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ABSTRACT. We prove optimal stability estimates for the determi-
nation of a finite number of sound-soft polyhedral scatterers in R3

by a single far-field measurement. The admissible multiple poly-
hedral scatterers satisfy minimal a priori assumptions of Lipschitz
type and may include at the same time obstacles, screens and even
more complicated scatterers. We characterize any multiple polyhe-
dral scatterer by a size parameter h which is related to the minimal
size of the cells of its boundary. In a first step we show that, pro-
vided the error ε on the far-field measurement is small enough with
respect to h, then the corresponding error, in the Hausdorff dis-
tance, on the multiple polyhedral scatterer can be controlled by an
explicit function of ε which approaches zero, as ε → 0+, in an es-
sentially optimal, although logarithmic, way. Then, we show how
to improve this stability estimate, provided we restrict our attention
to multiple polyhedral obstacles and ε is even smaller with respect
to h. In this case we obtain an explicit estimate essentially of Hölder
type.

1. INTRODUCTION

Let Σ be a compact subset of R3 and let us assume that we send an incident time
harmonic acoustic plane wave, characterized by its incident field ui(x) = e

ikω·x,
x ∈ R3. Here k > 0 is the wave number and ω ∈ S2 is the direction of prop-
agation. The incident wave is scattered by the presence of the scatterer Σ and
the perturbation is denoted by us , the scattered field. Then, the total field u solves
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the following exterior boundary value problem

(1.1)



∆u+ k2u = 0 in G,

u(x) = us(x)+ e
ikω·x , x ∈ G,

u = 0 on ∂G,

lim
r→∞ r

(
∂us
∂r

− ikus
)
= 0, r = |x|.

Here we have assumed that Σ is a so-called sound-soft scatterer (to which corre-
sponds the homogeneous Dirichlet condition on ∂G for the total field u) and that
G = R3 \ Σ. The scattered field us(x) satisfies the so-called Sommerfeld radiation
condition, which is the condition at infinity described in the fourth line of (1.1).
We recall that the limit in the Sommerfeld radiation condition has to hold, as
|x| goes to ∞, uniformly in all directions x̂ = x/|x| ∈ S2. By the Sommerfeld
radiation condition, the asymptotic behaviour at infinity of the scattered field us
is governed by the formula

(1.2) us(x) = e
ik|x|

|x|
{
u∞(x̂)+O

(
1
|x|

)}
,

as |x| goes to ∞, uniformly in all directions x̂ = x/|x| ∈ S2. The function u∞,
which is defined on S2, is called the far-field pattern of us , see for instance [9].

The inverse acoustic scattering problem consists in the determination of the
shape and location of Σ by measuring the far-field pattern u∞ for one or several
different incident waves, in other words for one or several directions of propaga-
tion. In fact, throughout the paper, we assume that the wave number k > 0 is
kept fixed.

This inverse acoustic scattering problem has a long history. The first proof
of unique determination for sound-soft obstacles (that is scatterers coinciding with
the closures of their interiors) is due to Schiffer and it required the use of infinitely
many measurements. Then, Colton and Sleeman, in [10], noticed that a simple a
priori bound on the location of the unknown obstacles allows us to determine the
obstacles with a finite number, which can be explicitly computed, of far-field mea-
surements at a fixed wave number. They also remarked that if the wave number k
is small enough, then one measurement would be sufficient. We refer to the book
by Colton and Kress, [9], for a much more detailed description of the problem
and the related literature. Let us mention that corresponding stability estimates
have been developed in [14, 15] and that these estimates, of logarithmic type, are
essentially optimal by the analysis developed in [11]. We also recall that, in [22],
the result by Colton and Sleeman has been extended to screens (that is scatterers
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whose interiors are empty) which are simply connected and satisfy minimal a pri-
ori regularity assumptions. Although in a less explicit and simple way, also in this
case the number of measurements required might be computed.

It is a long standing conjecture that, whatever the wave number k is, one mea-
surement should be enough to determine in a unique way any unknown scatterer,
or at least any unknown obstacle. However, such a result has been proved only for
scatterers of a special type. Following previous results by Liu and Nachman, [16],
and Cheng and Yamamoto, [7, 8], it has been proved in [3] that any polyhedral
scatterer is determined in a unique way by a single far-field measurement. By a
polyhedral scatterer we mean a scatterer whose boundary is the union of a finite
number of cells, each cell being the closure of a domain contained in a hypersur-
face. We remark that, by this definition, a polyhedral scatterer may be composed
at the same time by obstacles (that is polyhedra, in R3), screens and also quite com-
plicated combinations of the two. This result has been extended to other kinds
of boundary conditions, for instance to sound-hard scatterers, in a series of papers
[12, 17–19]. Therefore the uniqueness problem for the determination of polyhe-
dral scatterers of different types and nature is by now almost completely solved.

Here we investigate the related problem of stability for the determination of
sound-soft polyhedral scatterers by a single far-field measurement. In other words,
we consider two different admissible polyhedral scatterers Σ and Σ′ and their cor-
responding far-field patterns (for the same incident field) u∞ and u′∞, respectively.
If we call ε = ‖u∞ −u′∞‖L2(S2) the error between the measurements, then the sta-
bility issue consists in estimating, in a quantitative way, the error between Σ andΣ′, which is measured in the Hausdorff distance, with respect to ε.

For any polyhedral scatterer Σ, we introduce a parameter h > 0 which is
a lower bound on the size of each cell forming ∂Σ. We assume that the same
parameter h is valid for both Σ and Σ′.

The results we obtain are of two kinds. First of all, we consider polyhedral
scatterers satisfying minimal regularity assumptions of Lipschitz type, see Section
2 for the precise definitions. Then, in Theorem 4.1, we prove that ε controls
the minimum between h and the Hausdorff distance between Σ and Σ′ through
an explicit logarithmic function. By using the results developed in [11], we show
that such an estimate is essentially optimal, Proposition 4.4, and we conclude that,
provided the error ε is small enough, in an explicit way, with respect to h, we have
a logarithmic stability estimate for our inverse problem.

Actually, if ε is even smaller, again in an explicit way with respect to h, and we
limit ourselves to polyhedral obstacles, then the stability estimate may be improved
up to an essentially Hölder type estimate, Theorem 4.2. Using again the results
described in Proposition 4.4, we conclude that the estimate is essentially optimal.
Therefore, asymptotically, which in practice means paying the price of ensuring a
very small error on the measurement, the exponential ill-posedness of the problem
may be kept under control. This is in accord with several results in which the ill-
posedness of an inverse boundary value problem is tamed if the unknown features
to be recovered can be described in a discrete way, see for example [2, 4, 5]. With
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respect to the unknown discrete boundaries considered in [2,5], the main novelty
here is the fact that we deal with a three-dimensional, instead of two-dimensional,
problem and that the number of pieces forming the unknown boundary, namely
the number of cells, is not fixed and is not a priori known.

Concerning the proofs, Theorem 4.1 is obtained by repeating the procedure
used to prove uniqueness in [3] and by replacing each of its steps by a correspond-
ing quantitative version. About Theorem 4.2, the key step is the following. We
make use of the previous general stability estimate to ensure that the two polyhe-
dral obstacles Σ and Σ′ are close enough in the Hausdorff distance and we deduce,
in Proposition 6.1 and Proposition 6.2, some special geometric conditions which
in this case interplay between the two boundaries ∂Σ and ∂Σ′. Then, the proof is
concluded by reasonings analogous to the one developed in the proof of Theorem
4.1.

The plan of the paper is as follows. In Section 2, we describe and comment the
a priori hypothesis on the scatterers. In Section 3, we formulate the direct acoustic
scattering problem (1.1) and recall some properties of its solutions. Then, in Sec-
tion 4 we state the main stability results, namely a first general stability estimate,
Theorem 4.1, for the determination of polyhedral scatterers and a refined stability
estimate for the determination of polyhedral obstacles, Theorem 4.2. The sec-
tion is concluded with a discussion on the optimality of these results, Proposition
4.4. In Section 5 we develop the stability analysis for polyhedral scatterers and
prove Theorem 4.1. Finally, in Section 6, we discuss the relationships between
two polyhedra which are close in the Hausdorff distance and we prove Theorem
4.2.

2. CLASSES OF ADMISSIBLE SCATTERERS

In order to state our stability results we need first to introduce suitable classes of
admissible scatterers. We begin by fixing some notation. Throughout the paper we
limit ourselves to the three-dimensional case. For any x ∈ R3, and any r > 0, with
Br (x) we denote the open ball of center x and radius r . For any r > 0, Br denotes
Br (0). For any subset A ⊂ R3, we set Br (A) =

⋃
x∈A Br (x). Furthermore, with

diam(A) we denote the diameter of A.
Given a point x ∈ R3, a direction ω0 ∈ S2 and two positive constants r , θ,

0 < θ < π/2, we call C(x,ω0, r , θ) the open cone so defined

C(x,ω0, r , θ) = {y ∈ R3 | 0 < |y − x| < r, (y − x) ·ω0 > cos(θ)|y − x|}.

Here, x is the vertex of the cone, r is its radius, the line {x + tω0, t ≥ 0} is its
bisecting line and θ is its amplitude angle or angle, for simplicity.

We say that a functionϕ : A→ B, A and B being metric spaces, is bi-Lipschitz
if it is invertible andϕ andϕ−1 : ϕ(A) → A are both Lipschitz functions. If both
the Lipschitz constants of ϕ and ϕ−1 are bounded by L > 0, then we say that ϕ
is bi-Lipschitz with constant L.
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We recall that a continuum is a connected set not reduced to a single point.
We shall say that σ is a scatterer if σ is a compact continuum contained in R3 such
that R3\σ is connected. If σ is the closure of its interior part, for example it is the
closure of a domain, then we call it an obstacle, whereas if σ has empty interior,
then it is called a screen. We shall say that Σ is a multiple scatterer (obstacle or
screen, respectively) if it is the finite union of pairwise disjoint scatterers (obstacles
or screens, respectively). We shall denote by G the exterior of a multiple scattererΣ
(2.1) G = R3 \ Σ
and we observe that it is connected as well. If Σ is a multiple scatterer, for any
x ∈ Σ, we denote with σ(x) the connected component, that is the scatterer, of Σ
containing x. We call r(Σ) = min{diam(σ(x)) | x ∈ Σ}.

Let T be the closed equilateral triangle which is contained in the plane Π =
{(x1, x2, x3) ∈ R3 | x3 = 0} with vertices V1 = (0,1,0), V2 = (−

√
3/2, − 1

2 ,0)
and V3 = (

√
3/2, − 1

2 ,0) and T ′ ⊂ R2 be the set {(x1, x2) ∈ R2 | (x1, x2,0) ∈
T}. Fixed a positive constant L, we call an L-generalized triangle a set Γ such that,
up to a rigid transformation, Γ = {(x1, x2, x3) ∈ R3 | (x1, x2) ∈ ϕ(T ′), x3 =
ϕ1(x1, x2)}, where ϕ : R2 → R2 is a bi-Lipschitz function with constant L such
that ϕ(0) = 0 and ϕ1 : R2 → R is a Lipschitz map with Lipschitz constant
bounded by L and such that ϕ1(0) = 0.

The image through ϕ of any vertex or side of T ′ will be called a generalized
vertex or generalized side of ϕ(T ′), respectively. The image on the graph of ϕ1
of one of the generalized vertices of ϕ(T ′) will be called a generalized vertex ofΓ , whereas the image of one of the generalized sides of ϕ(T ′) will be called a
generalized side of Γ .

We remark that there exists a constant L1 > 0, depending on L only, such that
we can find ϕ2 : R3 → R3, a bi-Lipschitz function with constant L1, such thatΓ =ϕ2(T).

Let us fix, throughout the paper, positive constants R, L, δ, c, 0 < c < 1, θ,
0 < θ < π/2, α0, 0 < α0 < π/3, and k. These constants will be referred to as
the a priori data.

Definition 2.1. We say that a multiple scatterer Σ belongs to the classA with
constants R, L, δ, c, 0 < c < 1, and θ, 0 < θ < π/2, if Σ satisfies the following
assumptions

(i) Σ ⊂ B̄R(0);
(ii) ∂Σ = ⋃ni=1 Γi, where n depends on Σ and each Γi is an L-generalized triangle;

(iii) for any i, j ∈ {1, . . . , n} with i ≠ j, we have that either Γi ∩ Γj is not empty
or dist(Γi, Γj) ≥ δ;

(iv) for any i, j ∈ {1, . . . , n} with i ≠ j, if Γi ∩ Γj is not empty, then Γi ∩ Γj
is either a common generalized side γ or a common generalized vertex V .
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Furthermore, in such a case, for any x ∈ Γi we have dist(x, Γj) ≥ c dist(x, γ)
or dist(x, Γj) ≥ c|x − V |, respectively;

(v) for any Γi and any x belonging to one of its generalized sides, there ex-
ists a direction ω0 ∈ S2 such that, as y ∈ Γi ∩ Bδ(x), the open cones
C(y,ω0, δ, θ) are contained in G and their opposite cones C(y,−ω0, δ, θ)
are all contained either in Σ (for example if σ(x) is an obstacle) or in G (for
example if σ(x) is a screen);

(vi) for any r , 0 < r < δ/4, we have that R3 \ B̄r (Σ) is connected.

We are interested in scatterers of polyhedral type.

Definition 2.2. Let us define a cell as the closure of an open domain of a
plane in R3. We shall say that Σ is a polyhedral multiple scatterer if Σ is a multiple
scatterer such that the boundary of Σ is given by a finite union of cells.

Furthermore, we shall say that a cell C is triangular with constants h > 0 and
α0, 0 < α0 < π/3, if C is a triangle of a plane of R3 whose sides have length
greater than or equal to h and whose angles are greater than or equal to α0.

We say that an L-generalized triangle Γ is polyhedral with constants h > 0 and
α0, 0 < α0 < π/3, if Γ is the union of triangular cells, with constants h and α0,
which form a regular triangulation, that is, two different triangular cells may only
share a vertex or a side.

Fixed h > 0, we say that Σ belongs to the class Ap(h) if Σ is a polyhedral
multiple scatterer belonging toA and such that each generalized triangle Γ of ∂Σ
is polyhedral with constantsh and α0. Furthermore, we assume that the triangular
cells form a regular triangulation all over ∂Σ.

Also the following class will be used.

Definition 2.3. We say that a set S ⊂ R3 is uniformly Lipschitz with constants
r and L if for any x ∈ S there exists a Lipschitz map ϕ : R2 → R, such that
ϕ(0) = 0 and its Lipschitz constant is bounded by L, such that, up to a rigid
transformation, x = 0 and

S ∩ Br (x) ⊂ {y ∈ R3 | y3 = ϕ(y1, y2)}.

We say that a multiple scatterer Σ is uniformly Lipschitz with constants r and
L if ∂Σ is a uniformly Lipschitz set with constants r and L.

We say that Σ ∈ Ao if Σ ∈ A and σ(x) is an obstacle for any x ∈ Σ and Σ
is a uniformly Lipschitz multiple obstacle with constants δ and L. We remark that,
for any x ∈ ∂Σ, with the previous notation we have

∂Σ∩ Bδ(x) = {y ∈ Bδ(x) | y3 =ϕ(y1, y2)},Σ∩ Bδ(x) = {y ∈ Bδ(x) | y3 ≤ϕ(y1, y2)}.

Fixed h > 0, we define Ap,o(h) as the set of Σ ∈ Ap(h) such that σ(x) is
an obstacle for any x ∈ Σ and Σ is a uniformly Lipschitz multiple obstacle with
constants ch and L.
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It is clear that, up to suitable changing the given constants, we can enlarge
the class A and Ao in such a way that A and Ao are not empty and that, for
some constant h0, 0 < h0 ≤ 1,Ap(h) andAp,o(h) ⊂Ao are not empty for any
h, 0 < h ≤ h0. Therefore, in the sequel we shall always assume, without loss of
generality, that this is the case. We recall that any element of A is a nonempty
compact set and thatA will be endowed with the Hausdorff distance, which will
be denoted by dH(·, ·).

Let us illustrate some of the properties of multiple scatterers belonging to the
class A. Assumption (i) is self-explanatory. For what concerns assumptions (ii)–
(iv), we may think that the sets Γi, i = 1, . . . , n, are a kind of regular triangulation
of ∂Σ. If the Γi would be planar, we would have a regular triangulation of the
surface ∂Σ in the usual sense. Furthermore, we control how the various parts of
the triangulation might be close to each other.

About assumption (v), we remark that it implies that G satisfies a uniform
cone property. More precisely, there exists δ1 > 0 and θ1, 0 < θ1 < π/2, de-
pending on the a priori data only, such that for any Γ , generalized triangle of ∂Σ,
and any x belonging to Γ , there exists a direction ω0 ∈ S2 such that, for any
y ∈ Γ ∩ Bδ1(x), the open cones C(y,ω0, δ1, θ1) are contained in G and their
opposite cones C(y,−ω0, δ1, θ1) are all contained either in Σ or in G. Further-
more, we notice that any connected component of Σ which is an obstacle satisfies a
uniform interior cone property as well. If a connected component of Σ is a screen,
then it satisfies a uniform exterior cone property on either sides of the screen.

Assumption (vi) is a somewhat stronger version of the following uniform con-
nectedness property of G. In fact, assumption (vi) implies that for any t > 0 and
for any x1 ∈ G so that B̄t(x1) is contained in G, we can find a smooth (for in-
stance C1) curve γ connecting x1 to x0 = (2R,0,0) so that B̄η(t)(γ) is contained
in G as well. Here η : (0,+∞) → (0,+∞) is a strictly increasing function which
can be chosen as follows. If t is such that 0 < t ≤ min{δ/8, R/2}, then we can
choose η(t) = t/2. On [min{δ/8, R/2},∞), we choose as η any continuous
strictly increasing function such that η(min{δ/8, R/2}) = min{δ/8, R/2}/2 and
limt→∞ η(t) = min{δ/8, R/2}. We also observe that, with a completely analogous
reasoning, we have that R3\B̄r (Σ) is uniformly connected for any r , 0 < r < δ/4,
with a, possibly different, function η depending on r and the a priori data only.
Actually, we can choose the same function η for any Σ ∈ A and any R3 \ B̄r (Σ),
0 < r ≤ δ/8. Let us finally remark that assumption (vi) is not a particularly strong
assumption. In fact, it holds for multiple scatterers whose components are either
uniformly Lipschitz obstacles or uniformly Lipschitz screens with some additional
assumptions on the boundaries of the surfaces forming the screens, see for instance
the reasonings developed in [23].

Other important properties of multiple scatterers Σ belonging to A can be
inferred. We notice that there exists an integer M such that for any Σ ∈ A, such
that ∂Σ = ⋃n

i=1 Γi, we have n ≤ M. As a consequence, we have that the number
of connected components of Σ (that is the number of scatterers forming Σ) is
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bounded by M as well. Furthermore, we have that, for some constant r0 > 0
depending on the a priori data only,

r(Σ) = min{diam(σ(x)) | x ∈ Σ} ≥ r0,(2.2) Σ∩ Br0(x) ⊂ σ(x), for any x ∈ Σ,(2.3)

that is, we have a lower bound on the size of any scatterer forming Σ, whereas (2.3)
is a lower bound on the distance between two different scatterers forming Σ.

It is not difficult to show that for any Σ ∈ A and any r , 0 < r ≤ δ/8, we
have that Σ and B̄r (Σ) satisfy Assumptions (a), (b) and (c) of [22] with constants
and functions depending on the a priori data only, and not on r . We recall that
Assumption (a) of [22] essentially means that Σ is uniformly thick. We refer to
[13, page 127] for the notion of uniformly thickness of a set and its applications
to the regularity of solutions to elliptic equations. Assumption (b) of [22] is the
uniform connectedness of the exterior, which we have already discussed, finally
Assumption (c) of [22] is a bound on the number of connected components.

We observe that the following property holds. Let Σ, Σ′ ∈ A. There exists
d0 > 0, d0 depending on the a priori data only, such that if dH(Σ,Σ′) ≤ d0,
then Σ and Σ′ have the same number m of connected component and, up to
rearranging their order, we have Σ = ⋃mi=1σi, Σ′ = ⋃mi=1 σ

′
i and

dH(σi,σ ′i ) ≤ dH(Σ,Σ′) = max
i=1,...,m

dH(σi, σ ′i ).

Let Σ and Σ′ belong to A. Let us define the following modified Hausdorff
distance

d′H(Σ,Σ′) = max{ max
x∈∂Σ\Σ′ dist(x, ∂Σ′), max

x∈∂Σ′\Σdist(x, ∂Σ)},
with the convention that if ∂Σ\Σ′ = ∅, then we pose maxx∈∂Σ\Σ′ dist(x, ∂Σ′) = 0.
We recall that other versions of modified Hausdorff distance have been previously
introduced with similar purposes, see for instance [1]. Let us remark that, obvi-
ously, we have

d′H(Σ,Σ′) ≤ dH(∂Σ, ∂Σ′).
The following proposition allows us to control the Hausdorff distance with respect
to the modified distance.

Proposition 2.4. Let Σ and Σ′ belong to A. Then there exist positive constants
C1 and C2, depending on the a priori data only, such that

C1d′H(Σ,Σ′) ≤ C1dH(∂Σ, ∂Σ′) ≤ dH(Σ,Σ′)
≤ C2d′H(Σ,Σ′) ≤ C2dH(∂Σ, ∂Σ′).
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Proof. Let d = dH(Σ,Σ′) > 0 and let us assume, up to swapping Σ and Σ′,
that there exists x ∈ Σ \Σ′ such that dist(x,Σ′) = d. Obviously, dist(x, ∂Σ′) = d
as well. If x ∈ ∂Σ, then we can conclude that d ≤ d′H(Σ,Σ′). Therefore, let
us assume that x is an interior point of Σ. Since Σ and Σ′ are both contained
in B̄R, we a priori know that d ≤ 2R. For the time being, we assume that d ≤
min{δ/8, R/2}. By the uniform connectedness of G′ = R3 \ Σ′, we can find a
simple piecewise smooth curve γ connecting x to (2R,0,0) such that Bd/4(γ) ⊂
G′. Since x belongs to the interior of Σ and (2R,0,0) ∈ G, there exists x̃ ∈
γ ∩ ∂Σ. We have that dist(x̃,Σ′) = dist(x̃, ∂Σ′) ≥ d/4, therefore d′H(Σ,Σ′) ≥
d/4 and the second inequality is proved provided d ≤ min{δ/8, R/2}. If d >
min{δ/8, R/2}, then we can find a simple piecewise smooth curve γ connecting
x to (2R,0,0) such that Bmin{δ/8,R/2}/4(γ) ⊂ G′. We conclude that d′H(Σ,Σ′) ≥
min{δ/8, R/2}/4 ≥ min{δ/8, R/2}d/(8R) and the inequality is proved also in
this case. The second inequality is trivial if d = 0.

Again up to swapping Σ and Σ′, let x ∈ ∂Σ be such that dist(x, ∂Σ′) =
dH(∂Σ, ∂Σ′) = d′′ > 0. If d′′ = 0, then d′H(Σ,Σ′) = 0 and, by the second
inequality, we have d = 0 as well. We have two possibilities. First, if x does not
belong to the interior of Σ′, then dist(x, ∂Σ′) = dist(x,Σ′) and therefore d′′ ≤ d.
Second, let us assume that x belongs to the interior of Σ′, that is Bd′′(x) ⊂ Σ′. Let
us further assume, for the time being, that d′′ ≤ δ1. By the uniform cone property
of G = R3 \ Σ, there exists a constant c1 > 0, depending on the a priori data
only, such that we can find x′ ∈ Bd′′/2(x) satisfying dist(x′,Σ) ≥ c1d′′, hence
c1d′′ ≤ d. This concludes the proof when d′′ ≤ δ1. If d′′ > δ1, then we can find
x′ ∈ Bδ1/2(x) such that dist(x′,Σ) ≥ c1δ1, that is d ≥ c1δ1 and the conclusion
is immediate since d′′ ≤ 2R. We have proved that C1dH(∂Σ, ∂Σ′) ≤ dH(Σ,Σ′)
for a positive constant C1 depending on the a priori data only. Therefore also the
first inequality is proved. ❐
We conclude this section with the following important compactness result.

Lemma 2.5. The classes A and Ao are compact with respect to the Hausdorff
distance. Furthermore, for any h, 0 < h ≤ h0,Ap(h) andAp,o(h) are also compact
with respect to the Hausdorff distance.

Proof. The proof can be obtained by simple modifications of the arguments
used to prove Lemma 6.1 in [24]. Some care should be taken in dealing with the
uniform Lipschitz property in the case ofAo andAp,o(h), however even this case
can be treated by standard arguments. ❐

3. THE DIRECT SCATTERING PROBLEM

We consider the acoustic scattering problem with a sound-soft multiple scatterer Σ.
Throughout the paper we shall keep fixed, beside the wave number k > 0,

also the direction of propagationω ∈ S2 of the incident field ui(x) = e
ikω·x . Let

u be the complex valued solution to (1.1). It is well-known that a weak solution
u ∈ W 1,2

loc (G) to (1.1) exists and is unique, see for instance [21]. We have that u is
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analytic in G, but, of course, due to the possible irregularity of the boundary of G,
the Dirichlet boundary condition in (1.1) is, in general, satisfied in the weak sense
only. We recall that the function us(x) = u(x) − e

ikω·x is called the scattered
field and that its asymptotic behaviour at infinity is described by (1.2) and, in
particular, by u∞, a function defined on S2, which is usually referred to as the
far-field pattern of us .

Let Σ, Σ′ ∈ A and let u be the solution to (1.1) and u′ be the solution to
the same problem when Σ is replaced by Σ′. Let us(x) = u(x) − e

ikω·x and
u′s(x) = u′(x)− e

ikω·x and let u∞ and u′∞ be the far-field pattern of us and u′s ,
respectively. In the remaining part of this section, we describe some properties of
these solutions and we present auxiliary results which will be useful in the sequel.

By the results proved in [22], the following properties are satisfied by u and
us(x). We always assume that u (and u′ as well) is extended to all of R3 by
setting u ≡ 0 outside G (respectively G′ = R \ Σ′). There exists a constant C1,
depending on the a priori data only, such that

(3.1) |us(x)| ≤ C1|x|−1 for any x ∈ R3 : |x| ≥ 2R.

We immediately infer that there exists a constant R1, R1 ≥ 2R, depending on C1
only, such that

(3.2) |u(x)| ≥ 1
2

for any x ∈ R3 : |x| ≥ R1.

There exist positive constants C2 and α, 0 < α < 1, depending on the a priori
data only, such that

(3.3) |u(x)−u(y)| ≤ C2|x −y|α for any x,y ∈ B2R1 ,

that is u is Hölder continuous with constants depending on the class of admissible
multiple scatterers and on k. As a consequence, we have that u is continuous up to
∂G and u ≡ 0 on ∂G, that is the Dirichlet boundary condition in (1.1) is satisfied
also in a classical sense. Also, we have that there exists a constant C3, depending
on the a priori data only, such that

(3.4) |u(x)| ≤ C3 for any x ∈ R3.

We also have the following stability estimate for the direct problem with re-
spect to the multiple scatterer.

Proposition 3.1. Let Σ and Σ′ belong to A. Then, there exists a constant C4,
depending on the a priori data only, such that

|u(x)−u′(x)| ≤ C4(dH(Σ,Σ′))α for any x ∈ R3 ,(3.5)

|u(x)−u′(x)| ≤ C4(dH(Σ,Σ′))α|x|−1 for any x ∈ R3 : |x| ≥ 2R .(3.6)

Here α is the same constant appearing in (3.3).
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Proof. Let us assume, for the time being, that d = dH(Σ,Σ′) ≤ δ/8. ThenΣ∪ Σ′ ⊂ B̄d(Σ). By (3.3), we have that

|u(x)| ≤ C2dα for any x ∈ B̄d(Σ),
whereas, since for any x ∈ B̄d(Σ) we have dist(x,Σ′) ≤ 2d,

|u′(x)| ≤ C2(2d)α for any x ∈ B̄d(Σ).
Therefore, we have that

|u(x)−u′(x)| = |us(x)−u′s(x)| ≤ 3C2dα for any x ∈ B̄d(Σ).
We have that us − u′s solves the Helmholtz equation on R3 \ B̄d(Σ), satisfies the
Sommerfeld radiation condition and its Dirichlet data on ∂B̄d(Σ) are uniformly
bounded by 3C2dα. By our assumptions on Σ, in particular by Assumption (vi),
we can apply the same reasoning used in [22] to conclude the proof provided
d ≤ δ/8. The fact that d ≤ 2R, and (3.4) and (3.1), respectively, allow us to
conclude the proof of (3.5) and (3.6) also when d > δ/8. ❐

As a consequence of Proposition 3.1, we have the following results. Let r1 =
3
2 max{R1,2/(ek)}. Then, there exists a constant C5, depending on the a priori
data only, such that

(3.7) ‖u−u′‖C1(B̄7er1/4\B5er1/4)
≤ C5(dH(Σ,Σ′))α,

and, by the stability of the direct scattering problem on the exterior of a given ball,

(3.8) ‖u∞ −u′∞‖L2(S2) ≤ C6C5(dH(Σ,Σ′))α,
C6 depending on k and R1 only.

In this paper we investigate the possibility to reverse the inequalities (3.7)
and (3.8), that is to control the Hausdorff distance between Σ and Σ′ either by
the error on the far-field, ‖u∞ − u′∞‖L2(S2), or by the error on the near-field,
‖u − u′‖C1(B̄7er1/4\B5er1/4)

. The first step, that is the stability of the determination
of the near-field from the far-field, is well-known and is contained in the following
lemma, whose proof can be found in [14].

Lemma 3.2. Let ε be a positive number such that

(3.9) ‖u∞ −u′∞‖L2(S2) ≤ ε.
There exists a positive constant ε̃0 < 1/e, depending on the a priori data only, such
that if 0 < ε ≤ ε̃0, then

(3.10) ‖u−u′‖C1(B̄7er1/4\B5er1/4)
≤ exp

(
−1

2
(− log ε)1/2

)
.
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We conclude this section with some auxiliary results on classical solutions
to the Helmholtz equation. A simple dilation argument and standard interior
regularity results for the solutions to the Helmholtz equation lead to the following
lemma.

Lemma 3.3. Let us fix positive constants ρ1, M. Let us consider ρ, 0 < ρ ≤ ρ1,
and a function u such that

∆u+ k2u = 0 in Bρ.

If, for some positive ε ≤M,

(3.11) |u(x)| ≤ ε for any x ∈ Bρ,

then we have that for any constant s, 0 < s < 1, there exists a constant C depending
on k, ρ1, M, and s only such that

(3.12) ρ|∇u(x)| ≤ Cε for any x ∈ Bsρ.

For any plane Π in R3, let TΠ be the reflection in Π. If Π = {(x1, x2, x3) ∈
R3 | x3 = 0}, with respect to a suitably chosen Cartesian coordinate system, then,
for any x = (x1, x2, x3), we have TΠ(x) = (x1, x2,−x3).

Lemma 3.4. Let us fix positive constants ρ1, M. Let us consider ρ, 0 < ρ ≤ ρ1,
and a function u such that

∆u+ k2u = 0 in Bρ.

Let Π = {(x1, x2, x3) ∈ R3 | x3 = 0} and let T = TΠ and v(x) = −u(T(x)). Let
us assume that

|u(x)| ≤ M for any x ∈ Bρ,
and, for some positive ε ≤M,

|u(x)| + ρ|∂1u(x)| + ρ|∂2u(x)| ≤ ε for any x ∈ Π∩ Bρ.
Then there exist constants C, β, 0 < β < 1, depending on k and ρ1 only, such that

|(u− v)(x)| ≤ CM1−βεβ for any x ∈ Bρ/2.

Proof. We have that ∆v + k2v = 0 in Bρ and

|(u− v)(x)| + ρ|∇(u− v)(x)| ≤ 2ε for any x ∈ Π∩ Bρ.
We call w(x) = (u− v)(ρx) and we have that ∆w + k2ρ2w = 0 in B1 and

|w(x)| + |∇w(x)| ≤ 2ε for any x ∈ Π∩ B1,

whereas |w(x)| ≤ 2M for any x ∈ B1. Then, the proof can be easily obtained by
applying the estimates derived in [25], see also for similar estimates [20]. ❐
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As a consequence of the three-spheres inequalities which may be found, for instance,
in [6], the following inequality holds true.

Lemma 3.5. There exist positive constants ρ̃, C and c1, 0 < c1 < 1, depending
on k only, such that for every 0 < ρ1 < ρ < ρ2 ≤ ρ̃ and any function u such that

∆u+ k2u = 0 in Bρ2 ,

we have, for any s, ρ < s < ρ2,

(3.13) ‖u‖L∞(Bρ) ≤ C(1− (ρ/s))−3/2∥∥u∥∥1−β
L∞(Bρ2 )

∥∥u∥∥βL∞(Bρ1 )
,

for some β such that

(3.14)
c1(log(ρ2/s))

log(ρ2/ρ1)
≤ β ≤ 1− c1(log(s/ρ1))

log(ρ2/ρ1)
.

4. THE MAIN STABILITY RESULTS

The first stability result is the following. Let us call η : (0,1/e) → (0,+∞) the
following function

(4.1) η(s) = exp(−(log(− log s))1/2) for any s, 0 < s < 1/e.

Theorem 4.1. Let Σ, Σ′ belong to Ap(h), with 0 < h ≤ h0, and let d =
dH(Σ,Σ′).

There exists a constant ε̂0 > 0, depending on the a priori data only, such that if

(4.2) ‖u∞ −u′∞‖L2(S2) ≤ ε

for some ε < ε̂0, then for some positive constant C depending on the a priori data only,
and not on h, we have

(4.3) min{d,h} ≤ 2eR(η(ε))C/2.

Therefore,

(4.4) dH(Σ,Σ′) ≤ 2eR(η(ε))C/2,

provided ε < ε̂0(h) where

ε̂0(h) = min

{
ε̂0, η−1

((
h

2eR

)2/C)}
.

This estimate may be improved if we limit ourselves to the determination of
multiple obstacles.
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Theorem 4.2. Let Σ and Σ′ belong toAp,o(h), with 0 < h ≤ h0.
Then there exists ε̂1(h), 0 < ε̂1(h) ≤ ε̂0(h), depending on the a priori data and

on h only, such that if (4.2) holds for some ε < ε̂1(h), then

(4.5) dH(Σ,Σ′) ≤ C1 exp

(
C2

(
e

h

)C3
)

exp
(
−C4

2
hC5(− log ε)1/2

)
.

Here C1, . . . , C5 are positive constants depending on the a priori data only.

Remark 4.3. We make the following two observations on Theorem 4.2. First
of all, we notice that the estimate is not precisely of Hölder type only because the
stability of the determination of the near-field from the far-field is not Hölder, see
Lemma 3.2. In fact, with respect to the near-field the stability estimate is Hölder,
see Lemma 6.4.

We may also quantify ε̂1(h) in an explicit way with respect to h and the a
priori data as follows.

The estimate holds provided d ≤ f(h) = c1h2 exp(−(e/h)A1), for some
positive constants c1 ≤ 1 and A1 depending on the a priori data only. Therefore,
by Theorem 4.1, this is guaranteed provided that

ε < ε̂1(h) = min

{
ε̂0, η−1

((
f(h)
2eR

)2/C)}
.

The proof of the stability theorems is postponed to Section 5 for Theorem
4.1 and to Section 6 for Theorem 4.2. We conclude this section by making some
remarks on the optimality of the estimates derived, in particular of estimate (4.3).

In order to prove the optimality of our estimates, let Σ = [−1,1]× [−1,1]×
[−1,1]. Let us take a part of the upper face of the cube, namely, [−`h, `h] ×
[−`h, `h] × {1}, where ` is an integer such that 1

2 ≤ `h ≤
3
4 (we may assume

h ≤ 1
8 ). Therefore, 1/(2h) ≤ ` ≤ 3/(4h). We divide such a part into 4`2 squares

of side h. Let us consider a pyramid with base given by a square of side h, height
d ≤ h and vertex exactly above the center of the square.

If we modify Σ by replacing one or several of the squares with the correspond-
ing pyramid, we obtain 24`2 different obstacles. It is easy to verify that we may
choose constants R, L, δ, c, 0 < c < 1, θ, 0 < θ < π/2, α0, 0 < α0 < π/3,
and c1, 0 < c1 < 1, none of them depending on h or d, such that Σj ∈ Ap,o(h̃)
for any j = 1, . . . ,24`2 , where h̃ = c1h. Let us remark that there exists j ∈
{1, . . . ,24`2} such that Σ = Σj . Finally we remark that dH(Σj,Σ) ≤ d for any j
and dH(Σi,Σj) = d for any i ≠ j. We also fix k. By slight modifications of the
computations developed in [11], we obtain that there exists a positive constant
h1 ≤ 1

8 , depending on the a priori data only, such that, if 0 < h ≤ h1, then we
can find i ≠ j satisfying

‖ui∞(ω, x̂)−uj∞(ω, x̂)‖L2(S2×S2) ≤ 2 exp(−h−(1/3))dα,
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with α as in (3.3).
Obviously, there existsω0 such that

ε = ‖ui∞(ω0, ·)−uj∞(ω0, ·)‖L2(S2)

≤ (4π)−1/2‖ui∞(ω, x̂)−uj∞(ω, x̂)‖L2(S2×S2).

We observe that, for any 0 < d ≤ h, we have min{d, h̃} ≥ c1d and that, if
we pick d = h, then min{d, h̃} = h̃ = c1h. Then the following result holds.

Proposition 4.4. Under the previous assumptions, we infer that for any h, 0 <
h ≤ h1, and if d = h, then

min{d, h̃} = h̃ = c1h = c1d ≥ c1(− log(
√
πε))−3.

More precisely,

h̃ ≥ c1(− log(
√
πε))−3

and

d = h ≥ (− log(
√
πε))−3.

Furthermore, for any h, 0 < h ≤ h1, and any d, 0 < d ≤ h, we obtain

d ≥ (exp(h−1/3)
√
πε)1/α,

and, consequently,

min{d, h̃} ≥ c1d ≥ c1(exp(h−1/3)
√
πε)1/α.

This proposition shows that in general logarithmic estimates are optimal and
that we may improve them at most with Hölder type estimates whose multiplica-
tive constant, however, blows up in an exponential way with respect to h.

5. THE STABILITY ANALYSIS FOR POLYHEDRAL MULTIPLE SCATTERERS

Throughout this section, we also fix h, 0 < h ≤ h0, and we letAp = Ap(h).
Let Σ, Σ′ belong toAp and let d = dH(Σ,Σ′). We observe that d ≤ 2R. Let

ε be a positive number such that ε ≤ ε̃0, ε̃0 as in Lemma 3.2, and

(5.1) ‖u∞ −u′∞‖L2(S2) ≤ ε.
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Let us call ε1 the error on the near-field, namely

(5.2) ‖u−u′‖C1(B̄7er1/4\B5er1/4)
= ε1.

We observe that, since ε ≤ ε̃0 < 1/e, then, by Lemma 3.2, we have that

ε1 ≤ exp
(
−1

2
(− log ε)1/2

)
.

There exists ε̃1, 0 < ε̃1 ≤ ε̃0, depending on the a priori data only, such that
exp(− 1

2(− log ε1)1/2) ≤ 1/(2e). Therefore, we assume, without loss of generality,
that either ε < ε̃1 or ε1 < 1/(2e). We observe that we also have

log
1
ε1
≥ 1

2

(
log

1
ε

)1/2
.

Furthermore, by (3.4), we have that

(5.3) |u(x)| + |u′(x)| ≤ E for any x ∈ R3,

where E depends on the a priori data only and it may be assumed to be greater
than or equal to 1.

Let us now proceed with the proof of Theorem 4.1. We need to introduce
the following notation. Let H be the connected component of G ∩ G′, where
G′ = R3 \ Σ′, such that R3 \ B̄R is contained in H.

Definition 5.1. We say that a sequence of balls Bρi(zi), i = 0, . . . , n, forms a
regular chain with respect to an open set G if the following properties are satisfied

(i) for any i = 0,1, . . . , n, B8ρi(zi) ⊂ G;
(ii) for any i = 1, . . . , n, we have ρi ≤ ρi−1 and Bρi/8(zi) ⊂ B3ρi−1/8(zi−1) and,

for any i = 0, . . . , n− 1, we have Bρi/8(zi) ⊂ B7ρi+1/8(zi+1).

Proof of Theorem 4.1. We proceed into several steps, alongside with the geo-
metric construction and its corresponding estimate. Without loss of generality, up
to swapping Σ with Σ′, we can find x1 ∈ Σ′ such that d = dist(x1,Σ). We also fix
x0 = ((3/2)er1,0,0).

Step I: From x0 to x1. We construct a sequence of balls Bρi(zi), i = 0, . . . , n,
such that they are a regular chain with respect to G and the following conditions
are satisfied. First, z0 = x0 and ρ0 is a positive constant, depending on the a priori
data only, such that 8ρ0 ≤ min{R/4, ρ̃}, and zn = x1.

The sequence is constructed as follows. Let y1 be a point of Σ such that
|x1 − y1| = d. By the properties of Σ, there exists a direction ω0 ∈ S2 such
that the open cone C(y1,ω0, δ1, θ1) is contained in G and its opposite cone
C(y1,−ω0, δ1, θ1) is contained either in Σ or in G. We have that Bd(x1) has a
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nonempty intersection with one of these two cones, say C(y1,ω0, δ1, θ1). There-
fore, there exist positive constants c1 and c2, depending on the a priori data only,
such that we may find y2 = y1 + s dω0 with the following properties. First,
c1 ≤ s ≤ 1 and, second, for any x belonging to the segment connecting x1
to y2, we have Bc2d(x) ⊂ G. We connect y2 to x1 with a regular chain made
of balls with fixed radius, s1d, centred on the segment connecting y2 to x1.
The positive constant s1 ≤ c2/8 depends on the a priori data only and will be
chosen later. The number of balls needed to reach x1 from y2 is controlled
by a constant depending on the a priori data only. Then, let us call y3 the
point y1 + δ̃ω0, where δ̃ = (1/(1 + sin(θ1)))min{δ1, R/4, ρ̃}. We have that
Bsin(θ1)δ̃(y3) ⊂ C(y1,ω0, δ1, θ1) ⊂ G. We connect y3 to y2 with a regular chain
made of balls centred on the bisecting line of the cone. Let Bρ(z) and Bρ1(z1)
be two consecutive balls. First of all we require that 8ρ = c̃ sin(θ1)|z − y1|
and 8ρ1 = c̃ sin(θ1)|z1 − y1|, for some constant c̃, 0 < c̃ ≤ 1. We can find
a constant c̃, depending on the a priori data only, such that both the conditions
|z − y1| ≥ |z1 − y1| ≥ |z − y1| − ρ/8 − ρ1/8 and ρ/3 ≤ ρ1 ≤ ρ are satis-
fied. The first ball is B(1/8)c̃ sin(θ1)δ̃(y3) and the last one is B(1/8)c̃ sin(θ1)sd(y2). We
can choose c̃ in such a way that we also have c̃ sin(θ1)s ≤ c2 and we pick s1 as
1
8 c̃ sin(θ1)s. The number of balls needed to reach y2 from y3 can be bounded
by C̃ log(2eR/d), with C̃ depending on the a priori data only. Then, we connect,
using the connection properties of the exterior of neighbourhoods of Σ, z0 to y3

with a regular chain of balls with fixed radius 1
8 c̃ sin(θ1)δ̃, whose number can

be bounded again by a constant depending on the a priori data only. We may
therefore conclude that the sequence exists and that

n ≤ C̃ log(2eR/d)

with C̃ depending on the a priori data only.
Starting from z0 = x0, we take j ∈ {1, . . . , n} such that, for any i =

0,1, . . . , j−1, Bρi/2(zi) ⊂ H and Bρj/2(zj)∩Σ′ ≠∅. We apply the three-spheres
inequality of Lemma 3.5 as follows. For any i = 0,1, . . . , j − 1,

‖u−u′‖L∞(Bρi+1/8(zi+1)) ≤ ‖u−u′‖L∞(B3ρi/8(zi))

≤ C
∥∥u−u′∥∥1−βi

L∞(Bρi/2(zi))
∥∥u−u′∥∥βiL∞(Bρi/8(zi)).

If βi, i = 0,1,2, . . . , are positive constants, we shall use the following notation for
any j = 0,1,2, . . .

Bj =
j∑
r=0

j∏
i=r
βi, Γj = j∏

i=0

βi.
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By iterating the estimate, and recalling that ‖u−u′‖L∞(R3) ≤ C1dα and (5.2),
we obtain

(5.4) ‖u−u′‖L∞(Bρj/8(zj)) = ε2 ≤ C1+Bj−1(C1dα)1−Γj−1εΓj−1
1 .

We recall that any βi, i = 0, . . . , j − 1, satisfies

0 < a ≤ βi ≤ b < 1

where a and b depend on k only.
We are now ready to proceed with the second step.

Step II: Towards the face. We call d̂ = min{d,h}. Let us describe our
starting point for this step. Let z = zj and ρ = ρj . Then, Bρ/8(z) ⊂ H,
B8ρ(z) ⊂ G and there exists w ∈ Σ′ such that |z − w| < ρ/2. Let C′ be
one of the cells of ∂Σ′ to which w belongs. We call Π the plane containing
C′ and, up to a rigid change of coordinates, without loss of generality, we assumeΠ = {(x1, x2, x3) ∈ R3 | x3 = 0}. We know that for a direction ω0 ∈ S2,
the open cone C(y,ω0, δ1, θ1) is contained in G′ for any y ∈ C′ ∩ Bδ1(w)
and its opposite cone C(y,−ω0, δ1, θ1) is contained either in Σ′ or in G′. We
have that B|z−w|(z) has a nonempty intersection with one of these two cones,
say C(w,ω0, δ1, θ1). First of all, as in the previous construction from y2 to
x1, we call w1 = w + s|z − w|ω0, with s with the same properties as in the
previous step. Then, we construct a regular chain with respect to H with balls
of constant radius s2d and centered on the segment connecting z to w1 such
that the first one is centered at z, the last one is centered at w1 and s2 satisfies
s2d ≤ (c2/8)|z − w| and s2d ≤ ρ/8. Since |z − w| and ρ are greater than a
positive constant times d, we may take s2 as a positive constant depending on
the a priori data only, to be chosen later. In any case, the number of these balls
is bounded by a constant depending on the a priori data only. Having reached
w1, we observe that, by the properties of C′, there exists ω1 ∈ S2 ∩ Π and con-
stants c3, 0 < c3 ≤ 1, and θ2, 0 < θ2 < π/2, depending on α0 only, such that
C(w,ω1, c3d̂, θ2) ∩ Π ⊂ C′. By looking at the points on the bisecting line of
C(w,ω1, c3d̂, θ2), we may find w2 on this line such that Bs3d̂(w2) ∩ Π ⊂ C′,
B+
s4d̂
(w2) ⊂

⋃
y∈Bs3d̂(w2)∩Π C(y,ω0, (1+ sin(θ3))s|z−w|, θ3) ⊂ H, where B+ =

B ∩ {x3 > 0}. Furthermore, we may ensure that

⋃
y∈Bs3 d̂(w2)∩Π

C
(
y, ω0,

(
1+ sin(θ3)

)
s|z−w|, θ3

)
,

⋃
y=w+tω1,0≤t≤|w2−w|

C
(
y, ω0,

(
1+ sin(θ3)

)
s|z−w|, θ3

)
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are both contained in H and in Bρ(z); that we may choose s2 so that B8s2d(w1)
is contained in C(w,ω0, (1 + sin(θ3))s|z − w|, θ3); and that all the positive
constants s2, s3, s4, and θ3, 0 < θ3 < π/2, depend on the a priori data only.
With a further regular chain of balls with constant radius s2d, we proceed from
w1 = w+s|z−w|ω0 towardsw′2 = w2+s|z−w|ω0. If we take the balls centered
on the segment connecting w1 to w′2, it takes only a finite number, bounded by
a constant depending on the a priori data only, of balls to reach w′2. Then we
proceed inside C(w2,ω0, (1+ sin(θ3))s|z−w|, θ3), with a reasoning analogous
to the one used to connect y3 to y2, and we obtain that we may continue our
regular chain, with respect toH∪Bs4d̂(w2), from Bs2d(w

′
2) up to Bs5d̂(w2), s5 > 0

depending on the a priori data only. The number of balls forming the regular
chain, with respect to H ∪ Bs4d̂(w2), used to reach, along this path, Bs5d̂(w2)

from Bs2d(z) ⊂ Bρ/8(z), can be bounded by C̃ log(ed/d̂), with C̃ depending on
the a priori data only.

First of all, we notice that we may extend, by a reflection argument, u′ on
Bs4d̂(w2). Namely, if TΠ is the reflection in the plane Π, that is TΠ(x1, x2, x3) =
(x1, x2,−x3) for any (x1, x2, x3) ∈ R3, we set, for any x ∈ B−

s4d̂
(w2), u′(x) =

−u′(TΠ(x)). In this way, u′ satisfies the Helmholtz equation all over Bs4d̂(w2).
Therefore, arguing as in the first step, we conclude that

(5.5) ‖u−u′‖L∞(Bs5d̂/8(w2)) = ε3 ≤ C1+Bm−1(C1dα)1−Γm−1εΓm−1
2

where
m ≤ C̃ log

ed
d̂

and any βi, i = 0, . . . ,m − 1, satisfies 0 < a ≤ βi ≤ b < 1, with a and b
depending on k only.

Actually, coupling (5.5) with (5.4), we also have

(5.6) ‖u−u′‖L∞(Bs5d̂/8(w2)) ≤ C1+Bm−1(C1dα)1−Γm−1εΓm−1
1

where

m ≤ C̃
(

log
ed
d̂
+ log

2eR
d

)
and any βi, i = 0, . . . ,m− 1, satisfies 0 < a ≤ βi ≤ b < 1.

Step III: Reflection. We recall that Π is the plane containing the face C′ and
TΠ is the reflection in Π. We define Σ1 as the reflection of Σ with respect to the
plane Π, G1 = R3 \ Σ1, and u1 as the reflection of u with respect to the same
plane Π, defined as follows. For any x ∈ R3, we pose u1(x) = −u(TΠ(x)). Let
us observe that Bs5d̂(w2) ⊂ Bρ(z) ⊂ B8ρ(z) ⊂ G. Therefore, Bρ(z) ⊂ B2ρ(w2) ⊂
B3ρ(w2) ⊂ G ∩ G1. Both u and u1 satisfy the Helmholtz equation on B3ρ(w2).
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We apply Lemma 3.3 to u − u′. We recall that u′ = 0 on Π∩ Bs5d̂(w2) and we
apply Lemma 3.4 to u−u1 and we find that, if s6 = s5/32, then

(5.7) ‖u−u1‖L∞(Bs6d̂(w2)) = ε4 ≤ C(2E)1−βεβ3 ,

where C and β, 0 < β < 1, again depend on the a priori data only.

Step IV: From the face back to Bρj (zj) . We apply the three-spheres inequality
to u−u1 with balls centered at w2, radius s6d̂, 2ρj and 3ρj , and we obtain that

(5.8) ‖u−u1‖L∞(Bρj (zj)) = ε5 ≤ ‖u−u1‖L∞(B2ρj (w2)) ≤ C(2E)1−β̃εβ̃4

where

c1
log(6/5)

log(3ρ/s6d̂)
≤ β̃ ≤ 1− c1

log(5ρ/2s6d̂)

log(3ρ/s6d̂)
.

By coupling (5.7) and (5.8), we obtain

‖u−u1‖L∞(Bρj (zj)) = ε5 ≤ C1+β̃(2E)1−ββ̃εββ̃3 .(5.9)

By coupling (5.9) with (5.6), we conclude that, since C1dα ≤ 2E,

‖u−u1‖L∞(Bρj/8(zj)) ≤ C
1+Bn(2E)1−ΓnεΓn(5.10)

where C ≥ 1 and 2E ≥ 1 are constants depending on the a priori data only and
for any βi, i = 0, . . . , n− 1, we have 0 < a ≤ βi ≤ b < 1, whereas βn satisfies

c1
log(6/5)

log(c2ρ0/d̂)
≤ βn ≤ 1− c1 + c1

log(6/5)

log(c2ρj/d̂)

and, finally,

n ≤ C̃
(

log
ed
d̂
+ log

2eR
d

)
.

Here a, b, c1, c2, C̃ depend on the a priori data only.

Step V: Returning back towards x0. Let us now consider the regular chain of
balls Bρi(zi), i = 0, . . . , j, we have constructed in Step I. We have that Bρj (zj)
is contained in G1. We proceed backwards along the chain, until we find j1,
0 ≤ j1 < j, such that, for any i = j1 + 1, . . . , j, we have Bρi(zi) ∩ G1 = ∅,
whereas Bρj1 (zj1) ∩ G1 ≠ ∅. Then, we apply Step II, III and IV to u, u1, Σ
and Σ1. By reflection in a suitable plane Π1, from Σ we obtain Σ2 and from u we
obtain u2. And we estimate, in an analogous way as (5.10), ‖u−u2‖L∞(Bρj1 /8(zj1 )).
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We repeat this procedure as many times as needed (actually at most j times),
until we are able to estimate from above ‖u−uN‖L∞(Bρ0/8(z0)), where N ≤ j, and
uN is the reflection of u with respect to a suitable plane ΠN−1. The last step is the
following.

Step VI: Along ∂B3er1 . Since, without loss of generality, we assume that |zi| ≤
3
2er1, for any i = 0, . . . , j, then there exists a point z̃ belonging to the intersection
of ∂B3er1 with ΠN−1. Again with a regular chain of balls with constant radius ρ0,
we proceed from z0 towards z̃. Two cases may occur. Either, for any of the balls
Bρ(z) of this sequence, we have Bρ/2(z)∩ ΣN = ∅, or not. In the first case, with
the usual iteration of the three-spheres inequality, we may estimate |(u−uN)(z̃)|
from above with respect to ‖u −uN‖L∞(Bρ0/8(z0)). We then observe that on z̃, by
construction, |(u−uN)(z̃)| = 2|u(z̃)|. Otherwise, if some Bρ/2(z)∩ ΣN is not
empty, we apply Step II, we find a corresponding point w̃2 ∈ ∂ΣN and we estimate
from above |(u−uN)(w̃2)|. Since uN(w̃2) = 0, we infer that |(u−uN)(w̃2)| =
|u(w̃2)|. In either cases, if we set ỹ as z̃ in the first case or w̃2 in the second, then
we observe that |ỹ| > er1 ≥ R1 and we have an estimate from above of |u(ỹ)|.

We may then conclude our proof in the following way. We have found a point
ỹ such that |ỹ| > R1 and, for some βi, i = 0, . . . , n,

(5.11)
1
2
≤ |u(ỹ)| ≤ C1+Bn(2E)1−ΓnεΓn1

where C ≥ 1 and 2E ≥ 1 are constants depending on the a priori data only and

n ≤ C̃ log
2eR
d

(
log

2eR
d
+ log

ed
d̂

)
.

Furthermore, there are at most j ≤ C̃1 log(2eR/d) of these β such that

c1
log(6/5)

log(c2ρ0/d̂)
≤ β ≤ 1− c1 + c1

log(6/5)

log(c2ρj/d̂)

and they are never consecutive ones, and all the others satisfy 0 < a ≤ β ≤ b < 1.
Here a, b, c1, c2, C̃, and C̃1 depend on the a priori data only.

We observe that, first of all, (2E)1−Γn ≤ 2E. Second, let us observe that
1+Bn ≤ 2

∑n
i=0 bi, thus

C1+Bn ≤ C2/(1−b) = C̃2.

Let us call C = 2EC̃2 and let us assume, without loss of generality, that C > e.
Let ` be a positive integer such that a` ≤ c1(log 6

5)/(log(c2ρ0/d̂)). Let us
observe that we may choose ` such that

` ≤ C̃3

(
log

(
log

2eR
d̂

)
+ 1

)
,
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for some constant C̃3 depending on the a priori data only. Then

εΓn1 ≤ εañ1

where

(5.12) ñ ≤ C̃4 log
2eR
d

(
log

2eR
d
+ log

ed
d̂
+ log

(
log

2eR
d̂

))
,

C̃4 still depending on the a priori data only. Thus, we obtain the crucial estimate

(5.13)
1
2
≤ Cεañ1 .

Therefore, by straightforward computations, if we set C1 = log(log(2C)) and
C2 = log(1/a), we obtain

log
(

log
1
ε1

)
≤ C1 + C2ñ.

Using (5.12), we have, for a constant C3 depending on the a priori data only,

log
(

log
1
ε1

)
≤ C3 log

2eR
d

(
log

2eR
d
+ log

ed
d̂
+ log

(
log

2eR
d̂

))
.

We may conclude that

log
(

log
1
ε1

)
≤ C4

(
log

2eR
d̂

)2

.

Therefore, by straightforward computations, (4.3) and, in turn, (4.4), follow. ❐

6. THE CASE OF POLYHEDRAL MULTIPLE OBSTACLES

We begin by investigating the relationships between two multiple polyhedral ob-
stacles which are close in the Hausdorff distance.

Proposition 6.1. Let Σ, Σ′ ∈ Ap,o(h), 0 < h ≤ h0. Then there exist positive
constants c1 ≤ 1 and c̃1 ≤ c, depending on the a priori data only, such that if
dH(Σ,Σ′) ≤ c1h, then the following holds.

Let x ∈ ∂Σ and, up to a rigid transformation, let

∂Σ∩ Bch(x) = {y = (y1, y2, y3) ∈ Bch(x) | y3 = φ(y1, y2)},

where φ : R2 → R is a Lipschitz function with Lipschitz constant bounded by L and
such that φ(x1, x2) = x3. Then there exists a Lipschitz function φ′ : R2 → R with
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Lipschitz constant bounded by L1, where L1 depends on the a priori data and on h0
only, such that, with respect to the same coordinate system, we have

∂Σ′ ∩ Bc̃1h(x) = {y = (y1, y2, y3) ∈ Bc̃1h(x) | y3 = φ′(y1, y2)}.

Proof. Recalling Proposition 2.4, let us assume that c1 = sC1, for some 0 <
s ≤ c/4. Therefore, we have dH(∂Σ, ∂Σ′) ≤ sh.

Let us take any x′ ∈ ∂Σ′ and any cell C′ of ∂Σ′ such that x′ ∈ C′ ⊂ ∂Σ′
and |x′ − x| ≤ ch/4. Let n′ be the unit vector which is normal to the planeΠ′ containing the cell C′ and such that n′ · e3 ≥ 0, where e3 = (0,0,1) in the
coordinate system used for definingφ. By the properties of the cells of ∂Σ′, we can
find x′1 satisfying, for some constants c2, 0 < c2 ≤ c/8, and θ2, 0 < θ2 < π/2,
depending on the a priori data only, |x′−x′1| = c2h and Bsin(θ2)c2h(x

′
1)∩Π′ ⊂ C′.

Let θ′, 0 ≤ θ′ ≤ π/2, be the angle betweenn′ and e3. We can find two points
in B̄sin(θ2)c2h(x

′
1)∩Π′ whose third coordinates differ by 2 sin(θ′) sin(θ2)c2h. On

the other hand, on the projection of B̄sin(θ2)c2h(x
′
1)∩Π′ on {(y1, y2, y3) ∈ R3 |

y3 = 0}, we have that the oscillation of φ is bounded by 2L cos(θ′) sin(θ2)c2h.
Therefore, provided tan(θ′) ≥ L2, L2 ≥ L depending on the a priori data only, we
can find x′2 ∈ B̄sin(θ2)c2h(x

′
1) ∩Π′ such that {x′2 + tc3he3 | −1 ≤ t ≤ 1} ∩ ∂Σ is

empty. Here c3 is a positive constant depending on the a priori data only such that
c3 ≤ c2. By the Lipschitz property of ∂Σ, we infer that for some constant c4 > 0,
depending on c3 and L only, we have dist(x′2, ∂Σ) ≥ c4h. This is a contradiction
if s = min{c4/2, c/4}.

Therefore, provided c1 = C1 min{c4/2, c/4}, we obtain that tan(θ′) ≤ L2
for any x′ ∈ C′ ⊂ ∂Σ′ and |x′ − x| ≤ ch/4. Similar reasonings lead to the fact
that, possibly taking a smaller c1 and carefully choosing c̃1, for any (y1, y2) ∈ R2

such that (y1 −x1)2 + (y2 −x2)2 ≤ (c̃1h)2 there exists at most one y3 such that
(y1, y2, y3) ∈ ∂Σ′ ∩Bc̃1h(x). Otherwise, we would contradict the fact that, with
respect to some coordinate system, ∂Σ′ is locally the graph of a Lipschitz function
with constant L. Therefore ∂Σ′ is, in Bc̃1h(x), the graph of a Lipschitz function
with Lipschitz constant bounded by L2 with respect to the same coordinate system.
We then extend this Lipschitz function all over R2 and the proof is concluded. ❐

Proposition 6.2. Let Σ, Σ′ belong to Ap,o(h), for some h, 0 < h ≤ h0, and
let d = dH(Σ,Σ′). Then, there exist positive constants κ ≤ 1, κ̃ ≤ 1, κ1 ≤ κ̃, K,
K1, and L1, depending on the a priori data only, such that if d ≤ κh, then there exist
x ∈ ∂Σ and x′ ∈ ∂Σ′ such that the following conditions are satisfied. Up to a rigid
transformation, x = (0,0,0), x′ = (0,0, a′) and

∂Σ∩ Bκ̃h = {y = (y1, y2, y3) ∈ Bκ̃h | y3 = φ(y1, y2)},

∂Σ′ ∩ Bκ̃h = {y = (y1, y2, y3) ∈ Bκ̃h | y3 = φ′(y1, y2)},

where φ, φ′ : R2 → R are Lipschitz functions with Lipschitz constants bounded by
L1 and such that φ(0) = 0 and φ′(0) = a′.
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Furthermore, on C = {(y1, y2) ∈ R2 | y2
1 +y2

2 ≤ (κ1h)2} we have

φ(y1, y2) = `1y1 + `2y2,

φ′(y1, y2) = `′1y1 + `′2y2 + a′,
for any (y1, y2) ∈ C,

S = {(y1, y2,φ(y1, y2)) | (y1, y2) ∈ C} ⊂ ∂Σ,
S′ = {(y1, y2,φ′(y1, y2)) | (y1, y2) ∈ C} ⊂ ∂Σ′,
(`1 − `′1)2 + (`2 − `′2)2 ≤ (Kd/h)2 and |a′| ≤ Kd,

|φ(y1, y2)−φ′(y1, y2)| ≥ K1d3, for any (y1, y2) ∈ C.

We postpone the rather technical proof of this proposition to the end of the
section and we state the following immediate corollary.

Corollary 6.3. Let Σ, Σ′ belong to Ap,o(h), for some h, 0 < h ≤ h0, and let
d = dH(Σ,Σ′). Then, there exist positive constants κ̂ ≤ κ, κ̂1, K̃1, and K̃2 depending
on the a priori data only, such that if d ≤ κ̂h, then up to a rigid transformation and
up to swapping Σ with Σ′, we have the following properties. First, Ŝ = B̄κ̂1h ∩ {y3 =
0} = ∂Σ∩ (Ŝ × [κ̂1h, κ̂1h]) and B̄κ̂1h ∩ {y3 ≤ 0} = Σ∩ (Ŝ × [κ̂1h, κ̂1h]). Then,
we call Ŝ′ = {(y1, y2,φ′(y1, y2)) | (y1, y2) ∈ Ŝ}, where φ′ is an affine function
such that Ŝ′ = ∂Σ′ ∩ (Ŝ × [κ̂1h, κ̂1h]), Ŝ′ ⊂ G and

K̃1d3 ≤ φ′(y1, y2) ≤ K̃2d ≤ κ̂1h
2
, for any (y1, y2) ∈ Ŝ.

Let us state the corresponding stability result for the near-field measurement.

Lemma 6.4. Let Σ and Σ′ belong toAp,o(h), 0 < h ≤ h0.
Then there exists ε̌1(h), 0 < ε̌1(h) ≤ 1/(2e), depending on the a priori data

and on h only, such that if (5.2) holds for some ε1 < ε̌1(h), then

(6.1) dH(Σ,Σ′) ≤ C1 exp(C2(e/h)C3)εC4hC5

1 .

Here C1, . . . , C5 are positive constants depending on the a priori data only.

We observe that Theorem 4.2 is an immediate consequence of Lemma 6.4
and Lemma 3.2. Therefore in this section we concentrate our attention on proving
Lemma 6.4. The first step in this proof is the following property of the solutions
to (1.1) when Σ is a polyhedral multiple scatterer.

Proposition 6.5. Let Σ ∈ Ap(h) for some h, 0 < h ≤ h0. Let x ∈ C ⊂ ∂Σ
where the cell C is contained in the plane Π. Let us assume that for some constant s,
0 < s ≤ 1, we have that Bsh(x)∩Π ⊂ C. Then, we obtain that

(6.2) ‖∇u · ν‖L∞(Bsh(x)∩Π) ≥ exp(−(e/h)A1),

where A1 > 0 depends on the a priori data and on s only.
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Proof. We argue as follows. Let p = ‖∇u ·ν‖L∞(Bsh(x)∩Π). Then by the esti-
mates derived in [25], already used in the proof of Lemma 3.4, and by the iterated
use of the three-spheres inequality, using a construction completely analogous to
the one developed in Step I and Step II of the previous section, we infer that,
assuming without loss of generality that p < 1 and recalling that h ≤ h0 ≤ 1,

1
2
≤ |u(x0)| ≤ Cpan

where
n ≤ C̃ log

e

h
,

and C ≥ 1, C̃ and a, 0 < a < 1, depend on the a priori data and on s only. The
conclusion follows by straightforward computations. ❐

Proof of Lemma 3.2. By the proof of Theorem 4.1, we infer that, if either

ε1 < min

 1
2e

, η−1

( κ̂h
2eR

)1/C
 ,

or

ε < min

ε̂0, η−1

( κ̂h
2eR

)2/C
 ,

then the conclusions of Corollary 6.3 hold true.
We observe that, by a reflection argument and by applying twice Lemma 3.3,

we obtain that for suitable positive constants s, 0 < s ≤ κ̂1/4, and C, depending
on the a priori data only,

(6.3) ‖D2u‖L∞(S̄1×[0,sh]) ≤
C
h2 ,

where S1 = Bsh ∩ {x3 = 0}.
Let us apply to S1 and u the Proposition 6.5. Then we obtain that

(6.4) ‖∇u · e3‖L∞(S1) ≥ exp(−(e/h)A1).

Let x = (x1, x2,0) ∈ S1 and x′ = (x1, x2,φ′(x1, x2)) and let us compute
|u(x′)|. Let us assume, for the time being, that we also have d ≤ (s/K̃2)h, thus,
again by Corollary 6.3, 0 ≤ φ′(x1, x2) ≤ sh. Then, we have that there exists x ∈
S1 such that |∇u(x)·e3| ≥ exp(−(e/h)A1). We recall that |x′−x| = φ′(x1, x2)
and by a Taylor expansion

|u(x′)| ≥ exp(−(e/h)A1)|x′ − x| − C
2h2 |x

′ − x|2.
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Provided (C/h2)K̃2d ≤ exp(−(e/h)A1) and recalling that K̃1d3 ≤ φ′(y1, y2),
we conclude that

|u(x′)| ≥ K̃1

2
exp(−(e/h)A1)d3.

By reasonings completely analogous to the ones described in Step I and Step
II of the previous section, we conclude that there exist positive constants C1, C̃1,
α, 0 < α < 1, and a, 0 < a < 1, depending on the a priori data only, such that
either dα ≤ ε1 or, if dα ≥ ε1, then

|u′(x)| ≤ C1dα
(
ε1

dα

)an
where n can be bounded by

n ≤ C̃1 log
e

h
.

Coupling these two last equations, we conclude that, provided ε1/α
1 ≤ d ≤

c1h2 exp(−(e/h)A1) ≤ κ̂h, where c1 ≤ 1/(CK̃2) depends on the a priori data
only,

(6.5)
K̃1

2
exp(−(e/h)A1)d3 ≤ C1dα

(
ε1

dα

)an
.

If we further assume that ε1 < ε
1/2
1 ≤ dα, then (6.5) turns into

(6.6) d3−α ≤ A2 exp((e/h)A1)ε(1/2)a
n

1 .

Then the proof may be concluded by easy computations. ❐
Proof of Proposition 6.2. Up to swapping Σ with Σ′, let us assume that there

exists x1 ∈ ∂Σ such that dist(x1, ∂Σ′) = dH(∂Σ, ∂Σ′) = d′′. By Proposition 2.4,
we know that C1d′′ ≤ d ≤ C2d′′.

For the time being, let us assume that d ≤ c1h, c1 as in Proposition 6.1, and
by using Proposition 6.1, that x1 = (0,0,0) and that

∂Σ∩ Bc̃1h =
{
y = (y1, y2, y3) ∈ Bc̃1h | y3 = φ(y1, y2)

}
,

∂Σ′ ∩ Bc̃1h =
{
y = (y1, y2, y3) ∈ Bc̃1h | y3 = φ′(y1, y2)

}
,

where φ, φ′ : {(y1, y2) ∈ R2 | y2
1 + y2

2 ≤ (c̃1h)2} → R are Lipschitz functions
with Lipschitz constants bounded by L2 and such that x1 = (0,0,0) belongs to
the graph of φ. Let x′1 = (0,0,φ′(0,0)) = (0,0, b′). We remark that

d
C2
≤ d′′ ≤ |x′1 − x1| = |b′| ≤ C3d′′ ≤ C3d/C1,
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where C3 depends on the a priori data only.
For any r > 0 we set B′r = {(y1, y2, y3) ∈ Br | y3 = 0}. Let us now choose

a positive constant c̃2, depending on the a priori data only, such that c̃2 ≤ c̃1
and such that for any (y1, y2,0) ∈ B′c̃2h, we have that both (y1, y2,φ(y1, y2))
and (y1, y2,φ′(y1, y2)) belong to Bc̃1h. Furthermore, for a positive constant C4,
depending on the a priori data only, for any (y1, y2,0) ∈ B′c̃2h we have

|φ(y1, y2)−φ′(y1, y2)| ≤ C4d.

Let us consider the projections of the sides of ∂Σ∩ Bc̃1h and ∂Σ′ ∩ Bc̃1h onto the
planar region B′c̃2h. Let T and T ′ be the union of the sides and V and V′ the set
of vertices of these planar triangulations, respectively. We observe that two sides
belonging to the same triangulation meet in a vertex with an angle greater than or
equal to θ3, 0 < θ3 < π/3 depending on the a priori data only. We observe that
there exists θ4, 0 < θ4 ≤ θ3, and c̃3, 0 < c̃3 ≤ c̃2/10, depending on the a priori
data only, such that we can find a two-dimensional cone in B′c̃2h with vertex at the
origin, radius c̃3h and angle θ4 whose intersection with T is empty. Another cone
with the same vertex, radius and angle but maybe with another bisecting line, has
empty intersection with T ′. Moreover we can choose c̃2, still depending on the a
priori data only, such that both V and V′ have at most one point in B′c̃2h.

Let us assume, for the time being, that for some constant t, 0 < t ≤ 1,
there exists a two-dimensional cone in B′c̃2h with vertex at the origin, radius tc̃3h
and angle θ4/4 whose intersection with T ∪ T ′ is empty. Then we argue in the
following way. On such a cone φ(y1, y2) = `1y1 + `2y2, φ′(y1, y2) = `′1y1 +
`′2y2 + b′ and, with a reasoning which is analogous to the one used to prove
Proposition 6.1, we have (`1 − `′1)2 + (`2 − `′2)2 ≤ (C5d/(th))2, C5 depending
on the a priori data only. Therefore, since |b′| ≥ d/C2, we may find t1, 0 < t1 ≤ t
depending on the a priori data and on t only, such that

|φ(y1, y2)−φ′(y1, y2)| ≥ d/(2C2)

for any (y1, y2) belonging to the cone with the same vertex, same bisecting line,
same angle and radius t1c̃3h. Therefore, if this is the case, the proof easily follows.

Let us investigate when we can guarantee that this two-dimensional cone exists
for a suitable t depending on the a priori data only. We exploit the properties of
the triangulations and we infer that the following cases allow us to construct the
cone with the required properties in a rather straightforward way.

First, if either dist(0, T) ≥ tc̃3h or dist(0, T ′) ≥ tc̃3h. Second, if either 0 ∈ T
and dist(0,V ) ≥ tc̃3h or 0 ∈ T ′ and dist(0,V′) ≥ tc̃3h. Third, if either 0 ∈ V
or 0 ∈ V′.

Let us concentrate our attention on the other cases. If 0 6∈ T ∪ T ′, then
we proceed along the half plane on which |φ − φ′| increases. If we are able to
proceed until we are at a distance of tc̃3h from the origin without meeting any
point either of T or of T ′, then we have a cone of amplitude angle π/2 which
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does not intersect T ∪ T ′ and we can use the previous argument to conclude the
proof. If we meet a point of T or of T ′, then we have found a point y in B′tc̃3h
such that y ∈ T ∪ T ′ and |φ(y)−φ′(y)| ≥ |b′|.

Then, let us assume that we have y ∈ B′tc̃3h such that y ∈ T ∪ T ′ and
|φ(y) − φ′(y)| ≥ |b′|. Clearly, y might be the origin as well. Let us assume,
for the time being, that y 6∈ T ∩ T ′. Without loss of generality, we assume that
y ∈ T and 0 < dist(y,V ) ≤ tc̃3h. We proceed in the direction of the side
of T containing y along which |φ − φ′| increases. Three situations may occur.
First, we might reach the vertex V of V , and if this is the case we use the previous
argument to conclude the proof, recalling that |V | ≤ 2tc̃3h. Second, we might
reach a point y1 whose distance from the vertex V is greater than tc̃3h and again,
since the distance of y1 from 0 is at most 2tc̃3h, we use the previous argument to
conclude the proof. Third, we might reach a point of T ′. Therefore, without loss
of generality, the only case which remains to be treated is the following. We have
a point y1 ∈ T ∩ T ′ such that |y1| ≤ 2tc̃3h, |y1 − V | ≤ tc̃3h, |y1 − V ′| ≤ tc̃3h
and |φ(y1)−φ′(y1)| ≥ |b′| ≥ d/C2. Here V and V ′ are the vertices in Bc̃2h of
T and T ′ respectively.

Since we have assumed c̃3 ≤ c̃2/10, then we have that B′8tc̃3h(y1) ⊂ B′c̃2h.
Hence for any w such that 3tc̃3h ≤ |w − y1| ≤ 7tc̃3h, we have B′tc̃3h(w) ⊂
B′8tc̃3h(y1) ⊂ B′c̃2h and dist(V , B′tc̃3h(w)) ≥ tc̃3h and dist(V ′, B′tc̃3h(w)) ≥ tc̃3h.

Let us call d̃ = max{|φ(w) − φ′(w)|, 3tc̃3h ≤ |w − y1| ≤ 7tc̃3h}. Let
us recall that d̃ ≤ C4d ≤ C4. Without loss of generality, we may also assume
that C4d ≤ 1. Let us observe that in this case the proof of the proposition may
be concluded by using similar arguments with respect to those already developed,
provided we replace, in the last line of the proposition, d3 with d̃. Therefore, our
aim is to prove that there exists a positive constant C6, depending on the a priori
data only, such that d̃ ≥ C6d3.

By contradiction, let us therefore assume that d̃ ≤ d3. We observe that,
in B′c̃2h, T is formed by n half-lines ti, i = 1, . . . , n, with vertex V , and T ′ is
formed by n′ half-lines t′j , j = 1, . . . , n′, with vertex V ′. We observe that n and
n′ are bounded by a constant N depending on θ3 only. We order the lines in
the counterclockwise sense and identify n + 1 and n′ + 1, respectively, with 1.
Therefore T divides B′c̃2h into n cones Di, i = 1, . . . , n, and T ′ divides the same
region into n′ cones D′j , i = j, . . . , n′, where Di is contained between ti and ti+1

and D′j is contained between t′j and t′j+1, respectively. On Di the affine function
φ is characterized by the vector `i and the constant bi, whereas, respectively, on
D′j the affine function φ′ is characterized by the vector `′j and the constant b′j .

We construct the triangulation T1, contained in T , in the following way. For a
positive constant s, to be chosen later, we erase from T all the lines ti such that the
adjacent cones have corresponding vectors whose difference in norm is less than
or equal to sd3/2/h.
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We observe that we can find a cone D′ with vertex in y1, radius c̃3h and angle
θ4 which has empty intersection with T ′. If t ≤ 1

4 , then such a cone intersects one
of the cones Di, let us say D1, on a ball of radius s1h, s1 depending on the a priori
data only. We have the following cases.

First, the new triangulation T1 is empty. We construct an affine function ϕ
on B′c̃2h in the following way. We setϕ in such a way thatϕ(w) = φ(w) for any
w ∈ D1. We observe that, by construction, |ϕ(w)−φ(w)| ≤ 2Nsc̃2d3/2 for any
w ∈ B′c̃2h. Therefore, |ϕ(w)−φ′(w)| ≤ 2Nsc̃2d3/2+C4d for anyw ∈ B′c̃2h and
|ϕ(y1)−φ′(y1)| ≥ d/C2 − 2Nsc̃2d3/2. Then we apply the previous reasonings
to ϕ and φ′ and the proof may be easily concluded provided s is small enough,
namely for any s, 0 < s ≤ s0, s0 depending on the a priori data only.

The second case is the following. Let us assume that T1 is composed exactly by
two lines and the angle θ between these two lines, which we relabel as t1 and t2, is
such that |θ −π| ≤ θ4/4. Let us call K1 and K2 the two cones determined by T1.
If y1 ∈ T1, then we can find a cone with vertex in y1, angle θ4/4 and radius c̃3h
whose intersection with T1 and T ′ is empty. Such a cone is obtained as a subset of
D′ and we assume, without loss of generality, that K1 contains it and D1, as well.
We construct an affine function ϕ on K1 in the following way. We set ϕ in such
a way that ϕ(w) = φ(w) for any w ∈ D1. We observe that, by construction,
|ϕ(w) −φ(w)| ≤ 2Nsc̃2d3/2 for any w ∈ K1. Therefore, |ϕ(w) −φ′(w)| ≤
2Nsc̃2d3/2 + C4d for any w ∈ K1 and |ϕ(y1)−φ′(y1)| ≥ d/C2 − 2Nsc̃2d3/2.
Then we apply the previous reasonings to ϕ and φ′ and the proof may be easily
concluded provided s is small enough, namely for any s, 0 < s ≤ s0, s0 depending
on the a priori data only.

In the case when y1 does not belong to T1, we may assume, without loss of
generality, that y1 ∈ K1. IfD′ is contained in K1, then we proceed exactly as when
y1 ∈ T1, with the same construction ofϕ. Otherwise, we consider the line passing
through y1 and V ′ and we consider its intersection with T1. If all the intersection
points (which may be none, one or two) lie, with respect to y1, on the same side
of the line of V ′, then we may reduce ourselves to the previous case in a rather
straightforward way. Also, if there are two intersection points, then the two lines
of T1 intersect the line passing through y1 and V ′ at such a small angle that the
previous construction may be analogously performed. Therefore, without loss of
generality, we may assume that the intersection consists of a single point y2, with
y1 between y2 and V ′. We may also assume that y2 belongs to the boundary of
D′ and to T1. We construct an affine function ϕ on K1 such that ϕ(w) = φ(w)
on the halfline of T1 containing y2 (if y2 is exactly equal to V , we may choose
one of the two halflines arbitrarily) and on the cone Di which is adjacent to it
and contained in K1. We have that |ϕ(w) − φ′(w)| ≤ 2Nsc̃2d3/2 + C4d for
any w ∈ K1 and |ϕ(y1)−φ′(y1)| ≥ d/C2 − 2Nsc̃2d3/2. We proceed along the
line of T ′ containing y1 in the direction where |ϕ −φ′| increases. We have two
possibilities. First, we reach V ′ and we apply previous reasonings. If, otherwise,
we reach y2, we notice that |φ(y2) − φ′(y2)| ≥ d/C2 − 2Nsc̃2d3/2, thus we
conclude as before, replacing y1 with y2.
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The third case is the most difficult to treat. In the third case we have that
T1 contains at least two segments and two of them intersect with an angle θ such
that θ5 < θ < π − θ5, where θ5 depends on the a priori data only and 0 <
θ5 ≤ min{θ3, θ4}. Let us take one of the segments of T1 which divides, for
simplicity, the cone D1 from D2 and let us take as x its intersection with either
∂B4tc̃3h(y1) or ∂B6tc̃3h(y1). If Br (x) ∩ T ′ is empty, for some 0 < r ≤ tc̃3h,
then Br (x) is contained in D′j , for some j and we have r‖`i − `′j‖ ≤ C7d̃ for any
i = 1, 2 and for some constant C7 depending on the a priori data only. Therefore,
r‖`1 − `2‖ ≤ 2C7d̃ and, since by our assumptions we have ‖`1 − `2‖ > sd3/2/h
and d̃ ≤ d3, we conclude that r ≤ 2C7d3/2h/s. Thus, there exists x′ ∈ T ′
such that |x − x′| ≤ 3C7d3/2h/s. We deduce that, provided d ≤ c̃4h, with c̃4
a positive constant depending on the a priori data only, we obtain that, to each
segment in T1, there corresponds a segment in T ′ such that the angle between the
lines in which they are contained is bounded by C8d3/2/(ts). We may infer that
|V − V ′| ≤ C9d3/2h/s, where C9 depends on the a priori data only, in particular
it depends on θ5.

Let us take x ∈ B̄7tc̃3h(y1) \ B3tc̃3h(y1). The segment connecting x to V ,
which we denote by xV , belongs to Di for some i. We can find x′ satisfying the
following conditions with the constant r0 = C10d3/2h/s, C10 depending on the
a priori data only. First, |x − x′| ≤ r0 and there exists w ∈ ∂B4tc̃3h(y1) such
that Br0/2(w) ⊂ Di ∩D′j where D′j is the cone containing x′. We may infer that
the angle between the lines containing, respectively, the segments xV and x′V ′ is
bounded by C11d3/2/(ts), C11 depending on the a priori data only. For any y ∈
xV , we can find a corresponding y ′ ∈ x′V ′ such that |y − y ′| ≤ C12d3/2h/s.
Since Br0/2(w) ⊂ Di ∩ D′j and w ∈ ∂B4tc̃3h(y1), with the usual reasoning, we
conclude that ‖`i − `′j‖ ≤ sC13d3/2/h. Using the Lipschitz properties of φ and
φ′, we may conclude that the following estimates hold

|φ′(V)−φ′(V ′)| + |φ′(y)−φ′(y ′)| ≤ C14L1d3/2h/s ,

|(φ(y)−φ(V))− (φ′(y ′)−φ′(V ′))| ≤ C14(L1d3/2h/s + std3/2).

Therefore,

|(φ(y)−φ′(y))− (φ(V)−φ′(V))| ≤ C14(3L1d3/2h/s + std3/2) = Ad3/2.

Here, as usual, C12, C13 and C14 are constants depending on the a priori data only.
By taking y = x, we infer that

|φ(V)−φ′(V)| ≤ Ad3/2 + d̃ ≤ Ad3/2 + d3.

Finally, for any y ∈ B5tc̃3h(y1) we may conclude that

|φ(y)−φ′(y)| ≤ |(φ(y)−φ′(y))± (φ(V)−φ′(V))| ≤ 2Ad3/2 + d3.



Stable Determination of Sound-soft Polyhedral Scatterers 1407

If we apply the previous estimate to y = 0, we conclude that

d
C2
≤ 2Ad3/2 + d3.

If d is small enough, this leads to a contradiction, thus the proof is concluded. ❐
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