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Renormalization of Nonequilibrium Systems with Critical Stationary States
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We introduce the general formulation of a renormalization method suitable to study the critical
properties of nonequilibrium systems with steady states: the dynamically driven renormalization group.
We renormalize the time evolution operator by computing the rescaled time transition rate between
coarse grained states. The obtained renormalization equations are coupled to a stationarity condition
which provides the approximate nonequilibrium statistical weights of steady-state configurations to be
used in the calculations. In this way we are able to write recursion relations for the parameter evolution
under scale change, from which we can extract numerical values for the critical exponents. This general
framework allows the systematic analysis of several models showing self-organized criticality in terms
of usual concepts of phase transitions and critical phenomena. [S0031-9007(96)01709-7]
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In the last decade nonequilibrium critical phenomena We consider discrete lattice models od-a@imensional
have attracted a wide interest in statistical physics. Critidattice. To each sitei is associated a variable;,
cal systems are characterized by the absence of a charaghich can assume different values ¢; = 0, 1,...,q).
teristic lengthscale, strong fluctuations, and nonanalyticityA complete seto = {0} of lattice variables specifies
of the correlation functions. Examples of this behaviora configuration of the system. We defite|T (u)|c®)
can be found in phase transitions [1-3], self-organizeds the transition rate from a configuration, to a
critical (SOC) systems [4], fractal growth [5], and a vastconfigurationo in a time stepr as a function of a set
class of complex systems [6]. The major source of diffi-of parameterg. = {u;}. The time dependent probability
culties in the study of nonequilibrium critical phenomenadistribution P(o, t) for the configurations of the system
[3,7] lies in the absence of a general criterion, like theobeys the following master equation (ME):
use of the Gibbs distribution in equilibrium systems, to
assign an ensemble statistical measure to a particular con-  P(o, 19 + 1) = D (a|T(w)oe"P(0’10). (1)
figuration of the system. The probability distribution is {or}

instead a time dependent solution of a master equatiofshe explicit solution of the master equation is in general
which only in some particular cases becomes stationary ifot available, but we can extract the critical properties of
the long time limit. . the model by a renormalization group analysis. We coarse
In this Letter we present the general formalism of agrain the system by rescaling lengths and time according
real space dynamical renormalization group (RG) schemgy the transformationx — bx and 7 — bit. The
for systems with a nonequilibrium critical steady state:renormalization transformation is constructed through an
the dynamically driven renormalization group (DDRG). gperatorR (S, o) that introduces a set of coarse grained
The method combines the renormalization of the time,grigples § = {S;} and rescales the lengths of the
evolution operator with a stationarity condition which system [14]. In generalR is a projection operator
allows the calculation of the approximate steady-stat§yith the propertiesR(S,o) =0 for any {S;},{o:},
configurations probability distribution. This coupling acts gnq Sy R(S,0) = 1. These properties preserve the
at each coarse graining step and therefore representsygrmalization condition of the renormalized distribution.
driving for the renormalization group equations. For SOCthe explicit form of the operatoRR is defined case by
systems [8-10], the DDRG allows us to derive in acase in the various applications of the method. Usually
broader framework previous RG schemes [11-13] and 1§ corresponds to a block transformation in which lattice
formulate a more systematic approach. Here we show thgites are grouped together in a super-site that defines
explicit application of the DDRG to the forest-fire model {ne renormalized variables; by means of a majority or
(FFM) [9,10], which we can now study in the whole spanning rule.
parameters space. Possible applications of the DDRG e subdivide the time step in intervals of the unitary
are not restricted to SOC models: The method can b@me scale {, = 0) obtaining the coarse graining of the
used to study other equilibrium or nonequilibrium critical system as follows:
phenomena such as driven diffusive systems [2,3], which

to our knowledge have never been approached by realp/(g ¢) = Z’R(S’ ) Z<U|Tb’(ﬂ)|00>p(00’o)’ (2)
space RG methods. o (o)
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where we have included the application of the operatopaths, chosen by an appropriate condition. The detailed
R andt' = b*t. The meaning ofo|T” (u)|c®) has to  definition of the effective operator®” is reported in

be defined explicitly: The simplest possibility is =  Ref. [15]. By multiplying and dividing each term of
N where N is an integer number, an@¥ denotes the Eq. (2) byP'(5%0) = > 1,0, R(5° 0*)P(c?,0) and using
application of the dynamical operatdrtimes. In general, the properties of the operatdR, we get, after some
since we are dealing with a discrete time evolution wealgebra,

have to considerT”" as a convolution over different

P'(s, 1) = >
{5

[ 2100 2oy R(S%, O)R(S, 0) (oI T” (W)l )P (a°, 0)

10
> 100 R(SO, 00)P(a0,0) }P (%,0), (3)

which finally identifies the renormalized dynamical opelja-where<pk> is the average density of sites in tkestate.

tor (S|77|S%). In other words the new dynamical opera- In this way, we have approximated the probability of each

tor T’ is the sum over all the dynamical pathsigfsteps configuration{o;} as the product measure of the mean

that from a starting configuratiofa!} lead to a configura- field probability to have a state; in each corresponding

tion{c;}, which renormalize, respectively, {§'} and{s;}.  site. The values of the densitif )} as a function of the

The sum is weighted by the normalized statistical distribuparametersu are obtained by solving appropriate mean-

tion of each configuration. field equations in the long time limit. These equations
We apply this scheme to systems with a steady statbave the form of a stationarity condition

described by a stationary distributioP(o, t — ) = 9

W (o). For equilibrium systems the stationary distribu- —p)t = S.{{p)}) =0, (5)

tion has the Gibbs fornW (o) ~ exd —BH(o)], where ot

H(o) is the Hamiltonian. There is not such a genera|where the operatolS,, describes the evolution of the

criterion for nonequilibrium dynamical systems, thereforesystem as a function of the dynamical parameters defined

we have developed an approximate method to evalua@bove. Time independent solutions of Eq. (5) will be

the stationary distribution to be used in the calculation ofeferred to as “steady states,” although we should keep

the renormalized master equation. The simplest appro¥n mind that those are only the average states of the

imation considers only the incoherent part of the stationensemble [16]. In ordinary statistical systems, Eq. (5)

ary distribution which does not include correlations andrepresents the thermodynamic equilibrium condition. For

can therefore be factorized. For systems characterized i}fiven dynamical systems, it describes théving of the

g-state variables it has the form system to the nonequilibrium steady state, by means of a
balance condition.
wi(g) = l_[<pm>, (4) By inserting this approximate distribution in Eq. (3),

we obtain the renormalized dynamical operator

Yo 2ot RSO, aO)YR(S, o) (o | T () [Ti{p o)
2 o0 R(S%, o) [Ti{po0) '

where the densities are calculated at each coarse graihiragerage number of steps we apply the operdtoin
step from the stationary condition [Eq. (5)] with the order to obtain thal’(x) = T(u') for the coarse grained
corresponding renormalized dynamical paramefgrs. ~ system. In this way we obtain a time recursion relation
Since in this framework Eq. (5) drives the RG equationst’ = g(u)t, or equivalentlyb* = g(u), from which it
acting as a feedback on the scale transformation, we cab possible to calculate the dynamical critical exponent
it the driving condition z =Ing(n*)/Inb. In this form of the DDRG, we take
Equations (5) and (6) are the basic renormalizatiorinto account only the uncorrelated part of the steady-
equations from which the desired recursion relations arstate probability distribution. The results obtained are not
obtained. Imposing that the renormalized operdfdr trivial because correlations in the systems are considered
has the same functional form of the operaf®y i.e., in the dynamical renormalization of the operafor that
T'(n) = T(u'), we obtain the rescaled parameterget= given a starting configuration traces all the possible paths
f(u). This implies that the renormalized single time leading to the renormalized final configuration. Moreover,
distribution P/(S,t') has the same functional form of geometrical correlations are treated by the oper&tor
the original distributionP(o,t). The critical behavior that maps the system by means of spanning conditions
of the model is obtained by studying the fixed pointsor majority rules. The renormalized uncorrelated part of
n = f(u*). Since we are dealing with discrete evolution the stationary distribution is evaluated from the stationary
operatorsT, we define the time scaling factérf as the condition with renormalized parameters, thus providing an

(SIT'(w)IS°) = (6)
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effective treatment of correlations. One can then improvavhere|a) and|a’) are the cell states which renormalize,
the results by including higher order contributions torespectively, in|SY) and |S;). We keep the subscript
the unknown stationary distributioW (o) using cluster i since the states refer now to a single coarse grained
variation methods [17]. Naturally the above scheme camite and not to a configuration of the system. With
also be applied to equilibrium critical phenomena, whereve denote the stationary statistical weight of eagh
the driving condition is represented by the equilibriumconfiguration. This distribution is approximate following
mean field equations [15]. the DDRG scheme in the lowest order [Eq. (4)], in which
The DDRG is a useful tool to study the critical the average steady-state densitjps) are obtained as a
properties of SOC systems. In fact, these systems evolMenction of u = { f, p} from the stationary solution of
spontaneously in a scale invariant stationary state. Thdynamical mean field equations [20].
forest-fire model is a simple automaton which has been We focus our analysis in the critical region denoted
introduced by Balet al.[9] as an example of SOC, and by the conditionf < p < 1, namely where the system
has been then modified by Drossel and Schwabl [10]. Thehows critical behavior. The time scaling factor is
model is defined on a lattice in which each site can beobtained by imposing that the renormalized burning
empty (; = 0), occupied by a green treer{ = 1) or by  process occurs with probability on€0[7’|2) = 1). In
a burning tree &; = 2). At each time step the lattice is 4 = 1 this condition is fulfilled up to second order in
updated as follows: (i) A burning tree becomes an empty’ and p and givesz = 1, recovering the exact result
site; (ii) a green tree becomes a burning tree if at leastf Ref. [21]. This result is due to the fact that in
one of its neighbors is burning; (iii) a tree can grow in and = 1 there is only a possible way to span the cell,
empty site with probabilityp; (iv) a tree without burning and consequently no proliferations are generated. In
nearest neighbors becomes a burning tree with probability = 2 one has to consider the average over different
f. The model was first studied in the cage= 0 for  paths, and new dynamical interactions are generated at
the limit of very slow tree growth f — 0). In this each RG step. This is a signature that we need an
limit the critical behavior is trivial: The model shows approximation which truncates the parameter space after
spiral-shaped fire fronts separated by a diverging lengtleach iteration so that it remains closed. This is done
&~ p ", wherev, =1 [18]. In the casef > 0, the by considering just the leading order fhand p in the
system is supposed to exhibit SOC under the hypothesignormalization equations, and ignoring any proliferations
of a double separation of time scales: Trees grow fasgjenerated at each group iteration. With this scheme we
compared with the occurrence of lightnings and foresbbtain z = 1, which is not an exact result also if in
clusters burn down much faster than trees grow. Thigood agreement with numerical simulations = 1.04
request is expressed by the double liMi= f/p — 0  [22]). It is worth remarking that the DDRG allows one
andp — 0. The critical state is characterized by a powerto overcome the approximations present in the approach
law distribution P(s) = s~7 of the forest clusters of  of Ref. [12], where the time scaling was not properly
sites (avalanches in the SOC terminology) and the averagmnsidered because of the assumption of an infinite time
cluster radius (the correlation length) scaleRas 0 **.  scale separation. In addition the general scheme shown so
With the DDRG framework we are able to generalizefar provides the inroad towards a systematic improvement
a previous RG scheme [12] in order to include the propeof the results by introducing higher order correlations in
treatment of the time scaling and to study the lighi= 0 the stationary distribution as discussed in Ref. [23].
(deterministic FFM). The dynamical rules of the FFM  Once the time scale factor is set we can write recursion
are local and the set of dynamical parameters, defined kielations forp and f, or equivalentlyd’ = x(6, p) and
u = {f, p}, is obtained explicitly in terms of the dynami- p’ = y(0, p), evaluating the probabilities that a coarse
cal operators acting on a single site, i.€.|T|0) = p  grained cell grows or is struck by a lightning &3 steps.
and 2|T|1) = f. The relevant dynamical scales is de- The driving condition and recursion relations derivation is
fined by the burning process which occurs with probadong and tedious and the explicit equations are reported
bility one. We define a cell-to-site transformation with elsewhere [15]. The flow diagram is stable with respect
scale factorb =2 or larger. The rules defining the to different coarse graining rules, and far=1 and
cell renormalization operatoR are standard geometri- d = 2 we find a repulsive fixed point e, = 0 and
cal spanning conditions [19], and their explicit form canp. = 0. The fixed point densities are obtained from the
be found in Ref. [15]. The above scheme defines a fidriving condition and depend on the dimensionality. In
nite lattice truncation on four (two) sites cells éh=2  order to discuss the critical behavior we have to linearize
(d = 1), and denoting by an index each cell configu- the recursion relations in the proximity of this fixed
ration, we have thap,, — > ,. The renormalization point and to find the relevant eigenvalues of the diagonal
equations that define the renormalized parameters can bnsformation:
conveniently written as , / /
110\ Zoz Zoz’<a/|T Z|a>W0£ — ﬂ — ai
(SiT1S5) A - @ M, M T, ®
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0.7 (for b = 2) obtained in Ref. [12]. The result is in is supported by the NSF.
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