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Abstract: Abiotic stresses strongly affect plant growth, development, and quality of production;
final crop yield can be really compromised if stress occurs in plants’ most sensitive phenological
phases. Additionally, the increase of crop stress tolerance through genetic improvements requires
long breeding programmes and different cultivation environments for crop performance validation.
Biostimulants have been proposed as agronomic tools to counteract abiotic stress. Indeed, these
products containing bioactive molecules have a beneficial effect on plants and improve their
capability to face adverse environmental conditions, acting on primary or secondary metabolism.
Many companies are investing in new biostimulant products development and in the identification
of the most effective bioactive molecules contained in different kinds of extracts, able to elicit
specific plant responses against abiotic stresses. Most of these compounds are unknown and their
characterization in term of composition is almost impossible; therefore, they could be classified on the
basis of their role in plants. Biostimulants have been generally applied to high-value crops like fruits
and vegetables; thus, in this review, we examine and summarise literature on their use on vegetable
crops, focusing on their application to counteract the most common environmental stresses.
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1. Abiotic Stresses

Plants are continuously subjected to a multitude of stressful events, from seed germination
through to the whole life cycle. These stresses are commonly divided into two categories—biotic and
abiotic stresses—depending on the nature of the trigger factor. The first are caused by other living
organisms, including insects, bacteria, fungi, and weeds that affect plant development and productivity.
The second are generally linked with the climatic, edaphic, and physiographic components of the
environment, when they are limiting factors of plant growth and survival. The most important
abiotic stresses limiting agricultural productivity, almost all over the world, are drought, salinity,
non-optimal temperatures, and low soil fertility. Among these, drought, and nutrient deficiencies
are major problems, mostly in developing countries where the incomes of rural people depend on
agriculture [1]. Actually, in “The State of Food and Agriculture 2007”, FAO reported that only 3.5%
of the global land area is not affected by some environmental constraints. In 1982, Boyer estimated
that yield losses caused by unfavourable environments were as much as 70% [2,3]. Farooq et al. [4]
reported that drought induced a reduction of yield between 13% and 94% in several crops, depending
on the intensity and duration of the stress. Afterwards, Cramer et al. [5] estimated the impacts of
different abiotic stresses on crop production in terms of the percentage of global land area affected,
considering the 2000 and 2007 FAO reports. They also referred to the increasing number of publications
focused on this topic between 2001 and 2011. The exact impact of these changes on agricultural
systems is extremely difficult to predict and it depends on numerous parameters that are all not always
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included in predictive models. Even if some projections show that positive and negative outcomes
on crop production could be balanced in the medium term, several studies agree that in the long
term, the negative ones will prevail [6,7]. Based on future scenarios, adaptation and mitigation are
essential to increase the resilience capacity of agricultural systems and to ensure crops yield and quality.
Since environmental conditions cannot be controlled, several strategies on different levels are required,
such as agronomical techniques or breeding of more tolerant cultivars [8].

In 2010, at the society’s annual conference, Vegetable Breeding and Stress Physiology working
groups of the American Society for Horticultural Sciences focused particularly on the “Improvement
of Horticultural Crops for Abiotic Stress Tolerance” considering the effects of climate change [9]. Up to
now, most studies on climate change impacts focus on major crops, and only few papers pay attention
to fruit and vegetable in terms of production, quality, and supply chain [10,11]. An important aspect
to take into consideration is the effect of the combination of different stressful factors. Most of the
time, crops are subjected to several abiotic stresses that occur simultaneously in the field. In these
situations, studying the stresses separately is not enough because plant response is unique and cannot
be predicted by the reply obtained when each factor is applied individually [12–14]. Moreover, biotic
and abiotic components typically interact in an ecosystem. For instance, environmental conditions
affect plant-pest interaction in different ways, by decreasing plant tolerance or increasing the risk of
pathogen infection [15,16].

Focusing on horticultural species, the tolerance to abiotic stresses is an important trait because
their cash value is usually higher than field crops, they require more resources for farming and because
they provide a source of many nutrients, fibre, minerals, and carbohydrates, which are essential in a
healthy diet [17]. Food and Agriculture Organization (FAO) reports that about 90% of essential vitamin
C and 60% of vitamin A for human comes from vegetables. Indeed, low fruit and vegetable intake is a
major contributing risk factor to several widespread and debilitating nutritional diseases. According to
the Global Burden of Disease Study, 3.4 million deaths can be attributed to low consumption of fruit and
1.8 million to low vegetables diets worldwide [18]. Therefore, growing high-quality vegetables becomes
one of the most important goals of current agriculture, in order to meet the needs of the population
and the increasing demand for fruit and vegetables. Abiotic stresses do not only affect the yield but
also the quality of these products, triggering morphological, physiological and biochemical changes
that can alter the visual appearance and/or the nutraceutical value in a way that the product could
become unmarketable [19]. Bisbis et al. [11] investigated the double effects of elevated temperature and
increased CO2 on the physiology of different vegetables. They observed several responses according to
plant species and severity of the stress, taking into consideration the possible adaptation strategies that
could be implemented in order to mitigate the effects of climate change. Nonetheless, these mechanisms
are still under-researched and should be studied in depth, because not only different species but
different cultivars also could respond differently to the same environmental stress. For example,
cultivars with low levels of antioxidants are particularly vulnerable to oxidative stress compared
to those with high antioxidant activity [20–23]. This aspect has a particular importance as selection
criterion in the choice of appropriate cultivars for a specific situation. Oxidative stress is a common
phenomenon caused by several adverse conditions; it generally occurs when the balance between the
production of reactive oxygen species (ROS) and the quenching activity is upset by a stressful event [24].
Low levels of ROS are normally produced by different reactions during physiological metabolisms
like photosynthesis or respiration, and they play an important signaling role in plant growth and
development. Their amount dramatically increases under abiotic stress conditions and, if not controlled
could result in cellular damage and death. Besides their toxicity to proteins, lipids or nucleic acids,
the increased production of ROS under stressful conditions plays a key role in the complex signaling
network of plants stress responses. Their concentration is maintained at non-toxic levels by the activity
of the antioxidant system: a wide range of enzymatic or non-enzymatic antioxidant molecules are
accumulated in plant tissues to quench ROS induced by stress [25–28]. Moreover, the maintenance
of this equilibrium is also dependent on numerous factors, such as the timing of stress application,
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its intensity and duration. Indeed, moderate or controlled stress conditions could have a positive
effect on quality traits of several crops [29]. For example, water deprivation might be a useful crop
management strategy to improve the quality of lettuce and fleshy fruits in terms of nutritive and
health-promoting value and taste, by stimulating the secondary metabolism and concentration of
different phytochemicals such as α-tocopherol, β-carotene, flavonoid and so on [30,31]. Besides the
production of ROS scavenging compounds, plants also increase the biosynthesis and accumulation of
compatible solutes with an osmoprotective role, like sugars and proline.

Plants generally reply to non-optimal environmental conditions both with short- and long-term
adaptation strategies, by the activation and regulation of the expression of specific stress associated
genes [32,33].

Since plants are sessile organisms and they have to cope with adverse external conditions; all
these mechanisms are essential for their survival. These strategies are effective if they are activated in
time, in order to set a defense response and anticipate the environmental changes that might affect
plant growth irreversibly. The trade-off between growth and acclimation metabolisms results in a sort
of fitness cost for plants, since energy and nutrients normally destined to growth and production are
intended for stress responsive mechanisms [34].

Agronomic management conducted in order to enhance plant tolerance towards abiotic stresses
evolved over the centuries due to the technologic progress, climate change, scientific knowledge,
and farmers’ experiences. The choice of the correct cultivar, the best growing period, the sowing
density, and the amount of water or fertilizers are some of the most common strategies applied to
mitigate the negative effects of abiotic stresses [8]. Protected cultivation is a cropping technique
adopted to preserve plants from unfavourable outdoor conditions. It is mainly suited to vegetables and
floriculture production in a non-optimal environment, through the control of temperatures, radiation
or atmospheric composition. Another agronomical strategy, especially applied in vegetable crops,
is soilless cultivation. This approach allows controlling of water and nutrients, avoiding the use of soil
for cultivation and all the problems related to it, like poor quality or contamination.

Grafting is an additional tool adopted to counteract environmental stresses and increase tolerance
in vegetable crops. This technique is applied especially to high-yielding fruits and vegetables such as
cucurbits and solanaceous to enhance tolerance against saline soil, nutrient or water deficiency, heavy
metals or pollutants toxicity [35–37].

Agronomical strategies are essential in mitigating the negative effect of several abiotic stresses,
but sometimes their application is not enough. Moreover, current experiments aim to transfer one or
more genes involved in signaling or regulatory pathways, or genes encoding to molecules, such as
osmolytes and antioxidants, conferring tolerance to a specific abiotic stress [38]. Several functional and
regulatory genes involved in abiotic stress tolerance have been identified and studied. Results of these
studies can be exploited for genetic improvement aiming to introduce tolerance traits in cultivated
crops. Since different physiological traits related to stress tolerance are under multigenic control,
the manipulation of a single gene generally is not enough. Hence, scientists have paid more attention
to regulatory genes, including transcription factors, due to their ability to regulate a vast array of
downstream stress-responsive genes at a time [39–41].

However, the huge existing genetic variability among vegetable species, the lack of knowledge
about minor cultivars genome, the complex responses triggered by abiotic stress conditions and the
limited strategies currently available make genetic improvement really difficult and often inefficient.
Moreover, besides the wide diversity of germplasms available, plant tolerance to stress depends
both on stress features such as duration, severity, and frequency, as well as the affected tissues and
development stages of crops [24,42–44].

Additionally, the increase of crop tolerance through genetic improvements requires many years
of work and different cultivation environments that cannot be always taken into consideration. As a
result, several new cultivars that can be used by the growers are released each year.
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Another technique widely used for developing stress tolerance in plants is in vitro selection.
This culture-based tool allows better understanding of several plants’ physiological and biochemical
responses to adverse environmental conditions. It has been applied specially to obtain salt/ and
drought/tolerant lines in a wide range of plant species, including vegetables [45]. In vitro selection
is based on the induction of a genetic variation among cells, tissues or organs, their exposure to a
stressor, and the subsequent regeneration of the whole organism starting from the surviving cells [46].
Even if in vitro selection is a less expensive and time-saving approach compared with classic molecular
engineering, some limitations, mostly concerning the stability of the selected traits and epigenetic
adaptation, still exist.

In addition to these strategies, it has been observed that stress tolerance can also be induced by
biostimulants or specific bioactive compounds, if they are applied on vegetable crops when they really
need to be protected [47–49]. Biostimulant application on horticultural crops under environmental
stress conditions will be discussed in detail below.

2. Biostimulants

Biostimulant products have been considered innovative agronomic tools as demonstrated by the
increase of scientific publications and by the constant expansion of their market [50]. France, Italy,
and Spain are the leading EU countries in the production of biostimulants [51]. According to a new
report by Grand View Research, Inc., the biostimulant market size is expected to reach USD 4.14 billion
by 2025 [52]. The complex nature of the composition of these products and the wide range of molecules
contained makes it complicated to understand and define which compounds are the most active.
The isolation and study of a single component is almost impossible and the efficacy of a biostimulant is
not due to a single compound but is the consequence of the synergistic action of different bioactive
molecules. Moreover, the application rules and time are not always clear. For all these reasons,
the European Commission developed a proposal for a new regulatory framework and a draft for a
new fertilizer regulation was prepared in 2016. The amendments to the proposal of the European
Commission were adopted by the European Parliament in October 2017, while the legislative resolution
on the proposal was approved on 27 March 2019 [53–55].

Plant biostimulants are defined as products obtained from different organic or inorganic substances
and/or microorganisms, that are able to improve plant growth, productivity and alleviate the
negative effects of abiotic stresses [56,57]. Mineral elements, vitamins, amino acids, and poly-
and oligosaccharides, trace of natural plant hormones are the most known components. However, it is
important to underline that the biostimulant activity must not depend on the product’s nutrients or
natural plant hormones content. The mechanisms activated by biostimulants are often difficult to
identify and are still under investigation [58]. High-throughput phenotyping and omic technologies
seem to be useful approaches to understand biostimulants activity and hypothesize a mode of
action [59–61]. They can act directly on plant physiology and metabolism by improving soil
conditions [62,63]. They are able to modify some molecular processes that allow to improve water and
nutrient use efficiency of crops, stimulate plant development, and counteract abiotic stresses [47] by
enhancing primary and secondary metabolism [55,61,63].

One of the key points of the discussion is about the application of these products in stressful
conditions and their role as nutrients, not with a curative function. In particular, if a product has a
direct effect against biotic stresses, it should not be included in the biostimulant category but should be
registered as plant protection products.

2.1. Classification of Biostimulants in Categories

During the years, different authors have proposed several categorizations of biostimulant products
on the basis of their main component or mode of action. In many countries outside the European
Union, both kinds of information must be reported on the label in order to register these products [55].
The current classification is based on source of raw material, even if this choice does not always
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provide the correct information about the biological activity of the product [56]. Thus, biostimulants
are classified as these major groups:

Humic substances (HSs): they include humic acids, fulvic acids and humins. HSs are natural constituents
of soil organic matter, resulting from the decomposition processes of plants, animals, and microbial residues,
but also from the metabolic activity of soil microbes [57]. It has been observed that treatments with humic
substances stimulate plants root growth and development [64,65]. This is reflected in a better uptake of
nutrients and water, and enhanced tolerance to environmental stresses, [66,67]. How the HSs affect plant
physiology is not fully understood. This is due to the molecular complexity of these substances and to the
abundance and diversity of plants responses altered by their application. Moreover, a strong relationship
between medium properties and HSs bioactivity has been reported [68]. The positive effects exerted by
these complex aggregates could be ascribed both to the hormone-like activity of some of their component
and also to IAA-independent mechanisms [69]. For example, like auxins, HSs are able to promote plant
growth and induce H+ATPase activity in plasma membrane [70–72].

Seaweed extracts: seaweeds are a vast group of macroscopic, multicellular marine algae that can be brown,
red, and green. They are an important source of organic matter and fertilizer nutrients. Seaweed extracts
have been used in agriculture as soil conditioners or plant stimulators. They are applied as foliar spray
and are able to enhance plant growth, abiotic stresses tolerance, photosynthetic activity, and resistance to
fungi, bacteria and virus, improving yield and productivity of several crops [73–75]. Seaweeds used for
biostimulant production contain cytokinins and auxins or other hormone-like substances [76]. They also
contain many active mineral and organic compounds, including complex polysaccharides such as
laminarin, fucoidan, alginates and plant hormones that contribute to plant growth [77]. Recently the
potential application of micro-algae as plant biostimulants has been considered [78–80].

Hydrolysed proteins and amino acids containing products: hydrolysed proteins are a mixture of amino
acids, peptides, polypeptides and denatured proteins that can be obtained by chemical, enzymatic and
thermal hydrolysis of proteins (or by combining these different hydrolysis types) from both plant and
animal sources [67,81]. Studies reported that the applications of some commercial protein hydrolysate
products from animal origin were phytotoxic, having negative effects on plant growth when compared
to a commercial protein hydrolysate of plant origin [82,83]. In another study, Botta et al. [84] observed
that lettuce plants treated with an animal-based protein hydrolysed had a higher fresh and dry weight
compared with the control. Generally, they can induce plant defense responses and increase plant
tolerance to many abiotic stresses, as reported by several authors [85–88].

Microorganisms: this group includes bacteria, yeast, filamentous fungi, and micro-algae. They are
isolated from soil, plants, water, and composted manures or other organic materials. They are applied
to soil to increase crop productivity through metabolic activities. They enhance the uptake of nutrients
through nitrogen fixation and the solubilization of nutrients, they modify a hormonal status by inducing
plant hormones biosynthesis such as auxins, cytokinins, etc.; they also enhance tolerance to abiotic
stresses and produce volatile organic compounds (VOCs), which may also have a direct effect on
plants. Plant growth-promoting rhizobacteria (PGPR) are able to ameliorate plant responses to abiotic
stresses stimulating physical, chemical and biological activities [89,90]. Positive effects are given by
microorganisms that form a protective biofilm on root surface enhancing nutrient and water uptake.

Another category of biostimulants includes those derived from extracts of food waste or industrial
waste streams, composts and compost extracts, manures, vermicompost, aquaculture residues and waste
streams, and sewage treatments among others [91]. Biostimulants derived from agro-industrial by-products
were reported to be effective in improving plant productivity, increasing the synthesis of secondary
compounds involved in several plant physiological responses, and enhancing the activity of the enzyme
phenylalanine ammonia lyase (PAL E.C. 4.3.1.5) [92]. The effect of biostimulant application on PAL activity
and on the expression of genes encoding for this enzyme was observed by several authors [56,88,89] and
references therein, even if at present it is not possible to define if this is a direct or indirect effect. Because of
the diversity of source materials and extraction technologies, the mode of action of these products is not
easily determined [55]. The use of by-products as raw material that can be transformed into fertilizing
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products is the idea underlying the new fertiliser regulation and the Circular Economy Action Plan, which
is focused on reaching a sustainable agriculture. The guidelines for fertiliser regulation, the need to produce
in a more environmentally friendly cultivation system maintaining good crop yield and quality, the increase
in price of synthetic fertilizer, the withdrawn of several agrochemicals and the multifaceted effects on
plants or soil of biostimulants are favouring the expansion of this market.

A new category of biostimulant products, including nanoparticles and nanomaterials, has been
recently proposed by Juárez-Maldonado et al. [93]. Nanoparticles and nanomaterials are usually
defined as particles with dimensions between about 1 nm and 100 nm that show properties that are not
found in their bulk form. They are able to modify the quality of the production and the tolerance to
abiotic stresses when applied in small quantities as foliar spray or in nutrient solution, also in vegetable
crops [94–97]. Their biostimulant properties seems to be associated with the structure and nature
of the materials. The interaction between plant and nanoparticles and nanomaterials surfaces can
positively affect ions and metabolites transport and receptors activity by modifying the surrounding
environment in terms of energy and charges. This activity is not dependent on chemical composition.
Moreover, nanoparticles and nanomaterials release chemical elements like iron or carbon that could be
useful for plant when are metabolised.

A study showed that application of zinc oxide nanoparticles on tomato as soil amendment or by
foliar spray increased plant height, chlorophyll and total soluble protein content [98].

2.2. Effect of Biostimulants on Chlorophyll Content, Photosynthesis and Growth in Vegetables

Biostimulants can be used in vegetable cultivation to improve productivity and yield, and to
enhance plant health and tolerance to stress factors. Indeed, they have positive effects on plant
metabolism, both in optimal and sub-optimal environmental conditions.

Many authors have observed that plant based biostimulants and seaweed extracts often increase
the colour of leaves by stimulating chlorophyll biosynthesis or reducing its degradation [99,100].
Leaf colour is an important quality parameter in vegetable crops because it contributes to the visual
appearance of the product, especially in leafy vegetables for which the greenness influences the
consumer’s appeal. In addition, a higher chlorophyll content also allows for a greater photosynthetic
activity of leaves. High concentration of leaf pigments (chlorophyll and carotenoids) has been
observed after biostimulant treatments in rocket [101,102], in lettuce, and endive by Bulgari et al. [103].
Amino acids or seaweed extract application had positive effects on photosynthetic pigments, P and K
content, fresh and dry weight of celeriac leaves [104]. Similar results have been observed after root
inoculation with several plant growth promoting bacteria (PGPR) in broccoli (Brassica oleracea ‘italica’)
using Bacillus cereus, Brevibacillus reuszeri, and Rhizobium rubi [105], and tomato under non-stressful
conditions treated with PGPRs belonging to the genera Bacillus, Pseudomonas and Azotobacter [106],
in strawberry (Fragaria ananassa) with five PGPRs (Bacillus subtilis, Bacillus atrophaeus, Bacillus spharicus
subgroup, Staphylococcus kloosii, and Kocuria erythromyxa) [107] and also in lettuce grown under salt
stress after inoculation with Serratia sp., Rhizobium sp., and Azospirillum [108,109]. Brown seaweeds are
widely used as a biostimulant products to improve plant growth, and recently a phenolic compound
isolated from Ecklonia maxima showed stimulatory effects in cabbage plants, improving photosynthetic
pigments concentration, phytochemicals and myrosinase activity [110].

Abdalla [111] reported that moringa leaf extracts increased vegetative growth, chlorophyll content,
total sugars, phenols, ascorbic acid, and photosynthetic rate of rocket salad. Similar effects have been
observed in fennel [112,113] and squash under water stress condition (plants under a deficit irrigation
of 80% or 60% ETc) [114]. In tomato plants it led to a greater fruit weight, volume and firmness,
and enhanced titratableacidity, chlorophyll and ascorbic acid content [115].

Luziatelli et al. [116] recently found that different vegetal-derived bioactive compounds
significantly increased the chlorophyll content and fresh weight of lettuce. Kulkarni et al. [117]
investigated the promoting effect of bioactive molecules derived from smoke and seaweed in spinach
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and they observed that morphological, physiological and biochemical parameters including growth,
chlorophyll and carotenoids content were positively improved.

Broccoli plants were significantly affected by two different products: Goemar BM86 and Seasol.
The content of micro- and macro-nutrients increased, and also the leaf area, stem diameter and biomass,
as reported by Gajc-Wolska et al. [74] and Mattner et al. [118].

Paradiković et al. [119] studied the effect of four different commercial biostimulants (Radifarm,
Megafol, Viva, and Benefit), containing amino acid, polysaccharides and organic acids as active
compounds on pepper plants and observed an increase in both yield and fruit quality. Radifarm and
Viva treatments also affected tomato plants, stimulating the root apparatus in optimal and drought
condition, respectively [120,121].

Recently, a sago bagasse hydrolysate was tested on tomato plants. The product showed a growth
promoting ability as observed by the higher seed germination and protein and sugar content compared to the
control. Moreover, the expression of the genes related to carbon and nitrogen metabolisms increased [122].

2.3. Biostimulants and Crop Tolerance to Abiotic Stresses

Table 1 is a summary of biostimulant products or bioactive molecules from different origins that
have been evaluated for amelioration of abiotic stresses in several vegetables species. The biostimulants
effectiveness to counteract the stressful condition depends on several factors, such as timing of
application and their mode of action. The application of biostimulants can be carried out with different
timings: before the stress affects the cultivation, during the stress, or even after. They could be applied
on seeds, when plants are in early stages of growth, or when crops are fully developed, depending on the
desired results [123]. As general consideration, biostimulants that contain anti-stress compounds, such
as proline or glutamic acid, can be applied when the stress occurs or during stress conditions. On the
contrary, those that are involved in the activation of bioactive compounds biosynthesis must be applied
before the stress occurs. Proper timing of application during crop development differs from species to
species and it also depends on the most critical phases for crop productivity. Thus, the identification
of the right time of biostimulant application is as important as the determination of the exact dose,
in order to avoid waste of product, high production costs, and unexpected results. Biostimulants can
be applied as foliar spray or to the roots, at sowing for protecting the seedling in the early development
stages, in a floating system nutrient solution or during blooming or fruit setting. There is no general
recipe that works for a crop species and in each stress situation.

The protective role of biostimulants on plants has been increasingly studied. These products are able
to counteract environmental stress such as water deficit, soil salinization, and exposure to sub-optimal
growth temperatures in several ways [47,56,124,125]: They improve plant performance, enhance plant
growth and productivity, interact with several processes involved in plant responses to stress, and increase
the accumulation of antioxidant compounds that allow decrease in plant stress sensitivity.

More recent results of interest on vegetable crops tolerance have been obtained after the application
of different exogenous treatments. Cao et al. [126] reported that a lower red to far-red ration improved
tomato seedling tolerance to salt stress, acting on phytochrome activity. Mertinez et al. [127] showed
positive results obtained after the application of exogenous melatonin in tomato plants grown under a
combination of salinity and heat. Another interesting approach to induce tolerance to abiotic stresses
is soaking plant seeds with different compounds, synthetic or natural. This strategy is generally called
seed priming and has been deeply reviewed by Asharaf et al. [128].

2.3.1. Biostimulants and Cold or Chilling Stress

Low temperatures reduce plant metabolism and delay physiological responses. A reduced metabolism,
consequent to cold stress, leads to an inhibition of the activity of photosystem II, called photoinhibition.
Cold induces damages to cell membranes with destabilization of the phospholipid layers.

In tomato, cold tolerance has been enhanced by the application of psychrotolerant soil bacteria.
Several strains have been isolated from soil during winter conditions and used as a cold protectant.
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Tomato treated with these psychrotolerant bacteria showed higher seeds germination, reduced
membrane damage, and antioxidant systems activation when exposed to chilling temperatures [129,130].
These soil bacteria can be considered as putative biostimulants for protecting plants against cold stress.
Since low temperature causes stress to plant, especially during transplant, Marfà et al. [131] studied
the effect of an enzymatic hydrolysates obtained from animal haemoglobin on strawberry plants in the
firsts growing stages. They observed an increase in roots biomass and in the early production of fruit.
The same product was also tested on lettuce plants subjected to cold stress and an increase in fresh
weight, dry weight, specific leaf area, and relative growth rate was observed [132].

External applications of an amino acid biostimulant (Terra-Sorb® Foliar) on lettuce plants grown in
different cold situations led to an increase in fresh weight and to an higher stomatal conductance [84].
A typical plants response to stress is the accumulation of compatible osmolytes, such as amino acids, which
confer tolerance. The exogenous application of amino acids has the benefit of avoiding protein breakdown
and saving energy resources in plants, even if the exact mechanism of action is not fully understood.
Pepper (Capsicum annuum) seedlings were treated with 5-aminolevulinic acid in order to improve chilling
tolerance through three different methods—soaking the seeds, spraying the leaves or drenching the soil.
All the applications showed good effects in terms of stress tolerance. Fresh biomass, proline, sucrose,
and water content were significantly higher while membrane permeability was reduced [133].

Positive effects on coriander plant grown in cold vegetative chambers have been observed in
response to Asahi SL or Goemar Gateo (Arysta Life Science) treatments [124]. Results obtained by
the study of stress indicators such as antioxidant activity, photosynthetic pigment concentration
and activity, hydrogen peroxide and malondialdehyde amount showed that biostimulant application
affected different metabolic pathways in a positive way, leading stressed plants to a phase of acclimation
to low temperature. The biostimulant action against cold stress usually increases the accumulation of
osmotic molecules by stimulating the biosynthetic pathways that lead to the cold protectant substances.
These biostimulants also increase membrane thermostability, reducing the chilling injury.

2.3.2. Biostimulants and Heat Stress

Global warming and the projection of a rising temperature have a negative impact on
agriculture [134,135]. High temperatures could induce several damages to plant cells, disturbing
proteins synthesis and activity, inactivating enzymes and damaging membranes. The range between
30 ◦C and 45 ◦C is the optimal temperature for structural integrity and enzymal activity, which are
irreversibly denatured when temperature increases above 60 ◦C. As a consequence, physiological
activities like photosynthesis or respiration are affected. An overproduction of toxic compounds,
like reactive oxygen species, causing oxidative stress, is one of the most frequent throwbacks [136].
As response, plants start synthesizing compatibles solutes in order to maintain cell homeostasis and
turgor, organize proteins, and cellular structures. Moreover, they generally close stomata and increase
the number of trachomatous, in order to prevent water loss. Also, at the molecular level there is
a variation of the expression of genes involved in the synthesis or activity of antioxidant enzymes
related to ROS scavenging, osmolytes or transporters. Temperature above optimum inhibits seeds
germination and retards plant growth. Heat stress could negatively affect the yield by interfering with
the reproductive phase, decreasing pollen vitality and germination, inhibiting flower differentiation
and development and reducing fruit set, which ultimately reduces growth and yield.

Tomato is considered one of the most sensitive species to non-optimal temperatures, and heat
stress often results in long style lengths and in a decreased fruit set [137]. There is little information
in the literature about treatments specifically applied to vegetable crops exclusively against high
temperature since, most of the time, heat stress is combined with drought or salinity. The application of
brassinosteroids on tomato [138] and snap bean [139] has resulted in a higher biomass accumulation and
net photosynthesis rate, increased growth and quality of snap bean pod in terms of NPK content and
the total free amino acids levels in leaves. This might be due to the protective role of brassinosteroids
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on the photosynthetic apparatus from oxidative stress, increasing the ability to regenerate RuBP and
carboxylation efficiency.

Nahar et al. [140] investigated the effect of exogenous application of glutathione against heat stress.
Mung bean seedlings treated before their exposition to high temperature, showed a reduced oxidative
stress and methylglyoxal content, a reactive compound that damages cells. This results in a more efficient
antioxidant defense system. Pre-treatment with glutathione enhanced tolerance to short-term heat stress,
improving plant physiological adaptation. For example, leaf relative water content and turgidity, which
usually decreases under high temperature, were protected. Positive effect on mung bean has been observed
in response to the application of nitric oxide [141] and ascorbic acid [142]. Nitric oxide treatment resulted
in a promotion of photosynthetic activity, increasing the quantum maximum efficiency of PS2. It also
affected electrolyte leakage, leading to a better cell membrane integrity. Oxidative stress, lipid peroxidation,
and H2O2 content were decreased and antioxidant enzyme activity was restored. Similar results have been
obtained after the application of proline and abscisic acid on chickpea [143,144]. Chickpea is sensitive to
high temperature that generally leads to yield and quality losses. After treatments, membrane damage,
measured as electrolyte leakage, MDA and H2O2 levels was decreased, while leaf water content was
increased. These effects might be related with the osmoprotectant role of proline and with the accumulation
of osmolytes after ABA treatments. Treated plants also showed a high chlorophyll content and this result,
which has already been seen in other experiment with exogenous proline, could be related to membrane
stability. The activity of oxidative metabolism was enhanced in treated plants, as expected also by the less
oxidative damage of cells.

As discussed above, melatonin treatment exerts a positive effect to counteract chilling stress
in coriander plants; otherwise, Martinetz et al. [127] found that melatonin treatments also have a
protective role against the combination of heat and salt stress in tomato plants. Biostimulant treatments
used against heat stress protect cell membranes by increasing their stability and reduce or avoid the
accumulation of ROS.

2.3.3. Biostimulants and Salinity Stress

Among abiotic stresses, salinity is one of the main damaging factors affecting plant growth and
metabolism as an effect of osmotic stress caused by salt. Sodium chloride (NaCl) is the more abundant
salt presents in saline environments and is toxic in higher concentrations [145]. It happens especially
near the coasts, where crops are frequently irrigated with saline water [85,146]. In many Mediterranean
areas, the problem of seawater intrusion may cause a reduction of 50% of yield in lettuce cultivation,
as reported by Miceli et al. [147]. A significant reduction of both fresh weight and chlorophyll content is
a typical effect of salinity condition on plants and was observed also in spinach [148], in bean [149] and
other crops [150]. Besides, chlorophyll content is a central parameter of the product quality particularly
in green leafy vegetable, not only in terms of plant physiology status but also from a market point of
view. This is a huge problem for vegetable crops where the edible parts are leaves, sprouts or flower
buds. Consumers choices, in fact, are guided mostly by the visual appearance of products, hence a less
green leafy vegetable or a malformed fruit are generally not accepted.

Salt stress causes a nutrient imbalance due to the limited uptake of the nutrients from the soil,
threatening the nutritional quality of horticultural crops. Nutrient availability is compromised by
salinity that causes several disorders such as competitive uptake with other ions like Ca2+, P and
K, mobility problems within the plant and a reduced water potential [151–155]. The solubility of
micronutrients such as Cu, Fe, Mn, Mo and Zn is also affected by the pH of the soil solution, and in
saline condition their availability is very low. Bano et al. [156] reported an important reduction of
total phenolics, total soluble proteins and a suppressed activity of catalase, superoxide dismutase and
peroxidase in carrot under saline condition. Salt stress could also alter several metabolic processes
in plants, such as photosynthesis [157,158], respiration [159], phytohormone regulation, protein
biosynthesis, nitrogen assimilation [160], and can also generate secondary oxidative stress [146,161].
It generally leads to a decrease of production and to a lower quality of the final product, due to an
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inhibition of leaves and roots growth and a change in leaf colour [17]. To verify the effects deriving
from the applications of biostimulants, several trials on lettuce plants under salt stress were performed,
since this crop is considered moderately sensitive to salinity.

Lucini et al. [85] showed that a plant-derived protein hydrolysate improved tolerance to salinity
in lettuce plants, increasing yield and dry weight. Treated plants also have a higher performance and
an increased maximum quantum efficiency of PS2 compared to the control. Similar results have been
recently observed in lettuce plants in response to the application of an organic commercial biostimulant
named Retrosal® [162].

Several experiments have been carried out using different PGPR that are able to enhance abiotic
stress tolerance. Inoculation with Azospirillum brasilense showed positive results on lettuce [163,164],
sweet pepper [165], chickpea and faba beans [166] grown under salty environment. Lettuce fresh
weight, dry weight, ascorbic acid content, and germination percentage were increased; also, the visual
appearance of the final product was better because of higher chlorophyll levels. In chickpeas and
faba beans, the inoculation relieved the stress caused by salinity, increasing the root and shoot growth
compared with the non-inoculated plants. Sweet pepper is a salt-sensitive crop and inoculation
showed positive effect mitigating deleterious effects of NaCl. Dry weight, indeed, was higher than
non-inoculated plants under several salt concentrations. Moreover, the inoculation also increased
the CO2 assimilation rate. A similar result has been obtained by Cordovilla et al. [167] applying two
different Rhizobium strain on faba bean and pea plants. Pea plants inoculated with tolerant strain
showed no reduction by salt stress condition in shoot and roots dry weight. The same strain was,
however, not effective on faba beans. These results highlight the variation existing inter and intra
species, and the difficulty in improving tolerance through selection and breeding. A comparable
experiment has been carried out by Mayak et al. [168] on tomato seedling. They tested several strains of
rhizobacterium and found that plants inoculated with Achromobacter piechaudii and irrigated with saline
water had a higher fresh and dry weights and an increased water use efficiency. Yildirim et al. [169]
obtained similar results in squash with the application of several biological products based on the
Bacillus and Trichoderma species.

It is known that humic acids have a lot of beneficial effect stimulating shoot and root growth and
improving environmental stress tolerance even if the exact mechanism of action is not completely clear.
These activities were confirmed in several vegetable crops like sweet pepper [170], beans [171] and
cucumber [172] grown under different salt stress conditions.

Bioactive compounds present in seaweed extracts are able to improve plant tolerance against
abiotic stresses too. Two seaweed-based plant biostimulants containing Ascophyllum nodosum named
Super Fifty® and Acadian were applied respectively on lettuce [173] and strawberry [174] and were
associated with a significant increase in yield and root dry weight, despite the adverse salinity condition.

Sulphated exopolysaccharides extracted from the microalgae Dunaliella salina were applied on
tomato plants to investigate their potential effect alleviating salt stress damages. Results obtained
showed that treatment enhance plant growth, antioxidant enzymes activities and several metabolic
mechanisms related to jasmonic acid pathway [175].

The application of seaweed extracts from Sargassum muticum and Jania rubens significantly
alleviated the negative effects of salt through regulation of amino acids metabolism, ionic content
balanced and improved antioxidant defence in chickpeas plants. Amino acids such as serine, threonine,
proline and aspartic acid were identified in roots as responsible for salt stress amelioration [176].

Besides lettuce and pepper, bean is also considered a salt sensitive plant but in most developing
countries it is cultivated in saline conditions. Several plant extracts based on licorice root, Moringa oleifera
or maize grain have been tested on common bean by Egyptian researchers [177–181]. They observed
that soaking seeds in propolis or maize grain extract improves seed germination percentage, stability
of cell membrane and relative water potential under saline conditions. Antioxidant system activity was
increased while lipid peroxidation and electrolyte leakage were reduced compared with the control
plants. Moringa oleifera leaf extract, used alone or in combination with salicylic acid, and administered
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as foliar spray or as seed soaking, improved several physiochemical parameters as chlorophyll and
carotenoids concentration, total soluble sugars and ascorbic acid content. A very similar trial has been
carried out with licorice root extract and best results have been recorded integrating seed soaking and
foliar spray applications.

A recent study highlighted the ability of a bee-honey based biostimulant to improve the
tolerance of onion plants to salinity stress. Indeed, treated plants showed higher biomass, bulb
yield, and photosynthetic pigments. Moreover, the osmoprotectans content as proline, soluble sugars
and total free amino acids, the membrane stability index and the enzymatic and non-enzymatic
antioxidant activity were enhanced [182]. Hence, biostimulants applied in case of salinity stress induce
the accumulation of osmolytes, in order to enhance the cell osmotic potential and the level of protective
molecules against oxidative stress.

2.3.4. Biostimulants and Drought Stress

Abiotic stresses are closely connected with the problem of resources availability and farmers
are frequently forced to work in suboptimal conditions. A more sustainable use of resources also
concerns water availability, a critical growing factor. The increasing use of aquifer-based irrigation
by farmers worldwide poses a serious threat to the long-term sustainability of the agricultural
system. Over-utilization of this dwindling water supply is leading to an ever-enlarging area in which
productive farming itself has ceased or is threatened. Moreover, the increase of irrigation leads to a
higher risk of soil salinization. Scientists generally agree with the perspective that several regions
could become arid due to the negative impacts of global climate change on water resources [183].
Since one of the main effects of biostimulants is to improve water use efficiency, their application could
be a possible strategy to reduce the amount of water added to crops [184]. Drought stress strongly
influences plant gas exchange changing photosynthetic and transpiration rates, which are directly
linked to yield. Application of Ascophyllum nodosum on broccoli [185] and spinach [186] enhanced gas
exchange through the reduction of stomatal closure, resulting in increased plant resistance to water
stress. Leaf yellowing is another common symptom of drought stress due to chlorophyll degradation
during leaf senescence and is used as reliable indicator of metabolic and energetic imbalance in
plants under stress. Biostimulant treatments with A. nodosum increased total chlorophyll content in
tomato leaves [187]. A reduction of water loss, wilting damages and 3-carbon dialdehyde MDA after
biostimulant applications were observed. Similar results have been obtained by Petrozza et al. [188]
in responses to Megafol treatments in tomato plants. The results revealed that treated plants were
healthier than non-treated ones in terms of biomass and chlorophyll fluorescence. Moreover, plants
treated with the biostimulant product were able to recover more quickly when they had access to water.
The expression of two drought stress marker genes was analysed and the results obtained showed that
treated plants were experiencing a low level of water stress.

Sometimes, water stress in plants is caused by bacterial infection clogging xylem vessels and
preventing water flow. Romero et al. [189] demonstrated that treatments with Azospirillum brasilense,
a strain isolated in arid environments, delayed wilting of tomato plants. Treated plants, indeed, showed
a high xylem vessels area, resulting in a more efficient water transport from the soil to the leaves.
On the other hand, there are several strains of bacteria populating soil promoting plant growth through
its metabolic activities and plant interactions. They produce exopolysaccharides, phytohormones,
1-aminocyclopropane-1-carboxylate (ACC) deaminase, volatile compounds, inducing several metabolic
plant responses as accumulation of osmolytes and antioxidants, or up or down regulation of stress
responsive genes and alteration in root morphology leading to a tolerance of water stress [190,191].
Some examples are reported below. Tomato seedlings treated with Achromobacter piechaudii were
stimulated to accumulate biomass during the stress period and, the amount of ethylene that usually
has negative effects on membrane status was lower than control [168].

Arshad et al. [192] investigated the growth of two plants promoting rhizobacteria on pea (Pisum
sativum) crop grown under drought stress condition in different phenological phases. They observed
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that PGPR containing ACC-deaminase, a precursor of ethylene, significantly decreased the stress effects
on growth and yield too. Positive results in terms of antioxidant and photosynthetic pigments activity
have been collected in basil plants treated with Pseudomonas sp. under water stress conditions [193].

Seaweed extracts are already largely used for cultivated plant treatments and most of them contain
plant growth hormones, auxins, abscisic acid, cytokinins, gibberellins, polyamines, oligosaccharides,
betaines and brassinosteroids. A micro-algae-based biostimulant with known composition was tested
on water stressed tomato plants. Results revealed that biostimulant application reduced the damaging
effects of stress, increased plant height, root length, and enhanced the number and area of the leaves [78].
Biostimulants are capable of reducing drought injures, are able to enhance the biosynthesis of osmolytes
and antioxidants against ROS, such as observed for salinity stress, and of plant hormones, like abscisic
acid, regulating transpiration and avoiding excessive water losses.

2.3.5. Biostimulants and Nutrient Deficiency

One of the roles ascribed to biostimulant products is the ability to increase nutrient uptake [53]
through different strategies. For instance, they are able to change soil structure or nutrient solubility,
modify roots morphology directly or ameliorate nutrient transport in plants [194]. Their application
might be really useful in poor soil conditions and in low input horticultural cultivation systems [195].
Indeed, soil nutrient imbalance is an increasing problem for farmers that spend a lot of money every
year on fertilizers to resume soil fertility. All these mechanisms result in better nutrient use efficiency
for both micro- and micro-nutrients.

Several experiments have been performed to investigate if the application of biostimulants allows
a reduction of fertilizers without affecting crop yield and quality.

Koleška et al. [196] showed that the application of a biostimulant product named Viva® on
tomato plants, growing under reduced NPK nutrition, help counteract the negative effects of nutrient
deficiency. For example, lycopene and chlorophyll content that is usually affected by the availability of
macronutrients was preserved in treated plants grown with NPK reduction. Moreover, biostimulant
application helped maintain cell homeostasis and prevent oxidative stress. A similar experiment was
performed by Anjum et al. [197] on garlic plants grown with half of the recommended dose of nutrients.
Garlic growth and yield were positively affected by the biostimulant application in combination with a
low dose of macronutrients.

A seaweed-based product (Kelpak®) has been tested on okra seedlings grown with different
nutrient deficiencies [198]. Treatments were applied three times a week and were compared with a
polyamine solution treatment. Plants treated with the biostimulant showed an increase in growth
parameters, such as shoot length, stem thickness, leaves and roots numbers, and fresh weight under
phosphorous and potassium deficiency. Kelpak® efficacy might be due to the combination of auxins,
cytokinins and polyamines contained in the product.

Spinelli et al. [199] measured the effects of another commercial seaweed extract, named Actiwave®

on the vegetative and productive performance of strawberry plants grown on an iron deficient substrate.
They found that vegetative growth, chlorophyll content, stomatal density and photosynthetic rate
were enhanced after biostimulant treatment. Fruit production and weight were also increased.
Nutrient uptake might have been positively influenced by the more developed root system of treated
plants. Treatment also contrasted the negative effects of iron chlorosis and this could be linked to
betaine contained in this product.

The positive effects of seaweed extracts are usually ascribed to their polysaccharide content that
helps the soil structure; nevertheless, Vernieri et al. [102] obtained good results by applying Actiwave in a
hydroponic system with different concentrations of nutrient solutions. Yield and leaf area were higher in
rocket plants grown with the lowest nutrient concentration, indicating a better nutrient use efficiency.

Most of the biostimulant contains a mixture of different amino acids and short peptides that
are usually called protein hydrolysates. They have a positive effect on plant growth and protection
against several stresses. The Cerdán et al. [200] study showed that amino acids origin might influence
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the efficacy of the product. Tomato plants grown under iron deficiency conditions and treated with
two products containing amino acids from plant and animal origin showed different responses.
Plant-derived amino acids promoted growth and chlorophyll content both in controlled and iron
deficiency conditions. This effect might be ascribed to glutamic acid content. Indeed, this amino acid
plays an important role in nitrogen metabolism [201] and chlorophyll biosynthesis [202].

Nutrient imbalance might be the cause of several disorders during plant growth and development.
Blossom-end rot in pepper is usually caused by a local calcium deficiency in young fruits.
Parađiković et al. [203] tested four different biostimulant products for their effects on yield and
BER incidence on pepper. They also evaluated the application as foliar spray or in a nutrient solution
of the same products. The results obtained revealed that biostimulants applications helped to reduce
the occurrence of BER and increase yield. Moreover, nutrient accumulation in fruits and leaves was
promoted by the treatments.

These experiments revealed that biostimulant products cannot totally replace fertilizers but could
be really useful to reduce the amount of mineral nutrition or help in nutrient deficiency and imbalanced
situations. For example, in the floating system cultivation of baby leaf such as rocket, the nutrient
solution can be reduced by 75% of Hoagland’s solution [101].

The biostimulants that help reduce nutrient deficiencies usually improve crops nutrient uptake
by increasing root biomass, nutrient transport/translocation, and enzyme activities involved in
nutrient assimilation.

3. Conclusions and Future Prospects

This review reports the progress on the recent development of biostimulant products with special
emphasis on their effects, improving tolerance to abiotic stresses in vegetable crops. During their life
cycle, crops are often exposed to abiotic stresses, acting individually or in combination, which could
dramatically reduce the yield and quality of products. Biostimulants could represent an effective and
sustainable tool to enhance plant growth and productiveness, improving tolerance against abiotic
stresses. In fact, biostimulants have been successfully applied for:

- improving nutrients and water use efficiency of crops;
- enhancing tolerance against salinity, water stress, cold, high temperature, etc.;
- increasing yield and quality of agricultural crops.

It is important to consider that the complex and variable nature of raw materials used for their
production and the heterogeneous mixture of components of the final product can make it difficult to
attribute a specific mode of action to each biostimulant. The situation is further complicated by the high
number of plants, bacteria and in general, substances included into the category of plant biostimulants.
For example, two products obtained by two different plants would fall in the same category, but their
effects and their mode of action might be completely different. Moreover, the opposite situation may
occur; the same product may produce different effects when applied on different plants. This could
be related to the genetic variability among species, variety or cultivars. In addition, the biostimulant
activity of a product may also depend on the nature and severity of the abiotic stress.

It must also be considered that trying to link a specific mode of action only to the main component
of a product might be a mistake because it would be like excluding the effect of the molecules that are
presents in small quantities or in traces, but it is known that the efficacy of biostimulant products is the
result of a synergistic or antagonistic effect of many components. Furthermore, our understanding of
the mode of action also depends on the amount of information provided by scientific papers, on the
numbers of analyses performed, and on their investigation level. The availability of innovative research
tools will surely improve the knowledge of biostimulant composition, but this information will not be
exhaustive. Therefore, the biostimulant mode of action can be understood through plant responses at
the physiological, biochemical, and molecular levels.
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Table 1. Examples of biostimulant products or substances with a biostimulant effect on horticultural crops to counteract abiotic stress conditions.

ABIOTIC
STRESS

SEVERITY AND
TIME OF

E×POUSURE

BIOSTIMULANT PRODUCT OR
SUBSTANCES WITH A BIOSTIMULANT

EFFECT
DOSE

APPLICATION METHODS
AND NUMBER OF

TREATMENTS
CROP BENEFICIAL EFFECTS REFERENCE

Chilling or
cold stress

6 ◦C for 6 days

Asahi SL (Sodium para-nitrophenolate, sodium
ortho-nitrophenolate, sodium 5-nitroguaiacolate)

/ Goëmar Goteo (Composition (w/v): organic
substances 1.3–2.4%, phosphorus (P2O5). 24.8%,

potassium (K2O) .4.75%)

0.1% Foliar spray (3×) Coriandrum
sativum L.

↓electrolyte leakage
↑Chlorophyll a and

carotenoids ↑Fv/Fm ↑E ↑gs
↓Ci

[124]

10, 12 ◦C for
7 days / 15 ◦C for 7,

10 days

Flavobacterium glaciei, Pseudomonas
frederiksbergensis, Pseudomonas vancouverensis - Seed inoculation Solanum

lycopersicum

↑shoot height ↑root length
↑biomass accumulation
↓electrolyte leakage ↓lipid

peroxidation ↑proline
accumulation ↑SOD, CAT,

APX, POD, GR activity

[129,130]

−6 ◦C for 5 nights

Pepton 85/16 (enzymatic hydrolysates obtained
from animal haemoglobin. L-α amino acids

(84.83%) and free amino acids (16.52%),
organic-nitrogen content (12%),

mineral-nitrogen content (1.4%), potassium
content (4.45%), iron content (4061 ppm), very

low heavy-metal content)

2 L ha−1, 4 L ha−1 Injection into the soil (5×) Fragaria × ananassa ↑new roots ↑flowering ↑fruit
weight [131]

−3 ◦C for 4 h Pepton 85/16 0.4, 0.8, 1.6 g L−1 Soil application (1×) Lactuca sativa L. ↑fresh and dry weight ↑SLA
↑RGR [132]

4 ◦C for 8 days or
nights /6 ◦C for

8 days only to the
roots

Terra-Sorb® Foliar (Free amino acids (ASP, SER,
GLU, GLY, HIS, ARG, THR, ALA, PRO, CIS,

TYR, VAL, MET, LYS, ILE, LEU, PHE, TRP) 9,3%
(w/w), Total amino acids 12% (w/w), Total

nitrogen (N) 2,1% (w/w), Organic Nitrogen (N)
2,1% (w/w), Boron (B) 0,02% (w/w), Manganese

(Mn) 0,05% (w/w), Zinc (Zn) 0,07% (w/w),
Organic matter 14,8% (w/w))

3 mL L−1 Foliar spray (3×) Lactuca sativa L. var.
capitata

↑roots fresh weight ↑green
cover % [84]

3 ◦C for 48 h 5-aminolevulinic acid

0, 1, 10, 25, 50 ppm
(15 mL for seed

soaking and 25 mL
for soil drench)

Seed soaking/ foliar spray/soil
drench (1×) Capsicum annuum

↓visual injuring ↑chlorophyll
↑RWC ↑gs ↓membrane

permeability ↑shoot and root
mass ↑SOD activity

[133]
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Table 1. Cont.

ABIOTIC
STRESS

SEVERITY AND
TIME OF

E×POUSURE

BIOSTIMULANT PRODUCT OR
SUBSTANCES WITH A BIOSTIMULANT

EFFECT
DOSE

APPLICATION METHODS
AND NUMBER OF

TREATMENTS
CROP BENEFICIAL EFFECTS REFERENCE

Drought
stress

Occlusion of
xylem vessels Azospirillum brasilense (BNM65) - Seed inoculation Solanum

lycopersicum
↑height plants ↑dry weight
↑xylem vessel area [189]

No irrigation for
5 days

Megafol® (Composition (w/v): total nitrogen (N)
3.0% (36.6 g L−1); organic nitrogen (N) 1.0%

(12.2 g L−1); ureic nitrogen (N) 2.0% (24.4 g L−1);
potassium oxide (K2O) soluble in water 8.0%

(97.6 g); organic carbon (C) of biological origin
9.0% (109.8 g L−1))

2 mL L−1 Foliar spray (1×) Solanum
lycopersicum ↑leaf area ↑RLWC [188]

50% ET Ascophyllum nodosum 0.50% Foliar spray and drench Spinacia oleracea
↑RLWC ↑leaf area ↑fresh and

dry weight ↑SLA ↑gas
exchange

[186]

No irrigation until
symptoms of

wilting appear
Pseudomonas spp. (P. putida P. fluorescens) - Seed inoculation Pisum sativum

↑grain yield ↑root growth
↑shoot length ↑number of

pods per plant ↑chlorophyll
[192]

No irrigation for
12 days Achromobacter piechaudii (ARV8) - Seedling inoculation Solanum

lycopersicum

↑fresh and dry weight of
seedling ↑plant growth

↓ethylene
[168]

No irrigation for
12 days Achromobacter piechaudii (ARV8) - Seedling inoculation Capsicum annuum ↑ fresh and dry weight of

seedling ↑plant growth [168]

No irrigation for
7 days Ascophyllum nodosum 0.33% Foliar spray (2×) Solanum

lycopersicum

↑RWC ↑plant growth ↑foliar
density ↑chlorophyll ↓lipid

peroxidation ↑proline
↑soluble sugars

[187]

No irrigation for
2 days Ascophyllum nodosum + amino acids - Soil application (1×)/ foliar

spray (3×)
Brassica oleracea var.

italica ↑Pn ↑gs ↑chlorophyll [185]

40, 70% field
capacity Gibbrellic acid and titanium dioxide

250, 500 ppm
(GA3) 0.01, 0.03%

(titanium
nanoparticles)

Stems and foliar spray (2×) Ocimum basilicum ↑CAT activity ↓lipid
peroxidation ↑LRWC [95]

No irrigation VIVA® - 2× Solanum
lycopersicum

↑plant biomass ↑roots
biomass [120]

60, 40% field
capacity

Pseudomonades, Bacillus lentus, Azospirillum
brasilens - Seed inoculation Ocimum basilicum ↑CAT, GPX activity

↑chlorophyll [193]

60, 40% ET Moringa leaf extract 3% Foliar spray (2×) Cucurbita pepo

↑growth ↑HI ↑WUE ↑Fv/Fm
↑PI ↑soluble sugars ↑free

proline ↓electrolyte leakage
↑membrane stability

[114]



Agronomy 2019, 9, 306 16 of 30

Table 1. Cont.

ABIOTIC
STRESS

SEVERITY AND
TIME OF

E×POUSURE

BIOSTIMULANT PRODUCT OR
SUBSTANCES WITH A BIOSTIMULANT

EFFECT
DOSE

APPLICATION METHODS
AND NUMBER OF

TREATMENTS
CROP BENEFICIAL EFFECTS REFERENCE

Heat stress

35 ◦C Nano-TiO2 0.05, 0.1, 0.2 g L−1 Foliar spray (1×) Solanum
lycopersicum ↑gs ↑E ↑ Pn [94]

40/30 ◦C for 8 days Brassinosteroids 0.01, 0.1,
and 1.0 mg L−1 Foliar spray (1×) Solanum

lycopersicum

↑antioxidant enzyme
activities ↓H2O2 ↓MDA

↑shoot weight
[138]

35.2 ◦C (Tmax) Brassinosteroids 25, 50, 100 ppm Foliar spray (2×) Phaseolus vulgaris

↑plant length ↑number of
leaves, branches and shoots

per plant ↑fresh and dry
weight ↑pod weight ↑N, P, K

in bean pods

[139]

45 ◦C for 90 min Nitric oxide 150 µM Immersion of leaf disks Phaseolus radiatus ↑Fm ↓electrolyte leakage [141]

35/25 40/30
45/35 ◦C Ascorbic acid 50 µM In a nutrient solution Phaseolus radiatus

↑% germination ↑seedling
growth ↓electrolyte leakage
↑TTC reduction ability
↑RLWC ↓MDA ↓H2O2
↑antioxidant activity

↑ascorbic acid ↑GSH ↑proline

[142]

35/25 40/30
45/35 ◦C Proline 5, 10, 15 µM In a nutrient solution Cicer arietinum

↑% germination ↑shoot and
root length ↓electrolyte

leakage ↑chlorophyll ↑RLWC
↓lipid peroxidation ↓H2O2

↑GSH ↑proline

[143]

35/25 40/30
45/35 ◦C for

10 days
Abscisic acid 2.5 µM In a nutrient solution Cicer arietinum

↑shoot length ↑osmolytes
↑chlorophyll ↑cellular

oxidizing ability
[144]

42 ◦C for 48 h Glutathione 0.5 mM - Vigna radiata L.
↑RLWC ↑chlorophyll ↑proline
↓MDA ↓ H2O2 ↓O2

-
↓LOX

activity ↑ascorbate ↓GSSG
[140]

Heat and
salt stress

35 ◦C and 75 mM
NaCl for 15 days Melatonin 100 µM Foliar spray (5×) Solanum

lycopersicum

↑biomass ↑Pn ↑gs ↑E
↑chlorophyll a ↑carotenoids
↑Fv/Fm ↑efficiency of PSII
↑ETR ↑antioxidant capacity
↓H2O2 ↓lipid peroxidation
↓protein oxidation

[127]
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Table 1. Cont.

ABIOTIC
STRESS

SEVERITY AND
TIME OF

E×POUSURE

BIOSTIMULANT PRODUCT OR
SUBSTANCES WITH A BIOSTIMULANT

EFFECT
DOSE

APPLICATION METHODS
AND NUMBER OF

TREATMENTS
CROP BENEFICIAL EFFECTS REFERENCE

Iron
deficiency

-

Actiwave® (Ascophyllum nodosum)(Composition
(w/v): total nitrogen (N) 3.0% (38.7 g L−1); organic
nitrogen (N) 1.0% (12.9 g L−1); ureic nitrogen (N)
2.0% (25.8 g L−1); potassium oxide (K2O) soluble
in water 7.0% (90.3 g L−1); organic carbon (C) of

biological origin 12% (154.8 g L−1); iron (Fe)
soluble in water 0.5% (6.45 g L−1); iron (Fe)

chelated by ethylenediaminedi
(2-hydroxy-5-sulfophenylacetic) acid (EDDHSA)

0.5% (6.45 g L−1); zinc (Zn) soluble in water 0.08%
(1.03 g L−1); zinc (Zn) chelated by

Ethylenediaminetetraacetic acid (EDTA) 0.08%
(1.03 g L−1))

10 mL in 20 mL
tap water In a nutrient solution Fragaria ananassa

↑vegetative growth
↑chlorophyll ↑stomatal

density ↑photosynthetic rate
↑ fruit production ↑berry

weight

[199]

- Amino acids 0.1, 0.2 mL L−1 /
0.2, 0.7 mL L−1

Root application/foliar spray
(4×)

Solanum
lycopersicum

↑plant growth ↑root and leaf
ferrum chelate reductase

activity ↑chlorophyll ↑leaf Fe
↑Fe2:Fe ratio

[200]

Reduced
NPK

NPK reduced of
40%

VIVA® (Composition (w/v): total nitrogen (N)
3.0% (37.2 g L−1); organic nitrogen (N) 1.0%

(12.4 g L−1); ureic nitrogen (N) 2.0% (24.8 g L−1);
potassium oxide (K2O) soluble in water 8.0%
(99.2 g L−1); organic carbon (C) of biological
origin 8.0% (99.2 g L−1); iron (Fe) soluble in

water 0.02% (0.25 g L−1); iron (Fe) chelated by
EDDHSA 0.02% (0.25 g L−1))

10.5 mL /plant Foliar spray Solanum
lycopersicum

↑yield ↑ascorbic acid
↑lycopene ↑chlorophyll

↑carotenoids
[196]

NPK deprivation Kelpak (Ecklonia maxima, containing polyamine,
cytokinins and auxins, putrescine, spermine ) 0.40% In a nutrient solution (twice

per week for 8 weeks)
Abelmoschus

esculentus

↑number of leaves ↑number
of roots ↑stem thickness
↑shoot weight ↑root weight

↑leaf area

[198]

NPK reduced of
50%

Bio-Cozyme (concentrated micro-biological
biostimulant and soil inoculants. Total Nitrogen

(N) 0.20%, Soluble Potash (KO) 5.00%, Magnesium
(Mg) 1.40%, Boron (B) 0.20%, Copper (Cu) 0.50%,

Iron (Fe) 3.00%, Manganese (Mn)1.00%,
Molybdenum (Mo) 0.0.25%, Zinc (Zn) 2.00%,
Humic Acid, humates & derivatives 8.00%,
Vitamins, E, C, B Complex, organic acids,

natural sugars carbohydrates, amino acids 1.40%)

2 kg ha−1 Foliar application (4×) Allium sativum ↑bulb yield ↑plant height
↑NPK in leaves [197]
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Salt stress

30, 50, 80 mol m−3

NaCl for 30 days /
40, 80, 120 mol

m−3 NaCl

Azospirillum brasilense - Seed inoculation Lactuca sativa

↑germination % ↑total fresh
and dry weight ↑biomass

partition ↑plantlets number
↑plantlets dry weight ↑total
leaf fresh weight ↑leaf area
↑leaves number ↑chlorophyll
↑root dry weigh ↑ascorbic
acid ↑plant survival after

transplant

[163,164]

40, 80, 120 mM
NaCl Azospirillum brasilense/Pantoea dispersa - Inoculation Capsicum annuum

↑plant dry weight
↑K+:Na+ratio ↑gs ↑relative

growth rate ↑net assimilation
rate ↓ Cl- accumulation ↑NO3

-

concentration ↑CO2
assimilation

[165]

714 mg·L–1 NaCl Azospirillum brasilense (ATCC 29,729) - Soil inoculation Cicer arietinum ↑nodule formation ↑shoot dry
weight [166]

100 mmol L−1

NaCl
Rhizobium leguminosarum (GRA19–GRL19) - Seedling inoculation Vicia faba / Pisum

sativum ↑plant growth [167]

50, 100 mM NaCl
Bacillus species, Bacillus pumilis, Trichoderma
harzannum, Paenibacillus azotoformans and

polymyxa
- Seed treatment/ watering Cucurbita pepo

↑fresh weight ↑potassium
uptake ↓sodium uptake ↑

K+:Na+ ratio
[169]

30, 60, 120 mM
(NaCl, Na2SO4,
CaCl2, CaSO4,
KCl, K2SO4,

MgCl2, MgSO4)
for 60 days

Humic acid 0.05, 0.1% Soil application Phaseolus vulgaris

↑plant nitrate, nitrogen and
phosphorus ↓soil electricity

conductivity ↓proline
↓electrolyte leakage ↑plant
root and shoot dry weight

[171]

- Acadian (Ascophyllum nodosum) - Soil application Fragaria ananassa

↑yield ↑growth ↑root length
↑surface area, volume and

number of tips ↑numbers of
crowns

[174]

80 mM NaCl Super Fifty® (Ascophyllum nodosum)
0.4, 1, 2.5, 10 mL

L−1 In the nutrient solution Lactuca sativa ↑root, stem, total plant weight [173]

25 mM NaCl Protein hydrolysates 2.5 mL L−1 Foliar spray/soil application Lactuca sativa

↑fresh yield ↑dry biomass
↑root dry weight ↑plant

nitrogen metabolism ↑Fv/Fm
↓oxidative stress ↑osmolytes

↑glucosynolates

[85]
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0.8, 1.3,
and 1.8 dS/m NaCl

Retrosal® (organic mix with high concentration
of carboxylic acids, containing calcium oxide
(CaO) 8.0% (w/w) soluble in water and 1.4%

complexed by ammonium ligninsulfonate, Zinc
(Zn) 0.2% (w/w) soluble in water and 0.2% (w/w)

chelated by EDTA.)

0.1 or 0.2 mL/plant Soil application (4×) Lactuca sativa
↑fresh weight ↑chlorophyll Pn
↑ gas exchange ↓proline

↓ABA
[162]

43, 207 mM NaCl
for 7 weeks Achromobacter piechaudii - Seedling inoculation Solanum

lycopersicum

↑fresh and dry weights of
tomato seedlings ↓ethylene
↑uptake phosphorous and

potassium ↑WUE

[204]

200 mM NaCl Nano-TiO2
5, 10, 20 and 40 mg

L−1 Foliar spray Solanum
lycopersicum

activities of carbonic
anhydrase, nitrate reductase,

SOD and POX ↑proline
↑glycinebetaine ↑growth

↑yield

[97]

28, 56 mmol kg−1 Ascophyllum nodosum 1, 2 g kg−1 Soil application Cucumis sativus ↑fruit yield ↑Pn [172]

7.15, 7.2 dSm−1 Licorice root extract 0.50% Seed soaking /foliar spray Phaseolus vulgaris

↑plant growth ↑yield ↑RWC
↑chlorophylls ↑free proline
↑total soluble carbohydrates
↑total soluble sugars
↑nutrients ↑selenium

↑K+:Na+ ratio ↑membrane
stability index ↑activities of
all enzymatic antioxidants
↓electrolyte leakage ↓MDA
↓Na+

↓H2O2 ↓O2
-

[181]

100 mM NaCl Propolis and maize grain extract 1, 2% Soaking seed Phaseolus vulgaris

↑% germination ↑seedling
growth ↑cell membrane

stability index ↑RWC ↑free
proline ↑total free amino acids
↑total soluble sugars
↑indole-3-acetic acid

↑gibberellic acid ↑activity of
the antioxidant system ↓lipid

peroxidation ↓electrolyte
leakage ↓ABA

[178]
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6.23–6.28 dS m−1 Salycilic acid and Moringa oleifera 0.30% Seed soaking /foliar spray Phaseolus vulgaris

↑shoot length ↑number and
area of leaves ↑ plant dry

weight ↑RWC ↑chlorophyll
↑carotenoid ↑total soluble

sugars ↑free proline ↑ascorbic
acid ↑N, P, K and Ca, ↑ratios
of K/Na and Ca/Na ↑green

pod and dry seed yields

[179]

100 mM NaCl Moringa oleifera crude extract Soaking seed Phaseolus vulgaris

↑shoot and root lengths
↑plant dry mass ↑total soluble
sugars ↑proline ↑K+, Na+ and

Cl− ↑ascorbic acid ↑total
glutathione ↓MDA ↓ H2O2
↓O2

-
↑SOD, APX, GR

[177,180]

50, 150 mM NaCl Sargassum muticum and Jania rubens 1% Foliar spray (2×) Cicer arietinum

↑plant growth ↑chlorophyll
↑carotenoid ↑soluble sugars
↑phenols ↓Na+

↑ K+
↓H2O2

↑CAT, SOD, POD, APX
activity ↓MDA

[176]

3, 6 g L−1 Dunaliella salina exopolysaccharides 0.1 g L−1 Foliar spray (2×) Solanum
lycopersicum

↑chlorophyll ↑protein
↓proline [175]

8.81 dS m−1 Bee-honey based biostimulant 25–50 g L−1 Foliar spray Allium cepa

↑biomass ↑bulb yield ↑WUE
↑photosynthetic pigments
↑osmoprotectants

↑membrane stability index
↑RWC ↑enzymatic and

non-enzymatic antioxidants

[182]

8 mM NaCl phosphorus / humic acid

50, 100, 150 mg
kg−1 (P)/750,

1500 mg kg−1

(humic acid)

Soil application Capsicum annuum
↑fresh and dry weight of

shoot and root ↓membrane
damage ↑nutrient uptake

[170]

UV-stress
300–340nm

illumination for
15 min

Nano-anatase 0.25% Soaking seed and foliar spray Spinacia oleracea ↓O2 ↓H2O2 ↓MDA ↑ SOD,
CAT, APX, GPX activity [96]

Fv/Fm maximum quantum efficiency of Photosystem II; Pn net photosynthetic rate; E transpiration rate; gs stomatal conductance; Ci sub stomatal CO2 concentration; SLA specific
leaf area; RGR relative growth rate; RLWC relative leaf water content; RWC relative water content; WUE water use efficiency; PI performance index; MDA malondialdehyde;
TTC 2,3,5-triphenyltetrazolium chloride; GSH reduced glutathione; GSSG oxidized glutathione; LOX lipoxygenase; CAT catalase; SOD superoxide dismutase; APX ascorbate peroxidase;
POX peroxidase; GR glutathione reductase; HI harvest index; ABA abscisic acid; ETR electron transport rate. The symbol ↑means an increase or ↓ a decrease of the parameter measured.
The symbol × represents how many times the treatment was applied.
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