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Abstract In this paper, a novel approach for model comparison is presented by
means of the Gini approach tools. Specifically, the standard linear regression model
framework is considered and extended through the employment of the Lorenz and
concordance curves. The Lorenz curve, obtained by re-ordering the normalised val-
ues of the variable in non-decreasing sense, gives raise to the Gini coefficient. The
more the Lorenz curve moves away from the bisector curve, corresponding to the
case of degenerate variables, the greater is the variable variability measured by the
Gini coefficient. Starting from these premises, a novel criterion for the evaluation
of the contribution to the response variable explanation associated with each new
covariate included into the model is introduced. This criterion, named concordance
criterion, is defined in terms of the distance between the points lying on the con-
cordance curve, obtained by re-ordering the normalised response variable values
according to the related model fitted values, and those lying on the response vari-
able Lorenz curve. In a model choice perspective, the concordance criterion fulfills
interesting properties: it mimics the partial correlation coefficient and assures a con-
sistent standardization, being invariant to the scale transformations of the involved
variables.
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1 Introduction

A very important problem in applied statistics is to compare alternative models on
a given database, for example in terms of their predictive accuracy.

The traditional paradigm compares statistical models within the theory of statis-
tical hypotheses testing, in which a model is chosen through a sequence of pairwise
comparisons. These criteria are generally not applicable to machine learning mod-
els, which do not necessarily have an underlying probabilistic model and, therefore,
do not allow the application of statistical hypotheses testing theory. In these cases
models are compared in terms of information criteria such as AIC or BIC.

The last few years have witnessed the growing importance of model compari-
son methods based on the direct calculation of the predictive accuracy of a model,
through cross-validation methods. In the cross-validation process, the data is split
in two or more datasets, with training datasets used to fit a model and validation
datasets used to compare the predictions made by the fitted model with the actual ob-
served values. When the response variable is continuous, a typical cross-validation
summary criterion is the root mean squared error (RMSE) which calculates the dif-
ference between the observed and the predicted value.

A problem with cross-validation measures, such as the RMSE, is that they are not
normalised, similarly to what occurs with information based criteria but differently
from what occurs with statistical tests. A second problem is that, when the number
of explanatory variables increases the RMSE does not necessarily decrease.

We aim to overcome these drawbacks with a new cross-validation measure that
is normalised and owns an “inclusion property” such that, when a new variable is
added, the predictive accuracy improves. To achieve this aim we resort to statistical
dependency tools.

Statistical dependence is a type of relation between any two features of units un-
der study: these units may, for instance, be individuals, or objects, or various aspects
of the environment. In literature, several approaches addressed to dependence have
been developed. In such a context, one of the main occurring problem concerns the
application of standard dependence measures to capture information about the real
existence of dependence relations among the involved variables. Let us suppose,
for instance, to assume the employment of a multiple linear regression model built
on a quantitative response variable. Typically, the existence of dependence relations
among the response variable and the considered explanatory ones can be detected
through the so called multiple linear determination coefficient. This measure allows
also to assess the data goodness of fit: anyway, the multiple linear regression coeffi-
cient is affected by some relevant restrictions since based on the euclidean distance
and then more appropriate in a quantitative context of analysis, as argued by [1].
For this reason, an interesting research field is represented by the definition of novel
and more reliable dependence measures, as proved in the contribution provided in
[4], where an alternative to residual analysis is proposed through a new Gini mea-
sure decomposition in terms of concordance and discordance. The recall to the Gini
measure and thus to the underlying Lorenz curve is motivated by the last decade
research proposals in dependence analysis. In [12], for instance, a partial ordering
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of monotone dependence on the class of non-negative bivariate random vectors with
given marginals was defined.

The rest of the paper is organized as follows. Section 3 provides a background
on the Lorenz zonoid tool, especially on its main features and properties. Section 3
focuses on the formalization of the Lorenz-zonoid based dependence measures in
the linear model framework. Section 4 illustrates an application to crypto market
price data. Finally, Section 5 briefly concludes the paper.

2 Background

In this paper we refer to a partial ordering based on a specific statistical tool, named
Lorenz zonoid. When considering multivariate data, the Lorenz zonoid represents
the multidimensional extension of the Lorenz curve. The Lorenz zonoid has been
introduced by [6] for empirical distributions and [11] for general probability distri-
butions. More precisely, the Lorenz zonoid of a d-dimensional random vector cor-
responds to a convex set in Rd+1, whose role is analyzing and comparing random
vectors. Through the Lorenz zonoid representation one can establish an ordering of
random vectors that reflects their variability: the investigation of such ordering is
induced by the inclusion between Lorenz zonoids. This aspect provides a helpful
support for our proposed development.
Let us introduce the Lorenz curve definition of a non-negative variable Y , as re-
ported in [8]. The Lorenz curve of a random variable Y having expectation µ is the
graph of the function

t 7→ µ
−1
∫ t

0
F−1

Y (s)ds,0≤ t ≤ 1

where F−1
Y is the quantile function of X , F−1

Y = min{y : R(y) ≥ t}, 0 < t ≤ 1.
Roughly speaking, given n observation, the Y variable LY Lorenz curve (see [10])
is given by the set of points (i/n,∑i

j=1 y( j)/(nȳ)), for i = 1, . . . ,n, where y(i) indi-
cates the Y variable values ordered in a non-decreasing sense and ȳ is the Y vari-
able mean value. Analogously, the Y variable can be re-ordered in a non-increasing
sense providing the L

′
Y dual Lorenz curve, which is defined as the set of points

(i/n,∑i
j=1 y(n+1− j)/(nȳ)). The area lying between the LY and L

′
Y Lorenz curves cor-

responds to the Gini coefficient, which is typically employed as an indicator of in-
equality, especially when dealing with income data. This holds in the univariate
case. When considering more than one variable, the Lorenz curve generalization in
d dimensions is the so-called Lorenz zonoid.

The Lorenz zonoid of a general d-variate random vector is defined as follows
(see e.g. [7]). Consider the set Y d of random vectors in Rd that have finite expecta-
tion, the subset Y d+ ⊂ Y d of those vectors that have positive (in each component)
expectation, and the subset Y d+

+ ⊂ Y d+ of those that have, in addition, support in
Rd
+.
For Y ∈ Y d+, we introduce the notation
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Ỹ =

(
Y1

E(Y1)
, . . . ,

Yd

E(Yd)

)
,

in order to point out the relative vector1 that is the vector componentwise divided
by its expectation.

The Lorenz zonoid of a random vector Y∈Y d+ is a convex compact set in Rd+1,
defined as follows:

LZ(Y) =
{

E[(g(Ỹ),g(Ỹ)Ỹ] : g : Rd → [0,1] measurable
}
.

For the sake of clarity, a function g : E→R is measurable if E is a measurable set
and for each real number r, the set {y ∈ E : g(y)> r} is measurable. It derives that
continuous and monotone functions are measurable. We remark that if X ∈ Y d+

+ ,
i.e. has support in Rd

+, the Lorenz zonoid is contained in the hypercube of Rd+1.
The Lorenz zonoid fulfills many attractive properties, some of which are basic for
the contribution proposed here.

Property 1 A linear dependence preorder �ld on Y d+ is defined as follows (see,
for instance, [2])

Y�ld X if LZ(X)⊂ LZ(Y), (1)

where LZ(X) and LZ(Y) are the Lorenz zonoids of the random vectors X and Y.

Property 2 For X and Y ∈ Y d+, the Lorenz zonoid order (Lorenz dominance) �L,
is defined as (see, for instance, [8]):

Y�L X if LZ(X)⊂ LZ(Y).

Let us denote with �dil the dilation order. A perfect equivalence between the
dilation order and the Lorenz zonoid order is provided by the following corollary:

Corollary 1 X�dil Y⇒ X�L Y.

Of our interest is the Lorenz zonoid in the univariate case, i.e., the Gini coeffi-
cient represented by the area between the variable Lorenz and dual Lorenz curves.
Henceforth we denote the Gini coefficient with the notation LZd=1(·), indicating the
Lorenz zonoid in the univariate case. The condition of linear dependence reported in
Proposition 1, can be further on re-formalized to cover the case of variables whose
linear relationships may be investigated through a linear regression model.

Proposition 1 Consider the vector of variables (Y,X) and apply a simple linear
regression model, such that ŷ = α̂ + β̂x. Assume that Ŷ takes non-negative values.
Denote respectively with LY (t) and L

′
Y (t) the Y Lorenz curve and its dual, and with

1 Relative data are data divided by their mean value as in the classical definition of the Lorenz
curve.
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L(Ŷ ) and L
′

Ŷ (t) the Ŷ Lorenz curve and its dual. One can prove that LY (t)≤ LŶ (t)≤
L
′
Y (t) (see e.g. [12]), where L

′
Y (t) =

1
E(Y )

∫ 1
1−t F−1

Y (s)ds, 0 ≤ t ≤ 1. Furthermore,

L
′

Ŷ (t)≤ L
′
Y (t).

We denote Proposition 1 as the Lorenz zonoid (when d = 1) “inclusion property”.
The existence of a linear dependence relation between Y and X translates into an in-
clusion between the response variable Y and the linear estimated variable Ŷ Lorenz
zonoids. Fig. 1 shows this outcome in a depicted way. By establishing a linear re-
lation between the response variable Y and the X covariate, through a simple linear
regression function, one computes the response variable estimated values ŷ and then
proceeds to the construction of the Ŷ Lorenz zonoid. The Y variable Lorenz zonoid
contains the corresponding linear estimated variable Ŷ Lorenz zonoid, as one can
deduce from Fig. 1.
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Fig. 1 Y Lorenz zonoid (area between red lines) and Ŷ Lorenz zonoid (area between blue lines).

A direct implication of Proposition 1 is that the Ŷ Lorenz zonoid appears as a
useful tool to define the total variability explained by the response variable linear
estimated values. Note that if d = 1, the reverse implication of Ŷ �dil Y ⇒ Ŷ �L Y
in Corollary 1 and equivalent to Ŷ �L Y ⇒ Ŷ �dil Y holds, meaning that through
the Lorenz dominance an ordering based on the variable variability degree can be
specified.

Remark 1 Note that the inclusion property is fulfilled if the Ŷ estimated values are
all non-negative. In the case of also some negative values, the Ŷ Lorenz curve par-
tially lies under the x-axis and the Ŷ dual Lorenz curve partially lies over the y-axis
upper bound 1. A direct implication follows from this: the Ŷ Lorenz zonoid may take
values greater than one.
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3 Proposal: measuring the contribution of explanatory variables
in linear models

The employment of the Lorenz zonoids extended to the evaluation of the partial
contribution provided by the single explanatory variable differs from the standard
indices typically used in the classical linear modeling framework. In our perspective,
we exploit the essence of the Lorenz zonoid (LZd=1(·)) to be a measure assessing
the variability characterizing the phenomenon of interest. This feature strictly re-
lates wth the goals associated with the classical linear models aimed at assessing the
contribution of the single independent variable in explaining the variability of the
response variable. In this section we illustrate our proposal by: first introducing new
marginal dependence measures, addressed to explain the response variable Lorenz
zonoid share “explained” by each single considered explanatory variable; and sub-
sequently by measuring the effect related to the introduction of a new explanatory
variable into the linear regression model.

3.1 Marginal dependence measures

Let LZd=1(Y ) be the Lorenz zonoid of the response variable Y and X1 be the inde-
pendent variable, such that the ŶX1 is the vector of the linear estimated values com-
puted by resorting to the simple linear regression model, such that Ŷ = α̂ + β̂X1.
Define LZd=1(ŶX1) as the Lorenz zonoid of ŶX1 . Suppose to consider an additional
independent variable X2 and to apply a simple linear regression model such that
ŶX2 = α̂ + β̂X2. We denote with LZd=1(ŶX2) the corresponding Lorenz zonoid. Fol-
lowing [9], in the univariate case, the Lorenz zonoid of a variable may be expressed
by resorting to the covariance formula. Consider the response variable Y . In such a
case,

LZd=1(Y ) =
2Cov(Y,F(Y ))

µ
, (2)

where µ is the response variable Y mean value and F(Y ) is uniformly distributed
between the close range [0,1]. In the same manner, LZd=1(ŶX1) and LZd=1(ŶX2) can
be expressed as

LZd=1(ŶX1) =
2Cov(ŶX1 ,F(ŶX1))

µ
and LZd=1(ŶX2) =

2Cov(ŶX2 ,F(ŶX2))

µ
, (3)

where E(ŶX1) = E(E(Y |ŶX1)) = µ and E(ŶX2) = E(E(Y |ŶX2)) = µ; F(ŶX1) and
F(ŶX2) share the same feature of F(Y ) to be uniformly distributed in the close range
[0,1].
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Let R(Y ), R(ŶX1) and R(ŶX2) be the ranks of each observation i characterising the
Y , ŶX1 and ŶX2 variables. Since R(·)/n terms are the empirical representation of F(·),
the covariance has to be divided by n, so that expressions in (2) and (3) become

LZd=1(Y ) =
2Cov(Y,R(Y ))

nµ
, LZd=1(ŶX1) =

2Cov(ŶX1 ,R(ŶX1))

nµ

and LZd=1(ŶX2) =
2Cov(ŶX2 ,R(ŶX2))

nµ
. (4)

Proof. Consider the response variable Y . We have to prove that

LZd=1(Y ) =
2Cov(Y,F(Y ))

µ
=

2Cov(Y,R(Y ))
nµ

. (5)

The term Cov(Y,F(Y )) is equivalent to Cov
(

Y, R(Y )
n

)
. Through some computa-

tions, we obtain that

Cov
(

Y,
R(Y )

n

)
=

1
n

n

∑
i=1

Yi
R(Yi)

n
−µ

R̄(Y )
n

=
1
n

[
1
n

n

∑
i=1

YiR(Yi)−µR̄(Y )
]

=
1
n

Cov(Y,R(Y )),

and the equivalence in (5) follows. Trivially, this result holds also for variables
ŶX1 and ŶX2 .

Given a sample data of size n, formulas in (2) and (3) may be re-expressed as
follows:

LZd=1(y) =
2Cov(y,r(y))

nȳ
, LZd=1(ŷx1) =

2Cov(ŷx1 ,r(ŷx1))

nȳ

and LZd=1(ŷx2) =
2Cov(ŷx2 ,r(ŷx2))

nȳ
, (6)

where y, ŷx1 and ŷx1 are the vectors of the observed and estimated values; r(y),
r(ŷx1) and r(ŷx2) are the ranks of the observed values; ȳ is the sample mean.

When d = 1, the Lorenz zonoid can be also derived as a function of the distance
between the y-axis values of the points lying on the Lorenz curve and those of the
points lying on the bisector curve (the black curve in Fig. 1).

Proof. Consider the response variable Y , whose values arranged in non-decreasing
sense are denoted with y(i), for i = 1, . . . ,n. Let d be the distance between the the
y-axis values of the points lying on the Lorenz curve, characterised by coordinates
(i/n,∑i

j=1 y( j)/nȳ), and those of the points lying on the bisector curve, characterised
by coordinates (i/n, i/n). It follows that
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d =
n

∑
i=1

{
i
n
− 1

nȳ

i

∑
j=1

y( j)

}
=

n

∑
i=1

i
n
− 1

nȳ

n

∑
i=1

i

∑
j=1

y( j) (7)

Because ∑
n
i=1 i = n(n+1)

2 and ∑
n
i=1 ∑

i
j=1 y( j) = n(n+1)ȳ−∑

n
i=1 iy(i), the term on

the right side of equation (7) can be written as

d =
n(n+1)

2n
− 1

nȳ

[
n(n+1)ȳ−

n

∑
i=1

iy(i)

]
=

1
ȳ

[
1
n

n

∑
i=1

iy(i)−
n(n+1)

2n
ȳ
]

=
1
ȳ

[
1
n

n

∑
i=1

iy(i)−
(n+1)

2
ȳ
]
.

For the covariance approach, note that the mean of ranks r̄(y) equals to ī = (n+
1)/2 providing that

d =
1
ȳ

cov(y(i),r(y)). (8)

From (8), it derives that that LZd=1(y) is function of d, so that

LZd=1(y) =
2
nȳ

[
1
n

n

∑
i=1

iy(i)−
n(n+1)

2n
ȳ

]
(9)

Let ŷ(x1i) and ŷ(x2i), for i = 1, . . . ,n, be the ŶX1 and ŶX2 values arranged in a non-
decreasing sense. Analogously, LZd=1(ŷx1) and LZd=1(ŷx2) may expressed in terms
of distance between the the y-axis values of the points lying on the Lorenz curve
and those of the points lying on the bisector curve, as follows:

LZd=1(ŷx1) =
2
nȳ

[
1
n

n

∑
i=1

iŷ(x1i)−
n(n+1)

2n
ȳ

]
(10)

LZd=1(ŷx2) =
2
nȳ

[
1
n

n

∑
i=1

iŷ(x2i)−
n(n+1)

2n
ȳ

]
. (11)

The term included into the squared brackets appearing in (9), (10) and (11) equa-
tions is the covariances between the y, ŷ(x1) and ŷ(x2) values and their corresponding
ranks.

Through the Lorenz zonoids-based orderings, marginal dependence measures,
we denote with MGC (acronym of “Marginal Gini Coefficient”), can be formalized
in order to evaluate the Y Lorenz zonoid (Gini coefficient) share “explained” by
covariate X1 and covariate X2 alone. More precisely, the following ratios are intro-
duced:
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MGC(Y |X1) =
LZd=1(ŶX1)

LZd=1(Y )
=

2Cov(ŶX1 ,R(ŶX1))/nµ

2Cov(Y,R(Y ))/nµ
=

Cov(ŶX1 ,R(ŶX1))

Cov(Y,R(Y ))
(12)

and

MGC(Y |X2) =
LZd=1(ŶX2)

LZd=1(Y )
=

2Cov(ŶX2 ,R(ŶX2))/nµ

2Cov(Y,R(Y ))/nµ
=

Cov(ŶX2 ,R(ŶX2))

Cov(Y,R(Y ))
. (13)

Generally, given k explanatory variable the marginal contribution associated with
the h-th explanatory variable (with h = 1, . . . ,k) is

MGC(Y |Xh) =
LZd=1(ŶXh)

LZd=1(Y )
=

2Cov(ŶXh ,R(ŶXh))/nµ

2Cov(Y,R(Y ))/nµ
=

Cov(ŶXh ,R(ŶXh))

Cov(Y,R(Y ))
(14)

whose sample version is

MGC(y|xh) =

2
nȳ

[
1
n ∑

n
i=1 iŷ(xhi)−

n(n+1)
2n ȳ

]
2
nȳ

[
1
n ∑

n
i=1 iy(i)−

n(n+1)
2n ȳ

] =
Cov(ŷxh ,r(ŷxh))

Cov(y,r(y))
. (15)

Due to their features, the MGC measures may be used in the forward stepwise
regression procedure, i.e., the independent variable with the largest contribution
in explaining the share of the response variable Lorenz zonoid (variability) mea-
sured by the associated MGC, is introduced as the first one into the linear regression
model. Without loss of generality, the inclusion of the remaining independent vari-
ables occurs in the same manner, by resorting to the partial measures introduced in
the following subsection.

3.2 Partial dependence models

Consider the general context characterized by k explanatory variables: our proposal
is to determine the effect related to the introduction of a new (k+1)-th explanatory
variable into the linear regression model. The inclusion of a new explanatory vari-
able provides an enlargement of the Ŷ Lorenz zonoid. The Lorenz zonoid of the Y
linear estimated values, denoted with LZd=1(ŶX1,...,Xk), corresponds to the dilation
measure of the Y response variable Lorenz zonoid LZd=1(Y ). Therefore, the intro-
duction of an additional covariate in multiple linear regression models translates
into an increase of the “explained” Y variability.

In the well-known linear regression model, properly, the contribution of a sin-
gle variable to the regression plane is additive and, therefore, the addition of a
new explanatory variable translates into an increase of the multiple determina-
tion coefficient (see e.g. [3]). More precisely, suppose to build a linear regres-
sion model characterized by k explanatory variables. Let us introduce an additional
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(k+1)-th explanatory variable: its contribution determines an increase of the Y vari-
able “explained” variability, defined as the difference between Var(ŶX1,...,Xk+1) and
Var(ŶX1,...,Xk)

2. The squared partial correlation coefficient is expressed as

r2
Y,Xk+1|X1,...,Xk

=
Var(ŶX1,...,Xk+1)−Var(ŶX1,...,Xk)

Var(Y )−Var(ŶX1,...,Xk)
, (16)

where Var(Y )−Var(ŶX1,...,Xk) identifies the Y variable variability not explained
by the X1, . . . ,Xk ovariates.

We aim at building a partial dependence measure that “parallels” the partial
correlation coefficient construction. Specifically, we propose as partial dependence
measure the ratio between a numerator characterized by a term denoting the contri-
bution generated by the (k+ 1)-th explanatory variable and a denominator includ-
ing a term which describes the share of the Y Lorenz zonoid “not explained” by the
ŶXk Lorenz zonoid. The additional contribution related to the (k+1)-th explanatory
variable inclusion can be measured through the difference between the ŶX1,...,Xk+1

and ŶX1,...,Xk Lorenz zonoids, that is LZd=1(ŶX1,...,Xk+1)−LZd=1(ŶX1,...,Xk).
A relative index, measuring the additional contribution provided by the Xk+1 in-

dependent variable is obtained in analogy with the partial correlation coefficient
construction. Such a measure, which we call “Relative Gini Index”, is expressed as:

RGIY,Xk+1|X1,...,Xk
=

LZd=1(ŶX1,...,Xk+1)−LZd=1(ŶX1,...,Xk)

LZd=1(Y )−LZd=1(ŶX1,...,Xk)
. (17)

By resorting to the covariance formulas, equation in (17) becomes

RGIY,Xk+1|X1,...,Xk
=

2
nµ

Cov(ŶX1,...,Xk+1 ,R(ŶX1,...,Xk+1))−
2

nµ
Cov(ŶX1,...,Xk ,R(ŶX1,...,Xk))

2
nµ

Cov(Y,R(Y ))− 2
nµ

Cov(ŶX1,...,Xk ,R(ŶX1,...,Xk))

=
Cov(ŶX1,...,Xk+1 ,R(ŶX1,...,Xk+1))−Cov(ŶX1,...,Xk ,R(ŶX1,...,Xk))

Cov(Y,R(Y ))−Cov(ŶX1,...,Xk ,R(ŶX1,...,Xk))
.

(18)

It is worth noting that for the first h-th variable included into the model, the equiv-
alence MGC(Y |Xh) = RGIY |Xh

holds.
Through some manipulations, the RGIY,Xk+1|X1,...,Xk

computed on sample data is ex-
pressed as:

RGIy,xk+1|x1,...,xk
=

∑
n
i=1 i(ŷ(x1,...,xk+1i)− ŷ(x1,...,xki))

∑
n
i=1 i(y(i)− ŷ(x1,...,xki))

. (19)

2 Var(ŶX1,...,Xk ) denotes the Y variability “explained” by the X1, . . . ,Xk independent variables,
whereas Var(ŶX1,...,Xk+1 ) denotes the Y variability “explained” by the X1, . . . ,Xk+1 independent
variables.
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The obtained partial Lorenz dependence measure, RGI, defines the possible par-
tial contribution to the Y Lorenz zonoid, related to the addition of a new explanatory
variable into the model. We now discuss about the statistical interpretation of our
proposed dependence measures. We will consider an example that combines multi-
ple linear regression with Lorenz zonoids theory. Suppose to consider data in Table
1.

Table 1 Data

Y 350 202 404 263 451 304 275 385 244 102 74 346 53 395 430
X1 1 2 3 2 1 3 5 1 4 2 2 3 4 3 3
X2 4 4 1 5 2 4 4 4 3 3 2 4 2 1 3

By resorting both to multiple linear regression model and Lorenz zonoid tools,
one obtains LZd=1(y)' 0.245, LZd=1(ŷx1)' 0.051, LZd=1(ŷx2)' 0.008 and LZd=1
(ŷx1,x2) ' 0.054. Through equation (15), the following marginal dependence mea-
sures can be derived: MGC(y|x1) ' 0.209 and MGC(y|x2) ' 0.032. The Lorenz zonoid
of ŶX1 represents the 20.9% of the Y Lorenz zonoid and the Lorenz zonoid of
ŶX2 represents the 3.2% of the Y Lorenz zonoid. The relative measure describ-
ing the possible additional contribution of covariate X1 to the Y Lorenz zonoid is
RGIy,x1|x2 ' 0.194, meaning that the introduction of covariate X1 allows to increase
the dilation of the LZd=1(ŶX2) in measure equivalent to 19.4%. Finally, the rela-
tive measure describing the possible additional contribution of covariate X2 to the Y
Lorenz zonoid is RGIy,x2|x1 ' 0.013, meaning that the introduction of covariate X2

into the model allows to increase the dilation of the LZd=1(ŶX1) in measure equiva-
lent to 1.3%. Thus, we can conclude that an increase of the dilation measure implies
a reduction of the unexplained response variable variability.

4 Application to Crypto markets price

In this section we refer to an application on cryptocurrency prices data illustrated in
a recent work of [5]. Similarly to [5], here we apply our proposal to assess if the the
daily bitcoin prices in different crypto exchanges may be affected by the prices of
classical assets.
Our data collect information on the daily bitcoin prices in eight different crypto
exchanges from 18 May, 2016 to 30 April, 2016. Since the bitcoin price dynamics
are very similar, for the sake of brevity we only focus on Coinbase Bitcoin and
HitBtc Bitcoin, which represent the response variables of interest. The explanatory
variables which are taken into account are Oil and Gold. We first compute the MGC
coefficients for both the response variables. Through the MGC coefficients we can
detect which covariate provides the greater contribution in explaining the bitcoin
price variability. The covariate with the greatest contribution is included into the
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linear regression model. The contribution of the remaining explanatory variable is
assessed in terms of the RGI index. Results on the Lorenz zonoid measure referred
to Coinbase Bitcoin and HitBtc Bitcoin, together with the MGC coefficients, are
reposted in Table 2.

Table 2 Lorenz zonoid and MGC coefficient values

Response variable LZd=1(·) MGC(·|Gold) MGC(·|Oil)

Coinbase Bitcoin 0.554 0.339 0.332
HitBtc Bitcoin 0.554 0.407 0.341

From Table 2 it arises that both the Coinbase Bitcoin and HitBtc Bitcoin prices
present the same variability, measured by the corresponding Lorenz zonoids. We
can conclude that both the prices do not suffer from strong daily differences. Vari-
able Gold provides a contribution equal to the 33.9% and 40.7% for the Coinbase
Bitcoin and HitBtc Bitcoin variables, respectively. The covariate with the smallest
contribution is the Oil variable. Thus, variable Gold is the first variable to be intro-
duced into the model. The contribution provided by the Oil variable is measured by
the RGI index. Results are displayed in Tables 3 and 4 for the response variables
Coinbase Bitcoin and HitBtc Bitcoin, respectively.

Table 3 Results in terms of RGI indices for response variable Coinbase Bitcoin

Covariate Ordering of inclusion RGI values

Oil 2 RGICoinbase|Gold = 0.339
Gold 3 RGICoinbase,Oil|Gold = 0.238

Table 4 Results in terms of RGI indices for response variable HitBtc Bitcoin

Covariate Ordering of inclusion RGI values

Gold 2 RGICoinbase|Gold = 0.407
Oil 3 RGICoinbase,Oil|Gold = 0.259

5 Conclusions

In this paper we showed how Lorenz zonoids can be usefully employed to assess the
relative contribution associated with single independent variables included in linear
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models.
The employment of the Lorenz zonoid allows to compare different phenomena

by ranking them in terms of their underlying the variability.
Our approach presents similarities with the R2-based approach. Both methods are

built on a quantitative response variable and are addressed in detecting the variables
which mainly impact on the phenomenon of interest.
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