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An Estimate of the Maximum Gradients in
Superconducting Quadrupoles

Ezio Todesco and Lucio Rossi

Abstract—In this paper we show that the electromagnetic design
of several superconducting quadrupoles, built for particle acceler-
ators, can be rather well approximated by a 36 degree sector coil
with a wedge, canceling the first two field harmonics. We there-
fore carry out a complete analysis of this lay-out, obtaining an ap-
proximated equation for the critical gradient as a function of the
coil area, magnet aperture, and of the superconducting proper-
ties of the cable. Using this model, we estimate through numerical
methods the maximum critical gradient that can be obtained in
quadrupole of a given aperture for Nb-Ti, Nb-Ti-Ta and Nb3Sn.

Index Terms—Accelerator magnets, superconducting magnets.

I. INTRODUCTION

SUPERCONDUCTING quadrupoles have been used to
focus particle beams in accelerators and storage rings since

more than 30 years [1]–[3]. A simple upper bound to the max-
imum achievable gradient is given by the following condition:
the gradient times the aperture radius cannot exceed the critical
field of the superconducting material, which is 13 T for the
Nb-Ti, and 25 T for the , both at 1.9 K. Indeed, the
critical field is associated to a vanishing current density and
therefore this naïve limit can be considered as academic.

In this paper we aim at giving a better estimate of the max-
imum gradient achievable in an accelerator superconducting
quadrupole. Following a similar approach to [4]–[6], we an-
alyze a simplified coil lay-out to derive an equation for the
gradient as a function of the quadrupole aperture, of the quan-
tity of cable in the cross-section, and on the superconducting
properties of the cable. Instead of choosing the classical
lay-out, we focus on a 36 sector coil with a wedge to zero the
first two field harmonics (see Fig. 1), which is much closer to
the structure of an actual coil built with cable [7]. We apply this
formula to several built quadrupoles to verify if our model well
represents realistic lay-outs. We then use this equation to derive
an estimate of the maximum achievable gradient.

II. LAY-OUT PARAMETERS OF AN IRONLESS SECTOR COIL

We consider a 36 quadrupole sector coil with a wedge be-
tween 24 and 30 (see Fig. 1), with aperture radius and coil
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Fig. 1. Layout of a 36 sector coil with a wedge between 24 and 30 for a
quadrupole of aperture radius r and coil width w.

width . This lay-out cancels the first two field harmonics
and . We assume that there is no iron contributing to the field,
and that the current density is uniform.

Both the field gradient [T/m] at the centre of the quadrupole
and the peak field [T], i.e. the largest value (in module) of
the magnetic field in the coil, are proportional to the current
density :

(1)

(2)

We compute [Tm/A] through a simple integration of the Biot-
Savart law

(3)

where

(4)
and we write the parameter in the form

(5)

where [adimensional] is the ratio between the peak field and
the gradient times the aperture. The parameter is equivalent
to the ratio between the peak field and the central field in a
dipole magnet. The dependence of on has been numeri-
cally evaluated, finding out (see Fig. 2) that it can be well fit by

(6)
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Fig. 2. Parameter � defined in (5) versus w=r: numerical evaluation (markers)
and analytical fit of (6).

Fig. 3. Critical surface for Nb-Ti at 1.9 K and at 4.4 K, and linear fit given in
(1), data relative to LHC superconductors.

with and . For values of between
1/3 and 1, which are typical of most magnet lay-outs (see Sec-
tion III-B), is around 1.15, i.e. the peak field is 15% larger
than the gradient times the aperture radius. For larger the
ratio increases proportionally to .

III. CRITICAL GRADIENT FOR Nb-Ti

A. Critical Gradient of an Ironless Sector Coil

A Nb-Ti filament carrying a current density in a magnetic
field is superconducting as long as is less than the critical
current density , which can be approximated by a linear
function of the magnetic field:

(7)

where is the critical field at zero current according to the
standard linear fit, that underestimates the actual critical field
value of around 10% (see Fig. 3), and is the slope
of the line in the plane. The fit is good for at
1.9 K, and at 4.2 K, which is the interesting domain
for our analysis. One has at 4.2 K and 13 T at 1.9
K, whereas the slope is independent of
the temperature. This corresponds to having at 8
T and 1.9 K, or at 5 T and 4.2 K.

A practical cable is made of an insulated conductor, com-
posed of wires, made of Nb-Ti filaments in a copper matrix. One

Fig. 4. Critical gradient versus sector width for the [0–24,30 –36] sector: nu-
merical results (markers) and analytical approximation by (11) (solid line), aper-
ture radius r = 30 mm and filling factor � = 0:25.

defines an engineering current density , i.e. the current density
flowing in the insulated conductor

(8)

where we defined the filling factor that depends on i) the ratio
between the area of the strands in the conductor and the

area of the bare conductor, ii) on the ratio between the area
of the bare conductor and of the insulated conductor, and iii) on
the volume ratio between copper and superconductor in
the strands. Typical values are 0.85–0.9 for both and ,
and 1 to 2 for , thus giving in a range between 0.25 and
0.35.

The fit for the critical current surface can then be written as

(9)

Using the definitions (1) and (2) of and , one obtains the crit-
ical gradient (also called short sample gradient [5], [6]), defined
as the gradient corresponding to a current density on the critical
surface

(10)

Substituting the expressions ((3)–(6)) for and one obtains

(11)

with as in (4), and and
are the adimensional constants defined in (6), the

slope , and are expressed in meters,
in T, and the gradient in T/m.

According to this equation, for a given aperture radius the
critical gradient strongly increases with for small , then it
saturates, and then slowly decreases for large (see Fig. 4).
The somewhat unexpected fact that adding cable decreases the
critical gradient is due to the asymptotic behaviors ,
whereas : when adding cable for large we
mainly increase the peak field, and we only marginally increase
the gradient, thus reducing the critical gradient. This feature is
typical of quadrupoles and is not found in dipoles [7]. In Fig. 4
we also plot the value , that is the naive upper
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TABLE I
Parameters of 13 Superconducting Quadrupoles and Error of the Critical

Gradient Estimate According to Eq. (14)

bound to the maximum critical gradient. We point out that in
this case, one obtains at most only 70% of .

The agreement between the approximation (11) and a numer-
ical computation is within 1% (see Fig. 4). To generalize (11)
to any lay-out we express it in terms of the area of the insulated
conductor. In our model one has

(12)

and therefore for any coil, whose surface is , we can define an
aspect ratio as

(13)

and we can express (11) in terms of the coil area

(14)

A simplified expression of the above equation with
can also be defined, and gives good results for be-

tween 1/3 and 1, which is the usual range of interest of magnet
designers. Indeed, this approximation does not account of the
slow decay for large , and does not provide a correct esti-
mate of the maximum critical gradient.

B. Comparison With Built Magnets

We tested our estimate (14) for 13 quadrupoles, based on a
shell design built in the last 30 years, with apertures radii from
20 to 116 mm, 1 to 4 layers, and 2 to 6 blocks. Parameters are
listed in Table I, where also the aspect ratio, defined using (13),
is given. The comparison (last column of the Table) is made be-
tween the critical gradient estimated with , , through (14),
and a numerical computation for the actual lay-out without iron.
The error is always below 3.5%, with the exception of three
cases, where current grading is used, which can provide up to
8% more critical gradient.

Fig. 5. Relative increase in the critical gradient due to the iron in 11 built
quadrupoles.

Fig. 6. Maximum critical gradient (solid line) and maximum critical gradient
times aperture (dashed line) versus aperture radius for a sector coil of Nb-Ti at
1.9 K for two different filling factor values.

C. Effect of Iron

The presence of iron has the main function of closing the
magnetic circuit, and can be used to withstand the forces (me-
chanical function). The iron induces a higher field in the magnet
aperture for the same current density. However, it also induces a
higher peak field and therefore the beneficial effect on the crit-
ical gradient it is much less than what could be expected at a first
view. Here, we computed the relative increase of the critical gra-
dient for the coil layouts analyzed in the previous section. One
finds that the magnets with lower (RHIC and ISR) have a
non negligible contribution of the iron (7% to 22%), and for an
aspect ratio larger than 0.5 the iron contribution is nearly negli-
gible (1.5% to 3%). Therefore we conclude that the iron does not
affect the maximum critical gradient that can be reached for a
given coil aperture, usually obtained with (see Fig. 5).

D. Estimating the Maximum Critical Gradient

We compute the maximum critical gradient reachable for a
given aperture as the maximum of (14) over . Results are
shown in Fig. 6, where we also plot the gradient times the aper-
ture radius that, according to the naïve estimate, should be 13 T
for Nb-Ti at 1.9 K. One observes that for small apertures one ob-
tains much less, namely 7 T for , and 9 T for 25 mm.
The upper bound of 13 T is never reached, since according to
our model the peak field is always at least 15% larger than .
This feature is also shared by the analyzed magnet lay-outs. The
dependence on the filling factor is rather weak, and becomes rel-
evant ( 5%) for .
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Fig. 7. Critical surface of the Nb Sn according to Summer fit (markers) and
proposed fit of Eq. (15) (solid lines).

IV. CRITICAL GRADIENT FOR Nb-Ti-Ta

Even though the superconducting properties of the Nb-Ti-Ta
compound have been studied since several years, no applica-
tions to magnets have been carried out yet. The critical surface
of the Nb-Ti-Ta has a similar slope to the Nb-Ti, and a higher
critical field of about 1.5 T. Therefore the previous results can
be simply generalized to Nb-Ti-Ta by adding about 10%.

V. CRITICAL GRADIENT FOR

The critical surface of the is not linear over our do-
main of interest, and therefore more complicated approxima-
tions must be used. The Kramer law [8] (and the related Summer
fit [9]) is the most commonly used; unfortunately its algebraic
form does not allow an explicit solution for the critical gradient
as done in (10) for the linear case of Nb-Ti. Here we propose a
simple hyperbolic fit

(15)

We set and at 1.9 K and
and at 4.2 K: these values

between 11 T and 17 T agree within 5% with the Kramer law
using the typical parameters for a good superconductor,
namely having at 12 T and 4.2 K (see
Fig. 7). This simple approximation has the advantage of having
an explicit solution for the critical gradient:

(16)

and substituting the lay-out parameters ((3)–(6)) one obtains an
explicit equation for the case. As for Nb-Ti, the max-
imum with respect to provides the estimate of the higher crit-
ical gradient reachable for a given aperture. Results are given
in Fig. 8: ranges from 13 T ( –40 mm) to 16 T

, and is much smaller than the critical field
(nearly a factor two). This is due to the shape of the critical sur-
face. For a fixed aperture radius of , provides
a critical gradient that is up to 50% larger than Nb-Ti. For a fixed
critical gradient of 200 T/m, quadrupoles have an aper-
ture that is up to 70% larger than Nb-Ti.

Fig. 8. Maximum critical gradient (solid line) and maximum critical gradient
times aperture (dashed line) versus aperture radius for a sector coil of Nb Sn

at 1.9 K for two different filling factor values.

VI. CONCLUSION

We derived a formula giving the critical gradient as a function
of the superconducting properties of the material, of the magnet
aperture, and of the quantity of cable used in the cross-section
for the lay-out shown in Fig. 1. This formula agrees within 3.5%
with results relative to 10 non-graded magnets, and cases with
grading give 4–8% more.

The formula can be used to derive the maximum critical gra-
dient reachable with a superconducting quadrupole of a given
aperture. One finds that the gradient times the aperture radius
is much smaller than the naïve limit given by the critical field
of the material. The loss becomes more and more relevant for
smaller apertures: for one obtains values that are 1/2
the naïve limit for Nb-Ti. The effect is stronger for . This
suggests that quadrupoles with very small apertures do not ex-
ploit well the potential of superconducting material. It remains
an open issue whether a coil could be designed to provide better
performance than our model: indeed, all the analyzed designs
agree with our model.

For aperture radii of the order of 35 mm, as in the Large
Hadron Collider interaction regions, the aperture radius times
the gradient is at most 9.5 T for the Nb-Ti and 14 T for the

at 1.9 K. Graded coil, which are not considered in our
model, can give 5%–10% more.
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