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Mean-field behavior of the sandpile model below the upper critical dimension
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We present results of large scale numerical simulations of the Bak, Tang, and Wie$Ehfgdd Rev. Lett.
59, 381(198%; Phys. Rev. A38, 364 (1988] sandpile model. We analyze the critical behavior of the model
in Euclidean dimensions d<6. We consider a dissipative generalization of the model and study the
avalanche size and duration distributions for different values of the lattice size and dissipation. We find that the
scaling exponents id=4 significantly differ from mean-field predictions, thus suggesting an upper critical
dimensiond.=5. Using the relations among the dissipation rai@nd the finite lattice sizé, we find that a
subset of the exponents displays mean-field values below the upper critical dimensions. This behavior is
explained in terms of conservation layy§1063-651X98)50906-3

PACS numbe(s): 64.60.Lx, 05.40+j, 05.70.Ln

Since the introduction of the concept of self-organizedvalidity of the MF theory, and can be used as a consistency
criticality (SOQ ten years agfl,2], an enormous effort has check for the numerical analysis of several exponents char-
been devoted to the understanding of this irreversible dyacterizing sandpile models.
namical phenomenon. SOC models oppose the standard pic- Here we study the critical behavior of the avalanche size
ture of critical phenomena' since their dynamics should genand duration distribution in order to provide numerical evi-
erate a self-organization of the system into a critical statedence of the MF behavior of low-dimensional sandpiles. We
without need for the fine tuning of external parameters. Thé€rform an accurate study of critical exponents for conserva-

paradigmatic SOC model is the sandpile automaton, in whic§ve [1] and dissipativg 15,16 sandpiles in dimensionality

a slow external driving of sand particles leads to a stationarj219ing fromd=2 to d=6. This allows us to estimate the

state with avalanches distributed on all length scElsDe- upper critical dimensiow,. . In contrast with recent numeri-

spite the apparently simple rules, the model shows a complf-:al simulationd 13], MF behavior is observed only id=6,

cated behavior that is not amenable to a complete solution.and we therefore rule out thag=4. In addition, we found

In SOC models, the concept of “spontaneous” criticality thst isnoglle dci:::lecr?sliiﬁzor;ints;ecdoizfetzr}trl]y;estsdlj]me their MF val-
is quite ambiguous because it has been recognized that criti- We consider thej-(:iimer?sional Bak Taﬁg. and Wiesen-
cality appears only if the driving rate is finely tuned to zZerog, g (BTW) sandpile mode[1] on a h’ypercu’bic lattice of
[2—4]. The slow driving assumption implies nonlocality in

he d ical rul f1h d hich mak | size L. On each site of the lattice we define an integer
the dynamical rules of the modg3], which makes a general -\ 2 iapnie 7 which is identified with the sand or energy

theory of SOC problematii]. Several important theoretical gyqreq in the site. At each time step an energy grain is added
questions are still not resolved, such as the precise definitiop, 5 randomly chosen site,(~z +1). When one of the sites
o_f universality clas_sgs, the value qf the_up_per_crltlcal d'men'reaches or exceeds the threshrlet 2d a dynamical process
sion, and the validity of fluctuation-dissipation theorems-occurs;zizzi—Zd and z;=z;+1, wherej represents the
These problems are also reflected in the relatively few exaGhearest-neighbor sites. Such a “toppling” event can induce
results available in the literature,8]. Furthermore, these nearest-neighbor sites to topple on their turn and so on, until
issues are also unclear from the numerical point of view, an@|| sites are below the critical threshold. This process is
only in recent years have earlier computational efff40]  called an avalanche. The slow driving condition is imple-
been followed by more accurate numerical studiieb-13. mented by stopping the random energy addition during the
Recently, a general dynamical mean-fi¢MF) analysis avalanche spreading. This means that the driving time scale
[4] of sandpile models pointed out the similarities betweenis infinitely slow with respect to the avalanche characteristic
SOC models and phase transitions in systems with absorbirtgme.
states[14]. Criticality is analyzed in terms of the response The model is locally conservative; no energy grains are
function singularities and the MF critical exponents are caldost during the toppling event. The only dissipation occurs at
culated. This method relates bulk and boundary dissipatiothe boundary, from which energy can leave the system. We
and introduces a scaling relation relating dissipation andlso use a nonconservative definition of the model. With
finite-size effects. Moreover, due to the conservative natur@robability p the toppling site loses its energy without trans-
of sandpiles at the critical point, a subset of critical exponenterring it to its nearest neighbors. This means that on average
was predicted to display MF values in low dimensions asa quantitye=2dp of energy is dissipated in each toppling.
well [4]. This result plays an important role in verifying the In this case periodic boundary conditions can be considered.
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With both of these definitions, the model reaches a stationary TABLE I. Exponentr" and 7 obtained from different size and
state in which the energy introduced by the external randomdissipation rate extrapolations, respectively. The systematic differ-
drive is balanced on average by the energy dissipated in thence is given by the different boundary conditions used in the nu-
dynamical evolution. In the stationary state, we can defindnerical simulations.

the probability that the addition of a single grain is followed

by an avalanche of relaxation events. In the lim¢—0, it 9 2 3 4 °

is possible to show that the system response function is diz. 130001 133001 145001 1.510.01
verging, revealing the presence of a critical pdiik Close - 125:003 131001 143001 149001
to criticality, the avalanche size distribution assumes the”

scaling form

Our simulations provide two independent estimates of the
P(s)=s "G(sls,), (1) exponentr by extrapolating the power-law behavior for dif-
ferent sized. and finite dissipation rates. The numerical de-
termination of an overall power-law behavior, determined

wheres; is the cutoff in the avalanche size. h & 1006 | K On th i i
In the infinite time scale separation, the cutoff size is aVIth @ 10% accuracy, is an easy task. On the contrary, in-

function s,~ e~ Y of the bulk or border dissipation. The creasing the accuracy by an or(jer of magnitu.de_rgquir(.es very
boundarycdissipation follows the scaling formL —* careful data treatment. We noticed that the individuation of

where i is the exponent that relates the dissipation rate t&he_ straigh'_[ pc_)rtion of the probability distribution is a very
the system size. Thus we obtain that in the case of a full)ﬁe“(_:ate point in _the accurate evalu_at|0n of the expo!iem_
conservative systens,~L*/“. It is useful to also introduce particular, even innocuous smoothing procedures give rise to

the avalanche characteristic lengtiand the scaling relations impressive systematic bias. In fact, the fit of the exponent
s.~£P and &~ 7, which define the fractal dimension and suffers from strong systematic errors due to the lower and
C i

the characteristic length divergence exponents, respectivel pper cutoff of the o_||str|but|on. For this reason, we perform
By noting that¢ andL must rescale in the same manner, we local slope a".‘a'ys.'s of t.he raw data by studying thg be_hav—
immediately obtain the scaling relations " " “ior of the logarithmic derivative of each avalanche distribu-

tion. In this manner, it is possible to identify a plateau in
which the local slope is almost constant. This plateau defines
the range of we can use for a meaningful determination of
the exponent. Naturally, this range is increasing for larger
The MF theory givesrye=3, ome=3, andDye=4[4]. In  sizesL and smaller dissipation rates Nevertheless, the
addition, the theory of Refl4] predicts thatu=2 and v measurements of presents strong finite-size effects espe-
=3 in all dimensions because of the inherent conservatiomially in d=2. In this case the exponemtseems to suffer
law of these models. The values of these two exponents aldpom logarithmic corrections to the size, i.e., 7(L)=r1
imply that(s)~L? and(s)~e~ ¥ with y=1 for anyd [17].  —const/logL. In d>2, the numerical evidence shows a
From these results, we obtain the scaling relafd®»=2, much faster convergence estimated af.)=r—const
which also holds for altl. These results provide a powerful xL~2, In the literature, the asymptotic estimates mofre
consistency check in the numerical analysis of several expmbtained through extrapolation from the previous functional
nents characterizing sandpile models. The value of the expdehavior[9,10,12,13. For greater accuracy we also used a
nentsr, o, andD depend ord and will only agree with MF  new extrapolation procedure devised in Réf2]. This pro-
theory values whend>d_.. cedure improves the determination of the exponent by using
In order to test the above picture we have studied thehe functional form of the corrections for the direct determi-
avalanche size distribution in systems with dimensions rangaation of r by comparing different size samples. In Table |
ing fromd=2 tod=6, varying sized, and dissipatiorz. In  we report the asymptotic values of the exponetior 2<d
the first simulation setd=0), system size§ <1024 ford <5. The values are in good agreement with previous esti-
=2,L=<762 ford=3, L<144 ford=4, L<53 ford=5, mates from Refs[9,10,13. In addition, it appears from the
andL =27 ford=6 have been investigated. In the second setesults of Table | that inl=4 the measured value is also not
the dissipation rates change with the dimensiars,10°°  definitely converged on the MF result. The values that are
ford=2,e=10 *ford=3 ande=10"1ford=4, 5, and 6, extrapolated in the presence of finite dissipation ratbave
with a lattice of the maximum size available. In each casea small systematic discrepancy with respect to the values
statistical distributions are obtained averaging over a numbesbtained in the usual extrapolation procedure. However, this
ranging from 16 to 10’ nonzero avalanches. Fd=3, the  can be ascribed to the different boundary conditions used in
sizes reached in our simulations are, to our knowledge, théhe simulations. It is worth remarking that, as previously
largest that have ever been useddia2 we did not push the pointed out by other authof4.1], the sole analysis of can
computational effort too far, since this case is studied in théve misleading, since this exponent is not very sensitive to the
literature for very large lattice sizes as wgl2]. Particular  variations of the dimensiod, as well as variations of the
attention must be paid to performing simulations with dissi-universality clas$11]. The exponent, in fact, suffers a maxi-
pation, because if the dissipation is too smélban become mum variation of around 10% with respect to its MF value.
larger thanL, leading to spurious results for the cutoff. It is The simple analysis of this exponent is therefore not always
easy to recognize that diminishing the dissipation rates isleterminant in the discrimination of many of the crucial
similar to increasing the system sizes; in both cases the aproperties of sandpile models.
erage avalanche size is increasing. In order to provide another independent estimate of the

Do=v1, v=p"1. (2)
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15.0 : ‘ - \ \ TABLE Il. Values of the critical exponents in different dimen-
sions. The results obtained with data collapse analysis and direct
10.0 ¢ fitting procedure are the same. The error bars reported are always
the larger estimate obtained from extrapolation or fitting proce-
a 5.0 dures.
)
—
= 00 1
2 d y D 1o v=(Do)
o
=50 2 1.00:001 2201  1.30:005  0.48-0.03
_100 | 3 1.00+0.01 3.0:0.1 1.5G+0.05 0.5G:0.02
' 4 0.99+0.01 3.5:0.1 1.72-0.05 0.49:0.02
~15.0 5 0.99+0.01 3.8:0.1 1.88-0.05 0.49:0.02
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FIG. 1. Data collapse analysis of the avalanche size distributiorﬁgs'. 1 and 2 the data collapse for the_ Conservatl\{e and dis-
of the BTW model ind=4 with e=0 and for lattice sized sipative BTW model |nd=4_. We obtain vgry precise co_l-
=48,80,112, and 144. The plot is on a double logarithmic scale. Fot‘?‘pses that are very sensitive to the tuning of the various

a better graphic presentation, we report binned data points on top &XPonents. The evaluation of exponents by a direct fit ob-
the full data curves. tains results that are in perfect agreement with the data col-

lapse analysis. In Table Il we report the values of the various
exponentsr, D, ando, we perform a data collapse analysis, €xponents in Zd<5. From the present analysis, we verify
which turns out to be very powerful in this case. Under thethat»~*=Do=2.0 independently of the dimension. As also
finite-size scaling assumptions, the distributié?(s,L) and ~ expected, the exponent governing the divergence of the av-
P(s,€) collapse onto a single curve if we properly rescale€rage size assumes the vaje 1 constantly. Itis striking to
the variables. Thus, by defininaqxz P(s,x)/s™" and q, find that the exponent® and o vary more than 30% from

=sL P (q.=se¥7), we maintain that all data must collapse d=2 tod=5, with a clear trend toward the MF values. On

; - the contrary, they have a product that fluctuates at just a few

nto the universal function: N - :
onto the universal functio percent. This definitely shows that the dynamics of a sand-
Py =3(0y). (3)  pile also maintains MF features in low dimensions as shown

in Ref. [4]. Furthermore, the constant value of 1=Do

The exponentr controls the rescaling of the vertical axis, provides an additional consistency check for reliability of
while the exponent® and o define the rescaling of the OUr results. o
horizontal axis. A similar universal function can be obtained L00king at Table II, we see a strong indication that MF
by using as rescaling variables or €, thus obtaining behavior has_not yet set ih=4. In fact, contrary to sorlne
P(s,x)LP"=F(sLP) and P(sx)e "“=H(se'). The recent numerical resuh[ﬁ?;_], we find thatD=3.5 ando ™
same analysis can also be performed on the integrated disti= 1.7- These values, obtained by data collapse, are undoubt-
bution P(s* >s), which is usually less noisy. In this case the €dly far from the MF ones. They are also fully compatible
power-law behavior is governed by the exponertl. In with the exponent- as measured with of the extrapolqtlon
order to carefully test the numerical data, we repeated thBrocedure. In facty, o, and 7 have to satisfy the scaling
data collapse analysis by using all of the previous data coltelationsoy=2—r [4], which is fully consistent with the
lapse forms as well as a direct fitting procedure. We show ianeasured values. For these reasons, we are confident in rul-
ing out thatd=4 is the upper critical dimension of the sand-
pile model.
d=4 In order to further check the previous results, we also
analyzed the avalanche duration distributions. The results
that will appear in a forthcoming papgt8] confirm the sce-
o nario presented in this Rapid Communication. In Table IIl,
¥ I w“v\ | we only report results concernirdy=2, 3, and 4, which are
@ X important since they help to determine for the upper critical
a T=10-‘§3 % dimension. It is worth noting that lifetime distributions span

190 | o= v | a smaller order of magnitude than the corresponding size
5 distribution because a large number of toppling sites corre-
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TABLE Ill. Values of the critical exponents for lifetime distri-
butions in different dimensions.

z A Azt
FIG. 2. Data collapse analysis of the avalanche size distribution

d
of the BTW model ind=4 with L=144 and for dissipation rates 2 1.5+0.2 0.70.1 0.47-0.09
€>10"1. The plot is on a double logarithmic scale. For a better 3 1.6+0.1 0.8-0.1 0.5G-0.07
graphic presentation, we report binned data points on top of the full 4 1.8+0.1 0.9-0.1 0.50+0.06
data curves.
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spond to just one single time step. This implies that timecal simulationg13]. In contrast, other numerical studigk]
distributions present stronger finite-size effects, which areand the analogies with dynamical percolation led several au-
reflected in larger uncertainties on the measured quantitieghors to conjecture that,= 6. From the analysis of our data,
By using the data collapse described previously, we meawhich have been obtained using the largest lattice sizes, we
sured the dynamical critical exponerits-L* andt.~e*,  can say thatl.>4. In d=5 we note discrepancies between
dEfining the divergence of the characteristic t|t@@V|th re- the values we measure and MF predictionsl However, be-
spect to the system size and dissipation rate, respectively. kyse of the relatively small sizes reached in this case, we

d=4 we obtainz=1.8+0.1 andA=0.9*0.1, which, in this  cannot rule out that deviations from MF behavior are due to

case are also different from the MF valuege=2 and fnite_size effects. Id=6 we obtain the MF values, but the
A_MF_l' This again supports the claim triat>4. Also, for .__error bars do not permit a reliable discussion of the results.
time exponents, it is possible to show that conservation im-

plies the scaling relatiom\/z=3 [4]. The numerical data The main part of the numerical simulations were run on
provide support for this result. the Kalix parallel computef19] (a Beowulf project at the

The value of the upper critical dimension is a long- Cagliari Physics DepartmentWe thank G. Mula for leading
standing theoretical question in the study of sandpile modeldhe effort toward organizing this computer facility. We ac-
Several theoretical estimatésone of them rigoroysgive  knowledge support from V. Fiorentini. The Center for Poly-
d.=4 [6], which has also been obtained from recent numeriimer Studies is supported by the NSF.
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