Scotti and Piuri (2010); Li and Savvides (2013)

Natural light illumination Iris segmentation – Proenca and Alexandre (2012a); Tan et al. (2010); Donida Labati and Scotti (2010); ho Cho et al. (2006)
Feature extraction and matching – Bowyer (2012); Raja et al. (2015); Marsico et al. (2014)

Poor infrared illumination Illumination compensation – Jillela and Ross (2013); Jillela et al. (2013); Shukri et al. (2013); Tan and Kumar (2013)

spond to the maximum values of the gradient computed in the
radial direction with respect to the iris center. In the final step,
the contour points are fitted using an algorithm based on the
computation of the m coefficients of a discrete Fourier series. In
the methods described in Donida Labati et al. (2009a,b), bound-
ary refinement is performed in a similar manner, but additional
noise reduction strategies are applied to cope with non-ideal
iris images. Another incremental method is described in Tan
and Kumar (2013). This approach exploits a random walker
algorithm to coarsely estimate the iris region and then uses a
sequence of algorithms designed to enhance the segmentation
accuracy.

Recent methods based on deep learning techniques obtained
remarkable segmentation accuracy for different image datasets.
However, these methods require long training time and need
a fine tuning to obtain the best performance in heterogeneous
scenarios. The study presented in Liu et al. (2016) does not
use any preprocessing or postprocessing strategy and includes
two segmentation techniques based on different topologies of
CNNs (hierarchical convolutional neural networks and multi-
scale fully convolutional networks). The method presented in
Arsalan et al. (2017) roughly estimates the iris region using an
edge detection algorithm and then classifies the pixels in two
classes (iris and non-iris) by using a CNN. The paper performed
a fine tuning of a VGG CNN, similarly to Parkhi et al. (2015),
for iris images acquired in visible light conditions. The method
presented in He et al. (2017) consists of a specifically designed
CNN able to classify every pixel into the following classes:
pupil, iris, sclera, and background. The studies presented in
Jalilian and Uhl (2017); Jalilian et al. (2017) use a fully con-
volutional encoder-decoder network trained for classifying iris
and non-iris pixels in images acquired in a wide set of heteroge-
neous conditions. Convolutional encoder-decoder networks are
also used in Sinha et al. (2017) to classify pixels pertaining to
the pupil, iris and background. The work presented in Arsalan
et al. (2018) proposed a deep network called IrisDenseNet and
based on VGG-16 Simonyan and Zisserman (2014). The work
presented in Bazrafkan et al. (2018) proposes a deep CNN and
a data augmentation method for making the training process
robust to heterogeneous non-ideal conditions. The work de-
scribed in Morley and Foroosh (2017) uses a CNN to extract
the edges of the limbic boundary. Other studies employ deep
learning strategies for the feature extraction and matching steps

of the iris recognition system, as in Gangwar and Joshi (2016);
Zhao and Kumar (2017).

After estimating the iris boundaries, segmentation methods
typically remove reflections using algorithms that analyze sta-
tistical indices computed based on the image intensity, as in Zuo
and Schmid (2010); Ross and Shah (2006). Several studies
have also investigated methods based on classification tech-
niques and more complex features, as in Scotti and Piuri (2010).
The eyelashes can be segmented using algorithms based on fea-
tures obtained by applying various techniques: Donida Labati
and Scotti (2010) use Gabor filters Donida Labati and Scotti
(2010). He et al. (2008b) apply one-dimensional rank filters;
and Aligholizadeh et al. (2011) apply wavelet transforms. An
interesting approach designed to remove the occlusions caused
by eyelids, eyelashes and reflections in a single step was pro-
posed in Li and Savvides (2013). This method is based on
Gaussian Mixture Modeling classifiers.

2.2. Illumination compensation for iris images
Illumination compensation techniques are widely used in

biometric systems based on traits different from the iris, such
as the face, as described in Makwana (2010).

The Retinex model is widely used in the literature to re-
duce problems related to poor illumination conditions in a
wide range of application scenarios. Illumination compensa-
tion techniques based on the Retinex model attempt to improve
the brightness and color consistency, thereby imposing consis-
tency of perceived color and brightness on images that exhibit
spatial and spectral variations in illumination. Specifically, the
Retinex theory attempts to model the manner in which the hu-
man visual system perceives color. This theory states that an
image I can be modeled as the product of a reflectance function
R and a luminance function L, as follows:

I(x, y) = R(x, y)L(x, y). (1)

The reflectance R represents the objects present in the image
and depends on the reflectivity of each surface, whereas the
luminance L describes the illumination of the scene. Illumina-
tion normalization is performed by estimating the reflectance R,
which is invariant with respect to illumination conditions. This
computation is performed based on manipulations of Eq. (1), as
follows:

R(x, y) = I(x, y)/L(x, y), (2)
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Table 3. Iris segmentation methods in the literature. See Jillela and Ross (2013) for a detailed taxonomy.
Iris shape Technique Selected references

Circular or Integro-Differential Operator Daugman (2002); Shamsi and Kenari (2012); Tan et al. (2010)
Elliptical Hough Transform Feng et al. (2006); Masek and Kovesi (2003); Zuo and Schmid (2010); Proença and Alexandre (2006)

RANSAC Chou et al. (2010); Wang and Qian (2011)
Other Techniques He et al. (2009); Ryan et al. (2008)

Non-conic Computational Intelligence Tan et al. (2010); Proença and Alexandre (2006); Li et al. (2010); Proença (2010); Du et al. (2011); Broussard et al. (2007)
Active Contours Shah and Ross (2009); Ross and Shah (2006); Zhang et al. (2010); Jillela et al. (2013)
Incremental Methods Donida Labati and Scotti (2010); Daugman (2007); Donida Labati et al. (2009a,b); Tan and Kumar (2013)
Deep Learning Liu et al. (2016); Arsalan et al. (2017); He et al. (2017); Jalilian and Uhl (2017); Jalilian et al. (2017)

ln[R(x, y)] = ln[I(x, y)] − ln[L(x, y)], (3)

where Eq. (3) represents the logarithmic reflectance and Eq. (2)
represents the quotient reflectance.

Methods that use the logarithmic reflectance and methods
that use the quotient reflectance can both be found in the litera-
ture. Examples of methods based on the logarithmic reflectance
representation include: the Single-Scale Retinex (SSR), de-
scribed in Jobson et al. (1997); and Multiple-Scale Retinex
(MSR), described in Jobson et al. (1997). Examples of methods
based on the quotient reflectance include: the Quotient Image
(QI), described in Shashua and Riklin-Raviv (2001); and Self-
Quotient Image (SQI), described in Wang et al. (2004). The
luminance L is usually estimated before the estimation of R by
smoothing the image space I. Various methods have been stud-
ied for the optimal estimation of L for different types of images
acquired under different environmental conditions.

One widely used illumination compensation method is SSR,
in which L is computed by applying a Gaussian smoothing fil-
ter that is tuned according to the characteristics of the image
I. When properly tuned this algorithm can obtain satisfactory
results for various kinds of images. However, in the presence
of strong shadows, the reflectance images often exhibit halo ef-
fects.

MSR strives to overcome this limitation. For ng reflectance
images Ri obtained using Gaussian filters with different kernels
ki, the reflectance image R is computed as follows:

R(x, y) =
ng∑
i=1

Ri(x, y). (4)

Thus, the image I is convolved with a smoothing mask, using
weighting coefficients obtained by combining two measures of
the illumination discontinuity at each pixel.

A different approach is used in the QI method, in which the
luminance L is estimated from a set of training images. The SQI
method is a variant of the QI method that is designed to estimate
L directly from the image I. This estimation is performed by
applying an anisotropic smoothing filter to I. One advantage
of this illumination compensation method is that it reduces the
presence of shadows.

Illumination compensation techniques based on the Retinex
model, however, require proper tuning of their parameters to
achieve satisfactory results.

Other illumination compensation methods used for biometric
applications do not aim to maintain the color consistency and
are based on different algorithms. Since illumination variations
mainly lie in the low-frequency band, the method described in

Chen et al. (2006) truncates the first coefficients of the Discrete
Cosine Transform (DCT) in the logarithmic domain. The al-
gorithm presented in Tan and Triggs (2010) is composed of
the following steps: gamma correction, Difference of Gaussian
(DoG) filtering, masking, and contrast equalization. In the fol-
lowing, we will refer to these techniques as DCT and TT, re-
spectively.

Only a few iris recognition methods presented in the litera-
ture use preprocessing algorithms that are specifically designed
for illumination compensation. In fact, most existing systems
include an enhancement step that simply improves the image
contrast. Commonly used techniques for this purpose are based
on well known image processing algorithms described in Gon-
zalez and Woods (2006) and include histogram equalization,
local histogram equalization, adaptive histogram equalization
and gamma correction. However, these techniques cannot ad-
dress all nonidealities caused by illumination conditions; they
typically yield poor results in the presence of non-uniform il-
lumination, strong shadows and reflections. Moreover, most
of these techniques rely on certain assumptions regarding the
histogram distribution and use a set of fixed thresholds and pa-
rameters; therefore, images with similar characteristics and of
similar resolutions are required to obtain satisfactory results.

The method presented in Shah and Ross (2009) uses an il-
lumination compensation technique based on the anisotropic
nonlinear diffusion. Other studies use algorithms based on the
Retinex model. There are also studies that use Single Scale
Retinex (SSR), as in the case of the methods described in Tan
and Kumar (2013, 2012); Zhao and Kumar (2015). The work
in Shukri et al. (2013) presents a more complete study that in-
cludes both Single and Multi Scale Retinex (MSR) applied to
UBIRIS dataset. However, the study uses segmentation algo-
rithm presented in Masek and Kovesi (2003), which is not de-
signed for non-ideal iris images. In addition, the article does
not provide information about the parameters used by the illu-
mination compensation algorithms and uses subjective figures
of merit. In contrast, our paper presents the first systematic
comparison of different illumination compensation techniques
by evaluating the recognition accuracy of a system based on
a segmentation method effectively able to deal with non-ideal
samples.

3. The Proposed Approach

We propose a novel iris segmentation method that is designed
to overcome the various nonidealities observed in poor-quality
iris images acquired under challenging infrared or visible light
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illumination conditions. This method can be divided into the
following sequential steps:

A) image preprocessing,

B) estimation of the internal iris boundary,

C) illumination compensation, and

D) estimation of the external iris boundary (PS-RANSAC).

Because most feature extraction and matching algorithms
presented in the literature normalize the iris area by assuming
that the limits of the internal and external iris boundaries can
be represented by two circles or ellipses, we also propose an
algorithm for estimating such limits from the segmented areas
obtained using our method. This segmentation algorithm gen-
erates a circular approximation of the external limit of the iris
region by evaluating the boundaries of the segmented iris mask.

Appendix A reports details on the parameters of the proposed
algorithms and on tests performed to evaluate their robustness
with respect to a wide range of different values, showing satis-
factory results.

3.1. Image preprocessing
The purpose of this step is to eliminate details in an iris image

that can reduce the iris segmentation accuracy, and the proce-
dure used for this purpose is specifically designed for the pro-
posed iris segmentation algorithms. Furthermore, in case of a
color image, this step extracts only the red channel from the in-
put iris image. The computation can be divided into two tasks:
the removal of specular reflections and noise reduction.

To remove specular reflections, a binary map B of the reflec-
tion regions is first computed by analyzing the response of the
iris image Iin to Gabor filters tuned using an empirically esti-
mated frequency f . First, the images G0 and G90 are computed
by convolving Iin with Gabor filters with orientations of 0◦ and
90◦, respectively. Then, an image describing the reflections,
IR, is computed from G0 and G90. Subsequently, a binary map
of the reflection regions, BR, is obtained from IR, and the re-
flections are removed using the inpainting algorithm described
in Bertalmio et al. (2000). The image IR is calculated as fol-
lows:

IR(x, y) = G0(x, y) +G90(x, y). (5)

The binary image BR is computed as follows:

BR(x, y) =
{

1 if IR(x, y) > tR
0 otherwise , (6)

where tR corresponds to the pR percentile of IR. The value of
pR is empirically tuned on the dataset(s) to be analyzed.

Then, the noise is reduced by applying a Gaussian-based bi-
lateral filter to IR , as described in Paris et al. (2009). Bilat-
eral filters are non-linear algorithms that allow an image to be
blurred while preserving strong edges.

For an image I, the notation Ip represents the intensity of I at
pixel p. Similarly, Iq is the intensity of I at pixel q. The bilateral
filter BF[·] is defined as follows:

BF[I]p =
1

Wp

∑
q∈S

Gσs (∥p − q∥) Gσr

(
Ip − Iq

)
Iq, (7)

(a) (b)

Fig. 5. Example of the results obtained using the proposed preprocessing:
(a) the input image I and (b) the processed image. The output image is
less affected by noise and specular reflections than is the input image, and
simplify the segmentation process.

where Wp is a normalization factor that ensures that the pixel
weights sum is in the range 1 : 0 and is computed as follows:

Wp =
∑
q∈S

Gσs (∥p − q∥) Gσr

(
Ip − Iq

)
. (8)

Here, S is the set of all possible locations in the image (the spa-
tial domain), Gσs is a spatial Gaussian kernel that decreases the
influence of distant pixels, and Gσr is a range Gaussian kernel
that decreases the influence of pixels q with an intensity value
different from Ip. The Gaussian kernels Gσs and Gσr have stan-
dard deviations of σs and σr, respectively. The values of σs and
σr and the size of the filter (S = Nq×Nq pixels) are empirically
tuned on the dataset(s) to be analyzed.

We apply a bilateral filter to compute the enhanced image IR

as follows:
E = BF[IR]p. (9)

Fig. 5 presents an example of a degraded iris image before
and after the application of the proposed preprocessing tech-
nique. The preprocessed image is less affected by noise and
specular reflections than the input image.

3.2. Estimation of the internal iris boundary
We present a novel iterative algorithm optimized to deal with

iris images affected by strong differences in illumination con-
ditions and low iris-pupil contrast. The algorithm improves the
robustness to irregularly shaped boundaries affected by noise
and reflections by mixing an iterative thresholding technique
designed for searching circular shapes and a RANSAC-based
technique designed to regularize the pupil shape by discarding
possible outliers.

The internal iris boundary is extracted from a binary image
representing the pupil region. This image is computed by it-
eratively searching for the most circular shape obtained when
binarizing the iris image in an empirically estimated range of
intensity thresholds.

In each iteration i, a binary image Bi is computed by applying
a threshold value T (i) to the image E. The 8-connected regions
with major axis lengths greater than lmin and less than lmax are
then identified as candidate pupil regions. Of these 8-connected
regions, the region with the minimum eccentricity is ultimately
chosen as the pupil area.

The coordinates of the pupil boundary are then extracted and
refined using RANSAC for circle fitting, thus obtaining the vec-
tor of points vB.
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(a) (b)

Fig. 6. Example of the results obtained using the proposed algorithm for the
estimation of the internal iris boundary: (a) the identified pupil area and
(b) the corresponding binary mask obtained from the refined boundary
points vB.

For color images, which frequently present low iris-pupil
contrast and dark eyelids and eyelashes, intensity-based algo-
rithms frequently estimate the pupil region as part of the eye-
lashes. For this reason, works in the literature frequently per-
form a rough estimation of the external iris boundary to limit the
image region candidate to represent the pupil, as in Proenca and
Alexandre (2012a). Therefore, we narrowed the search region
by using the integro-differential operator described in Daugman
(2002), which is sufficiently effective in estimating the external
iris boundary. In fact, color images usually present a high iris-
sclera contrast, thus permitting to estimate the iris region rea-
sonably well. However, this operator usually obtains poor ac-
curacy in estimating the internal iris boundary. We, therefore,
apply the proposed pupil segmentation algorithm in a region of
interest corresponding to a circle with radius equal to 1/3 of
the radius estimated by applying the integro-differential oper-
ator for searching the external boundary. We experimentally
proved that the version of algorithm designed for iris images
acquired in infrared illumination failed for the great majority
of the images acquired in natural light illumination and depict-
ing dark eyes due the fact that contrast of eyelids and eyelashes
with the skin is much higher with respect to the pupil-iris con-
trast. Similarly, we experimentally proved that the version of
the algorithm designed for iris images acquired in natural light
illumination failed for most of the images acquired using in-
frared illuminators because the integro-differential operator de-
scribed in Daugman (2002) detects edges with higher contrast
with respect to the iris-sclera boundary.

An example of an estimated pupil area and the corresponding
boundary points vB are presented in Fig. 6.

3.3. Illumination compensation

The proposed method exploits a specific Illumination com-
pensation algorithm to improve the robustness of the subse-
quent steps to estimate the outer external iris boundaries with
different light bandwidths and in the presence of nonidealities.
We studied various illumination compensation techniques to
determine which algorithm was the best to improve the iris seg-
mentation accuracy and, thus, the overall performance of the
iris recognition system. This study considered both non-ideal
images acquired using traditional NIR iris scanners and color
images captured using digital cameras placed at different dis-
tances from the subject. In this context, we considered the fol-
lowing approaches:

1. histogram equalization;

2. analysis of the histogram distribution;

3. local histogram analysis;

4. transformations of the image intensity, such as logarith-
mic, square-root, and exponential transformations;

5. algorithms based on the Retinex model, such as SSR and
MSR; and

6. other algorithms that are commonly used for face recogni-
tion, like SQI, DCT, and TT.

In the following, we will refer to the image RE as the one
obtained by applying an illumination compensation strategy al-
gorithm FI,L(·) to E. As an example, for the algorithm SSR,
RE = E/L.

We performed extensive tests to investigate the effect and de-
tails of every algorithms. A Section 4.5 reports a detailed de-
scriprion of the obtained results.

Fig. 7 shows some examples of the results of the best-
performing techniques.

3.4. Estimation of the external iris boundary (PS-RANSAC)

This step involves estimating the points on the external iris
boundary by searching for the maximum values obtained when
a radial-gradient-based operator is applied to the image RE and
refining the boundary shape using our variant of RANSAC.

The first task consists of estimating the vector of the external
boundary points, EB, from the image RE and is performed by
searching for the coordinates of the points at which the max-
imum values are obtained when a gradient-based operator is
applied in polar coordinates.

An image IP is computed by converting RE into polar coor-
dinates with the center at the centroid of the pupil and with a
radial resolution of 1◦ (360 columns). Because the internal iris
boundary is typically characterized by a higher contrast than the
external boundary, the image IP is computed starting at a min-
imum radius rmin, which is empirically tuned on the dataset(s)
to be analyzed.

Our gradient-based operator is applied to enhance the visi-
bility of the continuous segments describing the iris boundary.
This operator is designed to reduce the hindrance posed by eye-
lids to traditional gradient-based approaches and is computed
as follows:

IG(θ, ρ) = IP(θ, ρ) ∗ m(θ′, ρ′), (10)

where m is a 4 × N mask defined as follows:

m(θ′, ρ′) =
{

1 if ym > 2,
0 otherwise, (11)

where ym is the y coordinate of the mask m and ∗ is the convo-
lution operator.

For each angle θ, the corresponding radius is computed as
follows:

X(θ) = argmax
ρ=1...P

[
IG(θ, ρ)

]
, (12)
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Fig. 7. Examples of illumination compensation techniques applied to an image from DB UBIRIS v2 dataset (first row), DB WVU (second row) and DB
QFIRE (third row) : (a, h, o) input image I, (b, i, p) enhanced images E, (c, j, q) E after SSR processing, (d, k, r) E after MSR processing, (e, l, s) E after
DCT processing, (f, m, t) E after TT processing, (g, n, u) E after SQI processing. The illumination compensation mitigates problems caused by non-uniform
illumination, increasing the contrast between pupil and iris, and delimiting better the iris with respect to eyelids and sclera. TT and SQI introduce some
artificial edges and artifacts that may hinder their performance. SSR, MSR, and DCT mitigate problems caused by non-uniform illumination. With
respect to SSR and DCT, MSR reduces the iris-sclera contrast but increases the iris-eyelid contrast and reduces the visibility of eyelashes, thus simplifying
the segmentation of the most challenging image regions.

(a) (b)

Fig. 8. Boundary estimation using our proposed PS-RANSAC algorithm:
(a) boundary points in polar coordinates and (b) boundary points in Carte-
sian coordinates. The proposed gradient-based operator enhance the visi-
bility of the continuous segments describing the iris boundary.

where P is the size of the image IG along the ρ axis. Fig. 8
presents an example of an estimated external boundary X.

The second task in our method for external boundary seg-
mentation consists of refining the shape of the estimated iris
contour by applying our RANSAC-based algorithm, as de-
scribed in the following.

In segmentation applications, RANSAC and the proposed
PS-RANSAC can be used to fit a set of candidate boundary
points by discarding outliers. The iris segmentation meth-
ods presented in the literature use the well-known versions
of RANSAC designed for circle or ellipse fitting, as in Chou
et al. (2010); Wang and Qian (2011); Li et al. (2010). Unlike
these methods, PS-RANSAC approximates the iris boundaries
as closed curves with arbitrary degrees of freedom.

PS-RANSAC can be divided into the following steps:

1. Select a set of np “hypothetical inliers” XI from the set of
input points X.

2. Fit an approximating function a f (·) to the set of “hypo-
thetical inliers” XI .

3. Use all other points in X to evaluate the accuracy of the
computed approximating function by computing an error
metric. The points that are fitted with an error distance
that is equal to or less than a certain threshold value t f are
considered to be part of the “consensus set”.

4. The algorithm terminates when the “consensus set” ex-
hibits a fitting error equal to or less than a certain threshold
value te or when the maximum number of iterations imax is
reached.

Unlike the RANSAC algorithms for circle or ellipse fitting,
which use boundary representations in Cartesian coordinates,
PS-RANSAC considers iris boundary points that are expressed
in polar coordinates, (θ, ρ). To guarantee the closure of the
fitted function in Cartesian coordinates, the np “hypotheti-
cal inliers” are replaced twice, in the ranges [−2π, . . . , 0] and
[−2π, . . . , 4π]. The approximating function a f (·) (step 3) that is
used by PS-RANSAC consists of a spline of arbitrary order N.
The error metric (step 4) that is computed by PS-RANSAC is
the absolute distance between the points of the “consensus set”
XC and the points obtained by fitting the spline a f (·) in the cor-
responding θ coordinates (in the range from 0 to 2π). Finally,
the points are transformed into Cartesian coordinates to yield
the set of refined external boundary points, ER.

Algorithm 1 presents the pseudo-code for PS-RANSAC.
Fig. 9 shows an example of the results of applying the boundary
refinement process to the points shown in Fig. 8.

3.5. Estimation of the circles representing the limits of the iris
region

In the proposed iris segmentation approach, the iris bound-
aries are described by curves with arbitrary degrees of free-
dom. However, traditional iris recognition systems, like the
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Algorithm 1 Pseudo-code for PS-RANSAC
1: function PS-RANSAC(X, N, t, imax )
2: ◃ X is a set of polar coordinates
3: ◃ t is the error threshold
4: ◃ N is the order of the approximating spline
5: ◃ imax is the maximum number of iterations
6:
7: i← 0 ◃ Iteration counter
8: bE ← ∞ ◃ Best error
9: bS ← ∞ ◃ Best spline

10: while (i < imax) or (bE > t) do
11: np ← N + 1 ◃ ♯ of “hypothetical inliers”
12: XI ← SelectPoints(X, np) ◃ Random selection
13: sI ← PolarSpline(XI ,N) ◃ Spline of order N
14: RI ← EvalSpline(X, sI ) ◃ Fitted points
15: DI ← |X[2, :] − PI | ◃ Fitting error
16: CI ← find(DI ≤ t f ) ◃ “Consensus set”
17: iN ← length(CI ) ◃ Size of the “Consensus set”
18: if

∑
(DI ) ≥ bE then

19: bE ←
∑

(DI ) ◃ Update the best error
20: bS ← S I ◃ Update the best spline
21: return bS

1: function PolarSpline(X′)
2: ◃ X′ is a set of polar coordinates
3: Θ← X′[1, :] ◃ θ coordinates
4: P← X′[2, :] ◃ ρ coordinates
5: ΘT ← [(Θ − 2π),Θ, (Θ + 2π)] ◃ Concatenation
6: PT ← [P, ¶, ¶] ◃ Concatenation
7: s = spline(ΘT , PT ) ◃ Curve fitting
8: return s

one described in Daugman (2002), require the iris region to be
delimited by two circles for the subsequent computation of a
scale-invariant representation of the iris region (Rubber Sheet
Model).

To be used in these systems, the proposed method estimates
the internal iris boundary as a circle from the shape describing
the external iris boundary.

To provide a robust representation of the iris shape, our al-
gorithm discards points corresponding to the contours of the
eyelids and eyelashes from the vector ER, which represents
the refined coordinates of the external boundary, and then per-
forms circle fitting based on the mean-square approach us-
ing the remaining coordinates and hence the algorithm consid-
ers only those points in ER with θ coordinates in the ranges
[−10◦, . . . , 40◦] and [140◦, . . . , 90◦].

4. Experimental Results

We evaluated the accuracy of the proposed algorithms in the
following scenarios:

1. non-ideal samples captured using digital cameras placed
at different distances from the eye and in different infrared
illumination conditions;

2. non-ideal samples acquired using commercial iris scan-
ners;

3. non-ideal samples captured in natural light illumination
and on the move;

4. and samples acquired using commercial iris scanners in
controlled conditions.

The considered samples exhibit large differences in resolution
(the iris radius varies from 110 pixels to 300 pixels) and are

(a)

(b)

Fig. 9. Boundary refinement using our proposed PS-RANSAC algorithm:
(a) input and output points in polar coordinates and (b) the external iris
boundary in Cartesian coordinates. The proposed approach reduces irreg-
ularities in the estimated boundary and removes possible outliers.

affected by the following nonidealities: poor illumination, oc-
clusions, gaze deviation, motion blur, poor focus, reflections,
and frame interlacing.

First, we analyzed the performance of the proposed segmen-
tation approach for each of the four scenarios by comparing the
achieved results with that of state-of-the-art techniques. Sec-
ond, we experimentally evaluated the effects of different illu-
mination compensation techniques on the segmentation accu-
racy and performed preliminary tests to evaluate the effects of
illumination compensation on the feature extraction. Third, we
analyzed the computational time required by the proposed al-
gorithms.

4.1. Datasets

We evaluated the accuracy of the proposed method for 6 het-
erogeneous datasets.

4.1.1. DB QFIRE
is composed of non-ideal samples captured using digital

cameras placed at different distances from the eye and in dif-
ferent infrared illumination conditions. It is a subset of the
“Quality-Face/Iris Research Ensemble” (Q-FIRE) database, de-
scribed in Johnson et al. (2010). Q-FIRE was conceived as a
benchmark to evaluate quality assessment algorithms and was
the dataset used in the NIST Iris Quality Calibration and Eval-
uation (IQCE) competition, presented in Tabassi et al. (2011),
in which the major players in the biometric market participated.
The results of this competition illustrate the challenge that rep-
resents this dataset, since the most important commercial algo-
rithms could not process many of the samples that we use in our
tests. To the best of our knowledge, this is the first work that
studies segmentation or recognition methods able to deal with
the samples of this challenging dataset.

In this work we define DB QFIRE as a set of 2598 images se-
lected from the Visit 1 subset of the Iris Illumination set in the
Q-FIRE database, which contains 1350 frame sequences repre-
senting portions of faces, each depicting either one or two eyes
of one of 90 individuals. The frame sequences contain a total



11

of 202, 435 frames depicting both open and closed eyes and ex-
hibiting large differences in focus. We selected the iris regions
of a single frame for each one of the 1350 frame sequences
belonging to the Iris Illumination set of Q-FIRE Visit 1. We ex-
tracted a single frame from each of the frame sequences repre-
senting different illumination conditions. Frame selection was
performed by choosing the image with the best focus, which is
considered as a standard procedure in real biometric systems,
as described in Daugman (2002). Because the primary focus of
this paper is iris segmentation from the ocular region, we man-
ually performed an intial localization of the irises in the face
images. Left and right iris images were manually cropped from
the selected frames by selecting an area of 640×480 pixels cen-
tered on the pupil. We selected only frames that contained com-
plete iris regions. Because of licensing agreements, we cannot
directly release the images contained in the dataset. To permit
the reproducibility of the performed tests, we report the frame
number and cropping coordinates for each cropped iris image
on our laboratory website. Donida Labati et al. (2019) provides
a link to the data. Using this information, DB QFIRE can be
easily reconstructed from the public Q-FIRE database.

The samples were captured using a digital camera and
present appositely introduced nonidealities, such as strong il-
lumination problems, gaze deviation, and occlusions. The cam-
era was placed at different distances from the subjects (5 ft,
7 ft, 11 ft, 15 ft, 25 ft), under different illumination conditions
(low, medium, and high), and while adjusting the focus ring
of the lens from its lowest limit to infinity. The obtained iris
images exhibit various nonidealities, such as occlusions, differ-
ences in illumination, large differences in iris diameter (from
approximately 110 pixels to more than 300 pixels), and differ-
ent kinds of specular reflections (reflections from windows and
highlights on contact lenses, glasses and the corneal surface).
Fig. 2 presents examples of images captured under different il-
lumination conditions and at different distances.

There are no segmentation masks publicly available for this
dataset.

4.1.2. DB WVU
is composed of non-ideal samples acquired using commer-

cial iris scanners. It consists of all the images included in the
“West Virginia University Non-ideal Iris Image Database”, de-
scribed in Crihalmeanu et al. (2007). These images were cap-
tured appositely performing low quality acquisitions. Many
studies consider WVU as a very challenging dataset for iris seg-
mentation, as in Yang et al. (2014); Du et al. (2011); Nguyen
et al. (2010); Land (1977); Jobson et al. (1997); Jobson et al.
(1997). Due to the challenging images, most of the studies us-
ing WVU dataset do not report the recognition accuracy on the
overall set of images, as in Du et al. (2011); Yang et al. (2014);
Land (1977); Jobson et al. (1997); Jobson et al. (1997).

DB WVU includes 3099 images representing the left and
right eyes of 240 subjects. The size of the iris images is
640 × 480 pixels.

The samples were acquired using the scanner OKI Irispass-
h. The iris images exhibit various nonidealities, such as occlu-
sions (Fig. 1 a), poor illumination (Fig. 1 b), blur (Fig. 1 c),

gaze deviations (Fig. 1 d), pupil dilation (Fig. 1 e), and inter-
lacing (Fig. 1 f). Fig. 1 presents examples of images acquired
appositely performing low quality acquisitions.

There are no segmentation masks publicly available for this
dataset.

4.1.3. DB UBIRIS v2
is composed of non-ideal samples captured in natural light

illumination and on the move. It is a subset of the second ver-
sion of the “Noisy Visible Wavelength Iris Image Databases”
(UBIRIS v.2), described in Proenca et al. (2010). This database
is considered as challenging by many works in the literature, as
in Proenca and Alexandre (2007).

In this work we define DB UBIRIS v2 as a set of 2250 sam-
ples for which manually segmented masks are publicly avail-
able, as described in Hofbauer et al. (2014). The images corre-
spond to left and right eyes, have been captured in visible light
and under unconstrained conditions and have a size of 400×300
pixels. The acquisitions have been performed on-the-move at
distances varying from 4 to 8 meters from the camera.

The ocular images contain important nonidealities, such as
occlusions, reflections, off-angle and blur. Fig. 3 presents ex-
amples of non-ideal images acquired using a digital single-lens
reflex digital camera in an uncooperative scenario, at different
distances from the camera, and in natural light conditions.

In our tests, we considered as ground truth the masks manu-
ally segmented by Operator A, as described in Hofbauer et al.
(2014).

4.1.4. DB CASIA 4i
is composed of samples acquired using commercial iris scan-

ners in controlled conditions. It a is subset of “CASIA-IrisV4
Interval” database (The Center of Biometrics and Security Re-
search).

In this work we define DB CASIA 4i as a set of 2.639 sam-
ples corresponding to the left and right eyes of 249 subjects, for
which manually segmented masks are publicly available, as de-
scribed in Hofbauer et al. (2014). The images correspond to left
and right eyes and have a size of 320 × 280 pixels. To directly
compare the results of our method with other recent studies in
the literature, we also created a subset DB CASIA v4i R, com-
posed of the 1307 right eye images from 139 subjects.

In our tests, we considered as ground truth the masks manu-
ally segmented by Operator A, as described in Hofbauer et al.
(2014).

4.1.5. DB IITD
is composed of samples acquired using commercial iris scan-

ners in controlled conditions. It a is subset of “IIT Delhi Iris
Database Version 1.0” database (Kumar and Passi (2010)).

In this work we define DB IITD as a set of 1.120 samples cor-
responding to the left and right eyes of 224 subjects, for which
manually segmented masks are publicly available, as described
in Hofbauer et al. (2014). The images correspond to left and
right eyes and have a size of 320 × 240 pixels.

In our tests, we considered as ground truth the masks manu-
ally segmented by Operator A, as described in Hofbauer et al.
(2014).



12

4.1.6. DB Notredame
is composed of samples acquired using commercial iris scan-

ners in controlled conditions. It a is subset of “ND-Iris-405”
database (Phillips et al. (2010)).

In this work we define DB Notredame as a set of 2.640 sam-
ples corresponding to the left and right eyes of 260 subjects,
for which manually segmented masks are publicly available, as
described in Hofbauer et al. (2014). The images correspond to
left and right eyes and have a size of 640 × 480 pixels.

In our tests, we considered as ground truth the masks manu-
ally segmented by Operator A, as described in Hofbauer et al.
(2014).

4.2. Performance evaluation and figures of merit

To evaluate the accuracy and the generality of our segmen-
tation method to improve the final recognition accuracy of iris
recognition systems in non-ideal conditions, we used six pub-
licly available recognition schemes for feature extraction and
matching. The first schema consists of the feature extraction
and matching algorithms based on log-Gabor features (LG) and
described in Masek and Kovesi (2003). To reduce the com-
putation time required for each test, we implemented Masek’s
matching algorithm in C language, while we used the original
implementation of the feature extractor. The other recognition
schemes are implemented in the USIT software version 2.2, de-
scribed in Rathgeb et al. (2016), and are the following ones:
Complex Gabor (CG), described in Daugman (2002); Quadratic
Spline Wavelet (QSW), described in Ma et al. (2004), Cumula-
tive sums of gray scale blocks (KO), described in Ko et al.;
and Local intensity variations (CR), described in Rathgeb and
Uhl (2010). The figures of merit used were: Receiver Op-
erating Characteristic (ROC) curves, described in Jain et al.
(2007); Equal Error Rate (EER), as detailed in Maio et al.
(2002); FAR100 (False Rejection Rate - FRR - at False Accep-
tance Rate - FAR - of 1.00%); FAR1000 (FRR at FAR of 0.10%).

Another test consisted of evaluating the pixel-wise segmen-
tation accuracy. For this test, we used publicly available seg-
mentation masks describing the iris boundaries as closed curves
and the upper and lower occlusions as polynomials. We choose
these masks since they have been used in feature extraction and
matching algorithms, as described in Rathgeb et al. (2016). We
used the figures of merit adopted for the competition NICE.I.
In particular, the classification error rate (E1) is computed as
the proportion of correspondent disagreeing pixels (through the
logical exclusive-or operator) between each computed segmen-
tation mask and the corresponding manually segment mask.
This metric is computed as: E1 = 1

n
∑

i
1

c×r
∑

c′
∑

r′ Oi(c′, r′) ⊗
Ci(c′, r′) where, n is the number of images, Oi(c′, r′) and
Ci(c′, r′) are, respectively, pixels of the computed mask and the
real mask of image i, and ⊗ represents the XOR operation. The
second metric (E2) aims to compensate the disproportion be-
tween the False Positive Rate (FPR) and False Negative Rate
(FNR) of the pixelwise classification. This metric is computed
as: E2 = (1/n) × 0.5 × FPRi + 0.5 × FNRi.

For each dataset, we computed the recognition accuracy
achieved by different segmentation tools. In particular we con-
sidered three segmentation algorithms included in USIT version

2.2: the weighted adaptive Hough and ellipsopolar transform
(Wahet), presented in Wild et al. (2015); the contrast-adjusted
Hough transform (Caht) presented in Rathgeb et al. (2013); the
iterative Fourier-series push pull (Ifpp), presented in Daugman
(2007). Furthermore, we computed the performance of a seg-
mentation technique based on the Total Variation Model (Tvm),
presented in Zhao and Kumar (2015); and of a fast segmenta-
tion algorithm for non-ideal images (Fsa), presented in Gang-
war et al. (2016). We also compared the pixel-wise segmen-
tation accuracy achieved by the proposed method with that of
the three configurations of the approach based on deep learning
presented in Jalilian and Uhl (2017) (Dl Original, Dl Basic, and
Dl Bayesian-Basic) where possible, in particular with datasets
DB UBIRIS v2, DB CASIA v4i, DB IIT, DB Notredame.

4.3. Segmentation accuracy in non-ideal conditions

Table 4 summarizes the obtained results for the non-ideal im-
age datasets DB QFIRE, DB WVU, and DB UBIRIS v2. For
space constraints, we do not report the results achieved using
every evaluated recognition schema. Table 4 reports the accu-
racy for the recognition schemes LG, CG, and QSW. We report
the results of the first two recognition schemes since they are
widely used in the literature, and the results of QSW because
it achieved the best recognition accuracy. For DB QFIRE, the
reported results refer to 35,090 genuine identity comparisons
and 6,711,916 impostor identity comparisons. For DB WVU,
the reported results are based on 20,920 genuine identity com-
parisons and 9,579,782 impostor identity comparisons. For DB
UBIRIS v2, the reported results refer to 54,000 genuine identity
comparisons and 5,006,250 impostor identity comparisons. Ta-
ble 4 shows that PS-RANSAC achieved the best accuracy with
respect to compared methods.

In the following, we examine the results obtained for each
dataset and compare the performance of PS-RANSAC with ad-
ditional results reported in the literature for the best performing
state-of-the-art techniques.

4.3.1. DB QFIRE
As reported in Table 4, PS-RANSAC achieved the best ac-

curacy with respect to the compared segmentation methods for
the recognition schemes LG and CG, which use Gabor-based
features. PS-RANSAC achieved an EER of 5.98% with LG
and 9.20% with CG. For the recognition schema QSW, PS-
RANSAC reached the second place, with EER 5.52%.

Furthermore, we applied the commercial-of-the-shelf seg-
mentation method described in NEUROtechnology, which dis-
carded the 3.9% of the samples for insufficient quality and
achieved an EER of 7.53% for the remaining images. The
achieved performance shows that the proposed segmentation
method can be applied to images acquired at different distances
from the eye, in heterogeneous illumination conditions with sat-
isfactory accuracy for different feature extractors and matchers.

We also compared the performance of the proposed PS-
RANSAC method with that of other methods reported in the
literature for external boundary segmentation using the fea-
ture extraction and matching algorithms described in Masek
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Table 4. Comparison of segmentation accuracy for datasets of iris images acquired in non-ideal conditions

Segmentation DB QFIRE DB WVU DB UBIRIS v2
method Segmentation Verification - EER (%) Segmentation Verification - EER (%) Segmentation Verification - EER (%)

E1 E2 LG CG QSW E1 E2 LG CG QSW E1 E2 LG CG QSW

Dl Original† (∼) (∼) (–) (–) (–) (∼) (∼) (–) (–) (–) 0.0305 0.0898 (–) (–) (–)
Dl Basic† (∼) (∼) (–) (–) (–) (∼) (∼) (–) (–) (–) 0.0262 0.0687 (–) (–) (–)
Dl Bayesian-Basic† (∼) (∼) (–) (–) (–) (∼) (∼) (–) (–) (–) 0.0187 0.0675 (–) (–) (–)
Wahet (∼) (∼) 15.49 17.24 15.83 (∼) (∼) 4.75 11.55 6.97 0.2621 0.4783 (+) (+) (+)
Ifpp (∼) (∼) 17.69 19.81 18.80 (∼) (∼) 10.29 14.82 13.70 0.2282 0.3789 (+) (+) (+)
Caht (∼) (∼) (+) (+) (+) (∼) (∼) 14.70 19.19 12.21 0.1088 0.4525 (+) (+) (+)
Fsa (∼) (∼) 7.44 19.24 4.96 (∼) (∼) 4.91 15.57 6.67 0.1720 0.4310 (+) (+) (+)
Tvm (∼) (∼) 20.80 25.04 23.82 (∼) (∼) (+) (+) (+) 0.0211 0.1172 (+) (+) (+)
MSR + PS-RANSAC (∼) (∼) 5.98 9.20 5.52 (∼) (∼) 4.34 10.55 5.27 0.0165 0.0588 (+) (+) (+)

Notes: †result reported in Jalilian and Uhl (2017) and regarding machine learning method trained and tested using a 10-fold cross-validation procedure; (∼) result not computed because
segmentation masks created by human operators are not publicly available; (–) result not computed because the segmentation algorithm is not publicly available ; (+) EER > 30%. The
error metrics E1 and E2 have been computed using the publicly available segmentation masks described in Hofbauer et al. (2014) as ground truth.

and Kovesi (2003). The algorithms used for steps A (noise re-
duction), B (internal boundary segmentation) and C (illumina-
tion compensation based on MSR) of our segmentation method
were identical in each test. To compare the performances of
the evaluated methods, we used the same feature extraction
and matching techniques and substituted only step D (external
boundary segmentation) of our segmentation method with other
well-known techniques. In detail, step D (external boundary
segmentation) was performed using the following techniques:
RANSAC for circle fitting, the algorithm based on Discrete
Fourier Series analysis described in Daugman (2007), and the
algorithm designed for noisy iris images presented in Donida
Labati and Scotti (2010). Fig. 10 (a) shows the obtained ROC
curves. PS-RANSAC demonstrated better performance com-
pared with the other techniques. PS-RANSAC achieved the
best accuracy, with EER of 5.98% and and FAR1000 = 13.39%.

The achieved performance show that the proposed segmen-
tation method can be applied to images acquired at differ-
ent distances from the eye and in heterogeneous illumination
conditions with satisfactory accuracy for different recognition
schemes.

4.3.2. DB WVU
As reported in Table 4, PS-RANSAC achieved the best accu-

racy with respect to the compared publicly available methods
for DB WVU. The best result is an EER of EER = 4.34%,
achieved using the recognition schema LG.

To the best of our knowledge, the only previous paper that
has evaluated the accuracy of an iris segmentation method for
DB WVU in terms of its contribution to the overall biomet-
ric recognition accuracy is Shah and Ross (2009), which pre-
sented a robust segmentation approach based on Geodesic Ac-
tive Contours. It achieved EER of 12.03% for the left eyes and
14.19% for the right eyes. Other iris segmentation methods re-
ported in the literature have been evaluated using different fig-
ures of merit. The authors of Zuo and Schmid (2010) and Zuo
et al. (2006) reported segmentation success rates of 97.92% and
95.84%, respectively. However, this figure of merit is subjec-
tive because the segmentation results were visually classified
as either correct or incorrect. Therefore, the performance of
the proposed method cannot be directly compared with the per-
formances of these algorithms. Other segmentation techniques

cannot be directly compared with the proposed approach be-
cause they have only been tested using subsets of DB WVU. For
example, the technique presented in Roy et al. (2010) was vali-
dated using a subset of 800 images, and that described in Pund-
lik et al. (2008) was tested using 60 images over the 3099 com-
posing the complete dataset.

Furthermore, we compared the performance achieved using
PS-RANSAC with the results reported in Proenca and Neves
(2017). These results have been obtained by applying a coarse-
to-fine segmentation strategy based on geodesic active contours
and recent recognition methods specifically designed to deal
with non-ideal samples, which are based on computational in-
telligence techniques. It emerged that, although using recogni-
tion methods not optimized for this dataset of non-ideal sam-
ples, PS-RANSAC allowed to achieve a recognition accuracy
close to the best performing biometric recognition system de-
scribed in Proenca and Neves (2017). Specifically, the EER val-
ues achieved by PS-RANSAC in conjunction with the match-
ing method presented in Masek and Kovesi (2003) and by the
biometric system described in Proenca and Neves (2017) are
4.3% and 4.2%, respectively. Moreover, PS-RANSAC permit-
ted to achieve better recognition performance than the recent
matching methods presented in Yang et al. (2015) and Sun and
Tan (2009), which achieved EER values equal to 9.50% and
13.37%, respectively. We think that this result is encouraging
and proves the positive contribution of PS-RANSAC can pro-
vide to current biometric recognition systems, also without us-
ing machine learning approaches.

Furthermore, we applied the commercial-of-the-shelf seg-
mentation method described in NEUROtechnology, which dis-
carded the 0.1% of the samples for insufficient quality and
achieved an EER of 0.9% for the remaining images. We think
that this method obtained a better recognition accuracy with re-
spect to the state of the art thanks to a robust matcher. Unfor-
tunately, the SDK does not allow to evaluate the segmentation
accuracy or use the feature extraction algorithm in conjunction
with arbitrary segmentation methods.

Similarly to the tests performed using DB QFIRE, we com-
pared the performance of the proposed PS-RANSAC method
with the performances of other methods reported in the litera-
ture for external boundary segmentation. Fig. 10 (b) shows the
obtained ROC curves. Also in this case, PS-RANSAC achieved
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the best accuracy, with EER = 4.34% and FAR1000 = 12.38%.
The obtained results show that the proposed method is robust

to samples acquired using iris scanners but affected by strong
nonidealities, allowing different recognition schemes to achieve
remarkable accuracy.

4.3.3. DB UBIRIS v2
For DB UBIRIS v2, Table 4 shows that PS-RANSAC

achieved better results than the compared methods, also based
on machine learning strategies. In our opinion, this result is
particularly relevant, showing the robustness of our method in
selecting the region of interest for real biometric recognition
applications. The obtained results prove that the proposed seg-
mentation method can be successfully applied directly to the
red channel of color-based images. However, it should be taken
into account to properly tune the pupil detection algorithm of
the proposed method since the iris-pupil contrast can be low
for dark eyes, thus introducing possible segmentation errors.
Furthermore, the considered feature extraction algorithms and
matching methods are designed for images acquired using in-
frared illuminators and obtain unsatisfactory performance for
images acquired in natural light illumination (EER > 30%).
As discussed in Bowyer (2012), biometric recognition systems
based on iris images acquired in natural light conditions require
dedicate feature extraction and matching algorithms.

We also evaluated the pixel-wise segmentation accuracy of
the proposed method on the subset of 500 iris images of the
second version of UBIRIS used as test dataset for the NICE.I
competition, adopting the manually segmented masks used for
this competition as ground truth, as described in Proenca and
Alexandre (2007). In the following, we refer to this set of
images as DB NICE 1. The manually segmented masks of
DB NICE 1 present finer level of details with respect to the
ones from DB UBIRIS v2, since they consider reflections and
small occlusions due to hairs, glasses and single eyelashes. The
proposed segmentation method achieved E1 = 0.021. Manu-
ally segmenting the pupil region and applying PS-RANSAC to
segment the external iris boundary, we achieved E1 = 0.018.
Our previously proposed method was one of the finalists of the
NICE.I competition, achieving E1 = 0.030 for DB NICE 1 by
using algorithms for segmenting small occlusions and reflec-
tions. More recent methods designed to detect reflections and
small occlusions can achieve better results. For example, Tvm
achieved E1 = 0.012. Novel methods based on deep learning,
as the ones described in Arsalan et al. (2017), further decreased
the segmentation error for this subset of images. However, these
methods require a time-consuming training step for being used
in other application scenarios. On the contrary, the proposed
method can be applied to a wide range of heterogeneous sce-
narios without needing any training step.

4.4. Segmentation accuracy in ideal conditions
Although the proposed method is designed for non-ideal sce-

narios, we evaluated its accuracy also for samples acquired us-
ing commercial iris scanners in ideal conditions (DB CASIA
v4i, DB IITD, and DB Notredame). We used the same protocol
adopted for databases of images acquired in non-ideal scenar-
ios. Table 5 summarizes the obtained results. For completeness,

(a)

(b)

Fig. 10. ROC curves obtained using the proposed method with different
algorithms for performing the external boundary segmentation (step D)
for: (a) DB WVU, and (b) DB QFIRE. The evaluated algorithms are:
RANSAC for circle fitting, the algorithm based on Discrete Fourier Se-
ries analysis described in Daugman (2007), the method designed for noisy
iris images presented in Donida Labati and Scotti (2010), and the proposed
PS-RANSAC algorithm.

we computed also the segmentation accuracy of PS-RANSAC
for DB CASIA v4i, achieving E1 = 0.03760 and E2 = 0.04066,
which are close to the values obtained for DB CASIA v4i R
(E1 = 0.0392 and E2 = .0436). The pixel-wise segmentation
accuracy as well as the verification accuracy achieved using
PS-RANSAC are comparable to ones of segmentation methods
specifically designed for samples acquired using iris scanners
in controlled conditions and ones of the machine learning ap-
proaches trained separately for each dataset.

The obtained results show that although the proposed seg-
mentation method has been designed for samples acquired in
non-ideal conditions, it can achieve an accuracy comparable to
trained methods based on deep learning techniques.

4.5. Impact of illumination compensation techniques on the
segmentation accuracy

We compared the performance achieved using our segmen-
tation algorithm in combination with various illumination com-
pensation techniques (Section II-B) for samples acquired in par-
ticularly challenging conditions (DB QFIRE, DB WVU, and
DB UBIRIS v2). The algorithms used for the steps A (noise
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Table 5. Comparison of segmentation accuracy for datasets of iris images acquired in ideal conditions

Segmentation DB CASIA v4i R DB IITD DB Notredame
method Segmentation Verification - EER (%) Segmentation Verification - EER (%) Segmentation Verification - EER (%)

E1 E2 LG CG QSW E1 E2 LG CG QSW E1 E2 LG CG QSW

Dl Original† 0.0561 0.0588 (–) (–) (–) 0.0561 0.0588 (–) (–) (–) 0.0213 0.0424 (–) (–) (–)
Dl Basic† 0.0448 0.0438 (–) (–) (–) 0.0539 0.0594 (–) (–) (–) 0.0107 0.0269 (–) (–) (–)
Dl Bayesian-Basic† 0.0391 0.0407 (–) (–) (–) 0.0682 0.0701 (–) (–) (–) 0.0095 0.0282 (–) (–) (–)
Wahet 0.0615 0.0582 2.31 6.65 5.49 0.0978 0.0951 5.32 13.32 8.33 0.0266 0.0429 9.39 13.76 9.58
Ifpp 0.0771 0.0848 8.42 3.99 5.46 0.0911 0.0831 3.80 16.90 16.55 0.0285 0.0493 12.54 17.04 19.39
Caht 0.0291 0.0372 1.17 1.72 1.44 0.0494 0.0695 2.18 16.93 9.86 0.0232 0.0841 10.41 17.92 10.24
Fsa 0.0275 0.0420 1.54 2.26 0.46 0.0330 0.0364 0.70 18.60 4.94 0.0118 0.0426 5.47 18.57 4.94
Tvm 0.2542 0.3956 (+) (+) (+) 0.3422 0.5048 (+) (+) (+) 0.0879 0.3683 (+) (+) (+)
MSR + PS-RANSAC 0.0392 0.0436 3.33 4.69 3.58 0.0780 0.0848 4.02 13.72 7.65 0.0163 0.0334 7.98 14.49 8.98

Notes: †result reported in Jalilian and Uhl (2017) and regarding machine learning method trained and tested using a 10-fold cross-validation procedure; (–) result not computed because
the segmentation algorithm is not publicly available ; (+) EER > 30%. The error metrics E1 and E2 have been computed using the publicly available segmentation masks described in
Hofbauer et al. (2014) as ground truth.

reduction), B (internal boundary segmentation) and D (exter-
nal boundary segmentation) of our segmentation method were
identical in each test, but we tested the use of different algo-
rithms for step C (illumination compensation).

We performed a broad study of illumination compensation
techniques, which included: algorithms based on the histogram
equalization, algorithms based on the analysis of the histogram
distribution, algorithms based on the local histogram analysis,
SSR, MSR, DCT, TT and SQI. The first three classes of tech-
niques yielded satisfactory results only for iris images in which
the iris presented stable characteristics, such as similar iris di-
ameters and acquisition conditions. In fact, these techniques
require the tuning of one or more parameters that are expected
to have the same value for each iris image. However, the con-
sidered iris images exhibited significant differences in iris diam-
eter (from approximately 110 pixels to more than 300 pixels).
Therefore, the optimal parameters for these techniques could
differ considerably for different iris images. For this reason, we
do not report the results achieved for these algorithms. SSR
was tuned by using different Gaussian filters to estimate the lu-
minance L (Gaussian filters of 8 × 8, 16 × 16, 32 × 32, 64 × 64,
128 × 128, and 256 × 256 pixels). MSR was tuned by using all
possible combinations of two of the filters used for SSR. DCT
was tuned by using 5, 10, 15, 20, 25, 30 and 35 components. TT
was tuned by using the gamma intensity correction parameters
0.05, 0.1, 0.2, 0.5, and 1. SQI was tuned by using filters of size
9 × 9, 17 × 17, 33 × 33, 65 × 65, and 129 × 129 pixels.

For DB UBIRIS v2 we performed the comparison in terms
of E1. For DB WVU and DB QFIRE the performance were
compared in terms of recognition accuracy. In the last case, we
used the same feature extraction and matching techniques. We
computed the results applying the feature extraction and match-
ing algorithms LG since it is widely used in the literature and
previous tests showed that the performance of the considered
feature extraction and matching methods decrease in a similar
way in presence of segmentation errors. The experiments re-
vealed that illumination compensation algorithms enhanced the
segmentation accuracy and, thus, the ultimate performance of
the iris recognition system. The methods that yielded the best
results were SSR, MSR and DCT.

Table 6 presents the results of the illumination compensation
study for DB UBIRIS v2, expressed in term of E1. The parame-

ters of the best configurations of the illumination compensation
methods are the following: Gaussian filters of 128 × 128 for
SSR, kernels of size 64 × 64 and 128 × 128 pixels for MSR,
10 coefficients for DCT, gamma intensity of 0.2 for TT, and
kernel of 17× 17 pixels for SQI. In general, all the tested meth-
ods helped to significantly improve the segmentation accuracy
when their parameters were accurately selected. Our method
obtained the best segmentation accuracy with SSR and MSR.
Since the main nonidealities due to poor illumination conditions
that are present in the images of DB UBIRIS v2 are smooth
shadows, we think that SSR and MSR achieved the best per-
formance caused by their capability of reducing problems due
to smooth illumination changes. DCT achieved similar perfor-
mance. TT was also capable of improving the results of our
segmentation algorithm, but not as much as in the cases of SSR
and MSR. We think that the main cause for this might be strong
artificial gray level edges introduced in the DoG convolution,
because it was not possible to mask irrelevant regions, such as
skin or eyebrows. SQI provided also good results, although
they were not as impressive as with SSR and MSR. Further-
more, SQI was less robust to parameter changes and introduced
some artifacts in the iris images.

Table 6. Effects of different illumination compensation techniques on the
pixel-wise segmentation accuracy of the proposed PS-RANSAC method
evaluated on DB UBIRIS v2.

Illumination Compensation Results (E1)

PS-RANSAC 0.0217
SSR + PS-RANSAC 0.0165
MSR + PS-RANSAC 0.0165
DCT + PS-RANSAC 0.0167
TT + PS-RANSAC 0.0191
SQI + PS-RANSAC 0.0176

We report the results obtained by the three illumination com-
pensation algorithms that achieved the best performance for DB
UBIRIS v2 (SSR, MSR, and DCT) on the segmentation accu-
racy of the proposed method by evaluating the recognition per-
formance for DB WVU and DB QFIRE. The best results for
SSR were obtained using Gaussian filters of 256 × 256 pixels.
For DB WVU, the optimal MSR configuration consisted of two
Gaussian filters of 32 × 32 pixels and 128 × 128 pixels, while
the optimal DCT configuration consisted of 15 coefficients. For
DB QFIRE, the optimal MSR configuration consisted of two
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Table 7. Effects of different illumination compensation techniques on the
recognition accuracy of the proposed PS-RANSAC method evaluated on
DB WVU and DB QFIRE.

Database Illumination
Compensation EER (%) FAR100(%) FAR1000(%)

DB WVU PS-RANSAC 4.63% 7.79% 12.97%
DB WVU SSR + PS-RANSAC 4.57% 7.43% 12.51%
DB WVU MSR + PS-RANSAC 4.34% 7.35% 12.38%
DB WVU DCT + PS-RANSAC 4.44% 8.06% 13.67%

DB QFIRE PS-RANSAC 6.61% 10.30% 14.96%
DB QFIRE SSR + PS-RANSAC 6.31% 9.75% 13.70%
DB QFIRE MSR + PS-RANSAC 5.98% 9.50% 13.39%
DB QFIRE DCT + PS-RANSAC 6.21% 9.50% 13.97%

Gaussian filters of 16 × 16 pixels and 64 × 64 pixels, while the
optimal DCT configuration consisted of 5 coefficients. Table
7 present the results obtained for the optimal configurations of
the evaluated illumination compensation algorithms. The ta-
ble shows that the use of an illumination compensation algo-
rithm improved the recognition performance of our proposed
PS-RANSAC segmentation method for non-ideal images ac-
quired with infrared illumination using traditional iris scanners
as well as non-ideal images acquired at different distances us-
ing digital cameras. In this context, MSR produced images
that were less affected by blur compared with those obtained
using SSR and DCT, and therefore yielded greater improve-
ments in segmentation performance and recognition accuracy
compared with SSR and DCT. The illumination compensation
methods contributed more strongly to the overall segmentation
accuracy for DB QFIRE than for DB WVU. This finding can be
attributed to the fact that the samples in the first dataset were de-
liberately captured under poor illumination conditions and ex-
hibit lower iris-sclera contrast. Nevertheless, the application
of MSR did result in a slight increase in segmentation accu-
racy for DB WVU, likely reducing the disadvantageous effects
of overexposure and underexposure of local regions in the im-
ages caused by incorrect positioning of the subjects with respect
to the commercial iris scanner. Moreover, the obtained results
show that our algorithm for the segmentation of the external iris
boundary (PS-RANSAC) also achieved satisfactory results for
the original low-contrast images.

Fig. 11 shows examples of pairs of samples and the corre-
sponding match scores (ms) obtained by using PS-RANSAC
and the recognition schema LG. The images have been seg-
mented without applying any illumination compensation tech-
nique and by applying MSR in its optimal configuration. MSR
can mitigate problems caused by poor illumination conditions,
thereby improving the segmentation accuracy and the overall
recognition error of the biometric system.

The primary focus of this paper is on iris segmentation. How-
ever, we also report the results of tests on the use of illumina-
tion compensation techniques to improve the visibility of dis-
tinctive iris characteristics prior to the feature extraction step of
the biometric recognition process for samples affected by im-
portant nonidealities and acquired using infrared illumination.
We used the segmentation masks obtained using our segmenta-
tion method in its optimal configuration (MSR + PS-RANSAC)
and then applied SSR, MSR, and DCT in various configurations
both to the iris image I (modality A) and to the normalized im-

age obtained by applying the Rubber Sheet Model (as described
in Daugman (2002)) to I (modality B). In the tests of modal-
ity A, we tuned the SSR algorithm by using different Gaussian
filters to estimate the luminance L (Gaussian filters of 8 × 8,
16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256 pixels).
Similarly, the MSR algorithm was tuned by using all possible
combinations of two of the filters used for SSR. We also used
DCT with 5, 10, 15, 20, 25, 30, and 35 coefficients. In the tests
of modality B, we again tuned the SSR algorithm by using dif-
ferent Gaussian filters to estimate the luminance L (in this case,
Gaussian filters of 4 × 4, 8 × 8, 12 × 12, 16 × 16, and 20 × 20
pixels), tuned the MSR algorithm by using all possible combi-
nations of two of the filters used for SSR, and applied DCT with
4, 6, 8, and 10 coefficients. We performed these tests by using
the feature extraction and matching algorithms LG.

Modality A with an MSR configuration consisting of Gaus-
sian filters of 8 × 8 and 16 × 16 pixels yielded the best results
for both DB WVU and DB QFIRE. For DB WVU, the appli-
cation of illumination compensation reduced the FAR1000 from
12.38% to 10.69%, with EER of 4.91%. For DB QFIRE, the
application of illumination compensation did not increase the
recognition accuracy. Modality B did not improve the perfor-
mance of the biometric system.

The results suggest that methods based on the Retinex model
can reduce the hindering effects of poor illumination conditions
on feature extraction and matching in iris recognition systems.
However, more detailed studies are needed to improve the per-
formance of iris recognition for images acquired at a distance.
This topic should be the subject of future work.

4.6. Computational time

We executed the tests using a PC with 3.7 GHz Intel (R)
Xeon (R) E5-1620 v2 CPU, RAM 16 GB. The operating sys-
tem was Windows 10 professional 64 bit. We implemented all
the algorithms using Matlab 2016a. The mean computational
time needed to segment an iris image was around 0.21 seconds,
of which 0.10 was needed by PS-RANSAC. We think that the
computational cost of our method is acceptable since Matlab is
a prototype-oriented and non-optimized environment. We ex-
pect that the use of compiled languages, such as C/C++, can
further reduce the processing time.

5. Discussion

To evaluate the accuracy of the proposed segmentation
method, we performed identity verification tests using datasets
acquired in heterogeneous conditions: DB QFIRE, DB WVU,
DB UBIRIS v2, DB CASIA v4i, DB IITD, and DB Notredame.
For datasets for which segmentation masks created by human
operators are available, we also evaluated the pixelwise seg-
mentation accuracy. In all the cases, we compared the ob-
tained results with other techniques in the literature and pub-
licly available software. For samples acquired in non-ideal
conditions acquired using infrared illuminators, the proposed
method achieved the best identity verification accuracy with re-
spect to the compared techniques using a feature extractor based
on log-Gabor filters, with EER of 4.34% for DB WVU and
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DB WVU
Input images No illumination compensation: ms = 0.36 MSR: ms = 0.21

IA IB EA EB RA RB

Input images No illumination compensation: ms = 0.42 MSR: ms = 0.27

IA IB EA EB RA RB

DB QFIRE
Input images No illumination compensation: ms = 0.49 MSR: ms = 0.25

IA IB EA EB RA RB

Input images No illumination compensation: ms = 0.42 MSR: ms = 0.25

IA IB EA EB RA RB

Fig. 11. Examples of pairs of samples and the corresponding match scores (ms) obtained by using PS-RANSAC and the recognition schema LG. The
images have been segmented without applying any illumination compensation technique and by applying MSR in its optimal configuration. MSR mitigates
problems caused by poor illumination conditions, thereby improving the segmentation accuracy and the overall recognition error of the biometric system.

5.98% for DB QFIRE. For non-ideal images acquired in visi-
ble light illumination, PS-RANSAC achieved the best pixelwise
classification accuracy, with a classification error rate of 0.0165
for the 2250 iris images of DB UBIRIS v2. In case of images
acquired using iris scanners in cooperative scenarios, the pro-
posed method achieved pixelwise classification accuracy and
identity verification accuracy comparable to recent approaches
based on deep learning and algorithms specifically designed for
this category of samples. Specifically, PS-RANSAC achieved a
pixel-wise classification error E1 of 0.0392 for DB CASIA v4i,
0.0780 for DB IITD, and 0.0163 for DB Notredame.

Furthermore, tests performed using various illumination
compensation techniques showed that the application of these
algorithms can improve segmentation performance. Among
all the tested algorithms, MSR was the one that provided the
best improvement in segmentation accuracy. An analysis of the
use of illumination compensation techniques to improve perfor-
mance in the feature extraction step of the biometric recognition
process also indicated an encouraging improvement in match-
ing performance.

6. Conclusion

This paper presented a novel iris segmentation method, re-
ferred to as Polar Spline RANSAC or PS-RANSAC, designed

for application to samples affected by strong non-idealities and
acquired under poor illumination conditions. The presented
method can achieve competitive performance for different types
of feature extraction and matching techniques, and can deal
with multiple scenarios: iris images acquired using traditional
near infrared iris sensors; infrared iris images acquired at a
great distance; and iris images acquired in the visible spec-
trum. Moreover, the paper analyzed the application of vari-
ous illumination compensation techniques in conjunction with
PS-RANSAC to further improve performance. We evaluated
the accuracy of the proposed iris segmentation method using
six challenging image datasets acquired in heterogeneous con-
ditions, achieving better or comparable accuracy in every sce-
nario. The achieved results show that PS-RANSAC can be ap-
plied with competitive accuracy for a wider set of non-ideal
acquisition conditions with respect to the considered state-of-
the-art methods, without needing any preliminary training step.
Furthermore, we experimentally demonstrated that illumination
compensation techniques based on the Retinex model can in-
crease the segmentation and identity verification accuracy of
iris recognition systems.

Future work should address novel illumination compensation
techniques designed to improve feature extraction for iris im-
ages. Particular attention should be on methods designed for
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images acquired at a large distance between the subject and the
camera.
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8. Appendix. Parameters of the proposed method

The parameters of the proposed algorithms were empirically
estimated based on the image datasets considered in this study.

The threshold value used to search for specular reflections
was set to pr = 95%. The parameters of the bilateral filter
were set to Nq = 22 pixels, σs = 16 and σr = 0.1, σs = 2.
The intensity values used to estimate the pupil shape were T =
[10, 15, . . . , 25] for DB QFIRE. The estimation of the points
representing the external iris boundary was performed using an
rmin value equal to 15 pixels plus the pupil radius and Nm =

16 pixels. PS-RANSAC was applied using N = 6, while the
proportion “hypothetical inliers” of the points in the input set X
np was set to 0.9.

For DB WVU, the only parameter different from the previ-
ously described configuration is the one describing the intensity
values considered for segmenting the pupil region, which have
values T = [20, 25, . . . , 65].

Although images acquired in visible light and infrared illumi-
nation present strongly different characteristics, many parame-
ters used for DB UBIRIS v2 are the same as the ones used for
DB QFIRE. The other parameters are Nq = 10 pixels, σs = 2
σr = 0.1, T = [2, 4, . . . , 106], and np = 1.

As in the case of DB WVU, for the other datasets of im-
ages acquired in near infrared illumination, the only parame-
ters with different values with respect to the ones used for DB
QFIRE are the ones used to segment the pupil. Specifically:
T = [20, 10, . . . , 80] for DB CASIA v4i, T = [10, 5, 15] for DB
IITD, and T = [3, 3, . . . , 15] for DB Notredame.

We tested the robustness of the proposed segmentation ap-
proach by evaluating the accuracy with respect to a wide
range of different values of the parameters obtaining satisfac-
tory results. As an example, when we evaluated the perfor-
mance of PS-RANSAC on DB WVU and DB QFIRE with
N = [3, 4, . . . , 10] and np = [0.5, 0.6, . . . , 1.0], we obtained a
maximum decrease in the EER of approximately 1%. Table 8
presents the variation of E1 for DB UBIRIS v2 with respect to
the most important parameter of PS-RANSAC, N. This table
shows that the method is robust to different values of its param-
eters, providing only small performance variations for each of
the considered configurations.
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