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Abstract

In the last decade, phylogenetic approach is recurrent in molecular evolutionary analysis. On May 12th, 

2019, about 2.296.213 papers are found, but typing “phylogeny” or “epidemiology AND phylogeny” 

only 199.804 and 20.133 are retrieved, respectively. Molecular epidemiology in infectious diseases is 

widely used to define the source of infection as so as the ancestral relationships of individuals sampled 

from a population. Coalescent theory and phylogeographic analysis have had scientific application in 

several, recent pandemic events, and nosocomial outbreaks. Hepatitis viruses and Immunodeficiency 

Virus (HIV) have been largely studied. Phylogenetic analysis has been recently applied on 

Polyomaviruses so as in the more recent outbreaks due to different Arboviruses type as Zika and 

Chikungunya viruses discovering the source of infection and the geographic spread. 

Data on sequences isolated by the microorganism are essential to apply the phylogenetic tools and 

research in the field of infectious disease phylodinamics is growing up. There is the need to apply 

molecular phylogenetic and evolutionary methods in areas out of infectious diseases, as translational 

genomics and personalized medicine. Lastly the application of these tools in vaccine strategy so as in 

antibiotic and antiviral researchers are encouraged.  

Key word: Evolution; Epidemiology; Research and analysis methods
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Introduction

Typing in PubMed “Epidemiology” at the date of May 12th, 2019, about 2,296,213 papers can be found, 

but typing “Phylogeny” only 199,804 are retrieved. Curiously typing “epidemiology AND phylogeny” 

20,133 articles appear (Figure 1). This is conceivable thinking to the origin of epidemiology and 

phylogeny. Epidemiological concept was born at the time of Hippocrates considered to be the first 

epidemiologist (Figure 2A). Hippocrates was a Greek physician, he wrote a book called “On AIRS 

WATERS, PLACES” were he described epidemics. On the other hand, phylogeny probably has as 

father Charles Darwin (Figure 2B) and his principles in a theory of evolution due to natural selection, 

principles and theory divide with the thinking of Russel Wallace. The first phylogenetic tree is due to 

Walter Fitch and Emanuel Margoliash, in 1967 “Construction of phylogenetic trees. A method based on 

mutation distances as estimated from cytochrome c sequences is of general applicability “(1). 

Phylogenetics is a branch of molecular epidemiology that infers knowledge about taxonomy so as the 

evolution of microorganisms (2). It is a powerful tool, widely used in the study of rapidly evolving RNA 

viruses as well as recently in bacteria applying phylogenetic analysis in nosocomial infection (3-5).  In 

the last years, a number of new methods that infer phylogenetic trees have been introduced. These 

methods are based on Bayesian theory introducing the statistical phylogenetic with two important 

concepts: the molecular clock hypothesis and the coalescent theory (6-8). Genetic distances and 

phylogenetic trees (coupled with a correct epidemiological design i.e., cross sectional studies), inferred 

via different sequence evolutionary models, are normally used to assign the genotype (9). In addition, 

phylogeny has been widely used to define circulating recombinant forms (CRFs), to discover mosaics 

and complex form of the virus (10-13). Coalescent theory and the molecular clock hypothesis are 

instead used to study the ancestral relationships of individuals sampled from a population (i.e. 

longitudinal studies) which can be inferred from a gene genealogy (phylogenetic tree) (10, 13-16). The 

link between epidemiological design and phylogeny inference can be seen as a hypothetical cycle 

starting with the specific evolutionary hypothesis and going on through data generation, data analysis 

and test hypothesis (Figure 3). Depending on the scientific question raised and on the availability of 

molecular epidemiological data, normally the first step analysis is based on maximum likelihood criteria 

(12), followed by phylodinamic criteria, molecular clock hypothesis and Bayesian techniques that are 

normally applied (12). Molecular epidemiological investigation has a historical and scientific 

application in Global infection diseases. In several relevant and recent pandemic events, as severe acute 

respiratory syndrome SARS (17-20), avian influenza A subtype H5N1 virus (21-23), H1N1 influenza A 

virus (24-28), Zaire Ebola virus (EBOV) (29-32) and lastly Zika virus (ZIKV), phylodinamic analysis 
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has been fruitful applied (33-36). All these epidemic events have been resolved, first applying the 

principles of classical epidemiology, quarantine and isolation, and then using phylodinamic principles 

representing drivers to the solution of the origin and the diffusion of the epidemics. 

Hepatitis

The population dynamics and the circulation of hepatitis viruses has been investigated to better 

understand the origin and the migrations of these viruses by phylogenetic and phylodinamic approaches 

(Figure 4).

Phylogenesis and phylodinamic of Hepatitis A Virus (HAV) 

Molecular epidemiology and phylogenetic analysis of HAV isolates have been proved crucial for 

understanding the demographic, social and environmental factors responsible for the current worldwide 

epidemiological patterns.

HAV is non-enveloped, single-stranded RNA virus belonging to the Picornaviridae family, genus 

Hepatovirus.

Molecular epidemiological investigation of HAV outbreaks is usually done using a short genomic 

region, like the VP1-P2A junction for the greatest simplicity in obtaining reliable results during an 

epidemic.

Several foodborne HAV outbreaks have been described and HAV infected food handlers have been 

frequently identified as a source of HAV outbreaks (37-40). The food-borne outbreak of hepatitis A 

occurred in the U.S.A. in 2005 was associated with the consumption of contaminated row oysters and 

phylogenetic analysis identified the same VP1-P2B sequence in the oysters and in oyster consumers (41, 

42); a more detailed analysis of whole-genome sequences showed that HAV strains involved in the 

outbreak were genetically heterogeneous but closely related (43).

Two important outbreaks related to the consumption of imported raw or undercooked mussels have 

occurred in 1996‐1997 and in 2002 in Campania and Apulia regions of Southern Italy, respectively (44), 

with most of the HAV isolates clustering as genotype Ia by phylogenetic analysis (45). Between 

September and November 2003, 1,023 cases of hepatitis A cases had been registered in in Tennessee, 

North Carolina, Georgia and Pennsylvania (U.S.A.) (46, 47), associated to the consumption of green 

onions grown in Mexico. Sequence analysis of the VP1-P2B region identified 3 HAV variants tightly 

clustered in phylogenetic tree (46, 47). However, the evaluation of the HAV whole-genome sequences 

showed that a much greater number of strains were involved (43).

An outbreak of acute hepatitis A due to the consumption of semi-dried tomatoes occurred in England in 

2012 (48). The phylogenetic analysis identified multiple HAV strains of subtype IB and attributed the 
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genetic variability to viral evolution at the local source of the production rather than to substitutions in 

each infected individual (43). 

Genetic analyses of HAV outbreaks has demonstrated the occurrence of person-to-person transmission 

in large families, day care centers or schools, commonly due to contacts with infected asymptomatic 

children (49) acting as reservoirs of HAV infection. In accordance with the above, Pelletier et al. 

reported a limited outbreak of hepatitis A in a large family in the U.S.A., in which the cases were 

primary or secondary contacts of an HAV infected foreign adoptee (50). 

Molecular analysis is crucial for the identification of the source of HAV infection, especially when 

infected cases do not declare risk factors (51, 52), especially in countries with low HAV endemicity, 

where outbreaks are usually associated with a single HAV strain (53). Conversely, when outbreaks 

occur in highly endemic geographic areas an exposure to several HAV strains should be expected (54-

60).

In recent years, numerous outbreaks of acute hepatitis A have occurred in men who have sex with men 

(MSM) in Europe (61, 62), in the U.S.A. (63) and in Japan (64), with specific HAV IIIA strains 

circulating among MSM communities identified by phylogenetic trees (65-68).

A large outbreak of hepatitis A has been identified in central Italy, with 523 cases identified between 

January 2016 and March 2017. This outbreak had an extremely high male to female ratio, suggesting 

that sexual practices between males were implicated in the transmission of this infection. In support of 

this hypothesis the Authors found that several cases were due to the HAV variant circulating in Europe 

in the same period among MSM (VRD_521_2016) (69). 

Monophyletic clusters of HAV IA variants have been also identified in MSM in Spain, Italy, U.S.A. (66, 

67, 70) and in previous HAV outbreaks occurred in MSM in several European countries. 

Outbreaks of acute hepatitis A in IDUs has been reported in North American and North European 

countries (71-73). In Norway, IIIA strains have been identified in IDUs with parenterally acquired HAV 

infection (74). Two samples clustered in sub-genotype IIIA, closely related to variants identified in 

outbreaks occurred in Norwegian and Swedish IDUs communities in the same period (75). 

The analysis of sequences based on sub-genomic regions is of practical use for epidemic investigation, 

but it does not allow a specific identification of the HAV strain. Instead, a more precise genetic 

resolution of the HAV strains can be achieved by the analysis of the whole genome sequences and intra-

host heterogeneity, which represent a great opportunity for phylogenetic analysis and deeper knowledge 

of HAV molecular evolution. 
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Phylogenesis and phylodinamic of Hepatitis B Virus (HBV)

Phylogenetic studies may help to understand the origin, evolution and geographic dispersion of HBV 

due to its high genetic heterogeneity. 

The main difficulty in reconstructing the HBV phylodinamic is the lack of a consensus in the estimation 

of the rate of evolution of the virus that affects also the tMRCA estimates and the timescales of HBV 

evolution (76). Studies based on external (“fossil”) calibration points (77, 78, 79) describe HBV as a 

slowly evolving virus, whereas those based on internal calibration approaches (such as the use of 

heterochronous sequences) indicate that it is a highly variable virus evolving at a rate comparable with 

that of retroviruses (80). A recent study, re-estimating the viral evolutionary rate in known transmission 

chains, observed different rates at intra and inter host levels suggesting a reduced rate in transmission 

event with in general lower evolutionary rates on transmitted lineages (80). 

1. Phylogenesis of genotype D

Several studies have reconstructed very different histories for the different HBV genotypes (81).

From the first studies, the original introduction of genotype D has been dated in the early 20th century 

(76, 82).

The phylogeographical reconstruction of the HBV genotype D history (83) indicates that it originated in 

India being the subgenotype D5 the first to diverge. A common ancestor of the remaining HBV-D 

subgenotypes left India in the first decade of the twentieth century and reached central Asia, where D1 

and D3 diverged. Subsequently, they spread to Europe and Mediterranean area by means of a 

Southwestern pathway (mainly followed by subgenotype D1), reaching North Africa and the 

Southeastern Mediterranean through the Middle East. A second north-western pathway (due to the 

spread of D2) that overflow in the eastern Europe and through the former Soviet Union and iron curtain 

countries reached the Mediterranean basin (Albania) (83).

The World Wars played a crucial role in the global spread of HBV-D from India to the rest of the world, 

but the further spread of the infection was probably sustained by unsafe use of injections in medical 

practice (84).

2. The phylogeny of genotype A

Genotype A originated in Africa and penetrated in Europe in the XVI and XVII centuries following the 

Portuguese trades and ships and in Asia because of trade and travel between eastern Africa and southern 

Asia (85). 
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Several studies suggested a recent origin of HBV-A2 in Europe, between 1960s and 1980s through the 

sexual transmission, particularly men-having-sex-with-men (MSM) (76, 86) among who a single clonal 

strain has been isolated among high-risk subjects all over the world (87, 88). 

HBV-A1 most probably originated in Africa and the slave trade and colonization played a major role in 

its global dispersion (89). 

A recent phylogeographic study suggested that the origin of the currently circulating HBV-A 

subgenotypes originated in West Africa more than 1,000 years ago and was exported to Asia in the 17th 

century through the Portuguese or Arab trades and to Latin America in the following century through 

the transatlantic slave trade. On the contrary, HBV-A2 subgenotype originated more recently, in the 20th 

century and spread in Western countries between 1970s and 1990s, mainly among subjects at high risk 

of infection (90).

3. The phylogeny of genotype E

The observation that all isolates of genotype E are included in a single monophyletic group together and 

are absent among Afro-Americans (91). On the contrary, the phylodinamic studies, reconstructing the 

timescale of the HBV-E evolution suggested its spread in west Africa between 200 and 60 years ago 

(92). These observations support the view that the explosive spread of HBV-E in Africa must have been 

due to a new and highly efficient route of transmission, probably the unsafe use of needles during 

numerous mass-vaccination campaigns, in the 1920s and 1960s (92, 93). A recent study confirmed the 

origin of HBV-E to half XIX century, and showed that it was introduced in Madagascar before 1970s 

but remained confined until recently, when an exponential growth was observed as far as the first 

decade of 2000s, when the skyline plot showed a plateau (94). 

4. The phylogeny of genotypes F and H

The observation that genotypes F and H share a common ancestor and are evolutionarily distant from 

the Old World genotypes but closely related to an isolate obtained from a woolly monkey of the New 

World suggested a long history of evolution of these genotypes, possibly representing the result of a 

cross-species transfer (95). 

The phylogeography of HBV-F indicates the pre-Columbian origin of HBV-F and its expansion during 

the rapid increase in the Latin American population since the XVIII century (78).

A study of HBV-F in Colombia, demonstrated that HBV-F3 was probably the oldest F sub-genotype 

being the most related to genotype H (96). 

Other studies (97) have suggested a possible origin of the F and H genotypes going back to the initial 

human New World settlements around 13,000 years ago and a divergence time at least 10,000 years ago. 
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5. The phylogeny of genotypes B and C 

A recent study, using a “fossil” calibration approach have proposed that HBV genotype C as the oldest 

human genotype originating about 30.0 kya (98). This result seems to be confirmed by the detection of 

HBV nucleic acids in a Korean mummy of the 16th century which phylogenetically grouped with 

subgenotype C2 (99) suggesting a relatively low rate of HBV-C evolution. 

To date no phylogenetic studies were conducted on genotype G. Two new genotypes (I and J) have been 

recently proposed (100, 101); but they have been shown to be recombinant forms and their identification 

remained as far as mainly sporadic (102). 

Phylogenesis and phylodinamic of Hepatitis C Virus (HCV) 

About 3% of the world’s population are chronically infected with HCV, accounting for 150–180 million 

people worldwide, with about 3.5 million new chronic infections per year (103, 104).  It has ben also 

estimated that about 350,000 deaths per year and a quarter of cases of hepatocellular carcinoma (HCC) 

are attributable to HCV infection (105). 

Although a progressive decline in the incidence of HCV acute infection has been registered in Western 

countries, HCV chronic HCV infection remains a serious health problem (106, 107).

The phylogenetic analysis verifies how the viral strains are genetically correlated, if mutation is the only 

cause of viral differences. Regarding HCV, phylogenetic clustering has been used as a tool to identify 

the characteristics associated with a higher probability of HCV transmission. (108, 109). 

In Western countries, HCV-genotypes 1A, genotype 1B and genotype 3A have been widely spread 

through the transfusion of blood or its derivate before a reliable test to identify HCV infection had 

become available and through needle sharing between drug users (IDUs) (110). At present, these HCV 

genotypes affect most HCV patients in these geographic areas (111-113).

Both HCV genotypes and subtypes (114) are differently distributed around the world (115-117). HCV 

genotyping is achievable by phylogenetic methods. HCV- genotypes 1 and 3 are worldwide distributed, 

(118). Genotypes 1 and 2 are endemic in Western African countries (Burkina Faso, Ghana, Guinea 

Bissau, Republic of Benin and Nigeria) but sporadically found also in Italy (119-124), genotypes 1 and 

4 predominates in the Democratic Republic of Congo and Gabon and genotype 4 in Central and Middle 

East Africa so as in Turkey (120, 125-131).  HCV genotype 3 is endemic in Asia (39% of all infections), 

where also genotype 6 is widely distributed in the South-East regions (132). Genotype 5 is the most 

common HCV genotype in South Africa and in Belgium and genotype 7 has been detected only in 

Central African immigrants tested in Canada (133). 
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 Phylogenetic studies on HCV subtypes showed that genotype 3A strongly predominates in North 

America, Europe and Oceania, whereas it accounts for only half chronic infection in India, where other 

subtypes have been detected like genotype 3B in 20,3% of cases, genotype 3G in 6,8% and 3I in 3,6% 

(134, 135).

Among factor impairing the response to Direct Acting Antivirals (DAAs) is the presence of baseline 

Resistance-Associated Substitutions (RASs) as evidenced in case of DAA-naive patients with genotype 

3 infection showing RASs in the NS5A region (136). The relevance and the clinical impact of these 

strains strongly suggest further phylogenetic and epidemiological investigations.

Phylogenesis and phylodinamic of Hepatitis E virus (HEV)

Only limited works focused their attention in the phylogenetic studies of HEV genotypes, in particular 

those causing zoonotic infections (HEV-3 and -4). An early study performed from Purdy et al. (137) 

estimated a divergence time of the genotypes 1–4 ancestor between anthropotropic and enzootic 

genotypes about 536 to 1344 years ago and suggested a possible enzootic ancestor concomitantly with 

the split of human and swine variants.

By Skyline plot analysis, genotype 1a number of infection increased until 1970-1980 years followed by 

a plateau in the last twenty years, whereas genotypes 3 and 4 increased around 1940 to 1945 years and 

decreased around 1990. The hypothesis was that the observed increases could be related to World War 

II and the population movement from urban to more rural settings or, additionally, to more lax sanitation 

procedures.

HEV-3 is the best described genotype. It is classified in 10 subtypes (3a-j) with a strong geographic 

structure, which group into two main clades: one including subtypes 3abchij and the second including 

3efg (138). Based on phylodinamic and phylogeographic studies, the second clade (called B in the study 

of Zehender et al.) (139) consists of mainly European strains, while the first clade (A) includes a 

subclade of European isolates (3c) and a second subclade of mainly Asian and all the North American 

(grouping into subtype 3a) isolates. Dated trees suggested the origin of the HEV-3 in the XIX or XVIII 

century (139, 140), while the penetration of this virus in Asia dated the first decades of 1900s. The 

oldest clade resulted 3b, with an origin in 1920s including Japanese isolates (141) suggesting an 

introduction of this strain in Japan after the fall of the ban on meat consumption and the increase of pork 

importation mainly from Europe (139, 141). The phylodinamic analysis showed an exponential growth 

of the infection between 1950s until recently (2000s). A recent study published two complete genomes 

of genotype 3 isolated, one was classified as 3i, a subtype already detected in boars in Europe, but never 
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detected before in Italy either in animals or in humans, the second strain did not resulted classified in the 

subtypes defined to date (142). 

Genotype 4 has been described mainly in Asia and it is classified into nine subtypes (4a-i) but was 

recently isolated in a small epidemic in Rome (143) in five patients living in the same area without 

travel in endemic areas. Given the scarcity of available sequences of HEV-4, only a single study 

described the phylodinamic of this HEV genotype, which suggests that the most probable origin of this 

genotype is Japan in the first decade of 1900s. The virus then was exported to China and from there to 

India, Indonesia, Korea, Taiwan and, sporadically, also to Europe (144).

Phylogenetic and phylodinamic analysis contributed to knowledge deepening in the evolutionary 

reconstruction of HEV virus history and transmission dynamic.

Phylogenesis and phylodinamic of  Human Immuno deficiency Virus (HIV)

In the field of HIV-1 the phylogeny was primarily used to identify new genetic forms and trace the 

spread of HIV-1 subtypes. The combination with recombination analysis permitted the definition of an 

increasing number of CRFs (circulating recombinant forms), 98 published to date.

Tracing of genetic forms is important for epidemiological purposes but can also be of relevance in 

clinical settings, as it is well known that some biological properties differ among subtypes. The subtype 

variants can be affect antiviral drug resistance development (145-150), the genetic barrier to drug 

resistance development and/or disease progression (151-154). A recent paper from Abecasis et al. (155) 

studied the HIV epidemics in Europe and analyzed the circulation of HIV-1 non B subtypes. Authors 

concluded that it is clear that some non-B subtypes imported into Europe remained largely limited to 

migrant populations and risk groups analysis, where subtypes are clearly compartmentalized. The 

prevalence of subtype B was higher in the MSM risk group compared to heterosexuals that are more 

frequently infected with non-B subtypes. This evidence indicated highly stratified epidemics in different 

countries and risk groups suggesting the need of target preventive measures to specific populations. The 

work by Magiorkinis et al. (156) describes the global pattern of HIV-1 migration across the Western 

Hemisphere. On the contrary, of Gilbert et al that evidenced the role of the American continent and the 

Caribbean as “outwards” for the Western epidemic at the initial random migration event (157). 

Magiorkinis et al. evidenced a constant subsequent spread to the rest of the world. In the global context, 

this study defined the limited role of Europe in the spread of HIV Western epidemic, highlighting that 

the incoming infections spread mainly among regional populations.

Many recent studies have focused their attention on the study of migrants in different countries as they 

frequently are at increased risk of many diseases compared with native populations due to many factors 
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such as structural barriers and social inequalities. Determining when HIV-1 acquisition has occurred, 

pre migration or post migration, is crucial to design adequate HIV-1prevention programs, HIV-1 testing 

strategies and treatment services. Recently, some evidence supports that migrants acquire HIV-1 

infection post migration. In reference to the European situation, data from Alvarez-del Arco et al. (158) 

reported that 63% of HIV-positive migrants acquired infection after migrating into Europe. Also in this 

work, the proportion of post migration infection varies according to patient origin and risk categories 

with a highest percentage of HIV-1 diagnosis in subjects from Latin America and Caribbean (71%), in 

particular in MSM (79%). Similarly, Paraskevis et al. (159) found that the HIV-1 infections in migrants 

were more frequently acquired after the arrival in Greece and through contacts between migrants. 

Comparable results were reported from Pantazis et al. (160) that reported the post migration infection in 

half of studied subjects (55,3%). 

A number of published works evaluated at local level the circulation of HIV variants in many countries 

and in specific population such as MSM (161-163) and IDU (164-165). These papers highlighted the 

presence of multiple epidemic clusters, tried to reconstruct the date of HIV introduction in different 

areas and analyzed their dynamics at population level. Theses knowledge represents a substantial 

increase in our depth of knowledge on which interventions can be based.

Phylogenetic analysis is an important way to trace epidemiological relationship in cases with dubious or 

unknown links. In this context, phylogeny has been recurrently used as a forensic tool in HIV 

transmission investigations. Phylogeny permit to identify groups of genetic isolates that form genetically 

related clades with strains closely related. The application of phylogenetic methods was so extended in 

the context of HIV-specific criminal laws that precise rolls were defined (166, 167). Lemey et al. (168) 

applied phylogeny to a possible HIV- 1 transmission case, in which 6 females presumably became HIV 

infected after a sexual assault from an African suspect. The conclusions of this work highlighted that 

viral strains from the victims were more closely related to the virus carried by the suspect with respect to 

used controls, but did not exclude the possibility of the presence of an additional subject that could have 

infected both suspect and victims. In another case (169), the results of phylogenic analyses resulted to be 

more definitive permitting the liberation the foreign medical staff who was accused of transmitting the 

HIV strain to children attending Al-Fateh Hospital in Benghazi in Libya. The authors demonstrated that 

the HIV-1 and HCV strains related to young victims were already circulating and prevalent in this 

hospital and its environs before the arrival in March 1998 of suspects.

Considering the very rapid HIV evolution and the fact that molecular sequences taken at different points 

in time showed a statistically significant number of genetic differences; HIV-1 evolution was also 
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studied in the microcosm represented of viral sequences sampled longitudinally i.e. heterochronous 

sequences obtained from an infected host. The main results from these studies showed a correlation 

between the intra-host evolutionary rate disease progression, linear or inverse (170, 171). The founding 

of supported monophyletic clades including sequences isolated from a specific tissue supported the 

existence of diverse HIV-1 subpopulations infecting different body tissues (172, 173).

The comparison of HIV-1 intra-host genealogies from patients sampled under different conditions could 

help in understanding the viral reservoir dynamics, the most important knowledge for the HIV-1 vaccine 

design.

Phylogenetic and phylodinamic analysis contributed to consistent improvement in the evolutionary 

reconstruction of HIV virus history.

Phylogenesis and phylodinamic of Arboviruses

Phylogenetic and population genetic inference (phylodinamics) based on viral whole genome data can 

resolve putative outbreaks, investigate their aetiology, and provide spatiotemporal context during 

investigations (174).

Many of the important zoonotic arboviruses belong to the families Togaviridae (Chikungunya virus, 

CHIKV) and Flaviviridae (Zika Virus, ZIKV; Yellow Fever virus, YFV; Dengue virus, DENV) (175). 

The main vector able to spread zoonotic viruses are the mosquitoes, especially (Culex spp., Aedes spp., 

etc.). These may act as vectors for the same virus in different vertebrate hosts, depending on different 

geographical and ecological locations. 

Phylogenetic analyses can reveal a better picture of arboviral outbreak, as have been occurred in Brazil 

in CHIKV outbreak. Phylogenetic reconstruction suggests several separate introductions of the Asian 

genotype (ECSA) strain, in contrast to a unique introduction of the ECSA genotype followed by virus 

dissemination inside the country (176, 177) also in Dengue virus outbreaks (178). In CHIKV Italian 

outbreak in September 2017, phylodinamic analysis showed that the virus was in loco at least 3 months 

before the outbreak and in particular it probably originated in Pakistan and not India as the classical 

epidemiology supposed (179).

As well as in ZIKV outbreaks, phylogenetic inference showed how the outbreak in Brazil was closely 

related to the French Polynesia isolates that circulated in November 2013 (35, 180) and that all viruses 

sampled in the Americas, including those from Brazil, form a robust monophyletic cluster the Asian 

genotype. Meanwhile in United States, ZIKV outbreaks appeared to had multiples introductions linked 

to the Caribbean (181)
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The application of Bayesian statistical inference framework, can allow the reconstruction of the 

geographic history of the still ongoing and never reported before epidemic on the basis of the first 

isolates sampled at known times (182). It has been showed that CHIKV was imported to the Americas 

from Southeast Asia (183-187).

During CHIKV outbreak in 2005-2006, non-synonymous mutation (A226V) occurred both on La 

Reunion and in some Indian area (188). The phylogenetic analysis highlighted how the sporadic finding 

of A226V, that allowed a vector jump from Aedes aegypti to ae. albopictus, was possible probably due 

to the importation of mutated strains from Indian Ocean islands to the Indian subcontinent. Moreover, 

the analysis showed the likely eastward path from Africa to Indian Ocean Island to India, and from there 

to other South East Asian countries (188).

The phylogenetic analyses allowed to understand the epidemiology history and how the viruses spread 

in the infected countries and inside the country with the possibility to plan prevention strategies (181, 

189, 190)

Phylogeny of human polyomaviruses

Polyomaviruses belong the Polyomaviridae family that according to the International Committee on 

Taxonomy of Viruses (ICTV) includes four genera named alpha-, beta-, gamma- and delta-

polyomavirus that together include 83 species (https://talk.ictvonline.org/taxonomy). This taxonomic 

classification is based on the phylogenetic analysis of the Large T Antigen (LT Ag) coding sequences. 

Up to 2007, two human polyomaviruses were known: BKPyV and JCPyV both uncovered in 1971 and 

named after the initials of the patients where they were first isolated (191, 192). According to Jin et al., 

four serotypes of BKPyV exist based on the differences between amino acids 61-83 in the VP1 region. 

These four serotypes corresponded to the four subtypes characterized by sequencing or restriction 

fragment length polymorphisms (193, 194).

Subtype I has a worldwide distribution, subtype IV is present in Asia and part of Europe, and subtypes II 

and III are rarely detected. Phylogenetic analysis of full- length genomes revealed the presence of 

subgroups within subtypes I (Ia, Ib1, Ib2 and Ic) and IV (IV a1, IV a2, IVb1, IVb2, IVc1, IVc2) (195, 

196). 

JCPyV, the etiological agent of Progressive Multifocal Leukoencephalopathy (PML) usually observed 

in immunocompromised patients, especially HIV positive, is classified into a major VP1 serotype and at 

least seven major genotypes by phylogenetic analysis. These genotypes present a characteristic 

geographic distribution (197, 198) that allowed us to trace the human migrations from the African 

continent where human beings first appeared to the rest of the world. JCPyV type 1 predominates 
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between Europeans and European-Americans, types 2 and 7 are found in Asia, and types 3 and 6 in 

Africa. Genotype 4 found between European-Americans in USA is closely related to the genotype 1 

from which it differs of about 1% at DNA level (199). 

In 2007 the discovery of two new human polyomaviruses named KIPyV and WUPyV isolated from the 

respiratory secretions of patients affected by acute respiratory tract infection was reported (200, 201). At 

phylogenetic analysis analysis, these two viruses formed a new subclass of polyomaviruses. KIPyV was 

phylogenetically related to other primate polyomaviruses in the early region of the genome, but had a 

little homology, <30% amino acid identity, in the late region of the genome when compared to known 

polyomaviruses (200). Phylogenetic analysis clearly revealed that WUPyV was a novel virus closely 

related to KIPyV. In the early VP1region, WU/KI was most related to the primate polyomaviruses BK, 

SV40, JC, and baboon polyomavirus. On the other hand, analysis of the VP2 open reading frame 

showed that WUPyV was very much divergent from other polyomaviruses aside from KIPyV (201). In 

the following years, phylogenetic analysis of whole genome sequences evidenced three WUPyV 

genotypes and five subtypes: Ia, Ib, Ic, II, IIIa and IIIb. No association was noted between genotype and 

distinct clinical features (202). 

In 2008, a fifth novel human polyomavirus was discovered. This novel human polyomavirus was named 

Merkel cell polyomavirus (MCPyV) (203) belonging to the genus Alphapolyomavirus was described as 

causing agent of Merkel cell carcinoma a rare and aggressive skin cancer usually affecting the elderly 

and immunocompromised individuals (204). Neighbor-joining trees for putative MCPyV LT, sT, VP1, 

and VP2 proteins revealed that the four known human polyomaviruses BKPyV, JCPyV, KIPyV, and 

WUPyV clustered together in the SV40 subgroup, whereas MCPyV was most closely related to MuPyV 

subgroup viruses and African green monkey (AGM) lymphotropic polyomavirus (LPyV) (203).

Phylogenetic analysis, performed by the NJ method and using MCPyV complete genome sequences 

indicated the presence of two clades highly supported by high bootstrap values. These clades were 

provisionaly named by the authors as A for MCPyV strains isolated from individuals of Asian 

background and C for those strained isolated from patients of Caucasian background (205-207). Other 

authors have more recently confirmed the exsistence of an Asian genotype (208). These data suggest a 

geographic distribution of MCPyV genotypes similarly to BKPyV and JCPyV viruses (209). 

Following MCPyV discovery, two other human polyomaviruses were identified in the skin of healthy 

individuals named HPyV6 and HPyV7 (207). HPVy7 has been associated with a pruritic rash in two 

lung transplant recipients (210). HPyV6 has been linked to Kimura disease, a chronic inflammatory 

disorder with subcutaneous nodules that is endemic in East Asia (211). Phylogenetic analysis performed 
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on the LT gene sequences revealed the presence of two distinct clades. All the HPyV strains originated 

from the Japanese patients belonged to the Asian/Japanese clade indicating an Asian/Japanese genotype 

(252). 

The trichodysplasia spinulosa-associated polyomavirus (TSPyV) genome was amplified from in plucked 

facial spines of a heart transplant patient with trichodysplasia spinulosa (212). Phylogenetic analysis 

revealed a close relationship of TSPyV with the Bornean orangutan polyomavirus and, more distantly, 

the Merkel cell polyomavirus; the causative agent of Merkel Cell Carcinoma (MCC).

. Maximum likelihood phylogenetic tree analysis of the VP1, VP2 and LTAg proteins revealed that 

MWPyV was highly divergent from all known polyomaviruses. Based on VP2 and LTAg sequences, 

MWPyV clustered with the clade containing HPyV9, LPyV, HaPyV, MPyV, TSPyV, MCV, ChPyV and 

the orangutan polyomaviruses. These discordant phylogenetic relationships suggest that MWPyV is 

probably derived from an ancestral recombination event (213). Currently, MWPyV has not been 

associated to any specific human disease.

STLPyV was uncovered screening the fecal microbiota of a child living in Malawi (214). This novel 

polyomavirus is closely related to MWPyV but phylogenetic analysis revealed that MWPyV and 

STLPyV form distinct clades with high confidence. 

HPyV12 is novel human polyomavirus originally identified in a resected liver tissue by a generic PCR 

targeting the VP1 gene. Phylogenetic analysis showed that HPyV12 was not closely related to any 

known human or animal polyomavirus (215).

NJPyV-2013, is the last novel human polyomavirus identified in a young pancreatic transplant recipient 

with retinal blindness and vascular myopathy (216). Phylogenetic analysis performed on whole genome 

sequences, showed that NJPyV-2013 is most closely related to chimpanzee polyomavirus.  Phylogenetic 

and phylodinamic analysis contributed to a further improvement in the evolutionary reconstruction of 

Polyoma virus history causing human infections.

Role of phylogenetic analysis in vaccine strategies

One of the most effective ways to prevent infectious diseases is to use vaccines that stimulate a 

protective immune response upon subsequent contact with the pathogen.

An effective vaccination strategy is strictly connected to the knowledge of the microbial origin, spread 

and evolution, especially whenever a novel pathogen emerges, and predicting the course of evolution is 

one of the most challenging and important areas in infectious diseases (217). Availability of microbe 

species genome sequences and application of system biology to the field of vaccinology, have provided 

new ways for identification and evaluation of potential vaccine candidates. Phylogenetic analysis is one 
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of the best tools for studying the adaptive evolution of pathogens, and it is used to investigate outbreaks 

or endemic diseases and the history of the pandemics-including the pattern (when, where, how) of 

disease spreading throughout the world (218, 219). 

Despite the wide use of vaccines, vaccination failure is possible due to the emergence of variants that 

escape vaccination. Thus, it is pivotal to determine the genetic diversity between circulating field strains 

and the currently used vaccine strains. Indeed, the change of genetic material is one of the major 

mechanisms that pathogens use to escape the host immune response, and that leads to outbreaks of 

infectious disease (220). Vaccine development deals with the interplay of fitness, diversity, dynamics 

and virulence, which are the most important factors of viral evolution, and phylogenetic analysis is a key 

tool to evaluate all together these factors. 

Here, some examples in which phylogenetic analysis has improved design and development of vaccines 

have been provided. 

We consider first RNA viruses, like influenza and HIV, which pose grave risk to public health 

worldwide. These fast evolving viruses continuously adapt to the highly variable environments they 

live, by evading host immune responses and altering the severity of disease (221). Influenza viruses, that 

infects about one fifth of the worldwide human population each year, are characterized by a very rapid 

evolution, resulting from mutations or genetic re-assortment with other of influenza viruses, such as pig 

horses and birds (222). This is why there is a new vaccine each year (223). Since 90’s it was clearly 

shown by phylogeny that, strains with amino acid changes at hemagglutinin sites tended to become the 

dominant strain next year (224). This permanent evolution necessitates of vaccine composition updates, 

based on the selection of strains that antigenically match currently circulating influenza viruses (225). 

Thus, use of phylogenetic methods to influenza sequence data, has become an integral part of the yearly 

vaccine design cycle. To date, computational analysis-assisted vaccine design established for influenza, 

has not been equally successful for HIV. While every years, influenza strains diverge by about 1 to 2 

percent in the population (226), in comparison HIV strains, diverge about one percent per year within a 

single individual. Phylogenetic analysis showed that the genetic structure of the HIV epidemic tends to 

spread out from an ancestor in a radial fashion to generate high variation (227). The evolutionary 

dynamics of HIV strains involve multiple processes as high replication rates and recombination, 

selective pressure exerted by the host immune system and by drugs, and genetic drift (228). Thus far, 

designing a vaccine to cover all, or fraction of HIV diversity has appeared to be impossible (229). The 

high evolutionary rate of HIV makes the needed progress in virus vaccine strategies, which are a critical 

component for controlling the HIV epidemic. In this regard, new vaccine approaches are coming by use 
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of computational vaccine design. For example, to conceive computer-generated artificial proteins, that 

potentially may stimulate a broader immune response than natural HIV proteins, phylogenetics and 

computational techniques are used. Researchers make a “consensus” sequences, including the most 

common amino acid at each position from a broad number of sequences HIV’s variation, to create 

proteins that will serve as immunogens in vaccines. This methodology, that uses bioinformatics tools for 

vaccine development starting from genomic information of the pathogen, is called reverse vaccinology. 

However, until today, this approach has failed to deliver an effective, preventive HIV-1 vaccine (230).

Another rapidly evolving virus, which is a major public health problem, is Hepatitis B virus (HBV) 

(231). HBV infection is caused by a partially double-stranded reverse-transcribed DNA virus, 

with genetic variability related to high levels of virus production, and absence of 

viral polymerase proofreading activity during the reverse transcription step of the replication cycle. 

Because of genomic structure and unusual replication cycle, it is difficult to estimate exactly rate of 

virus evolution. HBV is more comparable to an RNA virus that use reverse transcriptase than a DNA 

virus, with a mutation rate (0,0005 substitutions per site per year) as compared with HIV (0,003 

substitutions per site per year). Phylogenetic analysis has revealed ten human genotypes of HBV, from 

A to J, with a sequence divergence larger than 8% (232). Pyogenesis of novel variants, generated by 

recombination events between different HBV genotypes, have documented their presence worldwide, 

confirming their potential for spreading in a wide range of human populations and developing their own 

epidemiology (233). For example, in low endemicity countries with high immigration rates, 

phylogenetic analyses provided essential information on the molecular epidemiology and population 

dynamics of HBV. Current HBV vaccines contain correctly folded HBsAg and neutralizing epitopes of 

the S antigen, induce rapid protection and overcome nonresponse to second-generation vaccines. 

However, recombination, evasion of host immunity, vaccine escape and resistance to drugs have been 

associated with evolutionary aspects of HBV genetic variability. Mutations of the determinant "a" in S 

antigen, generating variants that "escape" from vaccination, called escape mutants, and that induce 

infection also in subjects who have protective titers of anti-HBs, have been described (234). With an 

ever better vaccine formulation and vaccination coverage, eradication of HBV would be possible.

Varicella–zoster virus (VZV) is the only herpesvirus for which a vaccine has been developed. Human 

herpes viruses present low natural mutation rate, and stability of VZV genome is likely related in part to 

the small number of replication cycles during primary infection (235). To date, five major clades 

confirmed by full-genome sequencing have been established for VZV. It is thought that recombination 

to have played a crucial role in the evolution of VZV. Indeed, a point of phylogenetic interest for VZV, 
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is that vaccine in use for many years, may have significantly altered the natural epidemiology of wild-

type virus in the human populations (236). Although VZV wild-type recombinants have been rarely 

reported (237) recombination might occur presumably also between wild-type and vaccine strains. Thus, 

surveillance of VZV molecular epidemiology is indicated to detect changes in strain prevalence where 

VZV vaccine is in use.

Integration of mathematical evolutionary modeling with experimental data will produce important 

information on protein sequence and structure analysis to make a prevision on the effect that selective 

pressure could have on aminoacidic residue essential for vaccine development  or drugs activity (Figure 

5). play an increasingly important role in the development of new vaccines and the control of infectious 

disease.

Phylogenetic analysis of whole genome sequencing for viral nosocomial outbreak investigation.

During last years, the introduction of advanced molecular techniques and of bioinformatics analysis in 

the routine clinical practice has largely modified the diagnostic approach to infectious disease. By Next 

Generation Sequencing (NGS) technology, the whole genome sequencing (WGS) of pathogen 

microorganisms has been introduced improving the ability to identify and control epidemic outbreaks, 

thus preventing the spread of the pathogen and decreasing morbidity and mortality (240). Phylogenetic 

analysis applied to whole genome sequences has been used for the epidemiological surveillance of 

nosocomial infections as recently reported (3, 4, 241).

The application of WGS and phylogenetic analysis for nosocomial investigation has been used 

prevalently in case of hospital acquired infection caused by bacteria commonly isolated by simple 

culture of different biological samples (3,4, 241, 242) The use of this new technology in nosocomial 

viral infection has been more limited but some reports have been published. 

A first report on the use of metagenomics NGS for the investigation of a nosocomial outbreak by 

Parainfluenza Virus 3 was published by Greninger et al in 2016. By Bayesian phylogenetic analysis, 

these authors demonstrated that two strains causing HAI have the same sequence confirming the 

hypothesis of a possible transmission within the medical ward where the two patients were admitted. 

Authors concluded that NGS and WGS represent important tools for pathogen transmission 

investigation and a significant advance in clinical care providing pathogen detection with high 

resolution and reliability (243).

The same authors used this technology to rule out a nosocomial outbreak caused by respiratory virus, in 

children at high risk for pulmonary disease. Applying WGS and phylogenetic analysis, they excluded 

the possibility of a single source-transmission with a turnaround time of 24 hour (244).
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Phylogenetic analysis applied to WGS revealed to be essential to discriminate nosocomial outbreak 

strains from other strains isolated in the same setting but not related to the outbreak event, as recently 

demonstrated by Zhu et al. during an epidemiological investigation performed on respiratory syncytial 

virus-B strains circulating within a Unit of hematology and stem cell transplant. Authors compared the 

routine sequencing of glycoprotein (G) gene to the WGS and concluded that phylogenetic analysis 

applied to single gene sequence was not able to identify the cluster outbreak and that at this aim WGS 

was essential (245). 

Recently phylogenetic analysis was used to investigate the measles outbreak of nosocomial origin 

occurred in Milan, Italy between March-August 2017. This study by phylogenetic inference 

demonstrated the occurrence of three nosocomial clusters within an emergency department initially 

notified as unrelated cases, suggesting the importance of measles vaccination especially for the 

healthcare workers (246).

The importance of pyogenesis and phylodinamic applied to WGS has been further highlighted in case of 

viral nosocomial infection occurring in immunocompromised patients, such as Norovirus infection 

causing gastroenteritis worldwide affecting pediatric or immunosuppressed populations. Brown et al. in 

2018 by phylogenetic analysis of norovirus WGS showed that the nosocomial setting is characterized by 

multiple strains introduction and evidenced how this type of analysis is superior to the classic 

epidemiological investigation for infection control and prevention and should be routinely introduced in 

the hospital setting (247).

Conclusion

Epidemiology has been and still today is the first way to study viral infection and to face an epidemic 

event to reach a huge number of information to use in clinic and therapy. In these last years, the question 

that spring is “May phylogenetic analysis support and or complement an epidemiological 

investigation?” To answer this question is more complex as appear (Figure 6). Phylogeny and 

phylodinamic can give an immediate and important support studying the epidemiologic events not by 

the human point of view but by the microorganism point of view. Data on sequences isolated by the 

microorganism implied in the epidemic or pandemic events can give information on the origin and the 

spread of the event so as can track the geographical path of diffusion. In terms of nosocomial infection, 

can give important information on the source of the infection pinpointing the exact way of diffusion. On 

the other hand, classical epidemiology has focused on research of the risk factors related to behavioral 

patterns. When classical epidemiology is integrated by the phylogenetic and phylodinamics approaches 
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goes into a single analytical framework, called evolutionary epidemiology. This review and the 

examples discussed within showed the necessity to enrich the classical surveillance by the molecular 

phylogenetic analysis to better understand the emergence and spread of global infectious diseases in 

terms of regional epidemic so as in nosocomial outbreak. Despite research in the field of infectious 

disease phylodinamics is growing up, there is a need to apply molecular phylogenetic and evolutionary 

methods in areas out of infectious diseases, as well as translational genomics, and personalized 

medicine. The huge availability of genetic and clinical data give to the researchers a great opportunity to 

apply this molecular approach to studies of tumors and chronic infections, try to better understand the 

mechanism to the basis of complex transmission dynamics among tissues and cells. Phylogenetic studies 

can also give a great hand in vaccine studies and in antibiotic and antiviral resistant the last great battle 

in these times.

The major improvements from phylogenetic and phylodinamic analysis application in the field of viral 

infectious disease are represented by the possibility to enrich the classical epidemiology with genetic 

information thus widening the knowledge on viral epidemic and pathogen transmission.   
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Figure legends

Fig. 1. Percentage of papers published per year from 2010 to 2019 found by typing epidemiology, 

phylogeny and epidemiology plus phylogeny 

Fig. 2. Hippocrates, the father of epidemiology (panel A) and Charles Darwin, the father of phylogeny 

(panel B)

Fig. 3 The hypothetical cycle of the bioinformatics in molecular evolution. 

Fig. 4 Example of phylogenetic and phylodinamic approaches

Fig. 5 Mathematical evolutionary modeling applied on protein sequence (A) and structure analysis to 

make a prevision on the effect of selective pressure (B).

Fig. 6 The basis of molecular epidemiology 

Page 45 of 51

John Wiley & Sons

Journal of Medical Virology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Fig. 1 Percentage of papers published per year from 2010 to 2019 found by typing epdiemiology, phylogeny 
and epidemiology plus phylogeny 
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Fig. 2 Hippocrates, the father of epidemiology (panel A) and Charles Darwin, the father of phylogeny (panel 
B). 
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Fig. 3 The hypothetical cycle of the bioinformatics in molecular evolution. 
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Fig. 4 Example of phylogenetic and phylodinamic approaches 
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Fig. 5 Mathematical evolutionary modeling applied on protein sequence (A) and structure analysis to make a 
prevision on the effect of selective pressure (B). 
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Fig. 6 The basis of molecular epidemiology 
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