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Mean-field behavior of the sandpile model below the upper critical dimension
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We present results of large scale numerical simulations of the Bak, Tang, and Wiesenfeld@Phys. Rev. Lett.
59, 381 ~1987!; Phys. Rev. A38, 364 ~1988!# sandpile model. We analyze the critical behavior of the model
in Euclidean dimensions 2<d<6. We consider a dissipative generalization of the model and study the
avalanche size and duration distributions for different values of the lattice size and dissipation. We find that the
scaling exponents ind54 significantly differ from mean-field predictions, thus suggesting an upper critical
dimensiondc>5. Using the relations among the dissipation ratee and the finite lattice sizeL, we find that a
subset of the exponents displays mean-field values below the upper critical dimensions. This behavior is
explained in terms of conservation laws.@S1063-651X~98!50906-3#

PACS number~s!: 64.60.Lx, 05.40.1j, 05.70.Ln
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Since the introduction of the concept of self-organiz
criticality ~SOC! ten years ago@1,2#, an enormous effort ha
been devoted to the understanding of this irreversible
namical phenomenon. SOC models oppose the standard
ture of critical phenomena, since their dynamics should g
erate a self-organization of the system into a critical sta
without need for the fine tuning of external parameters. T
paradigmatic SOC model is the sandpile automaton, in wh
a slow external driving of sand particles leads to a station
state with avalanches distributed on all length scales@1#. De-
spite the apparently simple rules, the model shows a com
cated behavior that is not amenable to a complete soluti

In SOC models, the concept of ‘‘spontaneous’’ criticali
is quite ambiguous because it has been recognized that
cality appears only if the driving rate is finely tuned to ze
@2–4#. The slow driving assumption implies nonlocality
the dynamical rules of the model@5#, which makes a genera
theory of SOC problematic@6#. Several important theoretica
questions are still not resolved, such as the precise defin
of universality classes, the value of the upper critical dim
sion, and the validity of fluctuation-dissipation theorem
These problems are also reflected in the relatively few ex
results available in the literature@7,8#. Furthermore, these
issues are also unclear from the numerical point of view,
only in recent years have earlier computational efforts@9,10#
been followed by more accurate numerical studies@11–13#.

Recently, a general dynamical mean-field~MF! analysis
@4# of sandpile models pointed out the similarities betwe
SOC models and phase transitions in systems with absor
states@14#. Criticality is analyzed in terms of the respon
function singularities and the MF critical exponents are c
culated. This method relates bulk and boundary dissipa
and introduces a scaling relation relating dissipation a
finite-size effects. Moreover, due to the conservative na
of sandpiles at the critical point, a subset of critical expon
was predicted to display MF values in low dimensions
well @4#. This result plays an important role in verifying th
571063-651X/98/57~6!/6241~4!/$15.00
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validity of the MF theory, and can be used as a consiste
check for the numerical analysis of several exponents c
acterizing sandpile models.

Here we study the critical behavior of the avalanche s
and duration distribution in order to provide numerical e
dence of the MF behavior of low-dimensional sandpiles. W
perform an accurate study of critical exponents for conser
tive @1# and dissipative@15,16# sandpiles in dimensionality
ranging fromd52 to d56. This allows us to estimate th
upper critical dimensiondc . In contrast with recent numeri
cal simulations@13#, MF behavior is observed only ind56,
and we therefore rule out thatdc54. In addition, we found
that some critical exponents constantly assume their MF
ues in all dimensionsd, as predicted in Ref.@4#.

We consider thed-dimensional Bak, Tang, and Wiesen
feld ~BTW! sandpile model@1# on a hypercubic lattice of
size L. On each sitei of the lattice we define an intege
variable zi , which is identified with the sand or energ
stored in the site. At each time step an energy grain is ad
to a randomly chosen site (zi→zi11). When one of the sites
reaches or exceeds the thresholdzc52d a dynamical process
occurs; zi5zi22d and zj5zj11, where j represents the
nearest-neighbor sites. Such a ‘‘toppling’’ event can indu
nearest-neighbor sites to topple on their turn and so on, u
all sites are below the critical threshold. This process
called an avalanche. The slow driving condition is imp
mented by stopping the random energy addition during
avalanche spreading. This means that the driving time s
is infinitely slow with respect to the avalanche characteris
time.

The model is locally conservative; no energy grains
lost during the toppling event. The only dissipation occurs
the boundary, from which energy can leave the system.
also use a nonconservative definition of the model. W
probability p the toppling site loses its energy without tran
ferring it to its nearest neighbors. This means that on aver
a quantitye52dp of energy is dissipated in each topplin
In this case periodic boundary conditions can be conside
R6241 © 1998 The American Physical Society
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With both of these definitions, the model reaches a station
state in which the energy introduced by the external rand
drive is balanced on average by the energy dissipated in
dynamical evolution. In the stationary state, we can de
the probability that the addition of a single grain is followe
by an avalanche ofs relaxation events. In the limite→0, it
is possible to show that the system response function is
verging, revealing the presence of a critical point@4#. Close
to criticality, the avalanche size distribution assumes
scaling form

P~s!5s2tG~s/sc!, ~1!

wheresc is the cutoff in the avalanche size.
In the infinite time scale separation, the cutoff size is

function sc;e21/s of the bulk or border dissipation. Th
boundary dissipation follows the scaling forme;L2m,
wherem is the exponent that relates the dissipation rate
the system size. Thus we obtain that in the case of a f
conservative system,sc;Lm/s. It is useful to also introduce
the avalanche characteristic lengthj and the scaling relation
sc;jD andj;e2n, which define the fractal dimension an
the characteristic length divergence exponents, respectiv
By noting thatj andL must rescale in the same manner, w
immediately obtain the scaling relations

Ds5n21, n5m21. ~2!

The MF theory givestMF5 3
2 , sMF5 1

2 , andDMF54 @4#. In
addition, the theory of Ref.@4# predicts thatm52 and n
5 1

2 in all dimensions because of the inherent conserva
law of these models. The values of these two exponents
imply that ^s&;L2 and^s&;e2g with g51 for anyd @17#.
From these results, we obtain the scaling relationDs52,
which also holds for alld. These results provide a powerfu
consistency check in the numerical analysis of several ex
nents characterizing sandpile models. The value of the ex
nentst, s, andD depend ond and will only agree with MF
theory values whend.dc .

In order to test the above picture we have studied
avalanche size distribution in systems with dimensions ra
ing from d52 to d56, varying sizesL, and dissipatione. In
the first simulation set (e50), system sizesL<1024 for d
52, L<762 for d53, L<144 for d54, L<53 for d55,
andL<27 for d56 have been investigated. In the second
the dissipation rates change with the dimensions,e>1025

for d52, e>1024 for d53 ande>1021 for d54, 5, and 6,
with a lattice of the maximum size available. In each ca
statistical distributions are obtained averaging over a num
ranging from 106 to 107 nonzero avalanches. Ford>3, the
sizes reached in our simulations are, to our knowledge,
largest that have ever been used. Ind52 we did not push the
computational effort too far, since this case is studied in
literature for very large lattice sizes as well@12#. Particular
attention must be paid to performing simulations with dis
pation, because if the dissipation is too small,j can become
larger thanL, leading to spurious results for the cutoff. It
easy to recognize that diminishing the dissipation rates
similar to increasing the system sizes; in both cases the
erage avalanche size is increasing.
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Our simulations provide two independent estimates of
exponentt by extrapolating the power-law behavior for di
ferent sizesL and finite dissipation rates. The numerical d
termination of an overall power-law behavior, determin
with a 10% accuracy, is an easy task. On the contrary,
creasing the accuracy by an order of magnitude requires
careful data treatment. We noticed that the individuation
the straight portion of the probability distribution is a ve
delicate point in the accurate evaluation of the exponentt. In
particular, even innocuous smoothing procedures give ris
impressive systematic bias. In fact, the fit of the exponent
suffers from strong systematic errors due to the lower a
upper cutoff of the distribution. For this reason, we perfo
a local slope analysis of the raw data by studying the beh
ior of the logarithmic derivative of each avalanche distrib
tion. In this manner, it is possible to identify a plateau
which the local slope is almost constant. This plateau defi
the range ofs we can use for a meaningful determination
the exponentt. Naturally, this range is increasing for large
sizes L and smaller dissipation ratese. Nevertheless, the
measurements oft presents strong finite-size effects esp
cially in d52. In this case the exponentt seems to suffer
from logarithmic corrections to the sizeL, i.e., t(L)5t
2const/log L. In d.2, the numerical evidence shows
much faster convergence estimated ast(L)5t2const
3L22. In the literature, the asymptotic estimates oft are
obtained through extrapolation from the previous functio
behavior@9,10,12,13#. For greater accuracy we also used
new extrapolation procedure devised in Ref.@12#. This pro-
cedure improves the determination of the exponent by us
the functional form of the corrections for the direct determ
nation oft by comparing different size samples. In Table
we report the asymptotic values of the exponentt for 2<d
<5. The values are in good agreement with previous e
mates from Refs.@9,10,12#. In addition, it appears from the
results of Table I that ind>4 the measured value is also n
definitely converged on the MF result. The values that
extrapolated in the presence of finite dissipation ratese have
a small systematic discrepancy with respect to the val
obtained in the usual extrapolation procedure. However,
can be ascribed to the different boundary conditions use
the simulations. It is worth remarking that, as previous
pointed out by other authors@11#, the sole analysis oft can
be misleading, since this exponent is not very sensitive to
variations of the dimensiond, as well as variations of the
universality class@11#. The exponent, in fact, suffers a max
mum variation of around 10% with respect to its MF valu
The simple analysis of this exponent is therefore not alw
determinant in the discrimination of many of the cruc
properties of sandpile models.

In order to provide another independent estimate of

TABLE I. Exponentt L andte obtained from different size and
dissipation rate extrapolations, respectively. The systematic dif
ence is given by the different boundary conditions used in the
merical simulations.

d 2 3 4 5

t `
L 1.3060.01 1.3360.01 1.4560.01 1.5160.01

t`
e 1.2560.03 1.3160.01 1.4360.01 1.4960.01
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exponentst, D, ands, we perform a data collapse analys
which turns out to be very powerful in this case. Under t
finite-size scaling assumptions, the distributionsP(s,L) and
P(s,e) collapse onto a single curve if we properly resca
the variables. Thus, by definingPqx

5P(s,x)/s2t and qL

5sL2D (qe5se1/s), we maintain that all data must collaps
onto the universal function:

Pqx
5G~qx!. ~3!

The exponentt controls the rescaling of the vertical axi
while the exponentsD and s define the rescaling of the
horizontal axis. A similar universal function can be obtain
by using as rescaling variablesL or e, thus obtaining
P(s,x)LDt5F(sL2D) and P(s,x)e2t/s5H(se1/s). The
same analysis can also be performed on the integrated d
butionP(s* .s), which is usually less noisy. In this case th
power-law behavior is governed by the exponentt21. In
order to carefully test the numerical data, we repeated
data collapse analysis by using all of the previous data
lapse forms as well as a direct fitting procedure. We show

FIG. 1. Data collapse analysis of the avalanche size distribu
of the BTW model ind54 with e[0 and for lattice sizesL
548,80,112, and 144. The plot is on a double logarithmic scale.
a better graphic presentation, we report binned data points on to
the full data curves.

FIG. 2. Data collapse analysis of the avalanche size distribu
of the BTW model ind54 with L5144 and for dissipation rate
e.1021. The plot is on a double logarithmic scale. For a bet
graphic presentation, we report binned data points on top of the
data curves.
e

tri-

e
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Figs. 1 and 2 the data collapse for the conservative and
sipative BTW model ind54. We obtain very precise col
lapses that are very sensitive to the tuning of the vari
exponents. The evaluation of exponents by a direct fit
tains results that are in perfect agreement with the data
lapse analysis. In Table II we report the values of the vario
exponents in 2<d<5. From the present analysis, we veri
thatn215Ds.2.0 independently of the dimension. As als
expected, the exponent governing the divergence of the
erage size assumes the valueg.1 constantly. It is striking to
find that the exponentsD ands vary more than 30% from
d52 to d55, with a clear trend toward the MF values. O
the contrary, they have a product that fluctuates at just a
percent. This definitely shows that the dynamics of a sa
pile also maintains MF features in low dimensions as sho
in Ref. @4#. Furthermore, the constant value ofn215Ds
provides an additional consistency check for reliability
our results.

Looking at Table II, we see a strong indication that M
behavior has not yet set ind54. In fact, contrary to some
recent numerical results@13#, we find thatD.3.5 ands21

.1.7. These values, obtained by data collapse, are undo
edly far from the MF ones. They are also fully compatib
with the exponentt as measured with of the extrapolatio
procedure. In fact,g, s, and t have to satisfy the scaling
relationssg522t @4#, which is fully consistent with the
measured values. For these reasons, we are confident in
ing out thatd54 is the upper critical dimension of the san
pile model.

In order to further check the previous results, we a
analyzed the avalanche duration distributions. The res
that will appear in a forthcoming paper@18# confirm the sce-
nario presented in this Rapid Communication. In Table
we only report results concerningd52, 3, and 4, which are
important since they help to determine for the upper criti
dimension. It is worth noting that lifetime distributions spa
a smaller order of magnitude than the corresponding s
distribution because a large number of toppling sites co

TABLE II. Values of the critical exponents in different dimen
sions. The results obtained with data collapse analysis and d
fitting procedure are the same. The error bars reported are alw
the larger estimate obtained from extrapolation or fitting pro
dures.

d g D 1/s n5(Ds)21

2 1.0060.01 2.760.1 1.3060.05 0.4860.03
3 1.0060.01 3.060.1 1.5060.05 0.5060.02
4 0.9960.01 3.560.1 1.7260.05 0.4960.02
5 0.9960.01 3.860.1 1.8860.05 0.4960.02

TABLE III. Values of the critical exponents for lifetime distri
butions in different dimensions.

d z D Dz21

2 1.560.2 0.760.1 0.4760.09
3 1.660.1 0.860.1 0.5060.07
4 1.860.1 0.960.1 0.5060.06
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spond to just one single time step. This implies that ti
distributions present stronger finite-size effects, which
reflected in larger uncertainties on the measured quanti
By using the data collapse described previously, we m
sured the dynamical critical exponentstc;Lz and tc;e2D,
defining the divergence of the characteristic timetc with re-
spect to the system size and dissipation rate, respectivel
d54 we obtainz51.860.1 andD50.960.1, which, in this
case are also different from the MF valueszMF52 and
DMF51. This again supports the claim thatdc.4. Also, for
time exponents, it is possible to show that conservation
plies the scaling relationD/z5 1

2 @4#. The numerical data
provide support for this result.

The value of the upper critical dimension is a lon
standing theoretical question in the study of sandpile mod
Several theoretical estimates~none of them rigorous! give
dc54 @6#, which has also been obtained from recent num
n
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cal simulations@13#. In contrast, other numerical studies@16#
and the analogies with dynamical percolation led several
thors to conjecture thatdc56. From the analysis of our data
which have been obtained using the largest lattice sizes
can say thatdc.4. In d55 we note discrepancies betwee
the values we measure and MF predictions. However,
cause of the relatively small sizes reached in this case,
cannot rule out that deviations from MF behavior are due
finite-size effects. Ind56 we obtain the MF values, but th
error bars do not permit a reliable discussion of the resu

The main part of the numerical simulations were run
the Kalix parallel computer@19# ~a Beowulf project at the
Cagliari Physics Department!. We thank G. Mula for leading
the effort toward organizing this computer facility. We a
knowledge support from V. Fiorentini. The Center for Pol
mer Studies is supported by the NSF.
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